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2.13 Roots

We can use the results we’ve established in the last workbook to find some
interesting limits for sequences involving roots. We will need more technical
expertise and low cunning than have been required hitherto. First a simple
inequality.

Strictly Speaking

Bernoulli’s Inequality is actu-

ally strict unless x = 0, n = 0

or n = 1.

�

�

�

�
Bernoulli’s Inequality
When x > −1 and n is a natural number,

(1 + x)n ≥ 1 + nx.

Exercise 1 Sketch a graph of both sides of Bernoulli’s inequality in the cases
n = 2 and n = 3.

Binomial Theorem
For all real values x and y

(x + y)n =

nX
k=0

 
n

k

!
xkyn−k

where
`

n
k

´
= n!

k!(n−k)!
.

For non-negative values of x Bernoulli’s inequality can be easily proved using
the Binomial Theorem, which expands the left-hand side:

(1 + x)n = 1 + nx +
n(n− 1)

2
x2 +

n(n− 1)(n− 2)
6

x3

+ · · ·+ nxn−1 + xn

≥ 1 + nx.

What difficulties do we have with this line of argument if x < 0?
The Bernoulli Boys

Bernoulli’s Inequality is named

after Jacques Bernoulli, a

Swiss mathematician who used

it in a paper on infinite series

in 1689 (though it can be found

earlier in a 1670 paper by an

Englishman called Isaac Bar-

row).

Assignment 1
Finish off the following proof of Bernoulli’s Inequality for x > −1 using mathe-
matical induction. Note down where you use the fact that x > −1.
Proof. We want to show that (1 + x)n ≥ 1 + nx where x > −1 and n is a
natural number. This is true for n = 1 since (1 + x)1 = 1 + x.
Now assume (1 + x)k ≥ 1 + kx. Then

(1 + x)k+1 = (1 + x)k(1 + x).

Exercise 2 Use a calculator to explore the sequences (21/n)), (101/n) and
(10001/n). Repeated use of the square root button will give a subsequence in
each case.

Roots

x1/n = n
√

x is the positive

nthroot of x.

�
�

�
�

Proposition
If x > 0 then (x1/n) → 1.

Example 1000000000001/n → 1 and also 0.0000000000011/n → 1.

To prove this result you might follow the following fairly cunning steps (al-
though other proofs are very welcome):
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Figure 1: The sequence (n1/n).

Assignment 2

1. First assume that x ≥ 1 and deduce that x1/n ≥ 1.

2. Let an = x1/n−1 and use Bernoulli’s inequality to show that x ≥ 1+nan.

3. Use the Sandwich Rule to prove that (an) is a null sequence.

4. Deduce that (x1/n) → 1.

5. Show that (x1/n) → 1 when 0 < x < 1 by considering (1/x1/n).

Assignment 3
Use a calulator to explore the limit of (2n + 3n)1/n. Now find the limit of the
sequence (xn + yn)1/n when 0 ≤ x ≤ y. (Try to find a sandwich for your proof.)

Auto Roots

n1/n = n
√

n is the nthroot of

n. Natural numbers approach

unity by rooting themselves.

What happens if we first write

n = (n1/n)n = (1+(n1/n−1))n

and apply Bernoulli’s Inequal-

ity? Do we get anywhere?

�
�

�
�

Proposition
(n1/n) → 1.

See figure 1 for a graph of this sequence.
Proof. The proof is similar to that of the previous lemma but we have to be
cunning and first show that (n1/2n) → 1. Since n ≥ 1 we have n1/2n ≥ 1.
Therefore,

√
n = (n1/2n)n = (1 + (n1/2n − 1))n

≥ 1 + n(n1/2n − 1) > n(n1/2n − 1)

using Bernoulli’s inequality. Rearranging, we see that 1 ≤ n1/2n < 1√
n

+ 1. So

(n1/2n) → 1 by the Sandwich Theorem. Hence (n1/n) = (n1/2n)2 → 1 by the
Product Rule. �
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Figure 2: The sequence (xn) with three slightly different values of x.

2.14 Powers

Assignment 4
Explore, with a calculator if necessary, and then write down a conjectured limit
for the power sequence (xn). (Warning: you should get four different possible
answers depending on the value of x.)
To prove your conjectures you can use Bernoulli’s inequality again. Note that
if x > 1 then xn = (1 + (x− 1))n ≥ 1 + n(x− 1). To prove your conjecture for
0 < x < 1 look at the sequence 1/xn and then use lemma 2.11. Then treat all
other values of x such as x = 0, x = 1, −1 < x < 0, and x ≤ −1.

Many sequences are not exactly powers but grow or shrink at least as fast
as a sequence of powers so that we can compare them with (or sandwich them
by) a geometric sequence. A useful idea to formalise this is to consider the ratio
of two successive terms: an+1/an. If this is close to a value x then the sequence
(an) might behave like the sequence (xn). We explore this idea.�

�

�

�
Ratio Lemma, Version 1
Let a0, a1, a2, . . . be a sequence of positive numbers. Suppose 0 < l < 1 and
an+1
an

≤ l for all n. Then (an) → 0.

Assignment 5
Prove this lemma by first using induction to show an ≤ lna0 and using the fact
that (ln) is a null sequence.

A small but useful improvement of the above lemma is as follows:�

�

�

�
Ratio Lemma, Version 2
Let a0, a1, a2, . . . be a sequence of positive numbers. Suppose 0 < l < 1 and
an+1
an

≤ l eventually. Then (an) → 0.
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Assignment 6
Prove this by using version 1 of the Ratio Lemma and using the Shift Rule.

Examples

1. Show that n2

2n → 0

2. Show that n!
1000n →∞

Powerful Powers

All increasing power sequences

grow faster than any polyno-

mial sequence.

Powerless Powers

All power sequences are pow-

erless against the factorial se-

quence (n!).

Proof

1. The ratio of successive terms is an+1
an

= (n+1)2/2n+1

n2/2n = 1
2

(
1 + 1

n

)2 → 1
2 .

So, taking ε = 1
4 in the definition of convergence, we have 1

4 ≤
an+1
an

≤ 3
4

for large n. The Ratio Lemma then implies that n2

2n → 0.

2. Let an = 1000n

n! . Then an+1
an

= 1000n+1/(n+1)!
1000n/n! = 1000

n+1 ≤
1
2 for all n ≥ 1999.

The Ratio Lemma says that 1000n

n! → 0 so that n!
1000n →∞.

In both of the examples above we showed that
(

an+1
an

)
→ a for 0 ≤ a < 1,

and then used this to show that an+1
an

≤ l eventually. The following corollary to
version 2 of the Ratio Lemma allows us to cut out some of this work.�

�

�

�
Corollary
Let a0, a1, a2, . . . be a sequence of positive numbers. If

(
an+1
an

)
→ a with 0 ≤

a < 1 then (an) → 0.

Exercise 3 Prove this corollary by generalising the method used in the
worked examples above.

Assignment 7
State whether the following sequences tend to zero or infinity. Prove your an-
swers:

1. n1000

2n 2. 1.0001n

n 3. n!
n1000 4. (n!)2

(2n)!

Exercise 4 Try using the Ratio Lemma to prove that the sequence 1
n → 0.

Why does the lemma tell you nothing?

The sequences (nk) for k = 1, 2, 3, . . . and (xn) for x > 1 and (n!) all tend
to infinity. Which is quickest? The above examples suggest some general rules
which we prove below.

Assignment 8
Prove that

(
xn

n!

)
→ 0 for all values of x.
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Notice that this result implies that (n!)1/n → ∞, since for any value of x,
eventually we have that

(
xn

n!

)
< 1 giving that x < (n!)1/n.

Assignment 9
Prove that

(
n!
nn

)
→ 0 as n →∞.

Assignment 10
Find the limit of the sequence

(
xn

nk

)
as n → ∞ for all values of x > 0 and

k = 1, 2, . . .

Assignment 11
Find the limits of the following sequences. Give reasons.

1.
(

n411n+n99n

72n+1

)
2.

((
410 + 2n

)1/n
)

3.
(

3n3+n cos2 n
n2+sin2 n

)
4.

((
3n2 + n

)1/n
)

Exercise 5 In the box below, make a table of all the general limits you have
found, including nk, xn, xn

nk , x1/n, (xn + yn)1/n, n1/n, xn

n! ,
n!
nn .�




�
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Figure 3: Approximating
∫ n

1
log xdx from below.

2.15 * Application - Factorials *

Factorials n! occur throughout mathematics and especially where counting argu-
ments are used. The last section showed that the factorial sequence (n!) is more
powerful than any power sequence (xn), but earlier you showed that n!

nn → 0.
In this section we will get excellent approximations to n! using two clever but
very useful tricks. The first is to change the product n! = 2 · 3 · 4 · · · (n− 1) · n
into a sum by taking logarithms: log n! = log 2 + log 3 + · · ·+ log(n− 1) + log n.

The second trick, which we shall use repeatedly in future sections, is to
approximate the sum by an integral, see figure 3. Here is a graph of the function
log(x) with a series of blocks, each of width one, lying underneath the graph.
The sum of the areas of all the blocks is log 2 + log 3 + · · · + log(n − 1). But
the area of the blocks is less than the area under the curve between x = 1 and
x = n. So we have:

log n! = log 2 + log 3 + · · ·+ log(n− 1) + log n

≤
∫ n

1

log xdx + log n

= [x log x− x]n1 + log n

= (n + 1) log n− n + 1.

Taking exponentials of both sides we get the wonderful upper bound

n! ≤ nn+1e−n+1.

Assignment 12
Use figure 4 to obtain a lower bound on n! In this case the area of the blocks is
greater than the area under the graph.
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Figure 4: Approximating
∫ n

1
log xdx from above.

Assignment 13
Use your upper and lower bounds on n! to find the following limits: (i)

(
n!2n

nn

)
(ii)

(
n!4n

nn

)

2.16 * Application - Sequences and Beyond *

In workbook 2 we defined a sequence as an infinite list of numbers. However,
the concept of an infinite list of other objects is also useful in mathematics.
With that in mind, we define a sequence of objects to be an infinite list of those
objects.

For example, let Pn be the regular n-sided polygon of area 1. Then (Pn) is
a sequence of shapes.

The main question we asked about sequences was whether they converged
or not. To examine convergence in general, we need to be able to say when two
objects are close to each other. This is not always an easy thing to do. However,
given a sequence of objects, we may be able to derive sequences of numbers and
examine those sequences to learn something about the original sequence. For
example, given a sequence of tables, we could look at the number of legs of each
table. This gives us a new sequence of numbers which is related to the original
sequence of tables. However, different related sequences can behave in wildly
different ways.

We shall demonstrate this by considering the set of solid shapes in R2. Given
a sequence of shapes, (Sn), two obvious related sequences are the sequence of
perimeters, (p(Sn)), and the sequence of areas, (a(Sn)).
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Figure 5:

Example Let Pn be the regular n-sided polygon centred at the origin which
fits exactly inside the unit circle. This sequence starts with P3, which is the
equilateral triangle.

Let an = a(Pn) be the sequence of areas of the polygons. In workbook 1 you
showed that an = n

2 sin
(

2π
n

)
and in workbook 2 you showed that this converges

to π as n →∞ which is the area of the unit circle.

Exercise 6 Let pn = p(Pn) be the perimeter of Pn. Show that pn =
2n sin

(
π
n

)
= 2n sin

(
2π
2n

)
= 2a2n.

Assignment 14
Show that lim pn = 2π.

We see that in both cases we get what we would expect, namely that as the
shape looks more and more like the circle, so also the area and perimeter tend
to those of the circle.

Assignment 15
Consider the sequence of shapes in figure 5. Each is produced from the former
by replacing each large step by two half-sized ones. Draw the “limiting” shape.
Given that the original shape is a square of area 1, what is the perimeter and
area of the nthshape? Compare the limits of these sequences with the perimeter
and area of the limiting shape.

A famous example of this type of behaviour is the Koch curve, see figure
6. The initial figure is an equilateral triangle of area A1 and perimeter p1. To
each side of the triangle is attached another equilateral triangle at the trisection
points of the triangle. This process is then applied to each side of the resulting
figure and so on.

Let pn be the perimeter of the shape at the nthstage and An the area.
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Figure 6:

Assignment 16

1. What is the number of sides of the shape at the nthstage (for n = 1 the
answer is 3).

2. Show that pn+1 = 4
3pn.

3. Prove that (pn) →∞.

4. Show that, in making the (n+1)th shape, each little triangle being added
has area 1

9n A1.

5. Show that An+1 = An + 3
9

(
4
9

)n−1
A1.

6. Prove that (An) → 8
5A1. (Recall the sum of a geometric series.)

Check Your Progress
By the end of this Workbook you should be able to:

• Understand, memorise, prove, and use a selection of standard limits in-
volving roots, powers and factorials.
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