MA4J8 Commutative Algebra II. Worksheet 3

I. Serre's R_{1} plus S_{2} criterion for normality

Let A be a Noetherian integral domain with fraction field $K=\operatorname{Frac} A$. Serre's condition R_{1} (regular in codimension 1) says: for every height 1 prime P the localisation A_{P} is a DVR (height 1 prime means minimal nonzero prime). In what follows, assume A satisfies R_{1}.

Next, Serre's condition S_{2} is the statement that the localisation A_{P} has depth ≥ 2 at every prime P of height ≥ 2. This is vacuous if $\operatorname{dim} A \leq 1$.

Prove Serre's criterion: Let A be a Noetherian domain satisfying R_{1}. Then A is normal if and only if it satisfies S_{2}. Required to prove:
there exist $x \in K$ integral over A but not in A
\Longleftrightarrow there exists a prime P of height ≥ 2 for which the
local ring $(B, m)=\left(A_{P}, P A_{P}\right)$ has height $=1$.

Proof of \Rightarrow. No height 1 prime P is an associated prime of K / A, because $x \notin A_{P}$ implies x is not integral over A_{P} (it is a DVR), so is not integral over A.

If $x \in K$ is integral over A but not in A then $A[x]$ is finite. The module $A[x] / A$ is finite, so if nonzero it has an associated prime $P \in \operatorname{Spec} A$, and P has height ≥ 2 by the above. Choose $y \in A[x]$ so that $y \notin A$ but $P y \subset A$. Use the "ghost of the departed" argument to prove that depth $P=1$.
[For any $s_{1} \in P$, consider $s_{1} y \in A /\left(s_{1}\right)$. Show it is not zero, but is annihilated by any $s_{2} \in P$.]

Proof of the converse $\Leftarrow . P$ fails S_{2} means that for any nonzero $s_{1} \in m$, the maximal ideal m is an associated prime of $B /\left(s_{1}\right)$. If $y \notin s_{1} B$ but $m y \subset\left(s_{1}\right)$ prove that the fraction $x=y / s_{1} \in K$ is integral over B.

Work in 3 steps: first use $m y \subset\left(s_{1}\right)$ to deduce that $m x \subset B$.
If $x m \subsetneq B$ then $x m \subset m$, and the determinant trick implies that x is integral over B.

On the other hand $x m=B$ implies that $x^{-1} \in m$ (we are working inside a field), and m is the principal ideal $\left(x^{-1}\right)$, which contradicts $\operatorname{dim} B \geq 2$.

II. Past exam question

1. Suppose that A is a Noetherian local ring with maximal ideal m, and let M be a finite A-module. Explain what it means for $s_{1}, s_{2} \in m$ to form a regular sequence of length 2 for M.
2. Give the definition of the Koszul complex $K\left(s_{1}, s_{2} ; M\right)$. Prove that $K\left(s_{1}, s_{2} ; M\right)$ is exact if and only if s_{1}, s_{2} is a regular sequence for M.
3. Consider the ring $A=k[x, y, z, t] / I$, where I is the ideal generated by the four relations

$$
x t-y z, t^{2}-z(1+z), y t-x z(1+z), y^{2}-x^{2}(1+z)
$$

Write $m=(x, y, z, t)$. Prove that $\operatorname{dim}_{k} m / m^{2}=4$.
You may assume that I is prime. Write $K=\operatorname{Frac} A$ for the field of fractions of the integral domain A. Verify that $u=y / x \in K$ is integral over A.

Prove that $u \notin A$, but that $m \cdot(y / x) \subset A$.
4. Let A, m be a local integral domain of dimension ≥ 2 with field of fraction $K=\operatorname{Frac} A$. Suppose that there exists $f \in K \backslash A$ such that $m f \subset A$. Prove that there does not exist any regular sequence $s_{1}, s_{2} \in m$ of length 2 .

III. Assorted questions

Q1. Specialise one section of the proof of the main theorem on dimension to establish that

$$
\operatorname{dim}_{k} m / m^{2} \geq \operatorname{dim} A \quad \text { for a local ring } A, m, k
$$

Remark. m / m^{2} is a vector space over $k=A / m$. In the geometric case it is the dual of the tangent space to a variety, with $\operatorname{dim} m / m^{2}=\operatorname{dim} A$ the condition for nonsingularity.

Q2. Assuming the main theorem on dimension of local rings, prove that $\operatorname{dim} A /(x)=\operatorname{dim} A-1$ for A a Noetherian ring and $x \in A$ a nonzerodivisor. The issue is to pass from local to A itself.

Q3. Define the height of a prime ideal P of A as the Krull dimension $\operatorname{dim} A_{P}$ of the local ring A_{P}. Prove that this is the maximum length of all chains

$$
P_{0} \subsetneq P_{1} \subsetneq \cdots \subsetneq P_{n}=P .
$$

Q4. Check that ht $P=0$ means that P is a minimal prime. The minimal prime ideals correspond to the irreducible components of $\operatorname{Spec} A$. Recall that
$\operatorname{rad}(A)=$ intersection of prime ideals $=$ intersection of minimal prime ideals.
If a prime ideal P contains a nonzerodivisor x, prove that ht $P \geq 1$. [Easy: [A\&M] Cor. 11.17.]

Q5. For A a Noetherian ring and $x \in A$, let P be a prime that is minimal among prime ideals containing x. Use the main theorem on dimension to prove that ht $P \leq 1$. (See [A\&M] Cor. 11.17, and [Ma], Theorem 13.5. The result is called Krull's Hauptidealsatz.)

Q6. In the same way, prove that if $I=\left(a_{1}, \ldots, a_{r}\right)$ and P is a minimal prime divisor of I then ht $P \leq r$.

Here "prime divisors of I " means $P \in \operatorname{Ass} A / I$, so there is some $y \in A / I$ such that $P=\operatorname{ann} y$, or $A \cdot y \cong A / P \subset A / I$. This needs primary decomposition and Ass M, for example [UCA], Chap 7.

Q7. (One of Nagata's famous examples, [A\&M Ex 11.4, p. 126]). Start from the polynomial ring $A=k\left[x_{1}, \ldots, x_{n}, \ldots\right]$ in countably many variables, and choose a sequence of integers a_{i} with difference $a_{i+1}-a_{i}$ growing to infinity (for example $i=j^{2}$ for $j \in \mathbb{N}$). Each ideal

$$
P_{i}=\left(x_{j} \mid j \in\left[a_{i}+1, a_{i+1}\right]\right)
$$

is prime. The localisation $A_{P_{i}}$ at P_{i} is the polynomial ring in the variables $\left\{x_{j} \mid j \in\left[a_{i}+1, a_{i+1}\right]\right\}$ over the field of rational functions in all the x_{i} not in that range.

Check that the complement $S=A \backslash \bigcup P_{i}$ is a multiplicative set of A and set $B=S^{-1} A$. Each localisation $A_{P_{i}}$ at P_{i} is a localisation of B, so that B has Krull dimension $\operatorname{dim} B=\infty$.

The more inscrutable point is that, although its construction involves countable infinities, $B=S^{-1} A$ is still Noetherian: every nontrivial ideal I of B is the localisation of an ideal of $T^{-1} A$ where T is the complement of all but finitely many of the P_{i}. That is, for any choice of ideal $0 \neq I \subsetneq B$, the localisation divides into two steps $A \mapsto T^{-1} A \mapsto B$, the first of which puts all but finitely of the x_{i} many into a function field K, with $T^{-1} A$ a polynomial ring $K\left[x_{i}\right]$ in just finitely many variables.

In fact, a nonzero element of B is a / s with $s \notin P_{i}$, and it is a nonunit if and only if $a \in P_{i}$ for some i.

By construction of the P_{i} as generated by disjoint set of variables in a polynomial ring, it follows that $P_{i} \cap P_{j}=P_{i} \cdot P_{j}$, so an element a / s is only in finitely many of the P_{i}.

Now for $I \subset B$ a nontrivial ideal there is a nonempty finite set J of ideals P_{j} such that $I \subset S^{-1} P_{j}$. (The j can only include the finitely many P_{j} for a fixed $a / s \in I$, and if $J=\emptyset$ then $I=B$.) Now $S^{-1} A$ is a localisation of $T^{-1} A$ where $T=\mathcal{C} J$ is the complement of J.

Finally $I \subset S^{-1} A$ is the localisation of an ideal of $T^{-1} A$.

Q8. Write Σ for the 3 coordinate axes in \mathbb{A}^{3}. The ideal I_{Σ} is generated by $(x y, x z, y z)$, so that the coordinate ring $k[\Sigma]=k[x, y, z] /(x y, x z, y z)$.

Find sets of linear forms

$$
(a(x, y, z), b(x, y, z), c(x, y, z))
$$

such that $a x y+b x z+c y z \equiv 0$. [Hint: this is too easy. Look first at the Koszul syzygies between two generators, then cancel.] Write out a minimal free
resolution

```
\(P_{0} \leftarrow P_{1} \leftarrow P_{2} \leftarrow 0\)
\(\downarrow\)
\(k[\Sigma]\)
```

where $P_{0}=A, P_{1}=3 A, P_{2}=2 A$, the first map $P_{0} \leftarrow P_{1}$ is $(x y, x z, y z) . P_{2}$ is the module of syzygies holding between the 3 generators of I_{Σ}, and has basis 2 sets of linear forms (a, b, c) as above.

Q9. [UAG] (3.11) gives the example of the ideal $I=(f, g, h)$ in $k[x, y, z]$ generated by

$$
f=x z-y^{2}, \quad g=x^{3}-y z, \quad h=z^{2}-x^{2} y .
$$

Is h in the ideal (f, g), and why not? It would work if you were allowed to cancel a bit. Use this idea to find two syzygies holding between the three relations, and determine the minimal free resolution of $k[\Gamma]=k[x, y, z] / I$ in the shape

$$
\begin{aligned}
& P_{0} \leftarrow P_{1} \leftarrow P_{2} \leftarrow 0 \\
& \downarrow \\
& k[\Gamma]
\end{aligned}
$$

You know you have won if you can write the homomorphism $P_{1} \leftarrow P_{2}$ as a 2×3 matrix that has f, g, h as its 2×2 minors.

Q10. Same question for $f, g, h=y^{2}-x z, x^{4}-y z, z^{2}-x^{3} y$.
Hint: Plug the code below into the online Magma calculator
http://magma.maths.usyd.edu.au/calc
$\mathrm{R}\langle\mathrm{x}, \mathrm{y}, \mathrm{z}\rangle$:= PolynomialRing(Rationals(),3);
$\mathrm{L}:=\left[y^{\wedge} 2-x * z, x^{\wedge} 4-y * z, z^{\wedge} 2-x^{\wedge} 3 * y\right]$;
SyzygyModule(L); // or better still
MinimalBasis(SyzygyModule(L));
Figure out what is going on, and how you would do it by hand calculation.

Q11. Prove that the prime ideals in a Noetherian ring A satisfy the d.c.c. That is, a descending chain of prime ideals eventually stabilises

