MA4J8 Commutative Algebra II. Worksheet 3

I. Serre's R_1 plus S_2 criterion for normality

Let A be a Noetherian integral domain with fraction field K = Frac A. Serre's condition R_1 (regular in codimension 1) says: for every height 1 prime P the localisation A_P is a DVR (height 1 prime means minimal nonzero prime). In what follows, assume A satisfies R_1 .

Next, Serre's condition S_2 is the statement that the localisation A_P has depth ≥ 2 at every prime P of height ≥ 2 . This is vacuous if dim $A \leq 1$.

Prove Serre's criterion: Let A be a Noetherian domain satisfying R_1 . Then A is normal if and only if it satisfies S_2 . Required to prove:

there exist $x \in K$ integral over A but not in A

 \iff there exists a prime P of height ≥ 2 for which the

local ring $(B, m) = (A_P, PA_P)$ has height = 1.

Proof of \Rightarrow . No height 1 prime *P* is an associated prime of *K*/*A*, because $x \notin A_P$ implies *x* is not integral over A_P (it is a DVR), so is not integral over *A*.

If $x \in K$ is integral over A but not in A then A[x] is finite. The module A[x]/A is finite, so if nonzero it has an associated prime $P \in \text{Spec } A$, and P has height ≥ 2 by the above. Choose $y \in A[x]$ so that $y \notin A$ but $Py \subset A$. Use the "ghost of the departed" argument to prove that depth P = 1.

[For any $s_1 \in P$, consider $s_1y \in A/(s_1)$. Show it is not zero, but is annihilated by any $s_2 \in P$.]

Proof of the converse \leftarrow . *P* fails S_2 means that for any nonzero $s_1 \in m$, the maximal ideal *m* is an associated prime of $B/(s_1)$. If $y \notin s_1B$ but $my \subset (s_1)$ prove that the fraction $x = y/s_1 \in K$ is integral over *B*.

Work in 3 steps: first use $my \subset (s_1)$ to deduce that $mx \subset B$.

If $xm \subsetneq B$ then $xm \subset m$, and the determinant trick implies that x is integral over B.

On the other hand xm = B implies that $x^{-1} \in m$ (we are working inside a field), and m is the principal ideal (x^{-1}) , which contradicts dim $B \ge 2$.

II. Past exam question

1. Suppose that A is a Noetherian local ring with maximal ideal m, and let M be a finite A-module. Explain what it means for $s_1, s_2 \in m$ to form a regular sequence of length 2 for M.

2. Give the definition of the Koszul complex $K(s_1, s_2; M)$. Prove that $K(s_1, s_2; M)$ is exact if and only if s_1, s_2 is a regular sequence for M.

3. Consider the ring A = k[x, y, z, t]/I, where I is the ideal generated by the four relations

$$xt - yz$$
, $t^2 - z(1 + z)$, $yt - xz(1 + z)$, $y^2 - x^2(1 + z)$.

Write m = (x, y, z, t). Prove that $\dim_k m/m^2 = 4$.

You may assume that I is prime. Write $K = \operatorname{Frac} A$ for the field of fractions of the integral domain A. Verify that $u = y/x \in K$ is integral over A.

Prove that $u \notin A$, but that $m \cdot (y/x) \subset A$.

4. Let A, m be a local integral domain of dimension ≥ 2 with field of fraction K = Frac A. Suppose that there exists $f \in K \setminus A$ such that $mf \subset A$. Prove that there does not exist any regular sequence $s_1, s_2 \in m$ of length 2.

III. Assorted questions

Q1. Specialise one section of the proof of the main theorem on dimension to establish that

 $\dim_k m/m^2 \ge \dim A$ for a local ring A, m, k.

Remark. m/m^2 is a vector space over k = A/m. In the geometric case it is the dual of the tangent space to a variety, with dim $m/m^2 = \dim A$ the condition for nonsingularity.

Q2. Assuming the main theorem on dimension of local rings, prove that $\dim A/(x) = \dim A - 1$ for A a Noetherian ring and $x \in A$ a nonzerodivisor. The issue is to pass from local to A itself.

Q3. Define the *height* of a prime ideal P of A as the Krull dimension dim A_P of the local ring A_P . Prove that this is the maximum length of all chains

$$P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_n = P.$$

Q4. Check that ht P = 0 means that P is a minimal prime. The minimal prime ideals correspond to the irreducible components of Spec A. Recall that

rad(A) = intersection of prime ideals = intersection of minimal prime ideals.

If a prime ideal P contains a nonzerodivisor x, prove that $ht P \ge 1$. [Easy: [A&M] Cor. 11.17.]

Q5. For A a Noetherian ring and $x \in A$, let P be a prime that is minimal among prime ideals containing x. Use the main theorem on dimension to prove that ht $P \leq 1$. (See [A&M] Cor. 11.17, and [Ma], Theorem 13.5. The result is called *Krull's Hauptidealsatz.*)

Q6. In the same way, prove that if $I = (a_1, \ldots, a_r)$ and P is a minimal prime divisor of I then ht $P \leq r$.

Here "prime divisors of I" means $P \in Ass A/I$, so there is some $y \in A/I$ such that $P = \operatorname{ann} y$, or $A \cdot y \cong A/P \subset A/I$. This needs primary decomposition and Ass M, for example [UCA], Chap 7.

Q7. (One of Nagata's famous examples, [A&M Ex 11.4, p. 126]). Start from the polynomial ring $A = k[x_1, \ldots, x_n, \ldots]$ in countably many variables, and choose a sequence of integers a_i with difference $a_{i+1} - a_i$ growing to infinity (for example $i = j^2$ for $j \in \mathbb{N}$). Each ideal

$$P_i = (x_j \mid j \in [a_i + 1, a_{i+1}])$$

is prime. The localisation A_{P_i} at P_i is the polynomial ring in the variables $\{x_j \mid j \in [a_i + 1, a_{i+1}]\}$ over the field of rational functions in all the x_i not in that range.

Check that the complement $S = A \setminus \bigcup P_i$ is a multiplicative set of A and set $B = S^{-1}A$. Each localisation A_{P_i} at P_i is a localisation of B, so that B has Krull dimension dim $B = \infty$.

The more inscrutable point is that, although its construction involves countable infinities, $B = S^{-1}A$ is still Noetherian: every nontrivial ideal I of B is the localisation of an ideal of $T^{-1}A$ where T is the complement of all but finitely many of the P_i . That is, for any choice of ideal $0 \neq I \subsetneq B$, the localisation divides into two steps $A \mapsto T^{-1}A \mapsto B$, the first of which puts all but finitely of the x_i many into a function field K, with $T^{-1}A$ a polynomial ring $K[x_i]$ in just finitely many variables.

In fact, a nonzero element of B is a/s with $s \notin P_i$, and it is a nonunit if and only if $a \in P_i$ for some i.

By construction of the P_i as generated by disjoint set of variables in a polynomial ring, it follows that $P_i \cap P_j = P_i \cdot P_j$, so an element a/s is only in finitely many of the P_i .

Now for $I \subset B$ a nontrivial ideal there is a nonempty finite set J of ideals P_j such that $I \subset S^{-1}P_j$. (The j can only include the finitely many P_j for a fixed $a/s \in I$, and if $J = \emptyset$ then I = B.) Now $S^{-1}A$ is a localisation of $T^{-1}A$ where $T = \mathcal{C}J$ is the complement of J.

Finally $I \subset S^{-1}A$ is the localisation of an ideal of $T^{-1}A$.

Q8. Write Σ for the 3 coordinate axes in \mathbb{A}^3 . The ideal I_{Σ} is generated by (xy, xz, yz), so that the coordinate ring $k[\Sigma] = k[x, y, z]/(xy, xz, yz)$.

Find sets of linear forms

$$(a(x, y, z), b(x, y, z), c(x, y, z))$$

such that $axy + bxz + cyz \equiv 0$. [Hint: this is too easy. Look first at the Koszul syzygies between two generators, then cancel.] Write out a minimal free

resolution

$$P_0 \leftarrow P_1 \leftarrow P_2 \leftarrow 0$$
$$\downarrow$$
$$k[\Sigma]$$

where $P_0 = A$, $P_1 = 3A$, $P_2 = 2A$, the first map $P_0 \leftarrow P_1$ is (xy, xz, yz). P_2 is the module of syzygies holding between the 3 generators of I_{Σ} , and has basis 2 sets of linear forms (a, b, c) as above.

Q9. [UAG] (3.11) gives the example of the ideal I = (f, g, h) in k[x, y, z] generated by

$$f = xz - y^2$$
, $g = x^3 - yz$, $h = z^2 - x^2y$.

Is h in the ideal (f, g), and why not? It would work if you were allowed to cancel a bit. Use this idea to find two syzygies holding between the three relations, and determine the minimal free resolution of $k[\Gamma] = k[x, y, z]/I$ in the shape

$$P_0 \leftarrow P_1 \leftarrow P_2 \leftarrow 0$$

$$\downarrow \\ k[\Gamma]$$

You know you have won if you can write the homomorphism $P_1 \leftarrow P_2$ as a 2×3 matrix that has f, g, h as its 2×2 minors.

Q10. Same question for $f, g, h = y^2 - xz, x^4 - yz, z^2 - x^3y$. Hint: Plug the code below into the online Magma calculator http://magma.maths.usyd.edu.au/calc

```
R<x,y,z> := PolynomialRing(Rationals(),3);
L := [y<sup>2</sup>-x*z, x<sup>4</sup>-y*z, z<sup>2</sup>-x<sup>3</sup>*y];
SyzygyModule(L); // or better still
MinimalBasis(SyzygyModule(L));
```

Figure out what is going on, and how you would do it by hand calculation.

Q11. Prove that the prime ideals in a Noetherian ring A satisfy the d.c.c. That is, a descending chain of prime ideals eventually stabilises