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4.9 Convergence of series - continued

Explicit Sums

For most convergent series

there is no simple formula for

the sum
∑

∞

n=1
an in terms

of standard mathematical ob-

jects. Only in very lucky cases

can we sum the series explic-

itly, for instance geometric se-

ries, telescoping series, various

series found by contour inte-

gration or by Fourier expan-

sions. But these cases are so

useful and so much fun that we

mention them often.

Usually we are doomed to failure if we seek a formula for the sum of a series.
Nevertheless we can often tell whether the series converges of diverges without
explicitly finding the sum. To do this we shall establish a variety of convergence
tests that allow us in many cases to work out from the formula for the terms
an whether the series converges or not.

4.10 Series with positive terms

Series with positive terms are easier than general series since the partial sums
(sn) form an increasing sequence and we have already seen that monotonic
sequences are easier to cope with than general sequences.

All our convergence tests are based on the most useful test - the comparison
test - which you have already proven.

Assignment 1

Use the Comparison Test to show that
∑∞

n=1
1

np converges if p ∈ [2,∞) and
diverges if p ∈ (0, 1]. [Hint - you already know the answer for p = 1 or 2.]

Assignment 2

Use the Comparison Test to determine whether each of the following series
converges or diverges.

1.
∑ 1

3
√

n2 + 1
2.

∑ 1
3
√

n7 + 1
3.

∑

(√
n + 1 −

√
n
)

Sometimes the series of which we want to find the sum looks quite compli-
cated. Often the best way to find a series to compare it with is to look at which
terms dominate in the original series.

Example Consider the series
∑

√
n+2

n3/2+1
. We can rearrange the nth term in this

series as follows: √
n + 2

n3/2 + 1
=

1 + 2√
n

n + 1√
n

As n gets large then 1√
n

gets small so the dominant term in the numerator is the

1 and in the denominator is the n. Thus a possible series to compare it with is
∑

1
n . Since this diverges, we want to show that our series is greater than some

multiple of
∑

1
n :

√
n + 2

n3/2 + 1
=

1 + 2√
n

n + 1√
n

>
1 + 2√

n

2n

>
1

2n

1



hence by the comparision test,
∑

√
n+2

n3/2+1
diverges.

Assignment 3

Use this technique with the Comparison Test to determine whether each of the
following series converges or diverges. Make your reasoning clear.

1.
∑ 1

n(n + 1)(n + 2)
2.

∑ 5n + 4n

7n − 2n

4.11 Ratio Test

The previous tests operate by comparing two series. Choosing a Geometric
Series for such a comparison gives rise to yet another test which is simple and
easy but unsophisticated.

Exercise 1 These questions give you the ideas needed to construct a proof of
the upcoming theorem. They rely on previous topics you have already met; the
Shift Rule, the Comparison Test and the behaviour of Geometric Series.

1. Let an = n2/2n. Prove that if n ≥ 3, then an+1/an ≤ 8/9. By using
this inequality for n = 3, 4, 5, . . . prove that an+3 ≤ (8/9)na3. Using the
Comparison Test and results concerning the convergence of the Geometric
Series (from last week) show that

∑

an+3 is convergent. Now use the Shift
Rule to show that

∑

an is convergent.

2. We now generalise the results of the previous question. Suppose we have
a series

∑

an of positive terms for which

0 <
an+1

an
< ρ < 1 for all n.

Show that an+1 < ρn · a1. Use the Comparison Test and behaviour of the
Geometric Series to prove that

∑

an is convergent.

3. Suppose that
∑

an is a series of positive terms and the sequence of ratios
(an+1/an) → k < 1. For some suitable choice of ε > 0 show that there
exists an n0 such that

an+1

an
<

1

2
(k + 1) < 1 for n > n0

Let ρ = 1
2 (k + 1) and the Shift Rule and the previous question to prove

that
∑

an is convergent.

4. Suppose that a series of positive terms
∑

an satisfies 1 ≤ an+1/an for all
n. Deduce that(aN ) is not a null sequence and so

∑

an is divergent.

5. Suppose that a series of positive terms
∑

an satisfies (an+1/an) → k > 1.
For some suitable choice of ε > 0 show that there exists an n0 such that

1 <
1

2
(1 + k) <

an+1

an
for n > n0.

Using the previous question and the Shift Rule show that
∑

an is diver-
gent.
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The Missing Case

The case l = 1 is omitted

from the statement of the Ra-

tio Test. This is because there

exist both convergent and di-

vergent series that satisfy this

condition.

A.K.A.

This test is also called

D’Alembert’s Ratio Test, after

the French mathematician

Jean Le Rond D’Alembert

(1717 - 1783). He developed

it in a 1768 publication in

which he established the

convergence of the Binomial

Series by comparing it with

the Geometric Series.

�

�

�

�

Theorem Ratio Test

Suppose an > 0 and an+1

an
→ l. Then

∑

an converges if 0 ≤ l < 1 and diverges
if l > 1.

Examples

1. Consider the series
∑

1
n! . Letting an = 1

n! we obtain an+1

an
= n!

(n+1)! =
1

n+1 → 0. Therefore
∑

1
n! converges.

2. Consider the series
∑

n2

2n . Letting an = n2

2n we obtain an+1

an
= (n+1)2

n2 ·
2n

2n+1 = 1
2

(

1 + 1
n

)2 → 1
2 . Therefore

∑

n2

2n converges.

Assignment 4

Tie together your answers to parts 3 and 5 of exercise 1 and write a proof of
the Ratio Test.

Assignment 5

Write down an example of a convergent series and a divergent series both of
which satisfy the condition l = 1. [This shows why the Ratio Test cannot be
used in this case.]

Assignment 6

Use the Ratio Test to determine whether each of the following series converges
or diverges. Make your reasoning clear.

1.
∑ 2n

n!
2.

∑ 3n

n
3.

∑ n!

nn

4.12 Integral Test

We can use our integration skills to get hugely useful approximations to sums.
Forward and Back

In later Analysis courses you

will formally define both the

integral and the logarithm

function. What you learnt at

school is fine for now. Using

them now gives us more inter-

esting examples.

Consider a real-valued function f(x) which is non-negative and decreasing for
x ≥ 1. We have sketched such a function in figure 1 (actually we sketched
f(x) = 1/x).

The shaded blocks lie under the graph of the function so that the total area
of all the blocks is less than the area under the graph between x = 1 and x = n.
So:

n
∑

k=2

f(k) ≤
∫ n

1

f(x)dx

3
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Figure 1: Calculating a lower bound of an integral.

Assignment 7

Draw a similar diagram and use a similar argument to prove the following
improvement. If f(x) is a non-negative and decreasing function for all m ≤ x ≤
n for integers m < n then

∑n
k=m+1 f(k) ≤

∫ n

m
f(x)dx.

We can use this bound to help us with error estimates. For example, we
use a true formula (usually established via complex variable methods or Fourier
analysis methods in the second year):

π2

6
= 1 +

1

22
+

1

32
+

1

42
+

1

52
+ . . .

If we sum only the first N terms of this series we will reach a total less than π2

6 .
Can we estimate the size of the error?

The error is precisely
∑∞

k=N+1
1
k2 . If we use assignment 7 we obtain the

bound:
n

∑

k=N+1

1

k2
≤

∫ n

N

1

x2
dx = −

1

x

∣

∣

∣

∣

∣

n

N

=
1

N
−

1

n
≤

1

N

Since this is true for any value of n we see that
∑∞

k=N+1
1
k2 = limn→∞

∑n
k=N+1

1
k2 ≤

1
N .

So if we sum the first 1,000,000 terms we will reach a total that is within
10−6 of π2/6.
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Assignment 8

Fourier analysis methods also lead to the formula:

π4

90
= 1 +

1

24
+

1

34
+

1

44
+

1

54
+ . . .

Find a value of N so that
∑N

k=1
1
k4 is within 10−6 of π4/90.

Assignment 9

Draw a diagram where the blocks lie above the graph of the function and use
it to prove the following inequality: if f(x) is a non-negative and decreasing

function for all m ≤ x ≤ n + 1 then
∑n

k=m f(k) ≥
∫ n+1

m
f(x)dx.

Assignment 10

Use your upper and lower bounds in assignments 7 and 9 to show:

200
∑

k=101

1

k
=

1

101
+

1

102
+ · · · +

1

200
∈ [0.688, 0.694]

We now use these upper and lower bounds to establish a beautiful test for
convergence.�

�

�

�

Theorem Integral Test, convergence part

Suppose the function f(x) is non-negative and decreasing for x ≥ 1. Then
∑∞

n=1 f(n) converges if the increasing sequence
(∫ n

1
f(x)dx

)

is bounded.

Assignment 11

Prove this result by using the upper bound on
∑n

k=2 f(k) found in exercise 7
and the boundedness condition for convergence of positive series.

�

�

�

�

Theorem Integral Test, divergence part

Suppose the function f(x) is non-negative and decreasing for x ≥ 1. Then
∑∞

n=1 f(n) diverges if the increasing sequence
(∫ n

1
f(x)dx

)

is unbounded.

Assignment 12

Prove this result by using the lower bounds in exercise 9.

Example The Integral Test gives us another proof of the fact that
∑∞

n=1
1

n2

converges. Let f(x) = 1
x2 . We know that this function is non-negative and

decreasing when x ≥ 1. Observe that
∫ n

1
f(x)dx =

∫ n

1
1
x2 = − 1

x

∣

∣

∣

n

1
= 1− 1

n → 1.

Since f(n) = 1
n2 , the Integral Test assures us that

∑∞

n=1
1

n2 converges.

5



Example If you are familiar with the behaviour of the log function, the Integral
Test gives you a neat proof that the Harmonic Series

∑∞

n=1
1
n diverges. Suppose

f(x) = 1
x . Again, this function is non-negative and decreasing when x ≥ 1.

Observe that
∫ n

1
f(x)dx =

∫ n

1
1
xdx = log x

∣

∣

∣

n

1
= log n → ∞. Therefore

∑∞

n=1
1
n

diverges to infinity.

Assignment 13

Use the Integral Test to investigate the convergence of
∑∞

n=1
1

np for values of
p ∈ (1, 2).

Combining this with the result of assignment 1, you have shown:�

�

�

�
Corollary

The series
∑∞

n=1
1

np converges for p > 1 and diverges for 0 < p ≤ 1.

We now examine some series right on the borderline of convergence.

Assignment 14

Show that
∑∞

n=1
1

(n+1) log(n+1) is divergent and

that
∑∞

n=1
1

(n+1)(log(n+1))2 is convergent.

4.13 * Application - Error Bounds *

If we have established that a series
∑

an converges then the next question is to
calculate the total sum

∑∞

n=1 an. Usually there is no explicit formula for the
sum and we must be content with an approximate answer - for example, correct
to 10 decimal places.

The obvious solution is to calculate
∑N

n=1 an for a really large N . But how
large must N be to ensure the error is small - say less than 10−10? The error is
the sum of all the terms we have ignored

∑∞

n=N+1 an and again there is usually
no explicit answer. But by a comparison with a series for which we can calculate
the sum (i.e. geometric or telescoping series) we can get a useful upper bound
on the error.
Example Show how to calculate the value of e to within an error of 10−100.

Solution We shall sum the series
∑N

n=0
1
n! for a large value of N . Then the

error is:

e −
N

∑

n=0

1

n!
=

∞
∑

n=N+1

1

n!

=
1

(N + 1)!

(

1 +
1

N + 2
+

1

(N + 2)(N + 3)
. . .

)

≤
1

(N + 1)!

(

1 +
1

2
+

1

4
+ . . .

)

=
2

(N + 1)!
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Then the error is less than 10−100 provided that 2
(N+1)! ≤ 10−100 which occurs

when N ≥ 70.

Assignment 15

The following formula for
√

e is true, although it will not be proved in this
course.

√
e =

∞
∑

n=0

1

2nn!
= 1 +

1

2
+

1

8
+

1

48
+

1

384
+ . . .

Show that the error
√

e −
∑N

n=0
1

2nn! is less than 1
2N (N+1)!

. Hence find a value

of N that makes the error less than 10−100.

Exercise 2 The above examples suggest two ways of calculating e. Either one
can use the series

∑N
n=0

1
n! for a large value of N or use the series

∑N
n=0

1
2nn! for a

large value of N to approximate
√

e and then square the answer to approximate
e. Explain which method you prefer and why.

Check Your Progress

By the end of this Workbook you should be able to:

• Use and justify the following tests for sequence convergence:

• Comparison Test: If 0 ≤ an ≤ bn and
∑

bn is convergent then
∑

an is
convergent.

• Ratio Test: If an > 0 and an+1

an
→ l then

∑

an converges if 0 ≤ l < 1 and
diverges if l > 1.

• Integral Test: If f(x) is non-negative and decreasing for x ≥ 1 then
∑

f(n)
converges if and only if

∫ n

1
f(x)dx converges, and

∑

f(n) tends to infinity

if and only if
∫ n

1
f(x)dx = ∞.

• You should also be able to use comparisons to establish error bounds when
evalutating infinite sums.
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