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Figure 1: Convergent sequences; first choose ε, then find N .

2.8 Convergent Sequences

Good N-ough

Any N that works is good

enough - it doesn’t have to be

the smallest possible N .

Plot a graph of the sequence (an) = 2
1 , 3

2 , 4
3 , 5

4 , . . . , n+1
n , . . . To what limit do

you think this sequence tends? What can you say about the sequence (an− 1)?
For ε = 0.1, ε = 0.01 and ε = 0.001 find an N such that |an − 1| < ε whenever
n > N .

Recycle

Have a closer look at figure ??,

what has been changed from

figure 6 of workbook 2? It

turns out that this definition is

very similar to the definition of

a null sequence.

Elephants Revisited

A null sequence is a special

case of a convergent sequence.

So memorise this definition

and get the other one for free.

�
�

�
�

Definition
Let a ∈ R. A sequence (an) tends to a if, for each ε > 0, there exists a natural
number N such that |an − a| < ε for all n > N .

See figure ?? for an illustration of this definition.
We use the notation (an) → a, an → a, as n →∞ and limn→∞ an = a and

say that (an) converges to a, or the limit of the sequence (an) as n tends to
infinity is a.
Example Prove (an) =

(
n

n+1

)
→ 1.

Let ε > 0. We have to find a natural number N so that

|an − 1| =
∣∣∣∣ n

n + 1
− 1

∣∣∣∣ < ε

when n > N . We have∣∣∣∣ n

n + 1
− 1

∣∣∣∣ =
∣∣∣∣− 1

n + 1

∣∣∣∣ =
1

n + 1
<

1
n

.

Hence it suffices to find N so that 1
n < ε whenever n > N . But 1

n < ε if and
only if 1

ε < n so it is enough to choose N to be a natural number with N > 1
ε .

Then, if n > N we have

|an − 1| =
∣∣∣∣ n

n + 1
− 1

∣∣∣∣ =
∣∣∣∣− 1

n + 1

∣∣∣∣ =
1

n + 1
<

1
n

<
1
N

< ε.

�
�

�
�

Lemma
(an) → a if and only if (an − a) → 0.
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Proof. We know that (an − a) → 0 means that for each ε > 0, there exists a
natural number N such that |an − a| < ε when n > N . But this is exactly the
definition of (an) → a. �

We have spoken of the limit of a sequence but can a sequence have more
than one limit? The answer had better be “No” or our definition is suspect.�

�
�
�

Theorem Uniqueness of Limits
A sequence cannot converge to more than one limit.

Assignment 1
Prove the theorem by assuming (an) → a, (an) → b with a < b and obtaining a
contradiction. [Hint: try drawing a graph of the sequences with a and b marked
on]

�
�

�
�

Theorem
Every convergent sequence is bounded.

Assignment 2
Prove the theorem above.

2.9 “Algebra” of Limits

Connection
It won’t have escaped your no-
tice that the Sum Rule for null
sequences is just a special case
of the Sum Rule for sequences.
The same goes for the Product
Rule.

Why don’t we have a Quotient

Rule for null sequences?

Polly Want a Cracker?
If you have a parrot, teach it
to say:
“The limit of the sum is the
sum of the limits.”
“The limit of the product is the
product of the limits.”

“The limit of the quotient is

the quotient of the limits.”

�

�

�

�

Theorem
a, b ∈ R. Suppose (an) → a and (bn) → b. Then

(can + dbn) → ca + db Sum Rule for Sequences
(anbn) → ab Product Rule for Sequences(

an

bn

)
→ a

b
, if b 6= 0 Quotient Rule for Sequences

There is another useful way we can express all these rules: If (an) and (bn)
are convergent then

lim
n→∞

(can + dbn) = c lim
n→∞

an + d lim
n→∞

bn Sum Rule

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn Product Rule

lim
n→∞

(
an

bn

)
=

limn→∞(an)
limn→∞(bn)

, if lim
n→∞

(bn) 6= 0 Quotient Rule
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Example In full detail

lim
n→∞

(n2 + 1)(6n− 1)
2n3 + 5

= lim
n→∞

(
1 + 1

n2

) (
6− 1

n

)
2 + 5

n3

using the Quotient Rule

=
limn→∞

[(
1 + 1

n2

) (
6− 1

n

)]
limn→∞

(
2 + 5

n3

)
using the Product and Sum Rules

=

(
1 + limn→∞

(
1

n2

)) (
6− limn→∞

(
1
n

))
2 + 5 limn→∞

(
1

n3

)
=

(1 + 0)(6− 0)
2 + 0

= 3

Bigger and Better
By induction, the Sum and
Product Rules can be extended
to cope with any finite number
of convergent sequences. For
example, for three sequences:

lim
n→∞

(anbncn) =

lim
n→∞

an · lim
n→∞

bn · lim
n→∞

cn

Unless you are asked to show where you use each of the rules you can keep
your solutions simpler. Either of the following is fine:

lim
n→∞

(n2 + 1)(6n− 1)
2n3 + 5

= lim
n→∞

(
1 + 1

n2

) (
6− 1

n

)
2 + 5

n3

=
(1 + 0)(6− 0)

2 + 0
= 3

or
(n2 + 1)(6n− 1)

2n3 + 5
=

(
1 + 1

n2

) (
6− 1

n

)
2 + 5

n3

→ (1 + 0)(6− 0)
2 + 0

= 3

Assignment 3
Use the Sum Rule for null sequences to prove the Sum Rule for sequences.

Exercise 1 Show that

(an − a)(bn − b) + a(bn − b) + b(an − a) = anbn − ab

Assignment 4
Use the identity in Exercise 1 and the rules for null sequences to prove the
Product Rule for sequences.

Don’t Worry
You can still use the Quotient
Rule if some of the bns are zero.
The fact that b 6= 0 ensures
that there can only be a finite
number of these.
Can you see why?

And “eventually”, the se-

quence leaves them behind.

Assignment 5
Write a proof of the Quotient Rule. You might like to structure your proof as
follows.

1. Note that (bbn) → b2 and show that bbn > b2

2 for sufficiently large n.

2. Then show that eventually 0 ≤
∣∣∣ 1
bn
− 1

b

∣∣∣ ≤ 2
b2 |b−bn| and therefore

(
1
bn

)
→

1
b .

3. Now tackle an

bn
= an

1
bn

.

3



Cunning Required
Do you know a cunning way to
rewrite

1 + 2 + 3 + · · · + n ?

Assignment 6
Find the limit of each of the sequences defined below.

1. 7n2+8
4n2−3n 2. 2n+1

2n−1

3.
(√n+3)(√n−2)

4
√

n−5n
4. 1+2+···+n

n2

2.10 Further Useful Results

Connection

The Sandwich Rule for null

sequences represents the case

when l = 0.

�
�

�
�

Theorem Sandwich Theorem for Sequences
Suppose (an) → l and (bn) → l. If an ≤ cn ≤ bn then (cn) → l.

This improved Sandwich theorem can be tackled by rewriting the hypothesis
as 0 ≤ cn − an ≤ bn − an and applying the earlier Sandwich theorem.

Assignment 7
Prove the Sandwich Theorem for sequences.

There are going to be many occasions when we are interested in the be-
haviour of a sequence “after a certain point”, regardless of what went on before
that. This can be done by “chopping off” the first N terms of a sequence (an) to
get a shifted sequence (bn) given by bn = aN+n. We often write this as (aN+n),
so that

(aN+n) = aN+1, aN+2, aN+3, aN+4, . . .

which starts at the term aN+1. We use it in the definition below.�
�

�
�

Definition
A sequence (an) satisfies a certain property eventually if there is a natural
number N such that the sequence (aN+n) satisfies that property.

For instance, a sequence (an) is eventually bounded if there exists N such
that the sequence (aN+n) is bounded.

Max and Min

In your proof you may well use

the fact that each finite set has

a maximum and a minimum.

Is this true of infinite sets?

�
�

�
�

Lemma
If a sequence is eventually bounded then it is bounded.

Assignment 8
Prove this lemma.

The next result, called the Shift Rule, tells you that a sequence converges
if and only if it converges eventually. So you can chop off or add on any finite
number of terms at the beginning of a sequence without affecting the convergent
behaviour of its infinite “tail”.

4
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Theorem Shift Rule
Let N be a natural number. Let (an) be a sequence. Then an → a if and only
if the “shifted” sequence aN+n → a.

Proof. Fix ε > 0. If (an) → a we know there exists N1 such that |an − a| < ε
whenever n > N1. When n > N1, we see that N+n > N1, therefore |aN+n−a| <
ε. Hence (aN+n) → a. Conversely, suppose that (aN+n) → a. Then there exists
N2 such that |aN+n − a| < ε whenever n > N2. When n > N + N2 then
n−N > N2 so |an − a| = |aN+(n−N) − a| < ε. Hence (an) → a. �

�
�

�
�

Corollary Sandwich Theorem with Shift Rule
Suppose (an) → l and (bn) → l. If eventually an ≤ cn ≤ bn then (cn) → l.

Example We know 1/n → 0 therefore 1/(n + 5) → 0.

Exercise 2 Show that the Shift Rule also works for sequences which tend to
infinity: (an) →∞ if and only if (aN+n) →∞.

If all the terms of a convergent sequence sit within a certain interval, does
its limit lie in that interval, or can it “escape”? For instance, if the terms of a
convergent sequence are all positive, is its limit positive too?�

�
�
�

Lemma
Suppose (an) → a. If an ≥ 0 for all n then a ≥ 0.

Assignment 9
Prove this result. [Hint: Assume that a < 0 and let ε = −a > 0. Then use the
definition of convergence to arrive at a contradiction.]

Assignment 10
Prove or disprove the following statement:

“Suppose (an) → a. If an > 0 for all n then a > 0.”

�
�

�
�

Theorem Inequality Rule
Suppose (an) → a and (bn) → b. If (eventually) an ≤ bn then a ≤ b.

Assignment 11
Prove this result using the previous Lemma. [Hint: Consider (bn − an).]
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Limits on Limits

Limits cannot escape from

closed intervals. They can es-

cape from open intervals - but

only as far as the end points.

�
�

�
�

Corollary Closed Interval Rule
Suppose (an) → a. If (eventually) A ≤ an ≤ B then A ≤ a ≤ B.

If A < an < B it is not the case that A < a < B. For example 0 < n
n+1 < 1

but n
n+1 → 1.

2.11 Subsequences

Caution

Note that the subsequence

(ani) is indexed by i not n. In

all cases ni ≥ i. (Why is this?)

Remember these facts when

subsequences appear!

A subsequence of (an) is a sequence consisting of some (or all) of its terms in
their original order. For instance, we can pick out the terms with even index to
get the subsequence

a2, a4, a6, a8, a10, . . .

or we can choose all those whose index is a perfect square

a1, a4, a9, a16, a25, . . .

In the first case we chose the terms in positions 2,4,6,8,. . . and in the second
those in positions 1,4,9,16,25,. . .

In general, if we take any strictly increasing sequence of natural numbers
(ni) = n1, n2, n3, n4, . . . we can define a subsequence of (an) by

(ani) = an1 , an2 , an3 , an4 , . . .�
�

�
�

Definition
A subsequence of (an) is a sequence of the form (ani), where (ni) is a strictly
increasing sequence of natural numbers.

Effectively, the sequence (ni) “picks out” which terms of (an) get to belong
to the subsequence. Think back to the definition of convergence of a sequence.

Prove the obvious

It may seem obvious that ev-

ery subsequence of a conver-

gent sequence converges, but

you should still check that you

know how to prove it!

Why is it immediate from the definition that if a sequence (an) converges to a
then all subsequence (ani

) converge to a? This is a fact which we will be using
constantly in the rest of the course.

Notice that the shifted sequence (aN+n) is a subsequence of (an).

Assignment 12
Let (an) = (n2). Write down the first four terms of the three subsequences
(an+4), (a3n−1) and (a2n).

Here is another result which we will need in later workbooks.

Assignment 13
Suppose we have a sequence (an) and are trying to prove that it converges.
Assume that we have have shown that the subsequences (a2n) and (a2n+1) both
converge to the same limit a. Prove that (an) → a converges.

Exercise 3 Answer “Yes” or “No” to the following questions, but be sure
that you know why and that you aren’t just guessing.
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Figure 2: Floor terms are lower bounds for the rest of the sequence.

1. A sequence (an) is known to be increasing, but not strictly increasing.

(a) Might there be a strictly increasing subsequence of (an)?

(b) Must there be a strictly increasing subsequence of (an)?

2. If a sequence is bounded, must every subsequence be bounded?

3. If the subsequence a2, a3, . . . , an+1, . . . is bounded, does it follow that
the sequence (an) is bounded?

4. If the subsequence a3, a4, . . . , an+2, . . . is bounded does it follow that
the sequence (an) is bounded?

5. If the subsequence aN+1, aN+2, . . . , aN+n, . . . is bounded does it follow
that the sequence (an) is bounded?

�
�

�
�

Lemma
Every subsequence of a bounded sequence is bounded.

Proof. Let (an) be a bounded sequence. Then there exist L and U such that
L ≤ an ≤ U for all n. It follows that if (ani

) is a subsequence of (an) then
L ≤ ani

≤ U for all i. Hence (ani
) is bounded. �

You might be surprised to learn that every sequence, no matter how bouncy
and ill-behaved, contains an increasing or decreasing subsequence.�

�
�
�

Theorem
Every sequence has a monotonic subsequence.

We say af is a floor term of the (an) if an ≥ af for all n ≥ f . So each floor
term is “eventually” a lower bound.

Exercise 4 Write down the floor terms of the sequences:

7



1. ((−1)n) 2. 0, 1,
1
3
,
1
2
,
1
5
,
1
4
,
1
7
,
1
6
, . . . 3.

(
1
n

)
Identify a monotonic subsequence of each.
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Exercise 5

1. If there is an infinite number of floor terms, show that they form a mono-
tonic increasing subsequence.

2. If there is a finite number of floor terms and the last one is aF , construct
a monotonic decreasing subsequence with aF+1 as its first term.

3. If there are no floor terms, construct a monotonic decreasing subsequence
with a1 as its first term.

Sine Time Again
The fact that a sequence has
a guaranteed monotonic subse-
quence doesn’t mean that the
subsequence is easy to find.

Try identifying an increasing

or decreasing subsequence of

sin n and you’ll see what I

mean.

Assignment 14
Turn your answers to Exercise 5 into a proof of the previous theorem.

2.12 * Application - Speed of Convergence *

Often sequences are defined recursively, that is, later terms are defined in terms
of earlier ones. Consider a sequence (an) where a0 = 1 and an+1 =

√
an + 2, so

the sequence begins a0 = 1, a1 =
√

3, a2 =
√√

3 + 2.

Exercise 6 Use induction to show that 1 ≤ an ≤ 2 for all n.

Now assume that (an) converges to a limit, say, a. Then:

a = lim
n→∞

an = lim
n→∞

(
(an+1)2 − 2

)
=

(
lim

n→∞
an+1

)2

− 2 = a2 − 2

So to find a we have to solve the quadratic equation a2 − a − 2 = 0. We can
rewrite this as (a + 1)(a− 2) = 0, so either a = −1 or a = 2. But which one is
it? The Inequality Theorem comes to our rescue here. Since an ≥ 1 for all n it
follows that a ≥ 1, therefore a = 2. We will now investigate the speed that an

approaches 2.

Assignment 15
Show that 2− an+1 = 2−an

2+
√

2+an
. Use this identity and induction to show that

(2 − an) ≤ 1
(2+

√
3)n

for all n. How many iterations are needed so that an is

within 10−100 is its limit 2?

An excellent method for calculating square roots is the Newton-Raphson
method which you may have met at A-level. When applied to the problem of
calculating

√
2 this leads to the sequence given by: a0 = 2 and an+1 = 1

an
+ an

2 .

Exercise 7 Use a calculator to calculate a1, a2, a3, a4. Compare them with√
2.

Assignment 16
Use induction to show that 1 ≤ an ≤ 2 for all n. Assuming that (an) converges,
show that the limit must be

√
2.
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We will now show that the sequence converges to
√

2 like a bat out of hell.

Assignment 17
Show that (an+1−

√
2) = (an−

√
2)2

2an
. Using this identity show by induction that

|an−
√

2| ≤ 1
22n . How many iterations do you need before you can guarentee to

calculate
√

2 to within an error of 10−100 (approximately 100 decimal places)?

Sequences as in Assignment 15 are said to converge exponentially and those
as in Assignment 17 are said to converge quadratically since the error is squared
at each iteration. The standard methods for calculating π were exponential
(just as is the Archimedes method) until the mid 1970s when a quadratically
convergent approximation was discovered.

Check Your Progress
By the end of this Workbook you should be able to:

• Define what it means for a sequence to “converge to a limit”.

• Prove that every convergent sequence is bounded.

• State, prove and use the following results about convergent sequences: If
(an) → a and (bn) → b then:

Sum Rule: (can + dbn) → ca + db

Product Rule: (anbn) → ab

Quotient Rule: (an/bn) → a/b if b 6= 0

Sandwich Theorem: if a = b and an ≤ cn ≤ bn then (cn) → a

Closed Interval Rule: if A ≤ an ≤ B then A ≤ a ≤ B

• Explain the term “subsequence” and give a range of examples.
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