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4.19 Rearrangements of Series

If you take any finite set of numbers and rearrange their order, their sum remains
the same. But the truly weird and mind-bending fact about infinite sums is that,
in some cases, you can rearrange the terms to get a totally different sum. We
look at one example in detail.

The sequence
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contains all the numbers in the sequence
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but rearranged in a different order: each of the positive terms is followed by not
one but two of the negative terms. You can also see that each number in (bn) is
contained in (an). So this rearrangement effectively shuffles, or permutes, the
indices of the original sequence. This leads to the following definition.

Shuffling the (Infinite)
Pack

The permutation σ simply

shuffles about the terms of the

old sequence (an) to give the

new sequence (aσ(n)).

Reciprocal
Rearrangements

If (bn) is a rearrangement of

(an) then (an) must be a re-

arrangement of (bn). Specifi-

cally, if bn = aσ(n) then an =

bσ−1(n).

�

�

�

�
Definition
The sequence (bn) is a rearrangement of (an) if there exists a bijection σ : N → N
(i.e. a permutation on N) such that bn = aσ(n) for all n.

Assignment 1
What permutation σ has been applied to the indices of the sequence (an) to
produce (bn) in the example above? Answer this question by writing down an
explicit formula for σ(3n), σ(3n− 1), σ(3n− 2).

Don’t get hung up on this exercise if you’re finding it tricky, because the
really interesting part comes next.

We have defined the rearrangement of a sequence. Using this definition, we
say that the series

∑
bn is a rearrangement of the series

∑
an if the sequence

(bn) is a rearrangement of the sequence (an).
We know already that∑ (−1)n+1

n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− · · · = log(2)

We now show that our rearrangement of this series has a different sum.
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Assignment 2
Show that:∑

bn = 1 +−1
2

+−1
4

+
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3
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+−1
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+
1
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+− 1
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+

− 1
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+
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+− 1
14

+− 1
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+
1
9

+ · · · = log 2
2

Hint: Let sn =
∑n

k=1 ak and let tn =
∑n

k=1 bk. Show that t3n = s2n

2 by using
the following grouping of the series

∑
bn:(

1− 1
2

)
− 1

4
+

(
1
3
− 1

6

)
− 1

8
+

(
1
5
− 1

10

)
− 1

12
+

(
1
7
− 1

14

)
− . . .

This example is rather scary. However, for series with all positive terms it
does not matter in what order you add the terms.�

�
�
�

Lemma
Suppose

∑
an is a convergent series of non-negative terms. If (bn) is a rear-

rangement of (an) then
∑

bn converges and
∑

bn =
∑

an.

Assignment 3
Prove the lemma using the following steps for sn =

∑n
r=1 ar, tn =

∑n
r=1 br and

A =
∑

an:

1. Let N ∈ N. Let MN = max{σ(r) : r ≤ N}. First, try to understand why
the first N terms of (bn) are included within the first MN terms of (an).
Prove that tN ≤ sMN

≤ A? Deduce that
∑

bn is convergent to a sum B
say, and that B ≤ A.

2. Now reverse the above argument with the first N terms of the sequence
(an) included within the first LN terms of (bn) to deduce that A ≤ B.

Nor does it matter what order you add the terms of an absolutely convergent
series.�

�
�
�

Theorem
Suppose

∑
an is an absolutely convergent series. If (bn) is a rearrangement of

(an) then
∑

bn is convergent and
∑

bn =
∑

an.
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Assignment 4
Prove the theorem. The following steps will help. Let

∑
an be a absolutely

convergent series and
∑

bn a rearrangement of the same series. Let

un = 1
2 (|an|+ an) vn = 1

2 (|an| − an),
xn = 1

2 (|bn|+ bn) yn = 1
2 (|bn| − bn).

1. Why are the two series
∑

un and
∑

vn necessarily convergent?

2. Are they both series of non-negative terms?

3. How does
∑

un relate to
∑

xn and
∑

vn to
∑

yn?

4. Prove that
∑

an =
∑

(un − vn) =
∑

(xn − yn) =
∑

bn.

In 1837 the mathematician Dirichlet discovered which type of series could
be rearranged to give a different total and the result was displayed in a startling
form in 1854 by Riemann. To describe their results we have one final definition.�

�
�
�

Definition
The series

∑
an is said to be conditionally convergent if

∑
an is convergent but∑

|an| is not.

Example Back to our familiar example:
∑ (−1)n+1

n is conditionally convergent,

because
∑ (−1)n+1

n is convergent, but
∑
| (−1)n+1

n | =
∑

1
n is not.

Exercise 1 Check from the definitions that every convergent series is either
absolutely convergent or is conditionally convergent.

Assignment 5
State with reasons which of the following series are conditionally convergent.

1.
∑ (−1)n+1

n2
2.

∑ cos(nπ)
n

3.
∑ (−1)n+1n

1 + n2

Conditionally convergent series are the hardest to deal with and can behave
very strangely. The key to understanding them is the following lemma.�

�

�

�
Lemma
If a series is conditionally convergent, then the series formed from just its positive
terms diverges to infinity and the series formed from just its negative terms
diverges to minus infinity.
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Assignment 6
Prove this Lemma using the following steps.

1. Suppose
∑

an is conditionally convergent. What can you say about the
sign of the sequences

un = 1
2 (|an|+ an) and vn = 1

2 (|an| − an)

in relation to the original sequence an.

2. Show that an = un−vn and |an| = un+vn. We will prove by contradiction
that neither

∑
un nor

∑
vn converges.

3. Suppose that that
∑

un is convergent and show that
∑
|an| is convergent.

Why is this a contradiction?

4. Suppose that
∑

vn is convergent and use a similar argument to above to
derive a contradiction.

5. You have shown that
∑

un and
∑

vn diverge. Prove that they tend to
+∞. Use your answer to part 1. to finish the proof.

�
�

�
�

Theorem Riemann’s Rearrangement Theorem
Suppose

∑
an is a conditionally convergent series. Then for every real number

l there is a rearrangement (bn) of (an) such that
∑

bn = l.

The last lemma allows us to construct a proof of the theorem along the
following lines: We sum enough positive values to get us just above l. Then we
add enough negative values to take us back down just below l. Then we add
enough positive terms to get back just above l again, and then enough negative
terms to get back down just below l. We repeat this indefinitely, in the process
producing a rearrangement of

∑
an which converges to l.

The Infinite Case
We can also rearrange any con-
ditionally convergent series to
produce a series that tends to
infinity or minus infinity.

How would you modify the
proof to show this?

All Wrapped Up
Each convergent series is either
conditionally convergent or ab-
solutely convergent. Given the
definition of these terms, there
are no other possibilities.

This theorem makes it clear

that conditionally convergent

series are the only convergent

series whose sum can be per-

turbed by rearrangement.

Proof. Let (pn) be the subsequence of (an) containing all its positive terms,
and let (qn) be the subsequence of negative terms. First suppose that l ≥ 0.
Since

∑
pn tends to infinity, there exists N such that

∑N
i=1 pi > l. Let N1

be the smallest such N and let S1 =
∑N1

i=1 pi. Then S1 =
∑N1

i=1 pi > l and∑N1−1
i=1 pi ≤ l. Thus S1 =

∑N1−1
i=1 pi +pN1 ≤ l+pN1 , therefore 0 ≤ S1− l ≤ pN1 .

To the sum S1 we now add just enough negative terms to obtain a new sum
T1 which is less than l. In other words, we choose the smallest integer M1 for
which T1 = S1 +

∑M1
i=1 qi < l. This time we find that 0 ≤ l − T1 ≤ −qM1 .

We continue this process indefinitely, obtaining sums alternately smaller and
larger than l, each time choosing the smallest Ni or Mi possible. The sequence:

p1, . . . , pN1 , q1, . . . qM1 , pN1+1, . . . pN2 , qM1+1, . . . , qM2 , . . .

is a rearrangement of (an). Its partial sums increase to S1, then decrease to T1,
then increase to S2, then decrease to T2, and so on.

To complete the proof we note that for all i, |Si−l| ≤ pNi and |Ti−l| ≤ −qMi .
Since

∑
an is convergent, we know that (an) is null. It follows that subsequences
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(pNi
) and (qMi

) also tend to zero. This in turn ensures that the partial sums of
the rearrangement converge to l, as required.

In the case l < 0 the proof looks almost identical, except we start off by
summing enough negative terms to get us just below l. �

Assignment 7
Draw a diagram which illustrates this proof. Make sure you include the limit l
and some points S1, T1, S2, T2, . . . .

Check Your Progress
By the end of this Workbook you should be able to:

• Define what is meant by the rearrangement of a sequence or a series.

• Give an example of a rearrangement of the series
∑ (−1)n+1

n = log 2 which
sums to a different value.

• Prove that if
∑

an is a series with positive terms, and (bn) is a rearrange-
ment of (an) then

∑
bn =

∑
an.

• Prove that if
∑

an is an absolutely convergent series, and (bn) is a rear-
rangement of (an) then

∑
bn =

∑
an.

• Conclude that conditionally convergent series are the only convergent se-
ries whose sum can be altered by rearrangement.

• Know that if
∑

an is a conditionally convergent series, then for every real
number l there is a rearrangement (an) of (an) such that

∑
bn = l.
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