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4.14 Series with Positive and Negative Terms

With the exception of the Null Sequence Test, all the tests for series convergence
and divergence that we have considered so far have dealt only with series of non-
negative terms. Series with both positive and negative terms are harder to deal
with.

Exercise 1 Why don’t we have to separately consider series which have only
negative terms?

4.15 Alternating Series

One very special case is a series whose terms alternate in sign from positive to
negative. That is, series of the form

∑

(−1)n+1an where an ≥ 0.

Example
∑ (−1)n+1

n
= 1 − 1

2 + 1
3 − 1

4 + 1
5 − . . . is an alternating series.

All The Way

Don’t stop once you’ve proved

that (s2n) and (s2n+1) con-

verge. You still have to show

that the whole sequence of par-

tial sums (sn) converges.

Assignment 1

Let sn =
∑

n

r=1(−1)r+1/r. Prove that sn is convergent using the following steps.

Make sure that your proof also proves the inequality
∣

∣

∣

∑∞
k=n+1

(−1)k+1

k

∣

∣

∣
≤ 1

n
.

1. Prove that s2n+2 − s2n is positive. This shows that the sequence (s2n) is
strictly increasing.

2. Now find s2n+3 − s2n+1 and prove that it is negative. This shows that
(s2n+1) is strictly decreasing.

3. Using the fact that

s2 < s2n +
1

2n + 1
= s2n+1 < s1,

deduce that (s2n) and (s2n+1) are both convergent to the same limit.

4. To show that sn converges to s, prove that s2n+1− 1
2n+1 ≤ s ≤ s2n + 1

2n+1

and then show that |sn − s| < 1
n

for both odd and even n ∈ N. Conclude
that (sn) → s.

Assignment 2

Let s =
∑∞

n=1
(−1)n+1

n
. Find a value of N so that |∑N

n=1
(−1)n+1

n
− s| ≤ 10−6.

�

�

�

�

Theorem Alternating Series Test

Suppose (an) is non-negative, decreasing and null. Then the alternating series
∑

(−1)n+1an is convergent.

Example Since
(

1
n

)

is a decreasing null sequence of positive terms, this test

tells us right away that
∑ (−1)n+1

n
= 1 − 1

2 + 1
3 − 1

4 + 1
5 − . . . is convergent.

1



Similarly,
(

1
n2

)

is a decreasing null sequence of positive terms, therefore
∑ (−1)n+1

n2 = 1 − 1
4 + 1

9 − 1
16 + 1

25 − . . . is convergent.

Assignment 3

Find a sequence (an) which is non-negative and decreasing but where
∑

(−1)n+1an is divergent and a sequence (bn) which is non-negative and null
but where

∑

(−1)n+1bn is divergent.

Assignment 4

Using the steps below (a generalisation of assignment 1) prove the Alternating
Series Test. Suppose that (an) is non-negative, decreasing and null. Let sn =
∑

n

r=1(−1)r+1ar.

1. Show that s2n+2 − s2n > 0 and that s2n+3 − s2n+1 < 0.

2. Prove that s2n ≤ s2n + a2n+1 = s2n+1 ≤ s1.

3. Show that the sequences (s2n) and (s2n+1) are both convergent to the
same limit, s say.

4. Deduce that
∑

(−1)n+1an is convergent. Make sure your proof includes
the inequality |s −

∑

n

k=1(−1)k+1ak| ≤ an.

Assignment 5

The series 1− 1
3! + 1

5! − 1
7! + 1

9! − . . . converges to sin 1. Explain how to use the
series to calculate sin 1 to within an error of 10−10.

Assignment 6

Using the Alternating Series Test where appropriate, show that each of the
following series is convergent.

1.
∑ (−1)n+1

n
2

n3+1 2.
∑

(

− 1
2

)n

3.
∑ 2| cos nπ

2
|+(−1)n

n√
(n+1)3

4.
∑

1
n

sin nπ

2

4.16 General Series

Series with positive terms are easier because we can attempt to prove that the
partial sums (sn) converge by exploiting the fact that (sn) is increasing. In the
general case, (sn) is not monotonic. We can still try to apply Cauchy’s test for
convergence, however, since this applies to any sequence.

Assignment 7

Show that (sn) is a Cauchy sequence means that for any ε > 0 there exists N
such that |∑n

k=m+1 ak| < ε whenever n > m ≥ N .

2



Before exploiting the Cauchy test we shall give one new definition: If
∑

an

is a series with positive and negative terms, we can form the series
∑ |an|, all

of whose terms are non-negative.�

�

�

�
Definition

The series
∑

an is absolutely convergent if
∑

|an| is convergent.

Example The alternating series
∑ (−1)n+1

n2 is absolutely convergent because
∑

| (−1)n+1

n2 | =
∑

1
n2 is convergent.

The series
∑

(

− 1
2

)n
is absolutely convergent because

∑
(

1
2

)n
converges.

Assignment 8

Is the series
∑ (−1)n+1

√
n

absolutely convergent?

Exercise 2 For what values of x is the Geometric Series
∑

xn absolutely
convergent?

Absolutely convergent series are important for the following reason.�

�

�

�
Theorem

Every absolutely convergent series is convergent.

Assignment 9

Let sn =
∑

n

i=1 ai and tn =
∑

n

i=1 |ai|. Prove this result using the following
steps:

1. Show that |sn − sm ≤ |tn − tm| whenever n > m.

2. Show that if tn is convergent then sn is Cauchy and hence convergent.

Assignment 10

Is the converse of the theorem true: “Every convergent series is absolutely
convergent”?

The Absolute Convergence Theorem breathes new life into all the tests we
developed for series with non-negative terms: if we can show that

∑ |an| is
convergent, using one of these tests, then we are guarenteed that

∑

an converges
as well.

Exercise 3 Show that the series
∑

sin n

n2 is convergent.

We see that 0 ≤ | sin n|
n2 ≤ 1

n2 . Therefore
∑ | sin n|

n2 is convergent by the Com-

parison Test. It follows that
∑

sin n

n2 is convergent by the Absolute Convergence
Theorem.
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The Ratio Test can be modified to cope directly with series of mixed terms.�

�

�

�

Theorem Ratio Test

Suppose an 6= 0 and |an+1

an

| → l. Then
∑

an converges absolutely (and hence
converges) if 0 ≤ l < 1 and diverges if l > 1.

Proof. If 0 ≤ l < 1, then
∑

|an| converges by the “old” Ratio Test. Therefore
∑

an converges by the Absolute Convergence Theorem.
If l > 1, we are guarenteed that

∑ |an| diverges, but this does not, in itself,
prove that

∑

an diverges (why not?). We have to go back and modify our
original proof.

We know that there exists N such that || an+1

an

| − l| < 1
2 (l − 1) when n > N .

Therefore, 1 < 1
2 (1 + l) < |an+1|

|an| when n > N . It follows that 0 < |aN+1| <

|aN+2| and by induction that 0 < |aN+1| < |an| when n > N + 1. Clearly the
sequence (|an|) is not null, hence (an) is not null. This being the case,

∑

an

diverges by the Null Sequence Test. �

Example Consider the series
∑

x
n

n
. When x = 0 the series is convergent.

(Notice that we cannot use the Ratio Test in this case.)

Now let an = x
n

n
. When x 6= 0 then |an+1

an

| = |xn+1

n+1 · n

xn | = n

n+1 |x| → |x|.
Therefore

∑

x
n

n
is convergent when |x| < 1 and divergent when |x| > 1, by the

Ratio Test.
What if |x| = 1? When x = 1 then

∑

x
n

n
=

∑

1
n

which is divergent. When

x = −1 then
∑

x
n

n
=

∑

− (−1)n+1

n
which is convergent.

�

�

�

�
Theorem Ratio Test Extension

Suppose an 6= 0 and |an+1

an

| → ∞, then
∑

an diverges.

Assignment 11

Prove this theorem.

Assignment 12

Determine for which values of x the following series converge and diverge. [Make
sure you don’t neglect those values for which the Ratio Test doesn’t apply.]

1.
∑

x
n

n! 2.
∑

n

xn 3.
∑

n!xn

4.
∑ (2x)n

n
5.

∑ (4x)3n

√
n+1

6.
∑

(−nx)n

4.17 Euler’s Constant

Our last aim in this booklet is to find an explicit formula for the sum of the
alternating series:

1 − 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . .
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On the way we shall meet Euler’s constant, usually denoted by γ, which occurs
in several places in mathematics, especially in number theory.
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PSfrag replacements

1

1 2 3 4 5

f(1)

f(2)

f(3)

f(4)

n + 1n

f(n − 1)
f(n)

n − 1

Figure 1: Calculating a lower bound of an integral.

Euler’s Constant

The limit of the sequence

Dn =

n
∑

i=1

1

i
− log(n + 1)

is called Euler’s Constant

and is usually denoted by γ

(gamma). Its value has been

computed to over 200 decimal

places. Its value to 14 decimal

places is 0.57721566490153.

No-one knows whether γ is ra-

tional or irrational.

Assignment 13

Let Dn =
∑

n

i=1
1
i
−

∫

n+1

1
1
x
dx =

∑

n

i=1
1
i
− log(n + 1).

1. Draw a copy of figure 1 and mark in the areas represented by Dn.

2. Show that (Dn) is increasing.

3. Show that (Dn) is bounded - and hence convergent.

The limit of the sequence Dn =
∑

n

i=1
1
i
−log(n+1) is called Euler’s Constant

and is usually denoted by γ.

Assignment 14

Show that
∑2n−1

i=1
(−1)i+1

i
= log 2 + D2n−1 − Dn−1. Hence evaluate

∑ (−1)n+1

n
.

Hint: Use the following identity:

1 − 1

2
+

1

3
− 1

4
+ · · · + 1

2n − 1

= 1 +
1

2
+

1

3
+ · · · + 1

2n − 1
− 2

(

1

2
+

1

4
+

1

6
+ . . .

1

2n − 2

)
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1
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bn

Figure 2: Approximating the integral by the mid point.

4.18 * Application - Stirling’s Formula *

Using the alternating series test we can improve the approximations to n! that
we stated in workbook 4. Take a look at what we did there: we obtained upper
and lower bounds to log(n!) by using block approximations to the integral of
∫

n

1
log xdx. To get a better approximation we use the approximation in figure

2.
Now the area of the blocks approximates

∫

n

1
log xdx except that there are

small triangular errors below the graph (marked as b1, b2, b3, . . . ) and small
triangular errors above the graph (marked as a2, a3, a4, . . . ).

Note that log n! = log 2 + log 3 + · · · + log n = area of the blocks.

Assignment 15

Use the above diagram to show:

log n! − (n +
1

2
) log n + n = 1 − b1 + a2 − b2 + a3 − b3 + · · · − bn−1 + an

[Hint:
∫

n

1
log xdx = n log n − n + 1]

The curve log n is concave down and it seems reasonable, and can be easily
proved (try for yourselves), that an ≥ bn ≥ an+1 and lim an = 0.

Assignment 16

Assuming that these claims are true, explain why 1− b1 + a2 − b2 + · · · → C as
n → ∞.

This proves that log n! = (n+ 1
2 ) log n−n+Σn where Σn tends to a constant
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as n → ∞. Taking exponentials we obtain:

n! ' constant · nne−n
√

n

What is the constant? This was identified with only a little more work by the
mathematician James Stirling. Indeed, he proved that:

n!

nne−n
√

2πn
→ 1 as n → ∞

a result known as Stirling’s formula.

Check Your Progress

By the end of this Workbook you should be able to:

• Use and justify the Alternating Series Test: If (an) is a decreasing, null
sequence of non-negative terms then

∑

(−1)n+1an is convergent.

• Use the proof of Alternating Series Test to establish error bounds.

• Say what it means for a series to be absolutely convergent and give exam-
ples of such series.

• Prove that an absolutely convergent series is convergent, but that the
converse is not true.

• Use the modified Ratio Test to determine the convergence or divergence
of series with positiven and negative terms.

• Prove that
∞
∑

n=1

(−1)n+1

n
= log 2.
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