Apr 2022 exam, compulsory Question 1

1. Prove that a nilpotent element of a ring A is contained in every prime ideal. If $f \in A$ is not nilpotent prove that there is a prime ideal P not containing f.

What does it mean to say that A has Krull dimension 0? If this holds, deduce that the intersection of all maximal ideals of A equals the nilradical of A.
2. If $\varphi: A \rightarrow B$ is a ring homomorphism and P a prime ideal of B, prove that $\varphi^{-1}(P)$ is a prime ideal of B.

Let S be a multiplicative set in A. Show that the prime ideals of $S^{-1} A$ are in bijection with the prime ideals of A disjoint from S.
3. Let A be an integral domain and $t \in A$ a nonunit. If $x \in A$ is a nonzero multiple of t, say $x=t x_{1}$, prove that $(x) \subset\left(x_{1}\right)$ is a strict inclusion of ideals. If A is Noetherian, deduce that $\bigcap_{n=1}^{\infty}\left(t^{n}\right)=0$.
4. Let A be a ring and M a Noetherian module on which A acts faithfully (that is, no element $a \in A$ acts on M by 0). Prove that A is a Noetherian ring. [Hint: Consider the A-module homomorphism $\varphi: A \rightarrow \bigoplus_{i=1}^{n} M$ given by $1_{A} \mapsto\left(m_{1}, \ldots, m_{n}\right)$ where m_{1}, \ldots, m_{n} generate M.]
5. Describe the equivalence relations on pairs (m, s) that defines the localisation $S^{-1} M$ of an A-module with respect to a multiplicative set S of A. Describe the homomorphism $M \rightarrow S^{-1} M$ and say what is its kernel.

In the case $M=A / I$ for I an ideal of A, determine which primes P have $M_{P} \neq 0$.
6. Given a ring A and prime ideals P_{i} of A for $i=1, \ldots, n$, suppose that I is an ideal of A not contained in any of the P_{i}. Prove that I is not contained in the union $\bigcup_{i=1}^{n} P_{i}$. [Argue by contradiction, and by induction on n.]
7. Define the Zariski topology on the prime spectrum $X=\operatorname{Spec} A$ of a ring A. Introduce the principal open sets X_{f} for $f \in A$, and prove that they form a basis for the Zariski topology.

Give a necessary and sufficient condition on a set $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$ of elements of A for the principal open sets $X_{f_{\lambda}}$ to cover X. If it holds, deduce that X is covered by finitely many of them.

Apr 2022 exam, Question 2

1. Let $A=k[x, y]$ be the polynomial ring over a field k, and M the quotient module $M=A /\left(x^{2} y, x y^{2}\right)$. For each of the three prime ideals $P_{1}=(x), P_{2}=(y)$ and $P_{3}=(x, y)$ of A, find an element of M whose annihilator equals P_{i}.

Give the definition of an associated prime of an A-module M.
2. For a nonzero A-module M, consider the set of ideals of the form ann m for nonzero $m \in M$, ordered by inclusion. Prove that any maximal element of this set is an associated prime of M.

Deduce that a nonzero module M over a Noetherian ring A has an associated prime.
3. Let $\varphi: A \rightarrow B$ be a homomorphism of Noetherian rings. For a B-module M, let $\varphi^{*}(M)$ be the module M viewed as an A-module via the homomorphism φ. If $Q \in \operatorname{Spec} B$ is an associated prime of M as B-module, prove that $P=$ $\varphi^{-1}(Q) \in \operatorname{Spec} A$ is an associated prime of $\varphi^{*}(M)$.
4. In addition to the assumptions of (3), suppose that A is an integral domain, and that M is a B-module for which the A-module $\varphi^{*}(M)$ introduced in (3) has the prime ideal $P=0$ as an associated prime. Prove that φ is injective, and that M has a submodule M^{\prime} for which $\varphi^{*} M^{\prime}$ is a torsion-free A-module.

Deduce that M has an associated prime $Q \in \operatorname{Spec} B$ with $P=0=\varphi^{-1}(Q)$.

Apr 2022 exam, Question 3

Let A be a Noetherian local ring with maximal ideal m and with the residue field $A / m=k$, and let M be a finite A-module.

1. Give the definition of the m-adic completion \widehat{A} of A and the m-adic completion \widehat{M} of M.

Describe the natural homomorphism $A \rightarrow \widehat{A}$. What is the maximal ideal \widehat{m} of \widehat{A} ? Explain briefly why \widehat{A} is complete in its \widehat{m}-adic topology. (No proofs are required.)
2. If $\varphi: M \rightarrow N$ is a homomorphism between two finite A-modules, explain how φ induces a homomorphism $\widehat{\varphi}: \widehat{M} \rightarrow \widehat{N}$. If φ is injective, prove from first principles that $\widehat{\varphi}$ is also injective. (You may assume that $\bigcap_{i=1}^{\infty} m^{i}=0$, and similarly for $\bigcap m^{i} M$ and $\bigcap m^{i} N$.)

Deduce that an element $a \in A$ that is a nonzerodivisor has image $\widehat{a} \in \widehat{A}$ that is also a nonzerodivisor.
3. Let (A, m) be a local ring that is m-adically complete. Give the correct assumptions and conclusion of Hensel's lemma concerning a polynomial $f \in A[x]$ whose image \bar{f} modulo $m A[x]$ has a factorisation $\bar{f}=\bar{g} \bar{h}$. (The proof is not required.)

Hence or otherwise show that for k a field of characteristic $\neq 2$, there exists a formal power series $y \in k[[z]]$ with $y^{2}=1+z$.
4. You may assume that the polynomial $f=y^{2}-x^{2}-x^{3}$ is irreducible in the polynomial ring $k[x, y]$. Explain why its image in the completion of $k[x, y]$ at the maximal ideal (x, y) is no longer irreducible.

Give an example of a local integral domain (A, m) whose m-adic completion has zerodivisors.

Assorted questions

1. For an A-module M and ideal I, consider the quotient $M \rightarrow \bar{M}=M / I M$ and elements $e_{i} \in M$ with $e_{i} \mapsto \bar{e}_{i} \in \bar{M}$.

Find an example in which \bar{e}_{i} generate \bar{M}, but e_{i} do not generate M.
Prove that \bar{e}_{i} generate \bar{M} implies e_{i} generate M under the additional conditions that A is I-adically complete and M is I-adically separated. [Hint: work by successive approximation, as in the proof of Hensel's lemma (but easier). Compare [Ma] Theorem 8.4.]
2. The first two items are easy prerequisites.

1. If A is a Noetherian ring, and S a multiplicative set in A, prove that $S^{-1} A$ is again Noetherian.
2. Let A be a ring intermediate ring between \mathbb{Z} and \mathbb{Q}. Is A Noetherian? Write down a proof or a counterexample.
3. Prove A Noetherian implies the formal power series ring $A \llbracket x \rrbracket$ is again Noetherian.
4. Let $u: M \rightarrow M$ be a homomorphism of A-modules. Consider the iteration u^{n} (that is, u composed with itself n times). Prove that $\left\{\operatorname{ker} u^{n}\right\}$ is an increasing chain of A-submodules and $\left\{M_{n}=\operatorname{im} u^{n}(M) \operatorname{subset} M\right\}$ a decreasing chain.

Now suppose M is Noetherian. Prove that both chains terminate. Determine a submodule $M_{0} \subset M$ such that the restriction $u_{\mid M_{0}}: M_{0} \rightarrow M_{0}$ is an isomorphism.

Do the same arguments work if we assume instead that M is Artinian?
4. Let N_{1}, N_{2} be submodules of an A-module M. Prove that M / N_{1} and M / N_{2} both Noetherian implies that so is $M /\left(N_{1} \cap N_{2}\right)$.

Does $M /\left(N_{1} \cap N_{2}\right)$ Noetherian imply anything about M / N_{1} and M / N_{2} ? The same question for Artinian.
5. Exercise on the Zariski topology of $\operatorname{Spec} A$. If A is a Noetherian ring then the topology of Spec A is Noetherian (has the d.c.c. for closed sets, as for affine algebraic sets in [UAG]). Use the d.c.c to prove that $\operatorname{Spec} A$ is the union of finitely many irreducible closed sets (its irreducible components). Deduce that a Noetherian ring has only finitely many minimal prime ideals.
6. State and prove the result that the localisation $f: A \rightarrow S^{-1} A$ has the Universal Mapping Property (UMP) for ring homorphisms that map elements of S to units. Compare [Ma, Thm 4.3].

Let B be a ring and suppose that the localisation map f factors as $g: A \rightarrow B$ followed by $h: B \rightarrow S^{-1} A$. Assume that every $b \in B$ can be written $b=g(s) \cdot a$ with $s \in S$ and $a \in A$. Prove that

$$
S^{-1} A=T^{-1} B \quad \text { where } T=\left\{b \in B \mid h(b) \text { is a unit of } S^{-1} A\right\}
$$

In other words, we can also view $S^{-1} A$ as the localisation $T^{-1} B$ of B.
7. Let A be a local ring of Krull dimension r. Prove that A has localisations $S_{i}^{-1} A$ at different multiplicative sets S_{i} with $\operatorname{dim} S_{i}^{-1} A=i$ for every i with $0 \leq i \leq r$.
8. Let \widehat{A} be the I-adic the completion of A for an ideal I. When $\operatorname{does} \operatorname{dim} A=$ $\operatorname{dim} \widehat{A}$? Give a counterexample, then additional conditions under which it holds.

If A, m is a local ring and $\mathrm{Gr}_{m} A=\bigoplus I^{i} / I^{i+1}$ its associated graded ring. Prove that $\operatorname{dim} A=\operatorname{dim} \mathrm{Gr}_{m} A$. Compare [Ma Thm 13.9].
9. Prove that $\operatorname{dim} A \leq \operatorname{dim} m / m^{2}$ for a local ring A, m, k (use the Main Theorem on dimension). Look up the definition of regular local ring for the case of equality. The Zariski tangent space of A, m is the k-dual vector space of m / m^{2}, and $\operatorname{dim} m / m^{2}$ is called the embedding dimension of A, m, especially in singularity theory.
9. Characterisation of graded in terms of \mathbb{G}_{m} action. Write $\mathbb{G}_{m}(k)$ for the multiplicative group k^{\times}of an infinite field k. For a k-vector space V, a \mathbb{Z} grading on V is a direct sum decomposition $V=\bigoplus_{m \in \mathbb{Z}} V_{m}$. This defines an action of $\mathbb{G}_{m}(k)$ on V with $\lambda \in \mathbb{G}_{m}$ acting by $\lambda \cdot v=\lambda^{m} v$. Under reasonable extra conditions, the converse holds: a \mathbb{G}_{m} action on V defines a grading (this holds for example if the action is compatible with a filtration having finite dimensional quotients). This fits under the slogan that $\mathbb{G}-m$ is reductive.

As exercises, do [Ma Ex 13.1-3].
10. Let $R=\bigoplus_{n \in \mathbb{N}} R_{n}$ be an \mathbb{N}-graded ring. Prove the if and only if condition for R to be Noetherian.

For $I \subset R$ an ideal, prove the equivalent conditions for I to be a graded ideal or homogeneous ideal: (i) generated by homogeneous elements of R; (ii) $I=\bigoplus I_{n}$ with the usual condition on multiplication $R_{n_{1}} I n_{2}$; (iii) Every $f \in I$ is a sum of homogeneous elements that are still in I.
10. Let $R=\left[x_{0}, \ldots, x_{n}\right] / I$ where I is a graded ideal. (The usual "straight" case is that all the generators x_{i} have degree 1.) An ideal of R is irrelevant if it contains $\bigoplus_{n>0} R_{n}$. Show that the only irrelevant prime ideal is $\left(x_{0}, \ldots, x_{n}\right)$.

Compared to Spec R, the homogeneous or graded spectrum $X=\operatorname{Proj} R$ of R is defined to be the set of homogeneous prime ideals excluding irrelevant ideals. In other words, for $P \in \operatorname{Proj} R$ the multiplicative set $S=R \backslash P$ is required to contain homogeneous elements of degree $n>0$. For $g \in R$ homogeneous of degree $d>0$, define the principal open set $X_{g} \subset X$ to be the set of $P \in \operatorname{Proj} R$ such that $g \notin P$. Check that these form a basis for the Zariski topology on X.

A point $P \in X$ has a local ring

$$
\mathcal{O}_{X, P}=\left\{\begin{array}{l|l}
\frac{f}{g} & \begin{array}{l}
f, g \text { homogeneous of the } \\
\text { same degree, and } g \notin P
\end{array}
\end{array}\right\},
$$

and a principal open set X_{g} has an affine coordinate ring

$$
\Gamma\left(X_{g}, \mathcal{O}_{X}\right)=\left\{\left.\frac{f}{g^{n}} \right\rvert\, f \in R_{n d} \cdot\right\}
$$

Show that the homogeneity conditions on f / g or f / g^{n} in these definitions amount simply to invariance under the \mathbb{G}_{m} action of (Q9).

Show how the above high-flown description of Proj R boils down to ordinary projective varieties $V \subset \mathbb{P}^{n}$ and their standard open pieces $V_{x_{i}}$ as in [UAG].

