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4 Series

4.1 Definitions

We saw in the last booklet that decimal expansions could be defined in terms
of sequences of sums. Thus a decimal expansion is like an infinite sum. This is
what we shall be looking at for the rest of the course.

Our first aim is to find a good definition for summing infinitely many num-
bers. Then we will investigate whether the rules for finite sums apply to infinite
sums.

Exercise 1 What has gone wrong with the following argument? Try putting
x = 2.

If S = 1 + x + x2 + . . . ,
then xS = x + x2 + x3 + . . . ,
so S − xS = 1,
and therefore S = 1

1−x .

If the argument were correct then we could put x = −1 to obtain the sum
of the series

1 − 1 + 1 − 1 + 1 − 1 + 1 − . . .

as 1/2. But the same series could also be be thought of as

(1 − 1) + (1 − 1) + (1 − 1) + . . .

with a sum of 0, or as

1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + . . .

with a sum of 1. This shows us that great care must be exercised when dealing
with infinite sums.

We shall repeatedly use the following convenient notation for finite sums:
given finite integers 0 ≤ m ≤ n and numbers (an : n = 0, 1, . . . ) we define

n∑

k=m

ak = am + am+1 + · · · + an

Example 1 + 4 + 9 + · · · + 100 =

10∑

k=1

k2

Exercise 2 Express the following sums using the
∑

notation:

1.
1

2
+

1

6
+

1

24
+ · · · +

1

3628800
2.

1

2
+

2

4
+

3

8
+ . . .

7

128

Exercise 3 Show that
∑n

k=1 ak−1 =
∑n−1

k=0 ak.
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Exercise 4

1. By decomposing 1/r(r + 1) into partial fractions, or by induction, prove
that

1

1 · 2
+

1

2 · 3
+ · · · +

1

n(n + 1)
= 1 −

1

n + 1
.

Write this result using
∑

notation.

2. If

sn =
n∑

r=1

1

r(r + 1)
,

prove that (sn) → 1 as n → ∞. This result could also be written as

∞∑

r=1

1

r(r + 1)
= 1.

A series is an expression of the form
∑∞

n=1 an = a1 + a2 + a3 + a4 + . . . .
Serious Sums

The problem of how to deal

with infinite sums vexed the

analysis of the early 19th cen-

tury. Some said there wasn’t a

problem, some pretended there

wasn’t until inconsistencies in

their own work began to un-

nerve them, and some said

there was a terrible problem

and why wouldn’t anyone lis-

ten? Eventually, everyone did.

As yet, we have not defined what we mean by such an infinite sum. To get the
ball rolling, we consider the “partial sums” of the series:

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

...
...

sn = a1 + a2 + a3 + · · · + an

To have any hope of computing the infinite sum a1 + a2 + a3 + . . . , then the
partial sums sn should represent closer and closer approximations as n is chosen
larger and larger. This is just an informal way of saying that the infinite sum
a1 + a2 + a3 + . . . ought to be the limit of the sequence of partial sums.

Double Trouble

There are two sequences

associated with every series
∑

∞

n=1 an: the sequence (an)

and the sequence of partial

sums (sn) =
(∑

n

i=1 ai

)
.

Do not get these sequences

confused!

Series Need Sequences

Notice that series convergence

is defined entirely in terms

of sequence convergence. We

haven’t spent six weeks work-

ing on sequences for nothing!

�

�

�

�

Definition

Consider the series
∑∞

n=1 an = a1 + a2 + a3 + . . .
with partial sums (sn), where

sn = a1 + a2 + a3 + · · · + an =
n∑

i=1

ai

We say:

1.
∑∞

n=1 an converges if (sn) converges. If sn → S then we call S the sum
of the series and we write

∑∞
n=1 an = S.

2.
∑∞

n=1 an diverges if (sn) does not converge.

3.
∑∞

n=1 an diverges to infinity if (sn) tends to infinity.

4.
∑∞

n=1 an diverges to minus infinity if (sn) tends to minus infinity.
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We sometimes write the series
∑∞

n=1 an simply as
∑

an.
Example Consider the series

∑∞
n=1

1
2n = 1

2 + 1
4 + 1

8 + 1
16 + . . . . The sequence

of partial sums is given by

sn =
1

2
+

1

4
+

1

8
+ · · · +

1

2n
=

1

2

(

1 −
(

1
2

)n

1 − 1
2

)

= 1 −

(
1

2

)n

Clearly sn → 1. It follows from the definition that

∞∑

n=1

1

2n
=

1

2
+

1

4
+

1

8
+

1

16
+ · · · = 1

We could express the argument more succinctly by writing
Dummy Variables

Make careful note of the way

the variables k and n appear in

this example. They are dum-

mies - they can be replaced by

any letter you like.

∞∑

n=1

1

2n
= lim

n→∞

n∑

k=1

1

2k
= lim

n→∞

(

1 −

(
1

2

)n)

= 1

Example Consider the series
∑∞

n=1(−1)n = −1 + 1− 1 + 1− 1 + . . . . Here we
have the partial sums:

s1 = a1 = −1

s2 = a1 + a2 = 0

s3 = a1 + a2 + a3 = −1

s4 = a1 + a2 + a3 + a4 = 0

. . . . . . . . .

and we can see at once that the sequence (sn) = −1, 0,−1, 0, . . . does not
converge.

Frog Hopping

Heard about that frog who
hops halfway across his pond,
and then half the rest of the
way, and the half that, and half
that, and half that . . . ?

Is he ever going to make it to

the other side?

Assignment 1

Look again at the series
∑∞

n=1
1
2n . Plot on two small separate graphs both the

sequences (an) =
(

1
2n

)
and (sn) =

(∑n
k=1

1
2k

)
.

Assignment 2

Find the sum of the series
∑∞

n=1

(
1

10n

)
.

Assignment 3

Reread your answer to exercise 4 and then write out a full proof that

∞∑

n=1

1

n(n + 1)
=

1

2
+

1

6
+

1

12
+

1

20
+

1

30
+ · · · = 1

Assignment 4

Show that the series 1 + 1
2 + 1

2 + 1
3 + 1

3 + 1
3 + 1

4 + 1
4 + 1

4 + 1
4 + 1

5 + . . . diverges.
[Hint: Calculate the partial sums s1, s3, s6, s10, . . . .]
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4.2 Geometric Series�

�

�

�

Theorem Geometric Series

The series
∑∞

n=0 xn is convergent if |x| < 1 and the sum is 1
1−x . It is divergent

if |x| ≥ 1.

Exercise 5
∑∞

n=0

(
− 1

2

)n
= 1 − 1

2 + 1
4 − 1

8 + 1
16 − . . . converges.

∑∞
n=0(2.1)

n,
∑∞

n=0(−1)n and
∑∞

n=0(−3)n = 1 − 3 + 9 − 27 + 81 − . . . all
diverge.

GP Consultation

How could you ever forget that

a + ax + ax2 + · · · + axn−1 =

a
(

x
n
−1

x−1

)

when x 6= 1?

Assignment 5

Prove the theorem [Hint: Use the GP formula to get a formula for sn].

4.3 The Harmonic Series

The series
∑∞

n=1
1
n = 1 + 1

2 + 1
3 + 1

4 + . . . is called the Harmonic Series. The
following grouping of its terms is rather cunning:

1+
1

2
︸︷︷︸

≥1/2

+
1

3
+

1

4
︸ ︷︷ ︸

≥1/2

+
1

5
+

1

6
+

1

7
+

1

8
︸ ︷︷ ︸

≥1/2

+
1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16
︸ ︷︷ ︸

≥1/2

+ . . .

Harmonic History

There are other proofs that

the Harmonic Series is diver-

gent, but this is the original.

It was contributed by the En-

glish mediaeval mathematician

Nicholas Oresme (1323-1382)

who also gave us the laws of ex-

ponents: xm.xn = xm+n and

(xm)n = xmn.

Conflicting Convergence

You can see from this example

that the convergence of (an)

does not imply the convergence

of
∑

∞

n=1 an.

Assignment 6

Prove that the Harmonic Series diverges. Structure your proof as follows:

1. Let sn =
∑n

k=1
1
k be the partial sum. Show that s2n ≥ sn + 1

2 for all n.
(Use the idea in the cunning grouping above).

2. Show by induction that s2n ≥ 1 + n
2 for all n.

3. Conclude that
∑∞

n=1
1
n diverges.

Assignment 7

Give, with reasons, a value of N for which 1 + 1
2 + 1

3 + · · · + 1
N ≥ 10.

4.4 Basic Properties of Convergent Series

Some properties of finite sums are easy to prove for infinite sums:�

�

�

�

Theorem Sum Rule for Series

Suppose
∑∞

n=1 an and
∑∞

n=1 bn are convergent series. Then, for all real numbers
c and d,

∑∞
n=1(can + dbn) is a convergent series and

∞∑

n=1

(can + dbn) = c
∞∑

n=1

an + d
∞∑

n=1

bn
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Proof.
∑n

i=1(can + dbn) = c (
∑n

i=1 ai) + d (
∑n

i=1 bi)
→ c

∑∞
n=1 an + d

∑∞
n=1 bn

�

�

�

�

�

Theorem Shift Rule for Series

Let N be a natural number. Then the series
∑∞

n=1 an converges if and only if
the series

∑∞
n=1 aN+n converges.

Example We showed that
∑∞

n=1
1
n is divergent. It follows that

∑∞
n=1

1
n+1 is

divergent.

Assignment 8

Prove the shift rule.

4.5 Boundedness Condition

If the terms of a series are all non-negative, then we shall show that the bound-
edness of its partial sums is enough to ensure convergence.�

�

�

�

Theorem Boundedness Condition

Suppose an ≥ 0. Then
∑∞

n=1 an converges if and only if the sequence of partial

sums (sn) =
(
∑n

j=1 aj

)

is bounded.

Assignment 9

Prove this result. Your proof must use the axiom of completeness or one of its
consequences - make sure you indicate where this occurs.

4.6 Null Sequence Test

Assignment 10

1. Prove that if
∑∞

n=1 an converges then the sequence (an) tends to zero.

(Hint: Notice that an+1 = sn+1−sn and use the Shift Rule for sequences.)

2. Is the converse true: If (an) → 0 then
∑∞

n=1 an converges?

We have proved that if the series
∑∞

n=1 an converges then it must be the
case that (an) tends to zero. The contrapositive of this statement gives us a
test for divergence:

Red Alert

The Null Sequence Test is a

test for divergence only. You

can’t use it to prove series con-

vergence.

�

�

�

�
Theorem Null Sequence Test

If (an) does not tend to zero, then
∑∞

n=1 an diverges.
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Example The sequence (n2) does not converge to zero, therefore the series
∑∞

n=1 n2 diverges.

4.7 Comparison Test

The next test allows you to test the convergence of a series by comparing its
terms with those of a series whose behaviour you already know.�

�

�

�

Theorem Comparison Test

Suppose 0 ≤ an ≤ bn for all natural numbers n. If
∑

bn converges then
∑

an

converges and
∑∞

n=1 an ≤
∑∞

n=1 bn.

Like the Boundedness Con-

dition, you can only apply

the Comparison Test (and the

other tests in this section) if

the terms of the series are non-

negative.

Example You showed in assignment 3 that
∑

1
n(n+1) converges. Now 0 ≤

1
(n+1)2 ≤ 1

n(n+1) . It follows from the Comparison Test that
∑

1
(n+1)2 also con-

verges and via the Shift Rule that the series
∑

1
n2 = 1 + 1

4 + 1
9 + 1

16 + . . .
converges.

Exercise 6 Give an example to show that the test fails if we allow the terms
of the series to be negative, i.e. if we only demand that an ≤ bn.

Assignment 11

Prove the Comparison Test [Hint: Consider the partial sums of both
∑

bn and
∑

an and show that the latter is increasing and bounded].

Exercise 7 Check that the contrapositive of the statement: “If
∑

bn converges

then
∑

an converges.” gives you the following additional comparison test:

�

�

�

�
Corollary Comparison Test extension

Suppose 0 ≤ an ≤ bn. If
∑

an diverges then
∑

bn diverges.

Examples

1. Note 0 ≤ 1
n ≤ 1√

n
. We know

∑
1
n diverges, so

∑
1√
n

diverges too.

2. To show that
∑

n+1
n2+1 diverges, notice that n+1

n2+1 ≥ n
n2+n2 = 1

2n . We know

that
∑

1
2n diverges, therefore

∑
n+1
n2+1 diverges.
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Way To Go

Stare deeply at each series and

try to find a simpler series

whose terms are very close for

large n. This gives you a good

idea which series you might

hope to compare it with, and

whether it is likely to be con-

vergent or divergent. For in-

stance the terms of the series
∑

n+1
n2+1

are like those of the

series
∑

1
n

for large values of

n, so we would expect it to di-

verge.

Assignment 12

Use the Comparison Test to determine whether each of the following series
converges or diverges. In each case you will have to think of a suitable series
with which to compare it.

(i)
∑ 2n2 + 15n

n3 + 7
(ii)

∑ sin2 nx

n2
(iii)

∑ 3n + 7n

3n + 8n

4.8 * Application - What is e? *

Over the years you have no doubt formed a working relationship with the num-
ber e, and you can say with confidence (and the aid of your calculator) that
e ≈ 2.718. But that is not the end of the story.

Just what is this e number?
To answer this question, we start by investigating the mysterious series

∑∞
n=0

1
n! . Note that we adopt the convention that 0! = 1.

Assignment 13

Consider the series
∑∞

n=0
1
n! = 1 + 1 + 1

2! + 1
3! + 1

4! + . . . and its partial sums
sn =

∑n
k=0

1
k! = 1 + 1 + 1

2! + 1
3! + 1

4! + . . . + 1
n! .

1. Show that the sequence (sn) is increasing.

2. Prove by induction that 1
n! ≤

1
2n−1 for n > 0, and.

3. Use the comparison test to conclude that
∑∞

n=0
1
n! converges.

Now here comes the Big Definition we’ve all been waiting for...!!!�

�

�

�
Definition

e :=
∑∞

n=1
1

(n−1)! = 1 + 1 + 1
2! + 1

3! + 1
4! + . . .

Recall that in the last workbook we showed that limn→∞
(
1 + 1

n

)n
exists.

We can now show, with some rather delicate work, that this limit equals e.
Binomial Theorem

For all real values x and y and
integer n = 1, 2, . . .

(x + y)n =

n∑

k=0

(

n

k

)

x
k
y

n−k

where
(

n

k

)
= n!

k!(n−k)!
. Note

here we use 0! = 1.

Assignment 14

Use the Binomial Theorem to show that

(

1 +
1

n

)n

=
n∑

k=0

1

k!

(

1 −
1

n

)(

1 −
2

n

)

. . .

(

1 −
(k − 1)

n

)

≤
n∑

k=0

1

k!

Conclude that limn→∞
(
1 + 1

n

)n
≤ e.
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We now aim to show limn→∞
(
1 + 1

n

)n
≥ e. The first step is to show that

for all m and n
(

1 +
1

n

)m+n

≥

m∑

k=0

1

k!
(1)

By the Binomial theorem,

(

1 +
1

n

)m+n

=
n+m∑

k=0

1

k!

(n + m)!

(n + m − k)!

1

nk

≥
m∑

k=0

1

k!

(n + m)!

(n + m − k)!

1

nk

where we have thrown away the last n terms of the sum. So

(

1 +
1

n

)m+n

≥

m∑

k=0

1

k!

(n + m)(n + m − 1) . . . (n + m − k + 1)

nk

≥

m∑

k=0

1

k!

which proves equation (1).

Assignment 15

Consider the inequality in equation (1). Fix m and let n → ∞ to con-
clude that limn→∞

(
1 + 1

n

)n
≥
∑m

k=0
1
k! . Then let m → ∞ and show that

limn→∞
(
1 + 1

n

)n
≥ e.

You have proved:�

�

�

�
Theorem

e = limn→∞
(
1 + 1

n

)n

Assignment 16

1. Show that
(

1 − 1
n+1

)

= 1
(1+1/n) and hence find limn→∞

(

1 − 1
n+1

)n

.

2. Use the shift rule to find limn→∞
(
1 − 1

n

)n
.

The last exercise in this booklet is the proof that e is an irrational number.
The proof uses the fact that the series for e converges very rapidly and this
same idea can be used to show that many other series also converge to irrational
numbers.�

�

�

�
Theorem

e is irrational.
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This exercise will not be

marked for credit.

Assignment 17

Prove this result by contradiction. Structure your proof as follows:

1. Suppose e = p
q and show that e −

∑q+1
i=1

1
(i−1)! = p

q −
∑q+1

i=1
1

(i−1)! = k
q! for

some positive integer k.

2. Show that e −
∑q+1

i=1
1

(i−1)! = 1
(q+1)! + 1

(q+2)! + 1
(q+3)! + · · · <

1
q!

(
1
2 + 1

4 + 1
8 + . . .

)
and derive a contradiction to part 1.

Check Your Progress

By the end of this Workbook you should be able to:

• Understand that a series converges if and only if its partial sums converge,
in which case

∑∞
n=1 an = limn→∞ (

∑n
i=1 ai).

• Write down a list of examples of convergent and divergent series and justify
your choice.

• Prove that the Harmonic Series is divergent.

• State, prove, and use the Sum and Shift Rules for series.

• State, prove, and use the Boundedness Condition.

• Use and justify the Null Sequence Test.

• Describe the behaviour of the Geometric Series
∑∞

n=1 xn.

• State, prove and use the Comparison Theorem for series.

• Justify the limit e = limn→∞
(
1 + 1

n

)n
starting from the definition e =

∑∞
n=0

1
n! .

• Prove that e is irrational.
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