Canonical 3-folds complete intersections with only Veronese cone singularities

Miles Reid

(notes dating back to 1978)

Assume X is a canonical 3 -folds having N Veronese cone singularities $\frac{1}{2}(1,1,1)$ as its only singularities. Write p_{g}, K^{3} as usual. RR says

$$
\begin{aligned}
& \chi\left(\mathcal{O}_{X}\left(n K_{X}\right)\right)=\frac{(2 n-1) n(n-1)}{6} \frac{K^{3}}{2}-(2 n-1) \chi\left(\mathcal{O}_{X}\right)+ \\
& \qquad \begin{cases}+\frac{N}{8} \cdot n & \text { if } n \text { is even, } \\
+\frac{N}{8} \cdot(n-1) & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

Therefore $K_{X}^{3} \in \frac{1}{2} \mathbb{Z}$ and $\frac{K^{3}}{2}+\frac{N}{4} \in \mathbb{Z}$. Vanishing gives

$$
h^{0}\left(n K_{X}\right)=\chi\left(n K_{X}\right) \quad \text { for } n \geq 2 .
$$

This written as a conjecture in 1978 and is standard now; the same notes conjectured falsely and repeatedly that the index of 3 -fold canonical singularities is always ≤ 2.

Because I'm looking for complete intersections, I assume that $H^{i}\left(\mathcal{O}_{X}\right)=0$ for $i=1,2$, so that $\chi\left(\mathcal{O}_{X}\right)=1-p_{g}$.

$$
\begin{array}{llll}
p_{g}=0 & K^{3}=1 / 2 & N=27 & V_{6^{3}} \subset \mathbb{P}\left(2^{4}, 3^{3}\right) \\
p_{g}=1 & K^{3}=1 / 2 & N=15 & V_{6,10} \subset \mathbb{P}\left(1,2^{3}, 3,5\right) \\
p_{g}=1 & K^{3}=1 & N=18 & V_{4,6,6} \subset \mathbb{P}\left(1,2^{4}, 3,3\right) \\
p_{g}=2 & K^{3}=1 / 2 & N=3 & V_{12} \subset \mathbb{P}(1,1,2,3,4) \\
p_{g}=2 & K^{3}=1 / 2 & N=7 & V_{14} \subset \mathbb{P}(1,1,2,2,7) \\
p_{g}=2 & K^{3}=1 & N=10 & V_{4,10} \subset \mathbb{P}\left(1,1,2^{3}, 5\right) \\
p_{g}=2 & K^{3}=3 / 2 & N=9 & V_{6,6} \subset \mathbb{P}\left(1,1,2^{3}, 3\right) \\
p_{g}=2 & K^{3}=2 & N=12 & V_{4,4,6} \subset \mathbb{P}\left(1,1,2^{4}, 3\right) \\
p_{g}=3 & K^{3}=1 & N=2 & V_{12} \subset \mathbb{P}\left(1^{3}, 2,6\right) \\
p_{g}=3 & K^{3}=3 / 2 & N=1 & V_{9} \subset \mathbb{P}\left(1^{3}, 2,3\right) \\
p_{g}=3 & K^{3}=3 / 2 & N=5 & V_{3,10} \subset \mathbb{P}\left(1^{3}, 2,2,5\right) \\
p_{g}=3 & K^{3}=2 & N=0 & V_{6,6} \subset \mathbb{P}\left(1^{3}, 2,3,3\right) \\
p_{g}=3 & K^{3}=2 & N=4 & V_{8} \subset \mathbb{P}\left(1^{3}, 2,2\right) \\
p_{g}=3 & K^{3}=5 / 2 & N=3 & V_{5,6} \subset \mathbb{P}\left(1^{3}, 2,2,3\right) \\
p_{g}=3 & K^{3}=3 & N=6 & V_{4,6} \subset \mathbb{P}\left(1^{3}, 2^{3}\right) \\
p_{g}=3 & K^{3}=4 & N=8 & V_{4,4,4} \subset \mathbb{P}\left(1^{3}, 2^{4}\right) \\
p_{g}=4 & K^{3}=2 & N=0 & V_{10} \subset \mathbb{P}\left(1^{4}, 5\right) \\
p_{g}=4 & K^{3}=7 / 2 & N=1 & V_{7} \subset \mathbb{P}\left(1^{4}, 2\right) \\
p_{g}=4 & K^{3}=4 & N=0 & V_{4,6} \subset \mathbb{P}\left(1^{4}, 2,3\right) \\
p_{g}=4 & K^{3}=9 / 2 & N=3 & V_{3,6} \subset \mathbb{P}\left(1^{4}, 2,2\right) \\
p_{g}=4 & K^{3}=5 & N=2 & V_{4,5} \subset \mathbb{P}\left(1^{4}, 2,2\right) \\
p_{g}=4 & K^{3}=6 & N=4 & V_{3,4,4} \subset \mathbb{P}\left(1^{4}, 2^{3}\right) \\
p_{g}=5 & K^{3}=4 & N=0 & V_{2,8} \subset \mathbb{P}\left(1^{5}, 2\right) \\
p_{g}=5 & K^{3}=6 & N=0 & V_{6} \subset \mathbb{P}\left(1^{5}\right) \\
p_{g}=5 & K^{3}=15 / 2 & N=1 & V_{3,5} \subset \mathbb{P}\left(1^{5}, 2\right) \\
p_{g}=5 & K^{3}=8 & N=0 & V_{4,4} \subset \mathbb{P}\left(1^{5}, 2\right) \\
p_{g}=5 & K^{3}=9 & N=2 & V_{3,3,4} \subset \mathbb{P}\left(1^{5}, 2,2\right)
\end{array}
$$

Table 1: Canonical 3-folds with at worst Veronese cone singularities

