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2 Sequences I

2.1 Introduction

A sequence is a list of numbers in a definite order so that we know which number
is in the first place, which number is in the second place and, for any natural
number n, we know which number is in the nth place.

All the sequences in this course are infinite and contain only real numbers.
For example:

1, 2, 3, 4, 5, . . .

−1, 1,−1, 1,−1, . . .

1,
1
2
,
1
3
,
1
4
,
1
5
, . . .

sin(1), sin(2), sin(3), sin(4), . . .

Initially

Sometimes you will see a0 as

the initial term of a sequence.

We will see later that, as far

as convergence is concerned, it

doesn’t matter where you start

the sequence.

In general we denote a sequence by:

(an) = a1, a2, a3, a4, . . .

Notice that for each natural number, n, there is a term an in the sequence; thus
a sequence can be thought of as a function a : N → R given by a(n) = an.
Sequences, like many functions, can be plotted on a graph. Let’s denote the
first three sequences above by (an), (bn) and (cn), so the nthterms are given by:

an = n;
bn = (−1)n;

cn =
1
n

.

Figure 1 shows roughly what the graphs look like.

b ca

Figure 1: Graphing sequences as functions N → R.

Sine Time

What do you think the fourth

sequence, sin(n), looks like

when you plot it on the real

line?

Another representation is obtained by simply labelling the points of the
sequence on the real line, see figure 2. These pictures show types of behaviour
that a sequence might have. The sequence (an) “goes to infinity”, the sequence
(bn) “jumps back and forth between -1 and 1”, and the sequence (cn) “converges
to 0”. In this chapter we will decide how to give each of these phrases a precise
meaning.
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a1

a2

a3

d

bl br c1c2c3d

Figure 2: Number line representations of the sequences in figure 1.

Exercise 1 Write down a formula for the nthterm of each of the sequences
below. Then plot the sequence in each of the two ways described above.

1. 1, 3, 5, 7, 9, . . . 2. 1
2 , 1

4 , 1
8 , 1

16 , 1
32 , . . .

3. 0,−2, 0,−2, 0,−2, . . . 4. 1
2 , 2

3 , 3
4 , 4

5 , 5
6 , . . .

2.2 Increasing and Decreasing Sequences

Labour Savers

Note that:

strictly increasing =⇒ in-

creasing (and not decreasing)

strictly decreasing =⇒ de-

creasing (and not increasing)

increasing =⇒ monotonic

decreasing =⇒ monotonic.

�

�

�

�

Definition
A sequence (an) is:

strictly increasing if, for all n, an < an+1;
increasing if, for all n, an ≤ an+1;
strictly decreasing if, for all n, an > an+1;
decreasing if, for all n, an ≥ an+1;
monotonic if it is increasing or decreasing or both;
non-monotonic if it is neither increasing nor decreasing.

e fd

b ca

Figure 3: Which sequences are monotonic?
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Example Recall the sequences (an), (bn) and (cn), given by an = n, bn = (−1)n

and cn = 1
n . We see that:

1. for all n, an = n < n + 1 = an+1, therefore (an) is strictly increasing;

2. b1 = −1 < 1 = b2, b2 = 1 > −1 = b3, therefore (bn) is neither increasing
nor decreasing, i.e. non-monotonic;

3. for all n, cn = 1
n > 1

n+1 = cn+1, therefore (cn) is strictly decreasing.

Be Dotty

When you are graphing your

sequences, remember not to

“join the dots”. Sequences are

functions defined on the natu-

ral numbers only.

Assignment 1
Test whether each of the sequences defined below has any of the following

properties: increasing; strictly increasing; decreasing; strictly decreasing; non-
monotonic. [A graph of the sequence may help you to decide, but use the formal
definitions in your proof.]

1. an = − 1
n 2. a2n−1 = n, a2n = n 3. an = 1

4. an = 2−n 5. an =
√

n + 1−
√

n 6. an = sinn

Hint: In part 5,try using the identity a− b = a2−b2

a+b .

2.3 Bounded Sequences

Boundless Bounds

If U is an upper bound then so

is any number greater than U .

If L is a lower bound then so is

any number less than L.

Bounds are not unique.

�

�

�

�

Definition
A sequence (an) is:

bounded above if there exists U such that, for all n, an ≤ U ;
U is an upper bound for (an);

bounded below if there exists L such that, for all n, an ≥ L;
L is a lower bound for (an);

bounded if it is both bounded above and bounded below.

b ca

U L L U

Figure 4: Sequences bounded above, below and both.

Example

1. The sequence
(

1
n

)
is bounded since 0 < 1

n ≤ 1.

2. The sequence (n) is bounded below but is not bounded above because for
each value C there exists a number n such that n > C.
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Bounds for Monotonic
Sequences

Each increasing sequence (an)

is bounded below by a1.

Each decreasing sequence (an)

is bounded above by a1.

Assignment 2
Decide whether each of the sequences defined below is bounded above, bounded
below, bounded. If it is none of these things then explain why. Identify upper
and lower bounds in the cases where they exist. Note that, for a positive real
number x,

√
x, denotes the positive square root of x.

1. (−1)n

n 2.
√

n 3. an = 1
4. sinn 5.

√
n + 1−

√
n 6. (−1)nn

Exercise 2

1. A sequence (an) is known to be increasing.

(a) Might it have an upper bound?
(b) Might it have a lower bound?
(c) Must it have an upper bound?
(d) Must is have a lower bound?

Give a numerical example to illustrate each possibility or impossibility.

2. If a sequence is not bounded above, must it contain

(a) a positive term,
(b) an infinite number of positive terms?

2.4 Sequences Tending to Infinity

We say a sequence tends to infinity if its terms eventually exceed any number
we choose.�

�
�
�

Definition
A sequence (an) tends to infinity if, for every C > 0, there exists a natural
number N such that an > C for all n > N .

We will use three different ways to write that a sequence (an) tends to
infinity, (an) →∞, an →∞, as n →∞ and limn→∞ an = ∞.
Example

1.
(

n
3

)
→∞. Let C > 0. We want to find N such that if n > N then n

3 > C.

Note that n
3 > C ⇔ n > 3C. So choose N ≥ 3C. If n > N then

n
3 > N

3 ≥ C. In the margin draw a graph of the sequence and illustrate
the positions of C and N .

2. (2n) → ∞. Let C > 0. We want to find N such that if n > N then
2n > C.

Note that 2n > C ⇔ n > log2 C. So choose N ≥ log2 C. If n > N then
2n > 2N ≥ 2log2 C = C.

4



Assignment 3
When does the sequence (

√
n) eventually exceed 2, 12 and 1000? Then prove

that (
√

n) tends to infinity.

Is Infinity a Number?

We have not defined “infin-

ity” to be any sort of num-

ber - in fact, we have not de-

fined infinity at all. We have

side-stepped any need for this

by defining the phrase “tends

to infinity” as a self-contained

unit.

Exercise 3 Select values of C to demonstrate that the following sequences
do not tend to infinity.

1. 1, 1, 2, 1, 3, . . . , n, 1, . . .

2. −1, 2, −3, 4, . . . , (−1)nn, . . .

3. 11, 12, 11, 12, . . . , 11, 12, . . .

Assignment 4
Think of examples to show that:

1. an increasing sequence need not tend to infinity;

2. a sequence that tends to infinity need not be increasing;

3. a sequence with no upper bound need not tend to infinity.

�
�

�
�

Theorem
Let (an) and (bn) be two sequences such that bn ≥ an for all n. If (an) → ∞
then (bn) →∞.

Proof. Suppose C > 0. We know that there exists N such that an > C
whenever n > N . Hence bn ≥ an > C whenever n > N . �

Example We know that n2 ≥ n and (n) →∞, hence (n2) →∞.�
�

�
�

Definition
A sequence (an) tends to minus infinity if, for every C < 0, there exists a
number N such that an < C for all n > N .

The corresponding three ways to write that (an) tends to minus infinity are
(an) → −∞,an → −∞, as n →∞ and limn→∞ an = −∞
Example You can show that (an) → −∞ if and only if (−an) → ∞. Hence,
(−n),

(−n
2

)
and (−

√
n) all tend to minus infinity.�

�
�
�

Theorem
Suppose (an) → ∞ and (bn) → ∞. Then (an + bn) → ∞, (anbn) → ∞,
(can) →∞ when c > 0 and (can) → −∞ when c < 0.
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Figure 5: Does this look like a null sequence?

Proof. We’ll just do the first part here. Suppose (an) → ∞ and (bn) → ∞.
Let C > 0. Since (an) → ∞ and C/2 > 0 there exists a natural number N1

such that an > C/2 whenever n > N1. Also, since (bn) → ∞ and C/2 > 0
there exists a natural number N2 such that bn > C/2 whenever n > N2. Now
let N = max{N1, N2}. Suppose n > N . Then

n > N1 and n > N2 so that an > C/2 and bn > C/2.

This gives that
an + bn > C/2 + C/2 = C.

This is exactly what it means to say that (an + bn) →∞.
Try doing the other parts in your portfolio. [Hint: for the second part use√

C instead of C/2 in a proof similar to the above.] �

2.5 Null Sequences

If someone asked you whether the sequence

1,
1
2
,
1
3
,
1
4
,
1
5
, . . . ,

1
n

, . . .

“tends to zero”, you might draw a graph like figure 5 and then probably answer
“yes”. After a little thought you might go on to say that the sequences

Is Zero Allowed?
We are going to allow zeros to
appear in sequences that “tend
to zero” and not let their pres-
ence bother us. We are even
going to say that the sequence

0, 0, 0, 0, 0, . . .

“tends to zero”.

1, 0,
1
2
, 0,

1
3
, , 0,

1
4
, 0, . . . ,

1
n

, 0, . . .

and
−1,

1
2
,−1

3
,
1
4
,−1

5
, . . . , (−1)n 1

n
, . . .

also “tend to zero”.
We want to develop a precise definition of what it means for a sequence to

“tend to zero”. As a first step, notice that for each of the sequences above,
every positive number is eventually an upper bound for the sequence and ev-
ery negative number is eventually a lower bound. (So the sequence is getting
“squashed” closer to zero the further along you go.)

Exercise 4

1. Use the sequences below (which are not null) to demonstrate the inade-
quacy of the following attempts to define a null sequence.
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(a) A sequence in which each term is strictly less than its predecessor.

(b) A sequence in which each term is strictly less than its predecessor
while remaining positive.

(c) A sequence in which, for sufficiently large n, each term is less than
some small positive number.

(d) A sequence in which, for sufficiently large n, the absolute value of
each term is less than some small positive number.

(e) A sequence with arbitrarily small terms.

I. 2, 1, 0, −1, −2, −3, −4, . . . , −n, . . .

II. 2, 3
2 , 4

3 , 5
4 , 6

5 , . . . , n+1
n , . . .

III. 2, 1, 0, −1, −0.1, −0.1, −0.1, . . . , −0.1, . . .

IV. 2, 1, 0, −0.1, 0.01, −0.001, 0.01, −0.001, . . . , 0.01, −0.001, . . .

V. 1, 1
2 , 1, 1

4 , 1, 1
8 , . . .

2. Examine the sequence

−1,
1
2
, −1

3
,

1
4
, −1

5
, . . . ,

(−1)n

n
, . . .

(a) Beyond what stage in the sequence are the terms between −0.1 and
0.1?

(b) Beyond what stage in the sequence are the terms between −0.01 and
0.01?

(c) Beyond what stage in the sequence are the terms between −0.001
and 0.001?

(d) εrror.
The choics of ε, the Greek e,

is to stand for ‘error’, where

the terms of a sequence are

thought of as sucessive at-

tempts to hit the target of 0.

Beyond what stage in the sequence are the are the terms between −ε
and ε, where ε is a given positive number?

You noticed in Exercise 4(2.) that for every value of ε, no matter how tiny,
the sequence was eventually sandwiched between ε and −ε (i.e. within ε of zero).
We use this observation to create our definition. See figure 6

Make Like an Elephant

This definition is the trickiest

we’ve had so far. Even if you

don’t understand it yet

Memorise It!

In fact, memorise all the other

definitions while you’re at it.

�
�

�
�

Definition
A sequence (an) tends to zero if, for each ε > 0, there exists a natural number
N such that |an| < ε for all n > N .

The three ways to write a sequence tends to zero are, (an) → 0, an → 0, as
n → ∞, and limn→∞ an = 0. We also say (an) converges to zero, or (an) is a
null sequence.

Archimedean Property
One property of the real num-
bers that we don’t often give
much thought to is this:
Given any real number x there
is an integer N such that N >
x.

Where have we used this fact?

Example The sequence (an) =
(

1
n

)
tends to zero. Let ε > 0. We want to find

N such that if n > N , then |an| = 1
n < ε.

Note that 1
n < ε ⇔ n > 1

ε . So choose a natural number N ≥ 1
ε . If n > N ,

then |an| = 1
n < 1

N ≤ ε.
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e

-e

0

N

Figure 6: Null sequences; first choose ε, then find N .

Assignment 5
Prove that the sequence

(
1√
n

)
tends to zero.

Assignment 6
Prove that the sequence (1, 1, 1, 1, 1, 1, 1, . . . ) does not tend to zero. (Find a
value of ε for which there is no corresponding N .)

�
�

�
�

Lemma
If (an) →∞ then

(
1

an

)
→ 0.

Assignment 7
Prove this lemma.

Assignment 8
Think of an example to show that the opposite statement,

if (an) → 0 then
(

1
an

)
→∞,

is false, even if an 6= 0 for all n.�
�

�
�

Lemma Absolute Value Rule
(an) → 0 if and only if (|an|) → 0.

Proof. The absolute value of |an| is just |an|, i.e.||an|| = |an|. So |an| → 0
iff for each ε > 0 there exists a natural number N such that |an| < ε whenever
n > N . But, by definition, this is exactly what (an) → 0 means. �
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Example We showed before that
(

1
n

)
→ 0. Now 1

n =
∣∣∣ (−1)n

n

∣∣∣. Hence(
(−1)n

n

)
→ 0.�

�
�
�

Theorem Sandwich Theorem for Null Sequences
Suppose (an) → 0. If 0 ≤ |bn| ≤ an then (bn) → 0.

Example

1. Clearly 0 ≤ 1
n+1 ≤

1
n . Therefore

(
1

n+1

)
→ 0.

2. 0 ≤ 1
n3/2 ≤ 1

n . Therefore
(

1
n3/2

)
→ 0.

Assignment 9
Prove that if (an) is a null sequence and 0 ≤ bn ≤ an then (bn) is a null
sequence. Now combine this with the Absolute Value Rule to construct a proof
of the Sandwich Theorem, assuming that 0 ≤ |bn| ≤ an for all n.

Assignment 10
Prove that the following sequences are null using the result above. Indicate
what null sequence you are using to make your Sandwich.

1.

(
sinn

n

)
2.

(√
n + 1−

√
n
)

2.6 Arithmetic of Null Sequences�

�

�

�

Theorem
Suppose (an) → 0 and (bn) → 0. Then for all numbers c and d:

(can + dbn) → 0 Sum Rule for Null Sequences;
(anbn) → 0 Product Rule for Null Sequences.

Examples

•
(

1
n2

)
=

(
1
n ·

1
n

)
→ 0 (Product Rule)

•
(

2n−5
n2

)
=

(
2
n −

5
n2

)
→ 0 (Sum Rule)

The Sum Rule and Product Rule are hardly surprising. If they failed we
would surely have the wrong definition of a null sequence. So proving them
carefully acts as a test to see if our definition is working.

Exercise 5
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1. If (an) is a null sequence and c is a constant number, prove that (c · an) is
a null sequence. [Hint: Consider the cases c 6= 0 and c = 0 in turn].

2. Deduce that 10√
n

is a null sequence.

3. Suppose that (an) and (bn) are both null sequences, and ε > 0 is given.

(a) Must there be an N1 such that |an| < 1
2ε when n > N1?

(b) Must there be an N2 such that |bn| < 1
2ε when n > N2?

(c) Is there an N0 such that when n > N0 both n > N1 and n > N2?

(d) If n > N0 must |an + bn| < ε?
You have proved that the termwise sum of two null sequences is null.

(e) If the sequence (cn) is also null, what about (an + bn + cn)? What
about the sum of k null sequences?

Assignment 11
Do Exercise 5 then tie together your answers and write a proof of the Sum
Rule.

Exercise 6 Suppose (an) and (bn) are both null sequences, and ε > 0 is given.

1. Must there be an N1 such that |an| < ε when n > N1?

2. Must there be an N2 such that |bn| < 1 when n > N2?

3. Is there an N0 such that when n > N0 both n > N1 and n > N2?

4. If n > N0 must |anbn| < ε?

You have proved that the termwise product of two null sequences is null.

5. If the sequence (cn) is also null, what about (anbncn)? What about the
product of k null sequences?

Assignment 12
Do Exercise 6. Then write a proof of the Product Rule.

Example To show that
(

n2+2n+3
n3

)
is a null sequence, note that n2+2n+3

n3 =
1
n + 2

n2 + 3
n3 . We know that

(
1
n

)
→ 0 so

(
1

n2

)
and

(
1

n3

)
are null by the Product

Rule. It follows that
(

n2+2n+3
n3

)
is null by the Sum Rule.
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2.7 * Application - Estimating π *

Recall Archimedes’ method for approximating π: An and an are the areas of
the circumscribed and inscribed regular n sided polygon to a circle of radius 1.
Archimedes used the formulae

a2n =
√

anAn A2n =
2Ana2n

An + a2n

to estimate π.

Assignment 13
Why is the sequence a4, a8, a16, a32, . . . increasing? Why are all the values
between 2 and π? What similar statements can you make about the sequence
A4, A8, A16, A32, . . . ?

Using Archimedes’ formulae we see that

A2n − a2n =
2Ana2n

An + a2n
− a2n

=
Ana2n − a2

2n

An + a2n

=
a2n

An + a2n
(An − a2n)

=
a2n

An + a2n

(
An −

√
anAn

)
=

(
a2n

√
An

(An + a2n)(
√

An +
√

an)

)
(An − an)

Assignment 14
Explain why

(
a2n

√
An

(An+a2n)(
√

An+
√

an)

)
is never larger than 0.4. [Hint: use the

bounds from the previous question.] Hence show that the error (An − an) in
calculating π reduces by at least 0.4 when replacing n by 2n. Show that by
calculating A210 and a210 we can estimate π to within 0.0014. [Hint: recall that
an ≤ π ≤ An.]
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Check Your Progress
By the end of this Workbook you should be able to:

• Explain the term “sequence” and give a range of examples.

• Plot sequences in two different ways.

• Test whether a sequence is (strictly) increasing, (strictly) decreasing,
monotonic, bounded above or bounded below - and formally state the
meaning of each of these terms.

• Test whether a sequence “tends to infinity” and formally state what that
means.

• Test whether a sequence “tends to zero” and formally state what that
means.

• Apply the Sandwich Theorem for Null Sequences.

• Prove that if (an) and (bn) are null sequences then so are (|an|), (can+dbn)
and (anbn).
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