
MA4J8 Commutative Algebra II. Worksheet 3

I. Serre’s R1 plus S2 criterion for normality

Let A be a Noetherian integral domain with fraction field K = FracA. Serre’s
condition R1 (regular in codimension 1) says: for every height 1 prime P the
localisation AP is a DVR (height 1 prime means minimal nonzero prime). In
what follows, assume A satisfies R1.

Next, Serre’s condition S2 is the statement that the localisation AP has
depth ≥ 2 at every prime P of height ≥ 2. This is vacuous if dimA ≤ 1.

Prove Serre’s criterion: Let A be a Noetherian domain satisfying R1.
Then A is normal if and only if it satisfies S2. Required to prove:

there exist x ∈ K integral over A but not in A

⇐⇒ there exists a prime P of height ≥ 2 for which the

local ring (B,m) = (AP , PAP ) has height = 1.

Proof of ⇒. No height 1 prime P is an associated prime of K/A, because
x /∈ AP implies x is not integral over AP (it is a DVR), so is not integral over
A.

If x ∈ K is integral over A but not in A then A[x] is finite. The module
A[x]/A is finite, so if nonzero it has an associated prime P ∈ SpecA, and P has
height ≥ 2 by the above. Choose y ∈ A[x] so that y /∈ A but Py ⊂ A. Use the
“ghost of the departed” argument to prove that depthP = 1.

[For any s1 ∈ P , consider s1y ∈ A/(s1). Show it is not zero, but is annihi-
lated by any s2 ∈ P .]

Proof of the converse ⇐. P fails S2 means that for any nonzero s1 ∈ m, the
maximal ideal m is an associated prime of B/(s1). If y /∈ s1B but my ⊂ (s1)
prove that the fraction x = y/s1 ∈ K is integral over B.

Work in 3 steps: first use my ⊂ (s1) to deduce that mx ⊂ B.
If xm ( B then xm ⊂ m, and the determinant trick implies that x is integral

over B.
On the other hand xm = B implies that x−1 ∈ m (we are working inside a

field), and m is the principal ideal (x−1), which contradicts dimB ≥ 2.

II. Past exam question

1. Suppose that A is a Noetherian local ring with maximal ideal m, and let M
be a finite A-module. Explain what it means for s1, s2 ∈ m to form a regular
sequence of length 2 for M .

2. Give the definition of the Koszul complex K(s1, s2;M). Prove that K(s1, s2;M)
is exact if and only if s1, s2 is a regular sequence for M .
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3. Consider the ring A = k[x, y, z, t]/I, where I is the ideal generated by the
four relations

xt− yz, t2 − z(1 + z), yt− xz(1 + z), y2 − x2(1 + z).

Write m = (x, y, z, t). Prove that dimk m/m2 = 4.
You may assume that I is prime. Write K = FracA for the field of fractions

of the integral domain A. Verify that u = y/x ∈ K is integral over A.
Prove that u /∈ A, but that m · (y/x) ⊂ A.

4. Let A,m be a local integral domain of dimension ≥ 2 with field of fraction
K = FracA. Suppose that there exists f ∈ K \ A such that mf ⊂ A. Prove
that there does not exist any regular sequence s1, s2 ∈ m of length 2.

III. Assorted questions

Q1. Specialise one section of the proof of the main theorem on dimension to
establish that

dimk m/m2 ≥ dimA for a local ring A,m, k.

Remark. m/m2 is a vector space over k = A/m. In the geometric case
it is the dual of the tangent space to a variety, with dimm/m2 = dimA the
condition for nonsingularity.

Q2. Assuming the main theorem on dimension of local rings, prove that
dimA/(x) = dimA − 1 for A a Noetherian ring and x ∈ A a nonzerodivisor.
The issue is to pass from local to A itself.

Q3. Define the height of a prime ideal P of A as the Krull dimension dimAP

of the local ring AP . Prove that this is the maximum length of all chains

P0 ( P1 ( · · · ( Pn = P.

Q4. Check that htP = 0 means that P is a minimal prime. The minimal
prime ideals correspond to the irreducible components of SpecA. Recall that

rad(A) = intersection of prime ideals = intersection of minimal prime ideals.

If a prime ideal P contains a nonzerodivisor x, prove that htP ≥ 1. [Easy:
[A&M] Cor. 11.17.]

Q5. For A a Noetherian ring and x ∈ A, let P be a prime that is minimal
among prime ideals containing x. Use the main theorem on dimension to prove
that htP ≤ 1. (See [A&M] Cor. 11.17, and [Ma], Theorem 13.5. The result is
called Krull’s Hauptidealsatz.)
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Q6. In the same way, prove that if I = (a1, . . . , ar) and P is a minimal prime
divisor of I then htP ≤ r.

Here “prime divisors of I” means P ∈ AssA/I, so there is some y ∈ A/I
such that P = ann y, or A ·y ∼= A/P ⊂ A/I. This needs primary decomposition
and AssM , for example [UCA], Chap 7.

Q7. (One of Nagata’s famous examples, [A&M Ex 11.4, p. 126]). Start from
the polynomial ring A = k[x1, . . . , xn, . . . ] in countably many variables, and
choose a sequence of integers ai with difference ai+1−ai growing to infinity (for
example i = j2 for j ∈ N). Each ideal

Pi = (xj | j ∈ [ai + 1, ai+1])

is prime. The localisation APi at Pi is the polynomial ring in the variables
{xj | j ∈ [ai + 1, ai+1]} over the field of rational functions in all the xi not in
that range.

Check that the complement S = A \
⋃

Pi is a multiplicative set of A and
set B = S−1A. Each localisation APi

at Pi is a localisation of B, so that B has
Krull dimension dimB =∞.

The more inscrutable point is that, although its construction involves count-
able infinities, B = S−1A is still Noetherian: every nontrivial ideal I of B is the
localisation of an ideal of T−1A where T is the complement of all but finitely
many of the Pi. That is, for any choice of ideal 0 6= I ( B, the localisation
divides into two steps A 7→ T−1A 7→ B, the first of which puts all but finitely
of the xi many into a function field K, with T−1A a polynomial ring K[xi] in
just finitely many variables.

In fact, a nonzero element of B is a/s with s /∈ Pi, and it is a nonunit if and
only if a ∈ Pi for some i.

By construction of the Pi as generated by disjoint set of variables in a poly-
nomial ring, it follows that Pi∩Pj = Pi ·Pj , so an element a/s is only in finitely
many of the Pi.

Now for I ⊂ B a nontrivial ideal there is a nonempty finite set J of ideals
Pj such that I ⊂ S−1Pj . (The j can only include the finitely many Pj for a
fixed a/s ∈ I, and if J = ∅ then I = B.) Now S−1A is a localisation of T−1A
where T = CJ is the complement of J .

Finally I ⊂ S−1A is the localisation of an ideal of T−1A.

Q8. Write Σ for the 3 coordinate axes in A3. The ideal IΣ is generated by
(xy, xz, yz), so that the coordinate ring k[Σ] = k[x, y, z]/(xy, xz, yz).

Find sets of linear forms

(a(x, y, z), b(x, y, z), c(x, y, z))

such that axy + bxz + cyz ≡ 0. [Hint: this is too easy. Look first at the
Koszul syzygies between two generators, then cancel.] Write out a minimal free
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resolution
P0 ← P1 ← P2 ← 0
↓
k[Σ]

where P0 = A, P1 = 3A, P2 = 2A, the first map P0 ← P1 is (xy, xz, yz). P2 is
the module of syzygies holding between the 3 generators of IΣ, and has basis 2
sets of linear forms (a, b, c) as above.

Q9. [UAG] (3.11) gives the example of the ideal I = (f, g, h) in k[x, y, z]
generated by

f = xz − y2, g = x3 − yz, h = z2 − x2y.

Is h in the ideal (f, g), and why not? It would work if you were allowed to cancel
a bit. Use this idea to find two syzygies holding between the three relations,
and determine the minimal free resolution of k[Γ] = k[x, y, z]/I in the shape

P0 ← P1 ← P2 ← 0
↓
k[Γ]

You know you have won if you can write the homomorphism P1 ← P2 as a 2×3
matrix that has f, g, h as its 2× 2 minors.

Q10. Same question for f, g, h = y2 − xz, x4 − yz, z2 − x3y.
Hint: Plug the code below into the online Magma calculator
http://magma.maths.usyd.edu.au/calc

R<x,y,z> := PolynomialRing(Rationals(),3);

L := [y^2-x*z, x^4-y*z, z^2-x^3*y];

SyzygyModule(L); // or better still

MinimalBasis(SyzygyModule(L));

Figure out what is going on, and how you would do it by hand calculation.

Q11. Prove that the prime ideals in a Noetherian ring A satisfy the d.c.c.
That is, a descending chain of prime ideals eventually stabilises
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