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Abstract

In this article we consider Q-Fano varieties of dimension 3 of Fano
index 2. We show how to construct new examples of families and give
new steps in low-codimension classification.
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1 Introduction.

Definition 1.1. Q-Fano variety is a projective algebraic Q-factorial variety
whose anticanonical divisor is ample, Picard number equals 1 and which has
at most terminal singularities.

Family of Q-Fano varieties playes an important role in the classification
of projective varieties, cause such varieties occur naturally in Mori minimal
model program.

Definition 1.2. Fano index of a Fano variety X is a maximum integer
qW (X), such that there exists a Weil divisor A for which −KX ∼ qW (X)A.

In this text we will consider Fano index 2.
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1.1 History

In the paper by K. Suzuki and G. Brown written in 2007 [1] all possible
Hilbert series of index 2 Q-Fano varieties were classified and the classification
up to codimension 3 was given. Relatevely recenty M. Reid and Y. Prokhorov
published the paper [5], in which the following theorem was proven:

Theorem 1.3. Let X be a Q−Fano threefold of rank 1 such that qQ(X) =
qW (X) = 2, and assume KX is not Cartier. Let A be a Weil divisor on X
such that −KX = 2A. Then dim |A| ≤ 4. Moreover, if dim |A| = 4, then X
belongs to the single irreducible family.

Following this paper we look at the cases with dim |A| ≤ 3.
We start from the case dim |A| = 2 and show how it is related with the case
dim |A| = 3 in several cases.

1.2 Statement of the results.

Theorem 1.4. If X is a Q-Fano variety of index 2 with h0(A) = 2 and
codim(X) = 4, then X has the same Hilbert series as one of the following
varieties:

1. X ⊂ P(1, 1, 2, 3, 4, 5, 6, 7) – unprojection from a special Y6,7,8,9,10 ⊂
P(1, 1, 2, 3, 4, 5, 6) of Tom3 or Jer2,4 families.

2. X ⊂ P(1, 1, 2, 2, 2, 3, 5, 7) – unprojection from a special Y4,5,6,6,7 ⊂
P(1, 1, 2, 2, 2, 3, 5) of Tom5 family.

3. X ⊂ P(1, 1, 2, 2, 3, 3, 4, 7) – unprojection from a special Y4,5,6,6,7 ⊂
P(1, 1, 2, 2, 3, 3, 4) of Tom1 or Tom3 families.

4. X ⊂ P(1, 1, 2, 2, 3, 3, 4, 5) – unprojection from a special Y4,5,6,6,7 ⊂
P(1, 1, 2, 2, 3, 3, 4) of Tom4, Tom3 or Jer2,4 families.

5. X ⊂ P(1, 1, 2, 2, 2, 3, 3, 5) – unprojection from a special Y4,4,5,5,6 ⊂
P(1, 1, 2, 2, 2, 3, 3) of Tom4 or Tom5 families.

6. X ⊂ P(1, 1, 2, 2, 2, 3, 3, 3) – unprojection from a special Y4,4,5,5,6 ⊂
P(1, 1, 2, 2, 2, 3, 3) of Tom2 or Jer1,3 families.

2



Moreover all listed varieties are the examples of such X.
If X is Q-Fano variety of index 2 with h0(A) = 3 and codim(X) = 4, then
X has the same Hilbert series as X ⊂ P(1, 1, 1, 2, 2, 2, 3, 3) – non Gorenstein
unprojection from a special Y4,6 ⊂ P(1, 1, 2, 2, 3, 3) containing a plane P2.
Moreover such X is an example.

Remark 1.5. In the case of dim |A| = 1 the list given here and the list of
Hilbert series given in [1] coincide.

2 Going away from the Mori category

If h0(A) ≤ 3 than there are no possible Type I projections from it onto a
Q-Fano variety of less codimension.
One solution is to make a birational projection from a singular point.

Let X be a subvariety of a weighted projective space PN(a1, ..., aN). Let
X contain a singular point P corresponded to aN , that is a 1

aN
-singularity

with some weights, say (b1, ..., bn), where n is the dimension of X. We are
interested in the result of a projection from the point P . In our cases the
result of the birational projection is not an object from Mori category, it
always contains a line of index 2 singularities. But still in several cases we
can control its singularities.

Now start with a variety X in PN(a1, ..., aN−1). Impose a divisor D iso-
morphic to PN(b1, ..., bn) to be contained in X. Then if all singularities of X
are ODP singularities, than after blowing up all these singular points it is
possible to contract D.

Definition 2.1. The process described before is called unprojection.

The result of contraction is a terminal Fano variety.

Example 2.2. Consider a Q-Fano variety of index 2: X ⊂ P(1, 1, 2, 3, 4, 5, 6, 7)
with h0(A) = 2 with one terminal singularity of type 1

7
(1, 2, 6). Note that

Hilbert series of X, P (X) is uniquelly determined by that information. Make
a birational projection from the only singular point of X. The variety in the
result is the Fano threefold Y ⊂ P(1, 1, 2, 3, 4, 5, 6) given by 5 equations of
degrees 4, 5, 6, 6, 7 correspondingly which are pffafians of a 5 × 5 skew-
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symmeric matrix M . Where M is of the form:

M =


1 2 3 4

3 4 5
5 6

7

 (2.2.1)

So by the construction Y contains the plane D = P(1, 2, 6).
Now start with such variety Y ⊂ P(1, 1, 2, 3, 4, 5, 6). By a computer algebra
package (i.e. Magma) it is possible to check that over a finite field a general
Y given by pffafians of matrix M of Tom3 or Jer2,4 formats with an ideal
I = I(D), has only ODP singularities all on the plane D. Hence it is true
for the field of characteristic 0.
So it is possible to unproject from Y , contracting D to the point of index 7.
The result is the terminal Fano variety with Hilbert series P (X).
Note that in this case varieties given by pffafians of different formats belong
to different families, cause they have different number of ODP singularities,
so different Betti numbers.
Finally, let’s write an exact equations of the unprojection variety X in the
case Tom3.
Denote K[P(1, 1, 2, 3, 4, 5, 6)] = K[u, v, x, y, z, t, w], so the ideal of P2(1, 2, 6)
is I =< v, y, z, t >
Up to the change of coordinates matrix M of type Tom3 can be written as

M =


v x y z

u3 z t
ψ5 w

θ6v

 (2.2.2)

where θ and psi are homogenius polynomials of degrees 6 and 5 respectively.

Now choose t as the unprojection variable.
We can write the 2 by 2 pffafians of M not containing t in a form:

(
xθ −w ψ
ψ u3 −x

)vy
z

 = 0 (2.2.3)

So the equations of X which not involve t are given by 2 by 2 pffafians of the
following matrix:

N =


s xθ −w ψ

ψ u3 −x
z −y

v

 (2.2.4)
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where s is a new variable of degree 7.
The last equation involving t can be found from the following calculation:

st = stzz−1 = z−1(−xθu3t− wtψ) = z−1(−txθu3 − zw2 + u3θvw) =

= z−1(−zw2 − txθu3 + u3θxt− zu3u3θ) = −w2 − u6θ

3 Non Gorenstein unprojection.

In this section we will discribe the construction of a codimension 4 Q-Fano
threefold with index 2 and h0(A) = 3.

We start from the variety Y4,6 ⊂ P(1, 1, 2, 2, 3, 3) containing the plane P2.
First of all in that case the word contain means that there is an embedding
of P2 into Y4,6. The image D of that embedding can not be a smooth surface,
but as we will see further it may still have only mild singularities, which are
ordinary double points.
As in previous construction we first blow up the singular points and con-
tinue with the contraction to the terminal Fano variety X of index 2 with
h0(AX) = 3.
Let’s show how this construction is related with commutative algebra.
Denote by A the coordinate ring of Y4,6 ⊂ P(1, 1, 2, 2, 3, 3)
A = K[x1, x2, y1, y2, z1, z3]
. Write the standard resolution of the coordinate ring of Y K[Y ] as the
Gorenstein A-module. Compose it with the resolution of K[D] and the res-
olution of the normalisation of K[D]. Where the latter is the Gorenstein
A-module as well as K[Y ].

K[Y ] ← A ← A(−4)⊕ A(−6) ← A(−10) ← 0y ‖
y y

K[D] ← A ← K1 ← K2 ← · · ·⋂ ⋂ y y
K[u, v, h] ← L0 ← L1 ← L2 ← L3 ← 0

(3.0.5)
The map from K[Y ] to K[D] is just a natural surjection given by em-

bedding of D into Y and the map from K[D] to K[u, v, h] = K[P2] is the
normalization map. Other maps between the complexes are given automat-
icaly. It suffices to construct the maps between the resolutions of K[Y ] and
K[P2] in order to write down unprojection equations.
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First of all let’s specify the embedding of P2 into the projective space.
One can check that if the map

P2 → P(1, 1, 2, 2, , 3, 3) is given by (u, v, h) 7→ (u, v, h2, hu, h3, v2h)
(3.0.6)

than it is actually an embedding and there exists a terminal Y4,6 containing
D. In addition there exist such Y4,6 with singularities only on D.
Moreover K[P2] is generated as A-module by 2 elements (1, h). The relations
between these generators are

(1, h)M = 0, (3.0.7)

where

M =

(
y2 −y1u z1 −y21 z2 −y1v2
−u y2 −y1 z1 −v2 z2

)
(3.0.8)

In addition the ideal I(D) is generated by the 2 by 2 minors of M :

< Λ2M >= I(D) (3.0.9)

So the equations of Y4,6 containing D are combinations of Λ2M with
coefficiens from A.
One can check that Y = Z(f, g) satisfies all needed conditions, where

f = M1,2 +M1,3 −M1,5

g = M5,6 +M3,4 + y1M1,2 + y2M1,3 + uvM1,5
(3.0.10)

Finally write M = (αβγ), where α, β, γ are 2 by 2 matrices. Now we are
able to discribe Li from 3.0.5 and maps between them.

C[u, v, h]←− L0
M←− L1

M1←−− L2
M2←−− L3 ← 0, (3.0.11)

where
L0 = A⊕ A(−1)
L1 = A(−2)⊕ A(−3)⊕ A(−3)⊕ A(−4)⊕ A(−3)⊕ A(−4)
L2 = A(−5)⊕ A(−6)⊕ A(−5)⊕ A(−6)⊕ A(−6)⊕ A(−7)
L3 = A(−8)⊕ A(−9)

M1 =

 β γ 0
−α 0 γ
0 −α −β

 (3.0.12)

and

M2 =

 γ
−β
α

 (3.0.13)
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Denote by N2 the vertical map between A(−10) and L2. One checks that
one possible form of N2 is:

N2 =


−u2v3 − uy21 − uv2y2 + uy1y2 − uy22 − v2z1 + y1z1 − y2z1 − v2z2 − y1z2

v4 + u2y1 + y21 − u2y2 − y1y2 − uz1
u2vy1 − uv2y1 − u2vy2 + v2z1 + y1z1 − v2z2 + y1z2 − y2z2

−u3v − v4 − u2y1 − y21 − v2y2 − uz2
−u3v − u2y2 − v2y2 − y1y2 − uz1 − uz2

0


(3.0.14)

Finally we follow [2], [4], [3].
Denote unprojections variables by s0, s1, then the linear relations (S1, S2, S3, S4, S5, S6)
between them can be given in Kustin-Miller form: M2

t(s0, s1) = N2.
The quaratic relation

S0 : s1u
2v + s20 − s21y1 = −s1uy1 − 2s0y1 − s1uy2 + s0y2 − 2s1z2 (3.0.15)

can be found from the fact that y2S0 is an element of the ideal
I =< f, g, S1, · · · , S6 >.
The uprojection varietyX ⊂ P(1, 1, 1, 2, 2, 2, 3, 3), where K[P] = K[u, v, s1, s0, y1, y2, z1, z2]
is given by the set of equations: (f, g, Si).

Remark 3.1. Unfortunately we can not currently check the singularities of
X by computer algebra, due to the computational complexity.
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