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Abstract. Let a smooth family of Riemannian metrics g(τ) satisfy the
backwards Ricci flow equation on a compact oriented n-dimensional mani-
fold M . Suppose two families of normalized n-forms ω(τ) ≥ 0 and ω̃(τ) ≥ 0
satisfy the forwards (in τ) heat equation on M generated by the connection
Laplacian ∆g(τ). If these n-forms represent two evolving distributions of
particles over M , the minimum root-mean-square distance W2(ω(τ), ω̃(τ), τ)
to transport the particles of ω(τ) onto those of ω̃(τ) is shown to be non-
increasing as a function of τ , without sign conditions on the curvature of
(M, g(τ)). Moreover, this contractivity property is shown to characterise
supersolutions to the Ricci flow.

1. introduction

On a compact oriented n-dimensional manifold M , let g(τ) be a smooth
family of metrics for τ ∈ [τ1, τ2]. We are particularly interested in the case that
g(τ) satisfies the backwards Ricci flow equation

(1)
∂g

∂τ
= 2 Ric(g)

where Ric(g) is the Ricci tensor of g. Given terminal data g(τ2), such a family
can always be constructed for τ1 sufficiently close to τ2 (see Hamilton [11],
DeTurck [9], [27, Ch. 5]). The geodesic distance d(x,y, τ) between two points
x,y ∈M , with respect to g(τ), evolves according to the formula

(2) d2(x,y, τ) = inf
σ(0)=x,σ(1)=y

∫ 1

0

∣∣∣∣dσds
∣∣∣∣2
g(τ)

ds,

where the infimum is taken over smooth curves σ : [0, 1] → M joining x
to y. Similarly, given two Borel probability measures ν and ν̃ on M , the
2-Wasserstein distance W2(ν, ν̃, τ) between them evolves according to its defi-
nition

(3) W 2
2 (ν, ν̃, τ) = inf

π∈Γ(ν,ν̃)

∫
M×M

d2(x,y, τ) dπ(x,y).
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The infimum is taken over the space Γ(ν, ν̃) of Borel probability measures π
on M ×M which have marginals ν and ν̃, in the sense that

(4)

∫
M

f(x)dν(x) =

∫
M×M

f(x) dπ(x,y); and∫
M×M

f(y) dπ(x,y) =

∫
M

f(y)dν̃(y),

for each continuous test function f ∈ C(M).
In this paper, we are particularly interested in the case of measures ν and ν̃

which are induced by n-forms ω and ω̃ respectively, in the sense that

ν(A) =

∫
A

ω,

for every Borel A ⊂M , and similarly for ω̃. (We will often corrupt notation by
considering the Wasserstein distance between ω and ω̃ rather than ν and ν̃.)
The advantage of defining W2 as an infimum over joint probabilities π rather
than smooth 2n-forms on M ×M is that Γ(ν, ν̃) is a weak-∗ compact subset
of the dual space to (C(M ×M), ‖ · ‖∞), so the infimum in (3) is therefore
attained by some joint probability π0. The structure of the minimising π0 will
be recalled in the proofs below; it is not generally smooth.

Following a construction from Perelman’s work on Ricci flow [21], [27, Chap-
ter 6], let ω(x, τ) evolve under the heat equation

(5)
∂ω

∂τ
= ∆g(τ)ω,

where ∆g is the connection Laplacian with respect to g. This evolution pre-
serves the total mass:

d

dτ

∫
M

ω = 0,

and gives a smooth n-form ω(τ) at later times τ . In particular, the measures
induced by ω(τ) at later times continue to be probability measures, absolutely
continuous with respect to the measure induced by any smooth volume form
on M . If we write ω(x, τ) = u(x, τ)dV , where dV = dVg(τ) is the volume form
associated to g(τ), then the non-negative function u solves the conjugate heat
equation

(6)
∂u

∂τ
= ∆g(τ)u−

(
1

2
tr
∂g

∂τ

)
u,

which in the special case of Ricci flow is

(7)
∂u

∂τ
= ∆g(τ)u−Ru,
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where R = tr Ric is the scalar curvature, since the volume form dV evolves
according to ∂

∂τ
dV = (1

2
tr ∂g

∂τ
) dV or ∂

∂τ
dV = RdV in the special case of Ricci

flow (see [27, (2.5.7)]). By the strong maximum principle, u > 0 for τ > τ1.
We precede our main theorem by one of its corollaries, which asserts that

the diffusion (5) of the form ω(τ) couples with the backwards Ricci flow to
produce a 2-Wasserstein contraction:

Corollary 1 (Coupled contraction). On a compact oriented manifold M , sup-
pose a smooth family of metrics g(τ) satisfies the backwards Ricci flow equation
(1) on the same interval [τ1, τ2] ⊂ R that ω(x, τ) ≥ 0 and ω̃(x, τ) ≥ 0 are unit
mass solutions to the diffusion equation (5). Then W2(ω(τ), ω̃(τ), τ) is a non-
increasing function of τ ∈ [τ1, τ2], where 2-Wasserstein distance W2 is defined
by (3).

This result should be compared to 2-Wasserstein contractivity of the ordinary
heat flow in a stationary metric, which can be established assuming Ric ≥ 0: see
e.g. Sturm & von Renesse [25], and the subsequent works of Lott & Villani [15]
[16] and Sturm [22] [23] [24], which build on the Riemannian adaptation by Otto
& Villani [20] and Cordero-Erausquin, McCann & Schmuckenschläger [7] [8], of
Jordan, Kinderlehrer & Otto’s gradient flow formulation of the dynamics [13]
[19] from Euclidean space and McCann’s displacement convexity [17]. In the
Euclidean context, W2-contractivity of the heat evolution was also established
by Ambrosio, Gigli & Savaré [1] and Carrillo, McCann & Villani [5]. The
connection between entropy, Ricci curvature, and convergence of diffusion dates
back at least to Bakry & Emery [2].

We remark that in our Ricci flow setting, no sign condition on the Ricci
curvature is required. In a region where this curvature is negative, the evolution
of the metric (1) shrinks distances just enough to compensate for any lack of
contractivity of the diffusion, whereas in Ricci positive regions, the diffusive
contraction turns out to be strong enough to compensate for expansion of
distances by (1).

The part of the proof of our main theorem which leads to Corollary 1 will be
based on displacement semiconvexity and other estimates for the Boltzmann-
Shannon entropy along appropriate Wasserstein geodesics (see Section 3).

To state our main theorem, we need to introduce the notion of a supersolu-
tion to the Ricci flow.

Definition 1. A super Ricci flow (parametrised backwards in time) is a smooth
family g(τ) of metrics, τ ∈ [τ1, τ2], such that at each τ ∈ (τ1, τ2), and at each
point on M , we have

(8) −∂g
∂τ

+ 2Ric(g(τ)) ≥ 0.
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Note that τ is reverse-time compared to the time parameter t in the classical
Ricci flow literature, and so − ∂

∂τ
is a derivative forwards in time t.

Our main theorem asserts that the contractivity of diffusions backwards in
t (forwards in τ) as in Corollary 1 characterises super Ricci flows, and there is
a third equivalent condition involving forwards in t (backwards in τ) solutions
to heat equations.

Theorem 2. Suppose that M is a compact, oriented manifold M equipped with
a smooth family of metrics g(τ) for τ ∈ [τ1, τ2] ⊂ R. Then the following are
equivalent:

(A) g(τ) is a super Ricci flow (i.e. satisfies (8));
(B) whenever τ1 < a < b < τ2 and ω(x, τ) ≥ 0 and ω̃(x, τ) ≥ 0 are unit

mass solutions to the diffusion equation (5) for τ ∈ (a, b), the function
W2(ω(τ), ω̃(τ), τ) is nonincreasing in τ ∈ (a, b), where 2-Wasserstein dis-
tance W2 is defined by (3).

(C) whenever τ1 < a < b < τ2 and f : M × (a, b) → R is a solution to
−∂f
∂τ

= ∆g(τ)f , the function supM |∇f(·, τ)| is nondecreasing in τ .

This theorem is related to a result of Sturm and von Renesse [25] showing
that fixed Riemannian manifolds with Ric ≥ 0 can be characterised in terms
of the properties of the solutions of heat equations. In our situation – working
with respect to an evolving metric – one must distinguish between forwards in
t (backwards in τ) solutions to the heat equation ∂f

∂t
= ∆f , which do not have

preserved mass in our situation, and backwards in t (forwards in τ) solutions
to the diffusion equation ∂u

∂τ
= ∆u−

(
1
2

tr ∂g
∂τ

)
u which do have preserved mass.

Remark 3. Our characterisations indicate how one can define a super Ricci
flow in certain weaker contexts than having a smooth family of Riemannian
manifolds. For example, one could consider one-parameter families of path
metric spaces, each equipped with a reference measure such as the Hausdorff
measure of non-trivial dimension induced by its metric. Using the ideas of
entropy convexity for Ricci flow in this paper, it is possible to make sense of
weak super Ricci flow definitions without constructing any notion of diffusion.
This provides a dynamic analogue of the approach of the previously mentioned
papers of Lott & Villani [15] [16] and Sturm [22] [23] [24], which address the
static case. A weak Ricci flow can then be defined to be a weak super Ricci flow
which at each time expands distances no faster (to first order in time) than any
other super Ricci flow which coincides with the given super Ricci flow at that
time.

Remark 4. The orientability assumption in Theorem 2 and Corollary 1 is only
required to make sense of the inequalities ω ≥ 0 (meaning that the form ω is a
nonnegative multiple of the volume form dVg(τ)) and ω̃ ≥ 0. By reformulating
the theorem in terms of the measures induced by ω and ω̃, one gets a result
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which is also true for non-orientable manifolds (albeit at the expense of clarity
of exposition). The same is true for Lemma 8 below.

Acknowledgement: We would like to thank Gerhard Huisken and Alessio
Figalli for useful comments during the course of this work. John Lott has
informed us that he has independently been considering the links between op-
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was supported in part by Natural Sciences and Engineering Research Council
of Canada Grant 217006-03, United States National Science Foundation Grant
DMS 0354729, and an Engineering and Physical Sciences Research Council
(UK) Advanced Research Fellowship. RJM is pleased to acknowledge the hos-
pitality of the Institut Henri Poincaré (Paris) and PT thanks the Max Planck
Albert Einstein Institute (Golm) and the Free University (Berlin) where parts
of this work were performed.

2. properties of the distance function

We consider now the distance function d : M ×M × [τ1, τ2] → [0,∞) as-
sociated to an arbitrary smooth family of Riemannian metrics g(τ) on M for
τ ∈ [τ1, τ2].

Since we are working with a smooth flow on a compact manifold M , over a
compact time interval, we may assume that the diameter is bounded (that is,
d(·, ·, ·) ≤ C) and | ∂g

∂τ
| is bounded. This latter fact implies control on the rate

that distances can expand or shrink (c.f. [27, Lemma 5.3.2]) and we can deduce
that the distance function τ 7→ d(x,y, τ) is a Lipschitz function on [τ1, τ2] with
Lipschitz constant independent of x and y.

If K < ∞ is an upper bound for the Lipschitz constant of d2(x,y, ·) :
[τ1, τ2] → R, for all x,y ∈ M , then we may work directly from the defini-
tion of 2-Wasserstein distance (3) to see that for fixed unit mass non-negative
n-forms ω and ω̃, the function τ 7→ W 2

2 (ω, ω̃, τ) is Lipschitz, with Lipschitz
constant no more than K. With the hindsight of the proof of Theorem 2, it
will be clear that with ω(τ) and ω̃(τ) evolving smoothly, as in the theorem,
the function τ → W 2

2 (ω(τ), ω̃(τ), τ) is also Lipschitz away from τ = τ1, but for
now let us observe the more elementary fact that it is continuous on the whole
of [τ1, τ2].

Meanwhile, at each instant τ , the squared distance function d2(x,y, τ) de-
fined by (2) is smooth on an open subset of M ×M whose complement (the
cut locus) is denoted by Cut(M, g(τ)) ⊂M ×M . A minimising geodesic links
each pair of points x,y ∈M by completeness. For (x,y) /∈ Cut(M, g(τ)), this
geodesic is unique, and we represent it as a constant speed smooth map s ∈
[0, 1] −→ σ(x,y, s, τ) ∈ M with σ(x,y, 0, τ) = x and σ(x,y, 1, τ) = y, which
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attains the infimum (2). When appropriate, we will abbreviate σ(x,y, s, τ) by
σ(s) and write dσ/ds instead of ∂σ/∂s.

We also need to consider the space-time cut locus

CutST := {(x,y, τ) ∈M ×M × [τ1, τ2] | (x,y) ∈ Cut(M, g(τ))}.
The following elementary properties of CutST will be proved in the appendix.

Lemma 5. Suppose M is a compact manifold with a smooth family g(τ) of
Riemannian metrics for τ ∈ (τ1, τ2). Then CutST is closed in M×M×(τ1, τ2).

Moreover, on the complement of CutST, writing the unique constant speed
minimising geodesic from x to y, with respect to g(τ), as s ∈ [0, 1] −→
σ(x,y, s, τ) ∈ M , the point σ(x,y, s, τ) is smoothly dependent on x, y, s and
τ , and in particular, the squared distance function d2(x,y, τ) is smoothly de-
pendent on x, y and τ .

Remark 6. By translating time, let us assume that 0 ∈ (τ1, τ2). By virtue of
the lemma, given (x,y) /∈ Cut(M, g(0)), and two smooth maps X, Y : [τ1, τ2]→
M with X(0) = x and Y (0) = y, we may precisely compute the evolution of
d2(X(τ), Y (τ), τ). One gets terms owing to the evolution of X(τ) and Y (τ),
and of the metric g(τ):

(9)

d

dτ

∣∣∣∣
τ=0

d2(X(τ), Y (τ), τ)

2
=− 〈dX

dτ

∣∣∣∣
τ=0

,
dσ

ds

∣∣∣∣
s=0+

〉+ 〈dY
dτ

∣∣∣∣
τ=0

,
dσ

ds

∣∣∣∣
s=1−
〉

+

∫ 1

0

1

2

∂g

∂τ

(
dσ

ds
,
dσ

ds

) ∣∣∣∣
σ(x,y,s,0)

ds,

where the shorthand σ(s) refers to the specific geodesic σ(x,y, s, 0).

3. derivatives of the classical entropy along wasserstein
geodesics

In this section we consider Wasserstein geodesics on a fixed Riemannian man-
ifold. We begin by recalling briefly the strategy for showing W2-contractivity
of the diffusion equation on a fixed, Ricci non-negative manifold. The central
idea of the contractivity estimate [1] [5] [25] goes back to Jordan, Kinderlehrer
& Otto’s realization [13] that the heat equation represents steepest descent of
the Boltzmann-Shannon entropy

(10) E(u) =

∫
M

(log u) u dV

with respect to 2-Wasserstein distance. In Euclidean space, (displacement) con-
vexity of the entropy [17] along W2-geodesics [3] allowed Otto [19] to quantify
rates of convergence to the heat kernel. This displacement convexity extends to
Ricci non-negative manifolds [7] as conjectured by Otto & Villani [20], and ac-
tually characterizes Ricci non-negativity as observed by Sturm & von Renesse
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[25]. On a manifold whose Ricci curvature takes both signs, the second deriva-
tive of the entropy (10) is estimated from below by a lower bound for the Ricci
curvature [8] [25] — a fact used by Lott & Villani [15] [16] and Sturm [22] [23]
[24] to develop a theory of Ricci bounds on measured length spaces. From the
entropy, we shall require a more precise manifestation of displacement convex-
ity (part of Lemma 8 below) to balance the possible metric expansion arising
from (1). We derive this manifestation (14) following a Jacobi-field calculation
of Cordero-Erausquin, McCann & Schmuckenschläger [8], in the spirit of clas-
sical comparison geometry, instead of their original proof [7]. This calculation
explicitly links the behaviour of the entropy E(u) along W2-geodesics, to an
appropriate average of the Ricci curvature along ordinary geodesics.

Definition 7 (Push-forward). Given manifolds M and M̂ , any Borel map F :

M −→ M̂ and probability measure ν on M induce a Borel probability measure
on M̂ , called the push-forward of ν through F , denoted F#ν and defined by

(F#ν)[V ] = ν[F−1(V )] for all Borel V ⊂ M̂ . For Borel test functions v :

M̂ −→ R ∪ {±∞}, it follows that

(11)

∫
M̂

v d(F#µ) =

∫
M

(v ◦ F ) dµ.

Since the lemma below applies to a manifold with a fixed metric g, rather
than a flowing metric g(τ), we adapt our notation σ(x,y, s, τ), from Section 2,
and our notation W2(ν, ν̃, τ), by dropping the time argument τ .

Lemma 8 (Derivatives of the entropy along Wasserstein geodesics). Suppose
M is a compact oriented manifold with a smooth metric g. Let ω > 0 and ω̃ > 0
be smooth n-forms on M with unit total mass, inducing probability measures ν
and ν̃. Let π0 ∈ Γ(ν, ν̃) denote the minimising measure on M ×M from the
definition of W2(ν, ν̃).

Then there exists a family of probability measures ν(s), for s ∈ [0, 1], with
ν(0) = ν and ν(1) = ν̃, such that

(12)
W2(ν, ν(s))

s
= W2(ν, ν̃) =

W2(ν(s), ν̃)

1− s
for each s ∈ (0, 1). For each s ∈ [0, 1], there exists a non-negative function
u(s) ∈ L1(M) such that ν(s) is the measure induced by u(s) dVg. The entropy
E(u(s)) is semiconvex for s ∈ [0, 1], and a.e. s̃ ∈ (0, 1) satisfies

d2

ds2

∣∣∣∣
s̃

E(u(s)) := lim
δ→0

E(u(s̃+ δ)) + E(u(s̃− δ))− 2E(u(s̃))

δ2
(13)

≥
∫
M×M

Ric

(
dσ

ds
,
dσ

ds

) ∣∣∣∣
σ(x,y,s̃)

dπ0(x,y).(14)
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Moreover,

d

ds

∣∣∣∣
s=0+

E(u(s)) := lim
s↘0

E(u(s))− E(u(0))

s

≥
∫
M×M

〈dσ
ds

∣∣∣∣
σ(x,y,0+)

,∇ log u(0)

∣∣∣∣
x

〉dπ0(x,y).(15)

By exchanging ω and ω̃ in (15) (equivalently, by transforming s to 1− s) we
also have

− d

ds

∣∣∣∣
s=1−

E(u(s)) ≥
∫
M×M

〈−dσ
ds

∣∣∣∣
σ(x,y,1−)

,∇ log u(1)

∣∣∣∣
y

〉dπ0(x,y),

and through (14), (15) and the semiconvexity of E(u(s)), the lemma yields
what we will require in the proof of Theorem 2:

Corollary 9. Suppose M is a compact oriented manifold with a smooth metric
g. Let ω = u dV > 0 and ω̃ = ũ dV > 0 be smooth n-forms on M with unit total
mass. Let π0 denote the minimising measure on M ×M from the definition of
W2(ω, ω̃). Then

(16)

∫
M×M

(
〈dσ
ds

∣∣∣∣
σ(x,y,1−)

,∇ log ũ

∣∣∣∣
y

〉 − 〈dσ
ds

∣∣∣∣
σ(x,y,0+)

,∇ log u

∣∣∣∣
x

〉

)
dπ0(x,y)

≥
∫ 1

0

(∫
M×M

Ric

(
dσ

ds
,
dσ

ds

) ∣∣∣∣
σ(x,y,s)

dπ0(x,y)

)
ds.

Proof. (Lemma 8.) Before beginning the proof, we highlight a few implicit
assertions within the statement of the lemma. First, we have defined π0 as the
minimiser; uniqueness here follows from [18] because ω and ω̃ are smooth, and
thus ν and ν̃ do not charge sets of zero volume. Second, the semiconvexity of
E(u(s)) and the smoothness of u(0) and u(1) tacitly imply that u(s) ∈ L logL
for each s ∈ [0, 1] – that is, E(u(s)) is finite. Third, implicit in the integrals
(14) and (15) is the existence of a geodesic s ∈ [0, 1] −→ σ(x,y, s) for π0-almost
all (x,y) ∈ M ×M ; this relies on a result of Cordero-Erausquin, McCann &
Schmuckenschläger [7] which asserts that π0[Cut(M, g)] = 0. Fourth, the limits
in (13) and (15) exist owing to the semiconvexity of E(u(s)).

Let us begin by recalling the basic facts about the minimiser of (3) es-
tablished in [18]. The minimising joint measure π0 ∈ Γ(ν, ν̃) is unique (as
mentioned above) and can be expressed π0 = (id× F )#ν as the push-forward
of ν through a Borel map x −→ (x, F (x)). The map F : M −→ M can be
written F (x) = expx∇θ, for some potential θ : M −→ R whose negation is
d2/2-concave, meaning −θ = ((−θ)d2/2)d2/2, where the operation

(17) φd2/2(y) := min
x∈M

d2(x,y)/2− φ(x)
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defines a variant of the Legendre-Fenchel transform adapted to functions φ :
M −→ R on a Riemannian manifold. In particular, θ is semiconvex and
admits a second order Taylor expansion on a set domD2θ ⊂M of full volume
[8]. Define, for x ∈ domD2θ, the displacement Fs(x) := expx s∇θ which
interpolates geodesically between id and F . It is by now well-known that ν(s)
satisfies (12) if and only if ν(s) = (Fs)#ν [15]. Fixing s̃ ∈ (0, 1), a σ-compact
set K ⊂ domD2θ of full measure exists [8, Proposition 5] on which the Monge-
Ampère equation

(18) u(0,x) = u(s, Fs(x)) detAx(s) > 0

holds for all x ∈ K and s ∈ [0, 1] such that s − s̃ ∈ Q is rational. Here
s −→ Ax(s) is the unique n × n matrix of Jacobi fields along the geodesic
Fs(x) verifying Ax(0) = I and A′x(0) = D2θ(x) (working with respect to
a parallel orthonormal frame along the geodesic). Furthermore, Fs(K) is a
Borel set of full mass for us and we have (x, F1(x)) 6∈ Cut(M, g) and Fs(x) =
σ(x, F (x), s) for x ∈ K [7]. By compactness, our manifold admits a Ricci
curvature bound Ric ≥ λg for some λ ∈ R. Theorem 10 of Cordero-Erausquin,
McCann & Schmuckenschläger [8] asserts convexity of E(u(s))+λW 2

2 (ω, ω̃)s2/2
on s ∈ [0, 1]. In other words, E(u(s)) is semiconvex and has a second order
Taylor expansion a.e. in [0, 1]. If s̃ is such a point, the limit (13) exists and
can be computed along a rational sequence Q 3 δ → 0. From the fact that
ν(s) = (Fs)#ν we find

E(u(s̃+ δ)) + E(u(s̃− δ))− 2E(u(s̃))

=

∫
K

ω(x) log
u(s̃+ δ, Fs̃+δ(x))u(s̃− δ, Fs̃−δ(x))

u(s̃,x)2
.

Using (18) when δ is rational, and knowing the limit exists, we find that

(19)
d2

ds2

∣∣∣∣
s̃

E(u(s)) = lim
δ→0

∫
K

ω(x)
ϕ(s̃+ δ,x) + ϕ(s̃− δ,x)− 2ϕ(s̃,x)

δ2

where ϕ(s,x) := − log detAx(s) (a smooth function of s for each x ∈ K).
By working directly with the definition of Jacobi fields, one can estimate, for
x ∈ K,

(20)
∂2ϕ

∂s2
(s,x) ≥ 1

n

(
∂ϕ

∂s
(s,x)

)2

+ Ric

(
dσ

ds
,
dσ

ds

) ∣∣∣∣
σ(x,F (x),s)

as in Lemma 6 of [8] (c.f. [12, §17] or [10, (4.18)], say). One deduces first from

this a lower bound for ∂2ϕ
∂s2

(s,x), uniformly in s ∈ [0, 1] and x ∈ K. (We are

using the boundedness of the diameter of (M, g) here to control dσ
ds

.) This then

gives us a uniform lower bound on the ratio 1
δ2

(ϕ(s̃+δ,x)+ϕ(s̃−δ,x)−2ϕ(s̃,x))
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when δ > 0 is small enough for all terms to be well-defined. Consequently, we
may address (19) with Fatou’s lemma to deduce

d2

ds2

∣∣∣∣
s̃

E(u(s)) ≥
∫
K

ω(x)
∂2ϕ

∂s2
(s̃,x)

≥
∫
K

ω(x)Ric

(
dσ

ds
,
dσ

ds

) ∣∣∣∣
σ(x,F (x),s̃)

(21)

using (20). Since π0 = (id× F )#ν, and K carries the full mass of the measure
ν induced by ω, (11) yields the desired estimate (14).

For the final estimate (15), we follow a similar argument with s̃ = 0 and
compute as above, that

(22)

E(u(s))− E(u(0))

s
=

∫
K

u(s) log u(s)− u(0) log u(0)

s
dV

=
1

s

∫
K

log

(
u(s, Fs(x))

u(0,x)

)
ω(x)

=
1

s

∫
K

ϕ(s,x)ω(x),

where the final equality is holding for any rational s by (18). Before taking the
limit s↘ 0 in Q, we need:

Claim:

lim inf
s↘0

∫
K

ϕ(s, ·)
s

dν ≥ −
∫
K

∆θdν.

Indeed, for x ∈ K, we have ϕ(0,x) = 0 and ∂ϕ
∂s

(0,x) = −∆θ(x), so by Taylor’s
expansion, we have

ϕ(s,x)

s
= −∆θ(x) +

1

s

∫ s

0

(s− b)∂
2ϕ

∂s2
(b,x)db,

and using again the fact that ∂2ϕ
∂s2

(b,x) is bounded below, uniformly in x, we
find that

ϕ(s,x)

s
≥ −∆θ(x)− sC,

for some C < ∞. Fatou’s lemma may then be invoked to conclude the proof
of the claim:

0 =

∫
K

lim inf
s↘0

(
ϕ(s,x)

s
+ ∆θ(x)

)
dν(x)

≤ lim inf
s↘0

∫
K

(
ϕ(s,x)

s
+ ∆θ(x)

)
dν(x).
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Using the claim, we may now take a limit in (22) to give

(23)

d

ds

∣∣∣∣
s=0+

E(u(s)) := lim
s↘0

E(u(s))− E(u(0))

s

≥ −
∫
K

∆θdν

≥ −
∫
M

(∆D′θ)u(0)dV

=

∫
M

〈∇θ,∇u(0)〉 dν
u(0)

since 0 < u(0) ∈ C∞(M). in the last inequality we used semiconvexity of θ to
know that the distributional Laplacian ∆D′θ was a signed measure with non-
negative singular part, and thus pass from its absolutely continuous part ∆θ
on K to the full distributional Laplacian on M . Appealing to the facts that
π0 = (id× F )#ν, and dσ

ds
|σ(x,F (x),0+) = ∇θ(x) on the set K of full measure, we

recover the desired conclusion (15).

Remark 10. With a little more work, one can in fact show that equality holds
in the first inequality of (23). Thus, the difference between the left-hand side
and the right-hand side in (15) can be written precisely in terms of the integral
of the singular part of the distributional Laplacian ∆D′θ. This clarifies the
speculation in the last few lines of [8].

4. Proof of Theorem 2; (A) =⇒ (B)

We now return to study the coupled system described in the introduction,
and prove that (A) implies (B) in Theorem 2, and hence prove Corollary 1 by
restricting super Ricci flows to Ricci flows.

Proof. Recall from Section 2 that h(τ) := W 2
2 (ω(τ), ω̃(τ), τ)/2 is a continuous

function of τ on [τ1, τ2]. By translating time, we may assume that 0 ∈ (τ1, τ2),
and prove that

d+h

dτ

∣∣∣∣
τ=0

:= lim sup
τ↘0

h(τ)− h(0)

τ
≤ 0.

We define, as in the introduction, the function u : M × (τ1, τ2)→ (0,∞) by
ω(x, τ) = u(x, τ)dVg(τ). In contrast to the construction in Section 3, the max-
imum principle and parabolicity now guarantee that u is smooth and positive.
Let ψτ : M → M be the family of diffeomorphisms generated by the time-
dependent vector field −∇ log u, with ψ0 the identity map. Then analogously
to the situation in [21] and [27, Chapter 6] for Ricci flow, one can calculate the
pull-back

ψ∗τ ω(τ) = ω(0)
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for each τ ∈ (τ1, τ2); the diffeomorphism property makes this equivalent to a
push-forward: abusing the distinction between n-forms and measures, we have
(ψτ )#ω(0) = ω(τ). One can also make the identical construction for ω̃, yielding

diffeomorphisms ψ̃τ , generated by the vector field −∇ log ũ.
Let π0 be the (unique) optimal transport plan taking ω(0) to ω̃(0). A rea-

sonable competitor for the optimal transport plan at time τ is (ψτ × ψ̃τ )#π0.
In particular, we note that the marginals of this measure are (the measures
induced by) ω(τ) and ω̃(τ), making it a valid transport plan. We then know,
by (3) and the definition of push-forward measures, that

(24)

h(τ) ≤ 1

2

∫
M×M

d2(x,y, τ) d((ψτ × ψ̃τ )#π0)(x,y)

=
1

2

∫
M×M

d2(ψτ (x), ψ̃τ (y), τ) dπ0(x,y).

By definition of π0, we now have

(25)
h(τ)− h(0)

τ
≤
∫
M×M

d2(ψτ (x), ψ̃τ (y), τ)− d2(x,y, 0)

2τ
dπ0(x,y),

for τ > 0. We wish to take the limit τ ↘ 0. On any time interval I ⊂⊂ (τ1, τ2],

we have u bounded away from 0, and so d2(ψτ (x), ψ̃τ (y), τ) is a Lipschitz
function of τ ∈ I, with Lipschitz constant independent of x and y. Therefore,
we may appeal to the Dominated Convergence Theorem and then Remark 6
(which gives a formula for the τ derivative of d2(ψτ (x), ψ̃τ (y), τ) valid for (x,y)
outside the vanishing π0-measure [7] set Cut(M, g(0))) to establish that

(26)

d+h

dτ

∣∣∣∣
τ=0

≤ lim
τ→0

∫
M×M

d2(ψτ (x), ψ̃τ (y), τ)− d2(x,y, 0)

2τ
dπ0(x,y)

=

∫
M×M

d

dτ

∣∣∣∣
τ=0

d2(ψτ (x), ψ̃τ (y), τ)

2
dπ0(x,y)

=

∫
M×M

(
〈∇ log u,

dσ

ds
〉
∣∣∣∣
σ(x,y,0+,0)

− 〈∇ log ũ,
dσ

ds
〉
∣∣∣∣
σ(x,y,1−,0)

+

∫ 1

0

1

2

∂g

∂τ

(
dσ

ds
,
dσ

ds

) ∣∣∣∣
σ(x,y,s,0)

ds

)
dπ0(x,y).

By considering the W2-geodesic between ω(0) and ω̃(0) – and in particular, by
invoking Corollary 9, we conclude that

d+h

dτ

∣∣∣∣
τ=0

≤
∫
M×M

∫ 1

0

1

2

(
∂g

∂τ
− 2Ric

)(
dσ

ds
,
dσ

ds

) ∣∣∣∣
σ(x,y,s,0)

ds dπ0(x,y) ≤ 0.
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5. Proof of Theorem 2; (B) =⇒ (C)

Define

Σ = {(x, τ, x̂, τ̂) ∈M × [τ1, τ2]×M × [τ1, τ2] : τ < τ̂},

and a smooth function u : Σ→ (0,∞) as follows. Given (x̂, τ̂) ∈ M × (τ1, τ2],
we define u(x, τ, x̂, τ̂) for τ < τ̂ by asking that

(27)
�u := −∂u

∂τ
−∆xu = 0 for (x, τ) ∈M × (τ1, τ̂)

u(·, τ̂ , x̂, τ̂) = δx̂ on M

where ∆x is the Laplacian with respect to the x entry of u(x, τ, x̂, τ̂) using the
metric g(τ), and the initial condition is the usual shorthand for

(28) lim
τ↗τ̂

∫
M

u(x, τ, x̂, τ̂)ϕ(x, τ)dx = ϕ(x̂, τ̂) for all ϕ ∈ C∞(M × (τ1, τ̂ ]),

where dx is the Riemannian volume measure with respect to g(τ) for the pa-
rameter x.

The equation in (27) is the usual forward-in-t heat equation (with x̂ and
τ̂ fixed) since ∂

∂τ
= − ∂

∂t
. In fact, for fixed x and τ , the function u will then

satisfy the “conjugate heat equation” in x̂ and τ̂ :

Lemma 11. The function u defined as above satisfies, for fixed x and τ ,

(29)
�∗u :=

∂u

∂τ̂
−∆x̂u+

(
1

2
tr
∂g

∂τ̂

)
u = 0 for (x̂, τ̂) ∈M × (τ, τ2)

u(x, τ, ·, τ) = δx on M

where ∆x̂ is the Laplacian with respect to the x̂ entry of u(x, τ, x̂, τ̂) using the
metric g(τ̂), the notation ∂g

∂τ̂
represents the τ -derivative of g at τ̂ (evaluated at

x̂), and the initial condition is the usual shorthand for

(30) lim
τ̂↘τ

∫
M

u(x, τ, x̂, τ̂)ϕ(x̂, τ̂)dx̂ = ϕ(x, τ) for all ϕ ∈ C∞(M × [τ, τ2)),

where dx̂ is the Riemannian volume measure with respect to g(τ̂) for the pa-
rameter x̂.

For fixed x and τ , one should interpret u(x, τ, x̂, τ̂)dx̂ as the probability
measure of a Brownian path starting at (x, τ) and diffusing forwards in τ
until τ̂ . In contrast, for fixed x̂ and τ̂ , the function u(·, τ, x̂, τ̂) is a likelihood
function, not a probability density.
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Proof. Having defined u : Σ→ (0,∞) by (27), define v : Σ→ (0,∞) to be the
solution of (29). It remains to prove that u ≡ v.

Fix τ, τ̂ with τ1 < τ < τ̂ < τ2 and x, x̂ ∈ M . We wish to show that
u(x, τ, x̂, τ̂) = v(x, τ, x̂, τ̂). Writing U(z, η) := u(z, η, x̂, τ̂) and V (z, η) :=
v(x, τ, z, η), this would be U(x, τ) = V (x̂, τ̂).

For a, b with τ < a < b < τ̂ , integration by parts (see [27, §6.3]) tells us that

(31)

[∫
M

V (z, η)U(z, η)dz

]η=b

η=a

= −
∫ b

a

∫
M

V (z, η)(�U)(z, η)dz dη

+

∫ b

a

∫
M

U(z, η)(�∗V )(z, η)dz dη

= 0,

where dz is the Riemannian volume element associated to g(η) for the param-
eter z. By (28),

(32) lim
b↗τ̂

∫
M

V (z, b)U(z, b)dz = V (x̂, τ̂).

Similarly, by (30) (which holds for v, not u, by assumption in this proof) we
have

(33) lim
a↘τ

∫
M

V (z, a)U(z, a)dz = U(x, τ).

Combining (31), (32) and (33), we conclude that U(x, τ) = V (x̂, τ̂) as desired.

Armed with the function u and its properties, we are in a position to prove
the implication (B) =⇒ (C) of Theorem 2. The proof is inspired by the work
of Sturm and von Renesse [25].

Proof. Suppose that τ1 < a < b < τ2. By Lemma 11, we know that for fixed
x ∈ M and a ∈ (τ1, τ2), the function y 7→ u(x, a,y, τ) is the probability den-
sity, with respect to g(τ), of Brownian diffusion in the direction of τ , starting
at (x, a) (for τ ∈ (a, τ2)). Since we are assuming (B), we then know that
W2(u(x, a,y, τ)dy, u(x̃, a, ỹ, τ)dỹ, τ) is a nonincreasing function of τ . More-
over, by construction,

W2(u(x, a,y, τ)dy, u(x̃, a, ỹ, τ)dỹ, τ)→ d(x, x̃, a)

as τ ↘ a. Consequently, for τ ∈ (a, τ2),

(34) W2(u(x, a,y, τ)dy, u(x̃, a, ỹ, τ)dỹ, τ) ≤ d(x, x̃, a).

We are trying to show (C) which we recast into the following equivalent con-
dition:
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(C′): If τ1 < ã < a < b < b̃ < τ2, and f : M × (ã, b̃) → R solves
−∂f
∂τ

= ∆g(τ)f , then

Lip(f, a) ≤ Lip(f, b),

where

Lip(f, τ) := sup
x,x̃∈M ;x 6=x̃

|f(x, τ)− f(x̃, τ)|
d(x, x̃, τ)

is the Lipschitz constant of f(·, τ).
To prove this, we write f(·, a) in terms of u : Σ→ (0,∞) and f(·, b):

f(x, a) =

∫
M

u(x, a,y, b)f(y, b)dy.

Now for x, x̃ ∈ M , let π(y, ỹ) be any transport plan between the measures
u(x, a,y, b)dy and u(x̃, a, ỹ, b)dỹ. Then

f(x, a) =

∫
M×M

f(y, b)dπ(y, ỹ),

and similarly,

f(x̃, a) =

∫
M×M

f(ỹ, b)dπ(y, ỹ).

Subtracting, we may estimate

(35)

|f(x, a)− f(x̃, a)| ≤
∫
M×M

|f(y, b)− f(ỹ, b)|dπ(y, ỹ)

≤ Lip(f, b)

∫
M×M

d(y, ỹ, b)dπ(y, ỹ)

≤ Lip(f, b)

(∫
M×M

d2(y, ỹ, b)dπ(y, ỹ)

) 1
2

,

where we have used the Cauchy-Schwarz inequality. If we now choose π to be
the optimal transport plan, we find that

(36)
|f(x, a)− f(x̃, a)| ≤ Lip(f, b)W2(u(x, a,y, b)dy, u(x̃, a, ỹ, b)dỹ, b)

≤ Lip(f, b)d(x, x̃, a),

by (34). Dividing by d(x, x̃, a) and taking the supremum over x, x̃ ∈M (x 6= x̃)
we conclude that

Lip(f, a) ≤ Lip(f, b)

as desired.
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6. Proof of Theorem 2; (C) =⇒ (A)

We now complete a circle of implications which establishes Theorem 2, mir-
roring [25].

Proof. Suppose on the contrary, that g(τ) is not a super Ricci flow, despite (C)
holding. Then there exists a time τ0 ∈ (τ1, τ2), a point x ∈ M and a vector
X ∈ TxM of unit length when measured using g(τ0), such that

(37)

(
−∂g
∂τ

(τ0) + 2Ric(g(τ0))

)
(X,X) < 0.

Let us work on the fixed Riemannian manifold (M, g(τ0)) for a moment. Choose
R > 0 less than the injectivity radius of (M, g(τ0)). Let {xi} be normal co-
ordinates centred at x, such that ∂

∂x1 = X, defined in the ball B(x, R). Let
Ψ : B(x, R/2)→ R be the signed distance function from the level set {x1 = 0}
such that X(Ψ) = 1 (rather than −1). Then Ψ is a Lipschitz function with
the property that |∇Ψ| ≤ 1 almost everywhere in B(x, R/2), with equality in
some neighbourhood of x. By virtue of being a signed distance function from
a hypersurface, the Hessian of Ψ at x can be calculated to be

Hess(Ψ)(Y, Z) = −dΨ(II(Y T , ZT ))

where Y T , ZT are the projections onto the hypersurface of arbitrary vectors
Y, Z ∈ TxM , and II(·, ·) represents the second fundamental form of the hyper-
surface. By construction, we have II(·, ·) = 0 at x, so

Hess(Ψ) = 0

at x. Now define ϕ : M → [0, R/2] to be the Lipschitz cut-off function ϕ =
[R/2− d(·,x)]+, which is supported in B(x, R/2). Define a Lipschitz function
f0 : M → R to be the function Ψ truncated from above by ϕ, and from below
by −ϕ. In other words, set

f0(y) = max{min{Ψ(y), ϕ(y)},−ϕ(y)}.

This globally defined function is smooth in a neighbourhood of x, has Lipschitz
constant equal to 1, and retains from Ψ the properties that

(38) Hess(f0) = 0 at x; ∇f0(x) = X; |∇f0| = 1 near x.

We now drop our focus on the fixed Riemannian manifold (M, g(τ0)) and
consider again space-time. Let f : M × (τ1, τ0]→ R be the continuous solution
forwards in time (backwards in τ) of the ordinary heat equation:

(39)
�u := −∂f

∂τ
−∆f = 0 on M × (τ1, τ0)

f(·, τ0) = f0 on M.
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The function f is smooth for τ < τ0, and even all the way to τ = τ0 in a
neighbourhood of x. It also satisfies

lim sup
τ↗τ0

sup
M
|∇f(·, τ)| ≤ Lip(f, τ0) = 1,

and

lim
τ↗τ0
|∇f(x, τ)| = 1.

Since we are assuming (C), we can deduce that

(40) sup
M
|∇f(·, τ)| ≤ 1 for all τ ∈ (τ1, τ0).

In contrast, we can compute at (x, τ0),

(41)

∂|∇f |2

∂τ
=
∂|df |2

∂τ

= −∂g
∂τ

(∇f,∇f) + 2〈d∂f
∂τ
, df〉

= −∂g
∂τ

(∇f,∇f)− 2〈d∆f, df〉

= −∂g
∂τ

(∇f,∇f) + 2Ric(∇f,∇f)−∆|df |2 + 2|Hess(f)|2,

by the Bochner formula, and so because f(·, τ0) = f0, and by (38), we deduce
that

∂|∇f |2

∂τ
(x, τ0) =

(
−∂g
∂τ

(τ0) + 2Ric(g(τ0))

)
(X,X).

However, by (37), we then find that

∂|∇f |2

∂τ
(x, τ0) < 0,

and hence that for some τ ∈ (τ1, τ0), |∇f |2(x, τ) > 1, contradicting (40).

7. Appendix: Proof of Lemma 5

Proof. Implicit in the proof will be the standard characterisation of Cut(M, g)
as the complement of the set of points (x,y) ∈ M ×M such that there exists
a unique shortest constant speed geodesic s ∈ [0, 1] −→ σ(x,y, s) from x to y,
and x and y are not conjugate along σ(x,y, ·).

Suppose (x0, ξ0) ∈ TM , τ0 ∈ (τ1, τ2) and ξ0 /∈ TConj(x0, τ0), where for
x ∈M , τ ∈ (τ1, τ2),

TConj(x, τ) := {ξ ∈ TxM : expx,g(τ) is critical at ξ}.
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By applying the Inverse Function Theorem to the smooth map ϕ : TM ×
(τ1, τ2) → M × M × (τ1, τ2) given by ϕ(x, ξ, τ) = (x, expx,g(τ) ξ, τ), we see
that there exist neighbourhoods V ⊂ TM × (τ1, τ2) of (x0, ξ0, τ0) and U ⊂
M ×M × (τ1, τ2) of (x0, expx0,g(τ0) ξ0, τ0), such that the restriction ϕ : V → U
is a smooth diffeomorphism.

A first consequence of this is that

(42) (x, ξ, τ) ∈ V =⇒ ξ /∈ TConj(x, τ).

Now consider an arbitrary point (x0,y0, τ0) /∈ CutST. Let ξ0 ∈ Tx0M be
the unique shortest vector (shortest with respect to g(τ0)) such that y0 =
expx0,g(τ0) ξ0. By the characterisation of the cut locus recalled at the start of
the proof, ξ0 /∈ TConj(x0, τ0), and so we may find the neighbourhoods U and
V as above, and deduce (42).

Claim: For a possibly smaller neighbourhood V of (x0, ξ0, τ0), given any
(x, ξ, τ) ∈ V , the geodesic s ∈ [0, 1] −→ γ(x, ξ, s, τ) := expx,g(τ)(sξ) is the
unique minimising geodesic (with respect to g(τ)) linking x to expx,g(τ)(ξ).

Before proving the claim, we remark that combining with (42), it would
imply that the open neighbourhood ϕ(V ) is disjoint from CutST, from which
we would deduce the closedness of CutST. It would also enable us to write, for
(x,y, τ) ∈ ϕ(V ), the geodesic s ∈ [0, 1] −→ σ(x,y, s, τ) ∈M as σ(x,y, s, τ) =
expx,g(τ)(sξ), where y = expx,g(τ) ξ, and (x, ξ, τ) ∈ V . In particular, by the

smoothness of ϕ−1, we would deduce the smooth dependence of σ(x,y, s, τ)
and the squared distance function d2(x,y, τ) on their parameters, whilst in
ϕ(V ), and hence throughout the complement of CutST.

It remains to prove the claim. If false, there exist sequences {(xi, ξi)} ⊂
TM , {τi} ⊂ (τ1, τ2) such that (xi, ξi) → (x0, ξ0) and τi → τ0, but with s ∈
[0, 1] −→ γ(xi, ξi, s, τi) not a unique minimising geodesic with respect to g(τi)
joining xi to yi := expxi,g(τi)

ξi for each i. Note that yi → y0 as i → ∞. By
omitting a finite number of terms, we may assume that (xi, ξi, τi) ∈ V , and
thus (xi,yi, τi) ∈ U := ϕ(V ), for all i.

Let us choose vectors ξ̂i ∈ Txi
M such that s −→ γ(xi, ξ̂i, s, τi) is a minimising

geodesic from xi to yi, with ξ̂i 6= ξi. After passing to a subsequence, we
may assume that (xi, ξ̂i) → (x0, ξ̂0) as i → ∞, for some ξ̂0 ∈ Tx0M . Since

ϕ(xi, ξ̂i, τi) = ϕ(xi, ξi, τi) = (xi,yi, τi), and the restriction ϕ : V → U is a

diffeomorphism, we must have (xi, ξ̂i, τi) /∈ V for all i, and in particular, we

must have ξ̂0 6= ξ0.
Consequently, s −→ γ(x0, ξ̂0, s, τ0) and s −→ γ(x0, ξ0, s, τ0) must be distinct

minimising geodesics between x0 and y0, with repect to g(τ0), contradicting
the assumption that (x0,y0, τ0) /∈ CutST.
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[1] L.A. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the
space of probability measures. ‘Lecture Notes in Mathematics ETH Zürich’. Birkhäuser
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inequalities on Riemannian manifolds, Jacobi fields, and optimal transport. Ann. Fac.
Sci. Toulouse Math. (6) 15 (2006) 613-635.

[9] D. DeTurck. Deforming metrics in the direction of their Ricci tensors. In Collected
papers on Ricci flow. Edited by H. D. Cao, B. Chow, S. C. Chu and S. T. Yau. ‘Series
in Geometry and Topology’ 37. International Press, 2003.

[10] S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry. (Second edition).
Springer-Verlag, 1993.

[11] R.S. Hamilton, Three-manifolds with positive Ricci curvature. J. Differential Geom. 17
(1982) 255–306.

[12] R.S. Hamilton, The formation of singularities in the Ricci flow. In Surveys in Differential
Geometry (Cambridge MA, 1993), Vol. II. 7–136, International Press, Cambridge MA,
1995.

[13] R. Jordan, D. Kinderlehrer and F. Otto. The variational formulation of the Fokker-
Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17.

[14] J. Lott. Talk at UCSB (2005).
[15] J. Lott and C. Villani. Ricci curvature in metric measure spaces via optimal transport.

To appear in Annals Math. (2). http://arXiv.org/math.DG/0412127
[16] J. Lott and C. Villani. Weak curvature conditions and functional inequalities. J. Funct.

Anal. 245 (2007) 311–333.
[17] R.J. McCann. A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–

179.
[18] R.J. McCann. Polar factorization of maps on Riemannian manifolds. Geom. Funct.

Anal. 11 (2001) 589–608.
[19] F. Otto. The geometry of dissipative evolution equations: The porous medium equation.

Comm. Partial Differential Equations 26 (2001) 101–174.
[20] F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with the

logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000) 361–400.
[21] G. Perelman The entropy formula for the Ricci flow and its geometric applications.

http://arXiv.org/math.DG/0211159v1 (2002).



20

[22] K.-T. Sturm. Generalized Ricci curvature bounds and convergence of metric measure
spaces. C.R. Math. Acad. Sci. Paris 340 (2005) 235–238.

[23] K.-T. Sturm. A curvature-dimension condition for metric measure spaces. C.R. Math.
Acad. Sci. Paris 342 (2006) 197–200.

[24] K.-T. Sturm. On the geometry of metric measure spaces I and II. Acta. Math. 196
(2006) 65–131 and 133–177.

[25] K.-T. Sturm and M.-K. von Renesse. Transport inequalities, gradient estimates, entropy
and Ricci curvature. Comm. Pure Appl. Math. 58 (2005) 923–940.

[26] H. Tanaka. An inequality for a functional of probability distributions and its application
to Kac’s one-dimensional model of a Maxwellian gas. Z. Wahrscheinlichkeitstheorie und
Verw. Gebiete 27 (1973) 47–52.

[27] P.M. Topping, Lectures on the Ricci flow. London Mathematical Society Lecture Notes
Series 325 Cambridge University Presss (2006)
http://www.maths.warwick.ac.uk/~topping/RFnotes.html

†Department of Mathematics, University of Toronto, Ontario Canada M5S
2E4 mccann@math.toronto.edu

‡Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK.


