Projective morphisms
according to Kawamata

Miles Reid

0 Introduction

X is a projective 3-fold with canonical singularities, & = C; the terminology
will be explained in 0.8 below.

Theorem 0.0 (on projective morphisms) Let D € Pic X be nef, and
suppose that aD — Kx is nef and big for some a € Z with a > 1. Then
|mD] is free for every m > 0; equivalently, there exists a morphism to a
projective variety p: X — Z such that p.Ox = Oy, and an ample H € Pic Z
such that D = ¢*H.

0.1 Properties of ¢

(a) Vanishing: R'¢,Ox = 0 for i > 0, and in particular x(Ox) = x(Oz);
furthermore, H(Z, H*™) = 0 for all m > a and i > 0.

(b) Relative anticanonical model: ¢ factors as X 2 X L Z where g is
birational, X has canonical singularities, Kx = ¢*K+, and —K5 is
relatively ample for h.

(¢) Cases according to dim Z = kyum(D) = k(D):
dimZ = 3. Then ¢: X — Z is birational, and Z has rational

singularities.

dim Z = 2. Then ¢: X — Z is a weak conic bundle: Z is a normal
surface with rational singularities, and the general fibre of ¢ is P!

dimZ = 1. Then ¢: X — Z is a weak del Pezzo fibre space: Z is
a nonsingular curve, and the general fibre A of ¢ is a surface with
at worst Du Val singularities, such that —K 4 is nef and big.
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2 Projective morphisms according to Kawamata

Z = pt. Then X is a weak Q-Fano 3-fold, that is, — K x is nef and
big; H'(Ox) = 0 for all ¢ > 0, and Pic X is reduced! and torsion
free; in this case D = 0 € Pic X.

Corollary 0.2 (finite generation) If Kx is nef and big, that is, X is a
minimal model of a 3-fold of general type) then |mrKx| is free for every
m > 0, where r = index of X; in particular, the canonical ring is finitely
generated.

Proof Theorem 0.0 applies at once to D = rKx. The final part comes
from Zariski’s projective normalisation: if m is such that |mKx]| is free, then
the canonical ring of X is a finite module over the subring generated by
HO(TTLK)().

0.3
The second corollary requires some setting up: write
NéX = {Cartier divisors ® Q}/ WONIX = NéX R R;
and N;X = {l-cycles@ R}/ "~

by definition of numerical equivalence N X and N, X are dual finite dimen-
sional vector spaces. Let NE = NE(X) C N, X be the Kleiman—Mori closed
cone of effective 1-cycles.

Corollary (contraction theorem) Let F' be a face of NE(X) entirely
contained in the half-space NE_ = {z | Kxz < 0}, and suppose that there
exists a nef class d € N§X such that d " NE = F. Then there exists a
morphism ¢ = contp: X — Y with ,.Ox = Oy and such that for every
curve C' C X,

p(C)=pteY <<= CeF

Proof Write o o
NE; = {z € NE | Kxz > 0},

and let ¥ be the intersection of NE, with the unit sphere in N;X. Then d
is positive on ¥, and since ¥ is compact, d is bounded away from zero; also
K, considered as a linear form on N;.X, is bounded on X, so that for any
sufficiently large a € R, ad — Kx is positive on Y, and then obviously positive
on the whole of NE. If a is chosen so that in addition ad is represented by a
divisior D € Pic X then D — Kx is ample on X by Kleiman’s criterion, and
Theorem 0.0 applies.

'Reduced and discrete is intended, because H!(Ox) = 0; see the proof in 1.7.
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Remark In §5 I prove that under certain restrictions on the singularities of
X, if Kx is not nef, then there always exists a face F' satisfying the hypotheses
of Corollary 0.3, and in fact F' can be taken to be a ray R. This is a weak
form of the conjectured “Theorem on the Cone” for singular 3-folds.

In [9], 4.18, T outlined a program in five steps for constructing minimal
models of 3-folds. The results of this paper cover Steps 2 and 3 of this program
in a fairly satisfactory way.

0.4

The following is an effective statement that can be obtained by the method
of proof of Theorem 0.0:

Corollary Let X, D,a be as in Theorem 0.0.

(i) If m > 2a+2 then the general element of M = |mD)| is reduced and has
only ordinary double curves along 1-dimensional components of Sing X .

(i1) If m > 3a + 3 the general element of M has only double curves, and
only ordinary double curves if m > 6a + 6.

0.5

The following result is proved in §4, using the notation, and in one place the
method, of the proof of Theorem 0.0.

Theorem (Shokurov [12]) Suppose that —Kx € PicX is big and nef
(that is, X is a weak Fano 3-fold). Then the general element S € |—Kx|
1s a K3 surface with at worst Du Val singularities.

It follows from the theory of linear systems on K3s, applied to the minimal
resolution of S, that if |- K x| is not free then its scheme theoretic base locus
is isomorphic to P! or to a (reduced) point.

0.6 Discussion

Kawamata’s method is a higher dimensional analog of the Kodaira—Ramanu-
jam-Bombieri connectedness method for surfaces. The big drawback is that
the method as it stands is not effective: whereas the method for surfaces
allows us to choose a point P € X, construct a divisor D with P € Sing D,
and conclude that P is not a base point of |D + Kx|, the method proves
only that there is some base component B of [mD| of “maximal multiplicity”
(see 1.4), and that then there is a by such that for b > by, B is not a base
component of |bD).
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Problems 0.7 (a) Make Theorem 0.0 effective; in particular, if the canon-
ical class Kx € Pic X is nef and big, prove that |mKx| is free for m >
some reasonable bound (say 10).

(b) Does Theorem 0.0 hold for dim X > 4 (assuming if necessary that
k(D) > 0)? The present proof fails to go through at one point, namely
Proposition 1.5, at which higher Chern classes turn up in the formula for

WO(bf*D + A) ).

(c¢) The following statement would be very useful in many different contexts,
in particular in (b) above:

Conjecture If V is a nonsingular projective 3-fold and cy(V)-H < 0
for some ample H then the subsheaf E C i, breaking the stability of
O, is orthogonal to a foliation of V by rational subvarieties.

(d) If Kx "~ 0 it follows from Theorem 0.0 that D is nef and big if and
only if |mD| is free for m > 0, and defines a birational morphism
p: X — Z; then Z also has canonical singularities and Kx = ¢* K.
What happens when D is nef but ryum(D) = 1 or 27 In this case it is
certainly possible that h°(mD) = 0 for all m > 0 (because D may be
numerically but not linearly equivalent to 0 on an Abelian factor of X).

Conjecture There exists an m > 0 and a free linear system |L| with
L"~"mD. Hence there is a morphism @: X — Z such that ¢ contracts

precisely the curves C' C X such that DC' = 0.

(e) It would be interesting to know what kind of singularities the map
@: X — Z can have in the cases dim Z = 3 or 2 of Proposition 0.1, (c).
In the birational case, Z has singularities that are more general than
canonical, but presumably much more restricted than general rational
singularities.

0.8 Preliminaries and terminology

a. Q-divisors Let X be a projective normal variety; a Q-divisor D €
Div X ® Q is Q-Cartier if rD € Pic X for some r € Z, r > 0. Intersection
numbers and cycles are defined for Q-Cartier divisors in the obvious way:

Dy Dy =qger

D)---(r.D
Tl"'Tk(rl 1) (rr.Dx),

where the right-hand side is the intersection cycle of Cartier divisors defined
by any of the usual procedures.
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b. Nef D € Div X ®Q is nef if it is Q-Cartier and for every curve C' C X,
1
DC =def —(’I“D)C Z 0.
r

By Kleiman’s ampleness criterion, D is nef if and only if D is numerically
equivalent to a limit of ample Q-Cartier divisors; in particular, if Dy, ..., Dy
are nef and Z is an effective cycle of codimension [ then D, --- Dy Z is a limit
of effective cycles of codimension k& + (.

c. Knum(D) and big If D is nef then the characteristic dimension or the
numerical Kodaira dimension of D is defined to be

Fnum (D) = max{k ’ Dk n;ém O}.

Then max{0, k(D)} < Kpum(D) < n where n = dim X and «(D) = x(X, D)
is the litaka D-dimension of X, and it is easy to see (using vanishing, so only
in characteristic 0) that the following are equivalent:

(i) Fnum(D) = n;
(ii) D™ > 0;
(iii) A°(X,mrD) ~m" as m — oo;
(iv) for every ample H € Pic X there is an m > 0 such that mrD NH+ M
where M € Pic X is effective;

(v) k(D) =n.

If this happens, I say that D is big.

(d) Round-up | | For r € R, write [r] for the smallest integer > r, the
round-up of r; (the Gauss symbol | ] is “round-down”, and is related by
[r] = —=[-r]). If D = > ¢F; with F; distinct prime divisors, and ¢; € Q,
write [D] = [¢;] Fi. Note that [ ] is a function on divisors, not on divisor
classes, although if D = D+ Dy, with Dy € Div X®Q, and D; € Pic X (that
is, D; defined only up to linear equivalence), then [D] = Dy + [Ds] € Pic X
is well defined. Thus I will usually write “=" of Q-divisors to indicate that
the fractional parts are equal and the integer parts are linearly equivalent.

Note also that if f: Y — X is a birational morphism, and rKx € Pic X,
then the isomorphism of wgz] and wx[ﬂ on the locus where f is an isomorphism
extends to a canonical isomorphism

Fruld @ Oy (D) = Wi,
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where D is a Weil divisor made up of exceptional divisors of f (effective if X
has canonical singularities). I write equality of Q-divisors Ky = f*Kx + A
where A = %D to describe this.

Lemma 0.9 (i) If D is nef then kyum(D) > k(D);
(ii) if D is nef with kpum(D) > k and H is nef and big then D*H" % > 0;

(111) if D is an effective Weil divisor which is nef and has kyum (D) > 2 then
Supp D is connected in codimension 1, in the sense that if D = D1+ Dy
with Dy, Dy effective and with no common divisors, then the intersection
Supp Dy N Supp Dy has at least one component of dimension n — 2.

Proof (i) If k(D) = k then for a suitable m > 0 such that mD € Pic X,
|mD| defines a dominant rational map X --+» Z to a k-dimensional projective
variety. Resolving indeterminacy gives

Y
f / N4
X - Z

where f,¢ are morphisms, and |f*mD| = |L| + F, where |L| is free with
L* > 0 and F is effective. Then

(mD)* = (f*mD)* = (L + F)* > L* > 0,
which holds because for each ¢ with 0 <17 < k,
(f*mD)iJrlkaifl — (f*mD)z(L + F)kaifl Z (f*mD)lkal’

using the fact that both L and f*mD are nef.

(ii) follows by a similar argument using the fact that some multiple of H
is of the form an ample divisor plus an effective divisor.

(iii) Assuming that Supp D; N Supp Ds has codimension > 3 in X, it will
not meet a general surface sections S of X, so that both D; and D, are
Q-Cartier divisors in a neighbourhood of S. Writing S — S for a resolu-
tion of S, and ' for the pullback of a divisor of X to S, I have DD} = 0,
but (D)2, (D5)? > 0 (because D is nef), and (D} + D)? > 0 (because
Koum (D) > 2), and this contradicts the index theorem.

Index Theorem 0.10 Let D, A be Q-Cartier divisor on a normal projective

n-fold X with n > 2, such that D is nef, D 0. Then
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(i) for ample Q-divisors Hy, ..., H, o,
DAH,---H, =0 = —A*H,---H,_,>0;

num

in particular, if n > 3 and DAH,---H, 3 ~ 0 (as a 1-cycle) then
—A%H, --- H,_3 € NE(X).

(i1) If for some ample Hy, ..., H, o,
DAH,---H, o= AH,---H, 5 =0

then A "~ ¢D for some q € Q, and if ¢ # 0 then D*> "' 0, that is,
Fnum (D) = 1.

Proof Let S = L;N---N L, 2 be a reduced irreducible surface complete
intersection, with L; € |m;H;| (where m;H; € PicX); let f: S — SNbe a
resolution, and let ' denote the pullback of Q-Cartier divisors of X to S.

num

Now D’ is nef on S and D’ * 0; also D'A" = mDAH,---H,_» and
(A2 =mA?H, --- H,_ (where m = [[ m;), so that (i) is just a restatement
of the usual index theorem. If (A’)2 = 0 then A’ "~" ¢D’ on S: the value of ¢
can be determined by

AH =mAH?Hy---H,_y = qnDH?Hy--- H,_y = ¢D'H},

since D'H/ # 0, and so ¢ does not depend on the choice of m; and L; € |m;H;|.
I now claim that for every curve C' C X, (A—¢D)C = 0. To see this, note
that for m; > 0 such that m;H; € Pic X, Z¢ - Ox(m;H;) is generated by its
H°, where Z¢ is the ideal defining C, so that choosing L; € |m;H;| to contain
C, but otherwise general, the intersection S = L;N---N L,_5 is reduced and
irreducible. Now let f: S — S be its resolution, and C' C S any irreducible
curve such that f FE C — (' is generically finite, of degree d say. Then

0=(A"—¢D)C =d(A—¢D)C. QED.

0.11 Vanishing

The following result is the main technical tool of this paper.

Vanishing If Y is a nonsingular variety and N € DivY ®Q s nef and big,
and the fractional part of N is supported on a divisor with normal crossings,
then

H'(Y,[N]+ Ky)=0 fori>D0.

In Kawamata’s treatment [5] this is an easy formal consequence of Kodaira
vanishing.
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0.12 Acknowledgement

[ am extremely grateful to Y. Kawamata for sending me his brilliant series
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Our immense debt to S. Mori’s work will be clear to the reader.?

1 Proof of Theorem 0.0 assuming x(D) > 0

Preliminary Lemma 1.1 H°(mD) = 0 for at most 3 values of m > a.
(See also Lemma 1.8 below.)

Proof It follows easily from Riemann—Roch and vanishing (see Corollary 3.2
for the details) that h°(mD) is a polynomial in m of degree < 3 for m > a.
In §2 below it is shown that this polynomial is not identically zero, and hence
has at most 3 zeros. Q.E.D.

1.2 Construction

Let M C |mD| be any linear system with dim M > 0, BsM # 0. Then
there exists a resolution f: Y — X, a divisor with normal crossings > Fj
(for j € J) on Y, and constants a;, r;, p; such that

(1) Ky = f*Kx + Y a;F; with a; € Q, a; > 0 and a; > 0 only if F; is
exceptional for f;

(2) f*M = L+ r;F; where L is a free linear system, r; € Z, r; > 0, and
r; > 0 for at least one j € J (if dim M = 0 then L = 0);

(3) f*(aD — Kx) — > p;F; is an ample Q-divisor on Y, where p; € Q,
0<p; <1

Note for further use that a very slight increase in one of the p; does not
affect the truth of (3).

Remark (Shokurov [13], p. 436, see also 4.3 below) There is no loss
of generality in assuming that r; > a; if f(F}) is a curve.

2Essentially all the results of this paper have been generalised to all dimensions in 2
preprints by Shokurov [13] and Kawamata [4]. Shokurov’s paper also sidesteps the difficult
proof of §2. I believe that some form of the other main result (Theorem 5.3) is proved in
Shokurov [14]. (Note added in 1983-84.)
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Proof Let H € Pic X be ample. Since aD — K is big, for m large enough
hP(m(aD — Kx)— H) # 0. Choosing D, € |m(aD — Kx) — H| it follows that
for every 1 € Q, 0 < g1 < 1, the Q-divisor aD — Kx — ¢1D; is ample on X.

Now choose a composite of blowups f: Y — X which resolves the singu-
larities of X and the base locus of M, and such that the exceptional locus of
f and the inverse image of D; form a divisor with normal crossing ) F;. By
construction of f it is clear that there exists an effective divisor Dy = > ¢; Fj
such that — Dy is relatively ample for f; hence choosing e with 0 < g9 < €1,
and setting f*e; Dy + 2Dy = Y p;Fj gives (3). Q.E.D.

1.3 The method

Fix the set-up of 1.2. For b € Z, ¢ € Q with ¢ > 0 and b > c¢m + a, the
Q-divisor

N =N(b,c) = bf*D—kZ(—crj—kaj—pj)Fj—Ky

R el A+ f*((b—cem)D — Kx) — ijFj

is ample on Y, and has fractional part supported in ) Fj. Vanishing gives
H([N]+ Ky) =0 for i > 0, and T have

[N+ Ky =bf*"D+ %,
where I can write
=) [-erj+a;—p]F;=A-B,
with A, B effective divisors not having any common components. Since all
of ¢,rj,a;,p; > 0, A consists of components F; with a; > 0, and by 1.2, (1)
these must be exceptional for f. Hence
H°(X,bD) = H*(Y,bf*D) = H*(Y,bf*D + A).
Now H'(bf*D + A — B) = 0 implies that
H(Y,bf*D + A) — H°(B, (bf*D + A)p).

In 1.4 below, it is shown how to adjust the parameter ¢ and the p; so that B
is one of the irreducible components B = Fyy of > F};, and —crg + ag — po =
—1 € Z. From now on, I write ' to denote the pullback to B of a divisor on
X orY. Then

bf*D+ A= [N|+ Ky + B,
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so that
bD' + A" = ([N]) + Kp.

Now B = F, appears in N with integral coefficient, so that (see 0.8, (d) for
the abuse of notation)
([N]) =[N,

and N is an ample Q-divisor on B with fractional part supported on the
divisor with normal crossing » 40 F}. Hence vanishing applies again to give
H'(bD' + A’) = 0 for i > 0, so that h°(bD' + A’) = 0 is a polynomial in
b. The subtle part of the argument, Proposition 1.5, is to show that the
polynomial cannot be identically zero; this is the only point at which the
condition dim X = 3 is used. The method here is due to Xavier Benveniste
[1], and improves Kawamata’s original proof.

1.4 Selecting a base component of maximal
multiplicity

Set ¢ = min(a; + 1 — p;)/r;, taken over j € J with r; > 0; since p; < 1 and

a; > 0, it follows that ¢ > 0. Suppose that 0 € J is one of the indices for

which the minimum value occurs; on increasing the corresponding py slightly,

¢ decreases, so that the minimum occurs only for this one component Fj.
Then by definition of ¢,

—crg+ag—po=—1 and —crj+a;—p;>—-1 forjeJ,j#0;
hence B = Fy.
Proposition 1.5 (i) If D' "~" 0 then h°(bD' + A’) = 1 for every b € Z;
(i1) if D’ n;ém 0 then h°(bD' + A’) > 0 for every b > cm+a+ 1.

num

Proof (i) Assume D’ '~ 0; then for every b € Z, the Q-divisor
N =bD" + Z#O(—crj +a; —pj)Fj — Kg
is ample on B, so that H ([N'] + Kg) = 0 for ¢ > 0, and
RO(bD' + A') = x(bD' + A’) = const.;

for b = 0, h%(A’) > 1 since A’ is effective. However, h%(bD' + A’) < 1 for
b > c¢cm + a, in view of the fact that

HO(Y,bf*D) = H(Y,bf*D + A) — h°(bD' + A').
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(i) Set
]' N21.2 ]‘ / / 1 AW /
p(b) = 5(D) b° + 5D (2A" — Kp)b + 5((A) — A'Kp)+ x(0p),
so that

0 <h°(bD' + A") = p(b) for b > cm + a.
Then

pb+1) — p(b) = %((D’)Q(b F1) DA DD + A~ K)).

The right-hand side is strictly positive for b > ¢m + a. Indeed, D’ is nef and
A’ is effective. so that the first two terms are > 0; furthermore,

/ ' , , , ample effective
DD+ A = Kp = (IN1) = N+ (IN] = N) = (@—di\ll)isor) + (@—divisor)

num

so that D" ¢ 0 implies that the third term is strictly positive. Hence p(b) is
a strictly increasing function from em + a onwards. Q.E.D.

1.6 End of the proof

If h°%(mD) # 0 and Bs|mD| # 0 then I claim that for every a > 0,
Bs|amD| € Bs|mD|; Theorem 0.0 then follows by an easy Noetherian in-
duction. For the claim, set M = |mD]| in 1.2. The argument of 1.3-1.5 shows
that there is a component Fj of the base locus of f*|mD]| for which

HO(Y,bf*D) = HO(Y,bf*D + A) — H*(Fo, (bf "D + A)g,) # 0

for every b > 0, so that Fy ¢ Bs|bf*D|, and hence f(Fy) ¢ Bs|bD|. In
particular, taking b = am with a > 0,

Bs|amD| C Bs|mD|. Q.E.D.

1.7 Proof of Proposition 0.1

(a) is “relative vanishing”. Let H € PicZ be an ample divisor such that
D = p*H; consider the Leray spectral sequence for H (X, Ox(mD)), using
R'¢,.Ox(mD) = R'p.Ox @ Oz(mH):

EY? = HP(Z,R,0x @ Oz(mH)) = H'(X,0x(mD)).

Since H is ample on Z, Serre vanishing gives that for m > 0, EY? = 0if p # 0,
and hence H°(R%p,Ox @ Oz(mH)) = HY(X,Ox(mD)). But by vanishing,



12 Projective morphisms according to Kawamata

HY(X,0x(mD)) = 0for m > a (see Proposition 3.1), and hence Ri¢,Ox = 0
for ¢ > 0. Finally, for every m > a, H?(Z,0z(mH)) = H?(X,Ox(mD)) =0
for p > 0.

For (b), set r = index of X, and choose m > a(r + 1); then D’ =
mD — rKx € PicX, and both D' and D' — Kx are nef and big. Apply-
ing Theorem 0.0 to D" gives the morphism g; it contracts exactly the curves
C C X with DC = KxC =0, so ¢ factors through g.

There are only 2 nontrivial assertions in (c¢): when dimZ =2, X — Z is
birational to a standard conic bundle by Sarkisov [11]: I have

X N x£ g
g\ T fa
y s

where f; and f5 are resolutions, g is a birational morphism and h is a standard
conic bundle. Then by (a) above,

x(0z) = x(Ox);

since X has rational singularities, and ¢ is a birational morphism of smooth
varieties, x(Ox) = x(O% = x(Oy); and h is a standard conic bundle, so that
X(Oy) = x(Os).

Hence x(Oz) = x(Os), proving that Z has rational singularities.

Finally, if Z = pt, then Pic X is reduced because H'(Ox) = 0; if D €
Pic X is a torsion element then Theorem 0.0 applies to D to give D = 0,
hence Pic X is torsion free. Q.E.D.

1.8

The rest of this section is concerned with the proof of Corollary 0.4; the reader
who is more interested in the rest of the proof of Theorem 0.0 should proceed
to §2.

Lemma h°(mD) >0 for m > 2a + 2.

Proof As seen in Lemma 1.1, h°(mD) = p(m) is a polynomial in m of
degree < 3 for m > a; if degp < 1 then obviously h°(mD) > 0 for m > a+1.
If degp = 2 or 3 then p has at most 2 integer zeros > a + 1, since if p is
cubic, p(a) > 0 implies that one real root of p is < a; furthermore if there
are 2 integer zeros > a+ 1 these must be consecutive, since p(x) < 0 between
them.

Now the set {m | h°(mD) # 0} is a semigroup, and if p has no zeros in
[a+1,...,2a] is certainly contains every integer > 2a + 2. The alternative is
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that some b < 2a is a zero, and then possibly b+ 1 is also a zero, but p(m) > 0
form > 2a+2. Q.E.D.

1.9 Proof of Corollary 0.4

Let m > 2a+ 2; if I' C X is a prime divisor appearing as base component
of multiplicity > 2 of M = |mD)|, then making the construction of 1.2, the
proper transform of I' is an F; with a; = 0, 7; > 2. Then by definition of ¢ (in
14), ¢ < % Now the argument of 1.3—-1.5 shows that the base component Fj
of |mf*D| of maximal multiplicity in the sense of 1.4 is not a base component
of |bf*D for b > em + a + 1. But m itself satisfies m > ¢m + a + 1, which is
a contradiction.

The argument for the other statements of Corollary 0.4 is similar, and I
only sketch it: if C' C Sing X is a 1-dimensional component then by [8], Theo-
rem 1.14, X has a Du Val singularity at the generic point n € C'. Above 7, the
resolution f:Y — X dominates the minimal resolution, and so contains a
number of components F; with a; = 0, which by the argument just given must
have r; < 1. Using easy facts about the resolution of Du Val singularities
(see Lemma 4.3, (iii)), it is then easy to see that X has an A, point at 7, and
M an ordinary double point.

If C C X is a curve with C' ¢ Sing X appearing in the general element of
M with multiplicity > 3, the blowup of C gives an F; with a; =1, r; > 3,
so that ¢ < %, which by the same argument is impossible if m > 3a + 3.
Finally, if the general element of M has a non-ordinary double locus along C,
then after 3 blowups I get a component F; with a; = 4, r; > 6: for example,
a curve of ordinary cusps gives the embedded resolution of Figure 1. Then

a=1 a=2
K >~< %aél
r==~6

Figure 1: Embedded resolution of cuspidal curve y? = 23

c< % and by the same argument this is impossible if m > 6a + 6. Q.E.D.
The following result is exactly similar to Corollary 0.4, and will be used
in the proof of Theorem 0.5 in §4.

Lemma 1.10 Let X be a weak Fano 3-fold; then the general element D &
|—Kx| is reduced and has only ordinary double curves.
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Proof Asin 1.2, there exists a resolution f: Y — X, a divisor with normal
crossings | F; and constrants a;, rj, p; and ¢ such that

(1) Ky = f*Kx + ) a;F;, where a; € Z, a; > 0 and a; > 0 only if F} is
exceptional for f;

(2) f*|—Kx|= L+>_ r;F; with |L| a free linear system, r; € Z and r; > 0;

(3) ¢f* (—Kx)—>_p,;F;is an ample Q-divisor, where p;, ¢ € Q, 0 < p; < 1
and 0 < ¢ < min{1/r;}, the minimum being taken over j with r; > 0.
Claim For every j, r; < a; + 1.

As in the proof of Corollary 0.4, this implies that the general element D €
|— K x| is reduced, with ordinary double curves, proving Lemma 1.10.
To prove the claim, suppose that r; > a; 4+ 2 for some j. Then setting

11—
C:min{—a]+ pj},
Ty

it follows that ¢ <1 —1/r;, and hence 1 — ¢ > ¢. As in Method 1.3, set

N=N(bc) = bf'(-Kx)+> (—crj+a;—p)F; - Ky
WL+ b+ 1= o) f(~Kx) = Y piFy;

by (3) and the fact that 1 — ¢ > ¢, this is an ample Q-divisor for b > 0.
The argument of Method 1.3 and Proposition 1.5 now gives a contradiction:
the component B = F{, which is the base component of f*|—K x| of maximal
multiplicity is not a base component of |bf*(—Kx)| for b > 1. This proves
the claim, and hence Lemma 1.10.

2  Proof of k(D) > 0

2.1

Let X, D and a be as in Theorem 0.0, and f: Y — X any resolution for
which the exceptional locus is a divisor with normal crossings; then for any
num

m > a and any D,, € Pic X, with D,,, ~ mD,

1 1 1
r°(D,,) = 6D3m3 — 1D2KXm2 + E(DKE( + [*Dey(Y))m + x(Ox). (%)

This is proved in Corollary 3.2 below. The right-hand side is a polynomial in
m, and the purpose of this section is to prove that it is not identically zero.
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Note first that this is trivial if £y, (D) # 1. Indeed, if Kyum = 3 then D3 > 0;
if Kpum = 2 then by Lemma 0.9, —D?*Kx = D*(aD — Kx) > 0; finally, if
D "X 0 then I can take D,, = 0 for every m, and h°(D,,) = 1.

Note then that Theorem 0.0 is proved in case kyum(D) > 2, and I'm

entitled to use it in the proof for kyum (D) = 1.

Remark By Lemma 0.9, DK% = D(aD — Kx)? > 0 in case Kyum(D) =
1, and as conjectured in Problem 0.7, (c¢), we have a right to expect that
f*Dca(Y) < 0should lead to some very strong restriction on Y'; unfortunately,
I don’t know how to exploit this, so I don’t get any pleasure out of the linear
term in h°(D,,). A posteori, if p: X — Z is a weak fibre space of del Pezzo
surfaces of degree d (as defined in Proposition 0.1), and if D = ¢*H then
f*Dcy(Y) = (12 — d)deg H with 1 < d <9, so that in fact f*Decy(Y) > 0.

Proposition 2.2 If kyym(D) = 1 then k(X) = —oo, and in particular p, =
0. Hence if x(Ox) =0 then ¢ = h'(Ox) > 0.

Proof aD — Kx is nef and big, so that by Lemma 0.9, (ii)
(—Kx)(aD — Kx)D = (aD — Kx)*D > 0;

hence H'(mKyx) =0 for all m > 0. Q.E.D.

Proposition 2.3 Let X be a normal variety having a resolution f: Y — X
such that R'f.Oy = 0. Then f*: Pic® X — Pic®Y is an isomorphism, and
the Albanese map of Y factors through X. In particular if h'(Ox) # 0 (and
chark = 0, of course), then there is a nontrivial morphism a: X — Alb X
from X to an Abelian variety.

Proof This is general nonsense. R'f,Oy = 0 implies that f*: H'(Ox) —
H'(Oy), and hence that f*Pic® X — Pic’Y is etale. Now the morphism
a: X — (Pic? X)Y is defined by the universal property of Pic: if P is the
(Poincaré) universal line bundle over X x Pic® X then a: X — (Pic® X)Y is
defined on the level of points by taking € X to Py, the restriction of P to
r x Pic® X, considered as a point of (Pic® X')V. Functoriality of Pic gives a
commutative diagram

Y 2 (PiPY)Y =AY
L/ Ly
25 (Pic® X)Y,
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where f is birational and [ an isogeny of Abelian varieties. It is then obvious
that any curve contracted by f is also contracted by «y, so that using the
Zariski Main Theorem, the diagram splits as indicated by the oblique arrow,
and fV is an isomorphism. Q.E.D.

2.4

If Kpum (D) = 1 and k(D) = —oo then by () in 2.1, x(Ox) = 0, and ¢(X) # 0
by Proposition 2.2, so that by Proposition 2.3, X has a nontrivial morphism
a: X — Alb X to an Abelian variety. Since x(X) = —oo, dima(X) < 2.
I prove later (Key Lemma 2.6) that even in the case that a(X) = F is a
surface, X has a surjective morphism h: X — C to a curve of genus > 1.
First of all, I show how to complete the proof from this.

Proposition 2.5 Let X, D and a be as in Theorem 0.0. Suppose that
Foum (D) = 1, and that X has a surjective morphism h: X — C to a curve of
genus g > 1. Then there exists an m > a and an effective divisor D,, with

num

D,, '~ mD; hence by (x) in 2.1, h°(mD) # 0 for every m > 0.

num

Proof Let A be a general fibre of X — C'. The easy case is when D|A ~ 0

then D? "~ DA "~" A% "% 0, so that by the Index Theorem 0.10, D is

numerically equivalent to ¢A for ¢ € Q. Proposition 2.5 is then obvious.

In the other case D), 7 0, the proof proceeds by reducing to a similar

looking problem over a surface.

STEP 1 h factors as

X M ¢
PN e
S

where
(i) S is a surface with rational singularities;

(ii) there exists L € PicS which is relatively ample for g, and such that
D = ¢* L with L? = 0;

(iii) 0.Ox = Og, R'0,Ox = 0 for i > 0 and H*(S,mL) = 0 for all m > a
and 7 > 0.
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Proof This is a relative form of Theorem 0.0, and comes by noting that for
1> 1, D+14A is a divisor on X satisfying the hypotheses of Theorem 0.0, and
with Kpum(D + iA) = 2. The morphism ¢ contracts exactly the curves of X
with DC' = AC' = 0, so h factors through S.

STEP 2 L is relatively ample for g, so for m > 0, R'¢g,L®¥™ = 0 by Serre
vanishing. Thus for m > 0, ¢, L®™ = &, is a vector bundle on C' of rank
r > 0 with

0 < AY(S, LE™) = x(S, L®™) = x(C, En).

The following statement implies that for m > 0 and for suitable £ €
Pic® O,

0# H(C,E,®L)=HS, L ®g*'L) = H'(X,0x(mD) ® h*L).
proving Proposition 2.5:

Easy Exercise Let £ be a vector bundle of rank r > 0 over a curve C' with
X(C, &) > 0. Then

either C = P! and € = Op (—1)%",

or for every P € C there exists Q € C such that H(E@Oc(P—-Q)) # 0.

Proposition 2.5 is proved. Q.E.D.

Now comes the hard part.

Key Lemma 2.6 Let X, D and a be as in Theorem 0.0, with Ky (D) = 1,
and assume that o(X) = F C Alb X s a surface. Then F is a fibre bundle
F — C over a curve C of genus g > 1 (with fibre an elliptic curve); in
particular, there exists a surjective morphism h: X — C to a curve of genus
g>1

Sublemma 2.7 (i) If S is any effective Weil divisor on X which is nef
and big, then one component of S maps surjectively to F.

(i1) If So C X is any surface for which a(Sy) = F' then for m > a, we have
(mD — KX)250 > 0.
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Proof Applying Lemma 0.9 to a*M, where M is ample on F', (i) is trivial.
For (ii), setting r = index of X, r(mD — Kx) € Pic X obviously satisfies
the hypotheses of Theorem 0.0, with Kpum(mD — Kx) = 3, so that there is
a birational morphism ¢: X — Z such that mD — Kx = ¢*H for H an
ample Q-divisor on Z. By Proposition 0.1, Z has only rational singularities,
so that using Proposition 2.3 above, I get that a factors through Z: that is,
a: X — Z — F C AlbX. Now Sy must map to a surface in Z, which gives
the result. Q.E.D.

Proof of Key Lemma 2.6 It is shown in Corollary 3.3 below that for
m > 0, h°(mD — Kx) # 0; let f: Y — X be a resolution which induces the
minimal resolution along the Du Val locus, so that Ky = f*Kx + A, where
f(A) is a finite set (f is O-minimal in the sense of [8], §5). Now it follows

directly from the definition of canonical singularities that, for ¢ > 0, there
is amap f': f *1w¥(] — we' (where f~!is the sheaf theoretic inverse image),
defined by viewing s € H°(U, wgl(]) as a rational i-fold canonical differential,

which then remains regular on f~'U. This gives a map (“proper transform”)

f+ HmD — Kx) = H(Ox(mD —rKx) @ wl )
— HO(Oy(f*(mD — ’I“KX) + (’f’ — 1)Ky)
= H°(Oy(f*mD — Ky +rA).

Let S € [mD — Kx| and T = f'S € |mD — Ky + rA|; write T' = ) a,T;.
By Sublemma 2.7 applied to S C X, there is a component T of T mapping
surjectively to F', and such that f*(mD — Kx)?Ty > 0. Write g: T — Ty for
the minimal resolution; since Tj is Gorenstein, K7 = ¢* Ky, — Z, with Z an
effective divisor on 7. Now by adjunction

aoKp, = (aoKy +mf*D— Ky +rA — Z#O aiTi> 17

- <a0mf*D —(ag — 1) f*(mD — Kx) — Z%‘Tz‘ + (r+ag— 1)A>|TO,
i#0

so that, writing ' for the pullback of a divisor on X or Y to T, we get

aomD’ + (r +ag — 1) A’
= aoK s + (ag — 1) f*(mD — Kx)' + (aoZ + Z#O a;T;).
Now restricting f: Y — X to Tp, f induces a birational map ]7: T — So,

where S is a component of S, and A’ is contracted by f. It follows that the
left-hand side of this formula is a Q-divisor with x < 1. On the other hand,
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if ag # 1, or if T is a surface of general type, then the right-hand side has
k = 2: indeed, h°(K;) > 0 because T has a generically finite morphism to
F C AlbX, (mD — Kx)"is nef and big on T', and the third term is effective.

Hence ag = 1, and x(7") = 0 or 1. The above adjunction formula simplifies to

/ ! _ KesAY
mD' + A —KT+(Z+Z#Oa,TZ). (%)

CASE k(T) =1 This is the easy case: T has a generically finite morphism
to F' C Alb X, so that the elliptic structure of the minimal model of Tis a
fibre bundle; the image of any fibre is an elliptic curve £ C Alb X such that
F is invariant under translations by F.

CASE #(T) =0 Then T is itself birational to an Abelian surface, and I have
the following set-up:

Y Ty, <& T

T € |mf*D— Ky +rA|, T=> aT; rl Ln
| X o8 & 8
S € |mD — K| L
G

|

AlbX = F

where v: S — S is the normalisation of So, and in the left-hand column,
G = AlbT = minimal model of T

is an etale cover of F. Now S has rational singularities, and Kg is an effective
Weil divisor containing every exceptional curve of j with strictly positive
coefficient. (xx) gives

mv*D = Kg+h((Z+ > _ aT)). (x4)

SUBCASE v*D "~" 0 The right-hand side of (%*#) is an effective Q-divisor,
so that h.((32;,0ai1;)") = 0; it is clear that this implies that Sy does not
meet S — Sy in curves, and then by the connectivity result Lemma 0.9, (iii),
that S = Sp. Then v*D "~" 0 is impossible: by Lemma 0.9, (i)

0 < (mD — Kx)*D = v*(mD — Kx)v*D.
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num

SUBCASE v*D « 0 In this case v*D is nef and (v*D)? = 0, so that (s*x)
gives (v*D)I'; = 0 for every exceptional curve I'; of j; using j.Og = O, it
follows that v*D = j* D¢, where Dg is an effective Q-divisor on G; (v*D)* = 0
implies D% = 0, so that G is not a simple Aelian variety, hence F has a
surjective morphism to an elliptic curve. Q.E.D.

3 Computing h’(mD) and h'(mD — Ky)

Write r = index of X; for ¢ € Z, write ¢ = pr +¢ with 0 < ¢ < r — 1. Let
f:Y — X be a resolution which coincides with the minimal resolution above
the Du Val locus, and such that the exceptional locus of f is a divisor with
normal crossings.

Proposition 3.1 (i) Suppose that A € Pic X is such that A — Kx is nef
and big. Then H*(X, A) =0 for k > 0, and
RY(X, A) = x(X, A) = x(Y, f*A)
1

1 1
_ 6A3 _ ZA?KX + E(AKE( + [TAcs(Y)) + x(Ox).

(i1) Suppose that A € Pic X and q € Z are such that A+ (¢ — 1)Kx is nef
and big; then
WX, A+ qKx) > K (A + prEx) +iKy + [~(i — DA])
=x(ff(A+prKx) +iKy + [—(i — 1)Al);

if we set R; = iA+ [—(i — 1)A], this is equal to
1 2

+ %((A +qKx)KY + f*(A+ qu)Cz(Y)>
1 1

1
6 4R?Ky—|— ERz(K%—l—@(Y)) + x(Ox).

1 .
= 6(14 +qKx)’

+-R} —

Proof The Q-divisor
N=f"(A+pKx)+(1i—-1)Ky —(i—-1A
= ["(A+ (¢ —1)Kx)
is nef and big on Y, so that vanishing gives H*([N] + Ky) = 0 for k > 0;

now

[N+ Ky = ff(A+prKx) +iKy + [—(i — 1)A].
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For (i), p =i = 0, so that [N] + Ky = f*A+ [A]. Now from the exact
sequence

0 — Oy(f*A) = Oy (f"A+ [A]) = Oa(JA]) — 0,
we get
H*(Oa1([A])) = H* Oy (f*A)) for k > 0.
Since RFf,Oy =0 for k > 0,

H*(Ora1([A])) = H*(Ox(A)) for k> 0.

The left-hand side does not depend on the particular A € Pic X, and by
taking A to be a large multiple of an ample divisor the right-hand side is zero
by Serre vanishing. Hence H*(Ora1([A])) =0, and

H*(X, A) = H*(Y, f*A) = H*(Y, f*A+[A]) for k > 0.

This proves (i).
For (ii), I can assume that ¢ > 1, so that [—(7 — 1)A] is minus an effective
divisor, and

HY(N + Ky) = H(f*(A+prKx) + iKy + [—(i — 1)A])
C H(f*(A+prKx) +iKy).

Since by definition of canonical singularities f,wy' = wgi(], the final group is

equal to H°(X, A + qKx). Finally,
h([NT+ Ky) = x([N] + Ky);

substitute
[N+ Ky = f"(A+qKx)+ R;

in the Riemann—Roch polynomial; using the fact that f(SuppA) is a finite
set, all terms involving f*(A + gKx) - A or f*(A+ gqKx) - R; vanish, giving
the formula in (ii). Q.E.D.

Corollary 3.2 Let X, D and a be as in Theorem 0.0; then for any m > a,

m

and any D,, € Pic X with D,, "~" mD,

1 1 1
r%(D,,) = 6D3m3 — ZD2K’Xm2 + E(DK_?( + [*Dey(Y))m + x(Ox).
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Proof Substitute A = D,,, in (i).
Note also that the hypothesis in Proposition 3.1 that f coincides with the

minimal resolution above the Du Val locus is a posteori not necessary, since
f*Dcy(Y) is independent of the model f: Y — X.

num

Corollary 3.3 Let X, D and a be as in Theorem 0.0; then if D & 0,
ho(mD — Kx) tends to infinity with m.

Proof For m > 2a, mD — 2K is nef and big, so that Proposition 3.1, (ii)
applies:

1 1
Wo(mD — Kx) > o(mD — Kx)* = £ (mD — Kx)*Kx+

1
+ 12 (<D — Kx)Kx + f"(mD — KX>62Y) + const. in m.

num
num

If D?* £ 0, this grows at least like m?. If D? "~" 0, the linear term in m is

|
(DK)Q( + (DK + f*Dc2(Y))m.

Now by Corollary 3.2, 5 (DK% + f*Dcy(Y)) is the coefficient of m in h%(mD),
and therefore

1
E(DK% + f*Dey(Y) > 0;

also

DK% =D(D — Kx)*> 0

by Lemma 0.9. Q.E.D.

4 The base locus of |-Kyx| for a weak Fano
3-fold

In this section I prove Theorem 0.5 by polishing up Shokurov’s ingenious
proof [12]. The key points are Proposition 4.5 and 4.8-4.10 below, and the
reader may like to jump forward to these while I unburden myself of some
trivialities.
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4.1 Preliminaries: 0O-minimal resolution

Let X be a 3-fold with canonical singularities and Z C Ox an ideal (in
application, Z is the ideal defining the base locus of a linear system). If
C C X is any irreducible curve, P € C a general point and P € X' C X
a local general hyperplane section through P, P € X’ will be a Du Val
singularity or nonsingular point. Let Z' C Oxs p be the ideal induced by
Z. A good resolution f: Y — X of X and 7 is a resolution having a normal
crossing divisor ) | F; which includes the exceptional locus of f, and such that

T- Oy = Oy(— ZT’]'E);
by Bertini’s theorem, f induces a good resolution f’ of X’ and Z’:

G, C Y CY DF

Lr L
X C X;

here each Gy, is a connected component of some F; NY" and r, = r; (that
is, 7(Gx) = r(Fj)). Say that f is a 0-minimal good resolution if f’ is the
minimal good resolution of X’ and Z’ for all X’. It is easy to construct this
by successively blowing up 1-dimensional components of Sing X and of the
locus where 7 is not invertible, and then making an arbitrary resolution which
is an isomorphism except over a finite set of X.

Lemma 4.2 Let P € X' be a Du Val singularity or nonsingular point, and
T' C Ox p an ideal; suppose that f':Y' — X' is a good resolution of P € X'
and I', and set

7- Oy/ = Oy/(— ZTka); Ky/ = f/*KX/ + Z aka.

Then f' is the minimal good resolution of X' and I' if and only if there
does not exist a —1-curve Gy, C f'"'P C YY" which meets at most two other
components Gy, such that ry = > 1, .

Lemma 4.3 Furthermore, if f' is the minimal good resolution, the following

hold:
(1) v; > a; for all j.
(ii) Except for cases (a-b) below, r; > a; for all j.

(1ii) r; <1 for all j is only possible in one of the cases (a-d) below.
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Here the exceptional cases are:
(a) P € X' is nonsingular, ' = mp and [’ is the blowup of P;
(b) ' = Ox: p and f' is the minimal resolution of P € X';

(¢) P € X' is nonsingular, T' = Ty where H C X' is a curve with normal
crossing at P (either nonsingular or a node), and f" = idx/;

(d) P € X' is an A, point forn > 1 and I’ contains an element h defining
a curve H C X' having a node at P.

The proof is an easy exercise.

4.4

Now let X be a weak Fano 3-fold, that is, a projective 3-fold with canonical
singularities and —Kyx € Pic X nef and big. It follows from Riemann-Roch
and vanishing (as in Proposition 3.1) that h°(—Kx) = g + 2, where g € Z,
g > 2is defined by —K% = 2g—2. Let T C Oy be the ideal defining the base
locus of |-Kx|, that is, Z - Ox(—Kx) is the Ox-submodule of Ox(—Kx)
generated by the H°.

Let f: Y — X be a 0-minimal good resolution of X and Z, and let > F
be as usual; set

Ky = f*'Kx + ) _a;F},
fl=Kx| =L+ > r;F;,

where a;j,7; € Z, aj,7; > 0 and |L| is a free linear system. I start by prov-
ing Theorem 0.5 assuming that |L| is not composed of a pencil, that is,
by Bertini’s theorem, the general L € |L| is irreducible, nonsingular and
Fonum (L) > 2.

()

Proposition 4.5 Under the hypotheses of 4.4, suppose that |L| is not com-
posed of a pencil. Then x(Or) > 2.

Proof L is a nonsingular surface, and f*(—KX)|L is nef and big by 0.9, (ii).

Thus vanishing gives
H'(L,Op(f*(-Kx) + K)) =0 fori>0.

Using (%),
Ky + L+ f'(-Kx) =L+ _a;F};
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hence
g+ 1< h(L,0L(L) <h(L,OL(L+ Y a;Fy))
= X(O) + 5 (L + S B (~Kx)L
by Riemann-Roch on L. However,
29— 2= f'(~Kx)* > f'(-Kx)’L = f*(=Kx)(L+ Y _r;F})L
> [{(—=Kx)(L+ ) a;F)L,

using the fact that ; > a; unless fF; = pt € X (Lemma 4.3, (i)). Q.E.D.

4.6 Proof of Theorem 0.5

Ky = (Z(aj - Tj)ﬂ‘)\L?

Lemma 4.3, (i) gives that r; > a; unless fF; = pt € X. Hence

Using (%) again,

K,=A-B,

with A > 0 a divisor on L contracted by the birational map f I and B > 0.

In addition, Proposition 4.5 says that p,(L) # 0; it follows that B = 0 and
that a minimal model of L has trivial canonical class. This also proves

On the other hand, assuming that L is not composed with a pencil, L is
nef with Kpum(L) > 2; hence I can apply vanishing in the form Kawamata [5],
Corollary on p. 45, to the cohomology exact sequence of Oy — Op, to deduce
that H'(Or) = 0, and L is birational to a K3.

Pushing down (%) in 4.4,

~Kx =S+ Y rif.F},
where S = fL, and f,Fj is the cycle theoretic image, that is,

f.F; = F; if F; maps birationally to F; C X,
o 0  otherwise.

If Fj is not contracted by f then a; = 0, so that by (xx) either r; = 0 or
F; N L = 0. But now I claim that S and > r;f.F; do not intersect along
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curves of X; if S = fL intersects some F; in a mobile curve (as L moves in
|L]) then F; N L # 0 and r; = 0 by (**); on the other hand, if all S pass
through some fixed curve C' C X then f~'C contains at least one component
F; with F; N L # ), hence a; > r; by (*x). Applying Lemma 4.3, (ii) gives
C ¢ Sing X, and the general element of |—Kx| has multiplicity 1 along C,
hence C C S, C ¢ > r;f.Fj.

It follows from what I have just proved and from the connectedness lemma
0.9, (iii) that > r; f.F; = 0 and that S € |—Kx|; hence the irreducible surface
S has K¢ = 0. Since the resolution f|L: L — S has K; > 0, S has canonical

singularities, that is, Du Val singularities. This proves Theorem 0.5 in this
case.

4.7

The next result is the first step in proving that |L| cannot be composed of a
pencil.

Lemma If |-Kx| is composed of a pencil then L = (9+1)E with |E| a free
pencil, in particular Op(E) = Og; f*(—Kx)*E = 1, and there is a unique
component Fy of > F; such that

f*(—Kx)FQE = 1, o = 1, ag — 0
and rif (—Kx)F;E =0 forj#0.

Proof
29 -2=["(=FEx)’ = (9 + [ (- Ex)°E,
and by Lemma 0.9, (ii), f*(—Kx)?E > 0. This proves f*(—Kx)>E = 1. For

the rest, set
D= f(=Kx)s = (DomiF)

D is nef and D? = 1, so it has a component I with DI' = 1, and all the others
have DI" = 0.

To prove that ay = 0, note that by Lemma 4.3, (i), ap < 79 = 1; on the
other hand, aq is even, since

Kp+D= (Zaij)]E

and

(Kp+D)D = (Y aF) .0 = f'(~Kx) (3 a;F)E = ap. QED.
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4.8

For the remainder of the proof, I want to work on a different model: using
Theorem 0.0 and Proposition 0.1, (b), there is no loss of generality in assuming
that — Ky is ample; now let X; be the normalised graph of the rational map
©_ky: X --» PL. Then there is a diagram

Y
P/ L \P
x & x, Lp

in which p and ¢ are the projections, f: Y — X is as in 4.4, pp is the
morphism defined by |F|, and h the diagonal morphism.

Claim (i) —Kx, = p*(—Kx), so that Xy has canonical singularities,
—Kx, € Pic Xy, and —Kx, 1s relatively ample for q;

(1)) |—Kx,| = |(g + 1)E1| + F1, where Fy is an irreducible surface, |E1| a
free pencil, and for every Ey € |Ey|, Ey is a reduced irreducible surface
and F1 N Ey a reduced irreducible curve.

Proof Every curve C' C X contracted by p maps isomorphically to P!; it
follows that if p contracts any surface F' C X7, this has to meet every fibre of
q in a curve, and hence F' corresponds birationally to Fy C Y, the component
of Lemma 4.7; then ay = 0, and hence — Ky, = p*(—Kx). (ii) follows because
as in Lemma 4.7,

(—Kx,)’Ey = (-Kx,)FiEy = 1. Q.ED.

4.9

Now F} is a Gorenstein surface, having a free pencil |E’| every fibre of which
is reduced and irreducible, and such that

Kp,=—(g+1)E; p,E =1.
The long exact cohomology sequence of
0— Op(—(g+1)E") = Op — Oyyne — 0

implies at once that h'(Op ) > g.

On the other hand, Lemma 1.10 applied to X; gives that F} has at worst
ordinary double curves in codimension 1. I can now appeal to the following
result to deduce a contradiction.
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Lemma 4.10 Let F' be an irreducible projective Cohen—Macaulay surface
having a morphism q: F — P! with reduced irreducible fibres of arithmetic
genus 1; suppose that F' has at worst ordinary double curves in codimension
1; then h'(OF) < 1.

Proof If F has isolated singularities and f: G — F' is a resolution, then
h'(Og) <1 from the classification of surfaces, and h'(Or) < h!(Og) follows
from the Leray spectral sequence for f:

0 — H'(Op) — H'(Og) — R' f.O0q —
— H*(Op) — H*(Og) — 0.

Suppose then that F' has a double curve; the hypothesis implies that
F' is not singular along a fibre, so that there is just one double curve C,
and the general fibre of ¢: F — P! is a rational curve with a node at its
intersection with C'. Obviously Ic C — P! is an isomorphism. Let 7: G —

F be the normalisation; then by the classification of surfaces, H'(Og) =
0. If C is the conductor ideal of the normalisation then C C Og defines a
reduced curve D C G with D — C a double cover. It follows that there
is an isomorphism 7,0¢/OF = 7,0p/O¢, and that H°(m,Oq/OF) is 0- or
1-dimensional depending on whether D has 1 or 2 connected components.
The lemma follows from the exact sequence

0 — H(7,0q/0r) — H (OF) — H (Og).

This completes the proof of Theorem 0.5.

Counterexample 4.11 Lemma 4.10 is false without the hypothesis of ordi-
nary double curves: let [F,, be the standard rational scroll with a section B
having B? = —n; the divisor 2B is naturally a subscheme of F,, and has a
morphism 7: 2B — P! induced by the projection of F,. Take F to be the
surface obtained by pinching IF,, along 7; that is, F' has the same underlying
space as F,,, but has sheaf of rings in such a way that O, /O = 7,025/Op1;
in other words, replace coordinate neighbourhoods Spec k[ X, Y] of F,,, where
X = 0 defines B, by Spec k[X?, X3, Y.

Then it is immediate that ' has a morphism F — P! with every fibre a
cuspidal rational curve, and Kp = —(n +2)E, H'(Or) = n + 1.

5 Weak Theorem on the Cone

Definition 5.1 A normal variety X is Q-factorial if every Weil divisor of X
is Q-Cartier.
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Remarks (a) This is a local condition: every Weil divisor near P € X is

(b)

5.2

the restriction of a global one, and the condition for a Weil divisor to
be Cartier or Q-Cartier is local.

The condition is not invariant under local analytic equivalence. For
example, an ordinary double point of a 3-fold is analytically (zy = zt),
which is the typical example of a nonfactorial variety. However, it is
easy to show that a hypersurface X; C P* of degree d > 3 having an
ordinary double point P € X as its only singularity has class group
Cl X = Z, with the hyperplane section as generator. (Proof: Blowing
up Pe X C ]P’4~ leads to a smooth very ample divisor XcC I?P/’; we know
the divisors of P, and the result follows from the Lefschetz theorem.)

If X is Q-factorial and nonsingular in codimension 2, and D C X is
a prime divisor, then D is Gorenstein in codimension 1, so that the

Q-divisor Kp is well defined and equal to (Kx + D)| D

Throughout this section X is a projective 3-fold with isolated Q-factorial
canonical singularities. The notation is as in 0.3; I make the following defini-
tions: aray R of NE is an extremal ray if it’s extremal in the sense of convexity
(that is, R ¢ convex hull of NE\R). An extremal ray R is good if KxR < 0,
and there exists an H € NéX which is nef and such that H+* NNE = R. Let
{R;}icr be the set of good extremal rays; using Corollary 0.3 it is clear that
each R; is of the form R; = R, C; for some curve C; C X. In particular each
ray is rational in Ni(X), and there are at most countably many.

Theorem 5.3 Under the stated hypotheses,

NE(X) = (N—EKX +3 RZ->_,

iel

where ~ denotes closure in the usual real topology of N1.X, and for D € NIX,
NEp = {z € NE | Dz > O}. In particular if Kx is not nef then X has a
good extremal ray.

Remarks This is a weak version of the conjectured Theorem on the Cone;
it is conjectured (and proved by Mori in the nonsingular case) that

(i)

(i)

the rays R; are discrete in the open halfspace (Kxz < 0) of N; X (so
that there is no need to take closure in the theorem);

each ray R; is spanned by a rational curve Cj;
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(iii) the C; can be chosen so that —4 < KxC; < 0.

It is possible that these could be proved a posteori using Corollary 0.3
and Proposition 0.1; for example, (ii) can be checked in all cases except for
that of a Q-Fano 3-fold X, when it is required to prove that X contains a
rational curve (conjecturally it is uniruled). Similarly, (iii) might be attacked
on a case-by-case basis.®> Part of (i) is implied by (iii), since assuming (iii) it
is easy to see that the rays R; are discrete in a neighbourhood of any fixed
ray R;.

I believe the hypotheses on the singularities of X can be weakened to
allow any canonical singularities, using the methods of [9].

The next two results are the main steps in the proof of Theorem 5.3.

Kawamata’s version 5.4 ([4], §2) Let D be an effective Q-divisor, and H
an ample Q-Cartier divisor. Then there exists a finite number of curves
l; C X such that

Key rationality lemma 5.5 Suppose that H is an ample Q-divisor, and
that Kx is not nef. Write H, =tH 4+ Kx, and set

b= inf{t cQ ‘ H; is ample};

(that is b € R, and for t € Q, Hy is ample if t > b, and not nef if t < b).
Then b € Q.

I start by deducing Theorem 5.3 from the key rationality lemma 5.5 and
its relative form Lemma 5.11 below.

Definition 5.6 A good supporting function of NE is an element L € NéX
such that L is nef and F;, = L*NNE is a nonzero face of NE entirely contained
in the open halfspace (Kxz < 0) C N;X; then FJ, is a good face of NE. (Note
that 0 is good if and only if —Kx is ample, in which case NE is itself a good
face.)

By the argument given in 0.3, for suitable a > 0, aL. — Kx is ample, so
that any such L is given by the construction of Lemma 5.5. Note also that
a good extremal ray of NE (as defined in 5.2) is the same thing as a good
1-face of NE.

3(iii) = (i) is standard in Mori theory: for all ample H and € > 0 the irreducible curves
C C X such that HC < —(1/e)KxC < 4/e belong to a finite number of algebraic equiva-
lence classes; hence (iii), together with Theorem 5.3 would imply NE = NEx, .z + > R;,
where the sum takes place over a finite number of rays representing these classes. (Note
added in 1983-84.)
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Lemma 5.7 (Z) W = (WKX +ZL FL)i;

(ii) NEN(Kxz < 0)=.(Lz >0)N(Kxz <0).
Here the sum and the intersection on the right-hand sides are taken over all
good supporting functions L € NéX.

Proof Write B for the right-hand side of (i); then BN (Kxz > 0) = NEg,
and the inclusion NE D B is trivial. The next statement, together with
Kleiman’s criterion, gives the opposite inclusion.

Claim Let M € NéX be such that M > 0 on B, then M is ample.

To see this, note that NEg, is the closed convex cone defined by the
inequalities Hz > 0 for ample H and Kyz > 0. By convexity, M > 0 on
NEg, implies that M is a finite positive linear combination

M = m;H; +moKx, withm; € R, m; >0

where the H; are ample. Since by 5.4 NE has at least one face Fj in the
(Kxz < 0) halfspace, at least one m; > 0, which implies that M — moKx is
ample for some my > 0, and I can clearly take my € Q. Now applying 5.4 to
H = M —mKx, it follows that L = M + aKx is a good supporting function
for some a € Q, a > —myg. Since F;, C B and Kx < 0 on F, necessarily
a > 0. I've got M —myKx ample with my > 0, and M 4+ aK x nef with a > 0,
which implies that M is ample.
This proves (i); (ii) is left as an easy exercise.

5.8

Lemma 5.7 shows that NE is the closed convex hull of its good faces, together
with NEg, . The strategy from now on is to prove that each good face Fy, of
dimension > 2 is in turn the closed convex hull of its proper faces (Lemma 5.12
below); Theorem 5.3 then follows by induction on the dimension.
Fix then a good face Fy, of NE; by Lemma 0.3 there is a morphism ¢: X —
7 contracting exactly the curves C' € Fp; by construction — Ky is relatively
ample for ¢. To carry out my strategy I need relative versions of the work
so far, starting with the terminology (compare Kleiman [6], Chap. IV, §4).
There are dual sequences (which will turn out to be exact in my case)
N(X/Z) — NX 5 Nz
(%)

*

NYX/Z) « N'X & Nz
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Here N,(X/Z) C N;X is the subspace generated by curves C' contracted
by ¢, and N'(X/Z) is its dual; the surjectivity of N'X — NY(X/Z) is
standard in the theory of vector spaces. ¢* and ¢, are dual maps so that
ker p, = (im ¢*)*. Note also that

NE(X) N L+ = NE(X) N Ny(X/Z) = NE(X/Z) C N\(X/Z)

is the cone of effective 1-cycles contracted by .

5.9

It follows from the relative version of Kleiman’s criterion that
Fp, = NE(X) N Ny(X/Z) = (NE(X/Z))". (*)

To see this, note that the inclusion D is trivial; on the other hand, if H €
N{(X/Z) is strictly positive on (NE(X/Z))™ then by [6], p. 336, H is rel-
atively ample for ¢. Hence H comes from some ample H € N 1X, and so
H >0on NE(X)NN(X/Z).

Proposition 5.10 Let ¢: X — Z be the contraction of a good face Fy of
NE.

(i) If D € N*X is relatively nef for o then there exists H € N*Z such that
D + ¢*H 1is nef;

(ii) the dual sequences (x) are exact.

(Note that although both statements here look formal, the proofs given below
are ad hoc; probably the statements are false for general .)

Proof (i) If Z = pt there is nothing to prove. Suppose without loss of
generality that D € Pic X.

Claim Outside a finite number of fibres of ¢, Ox (D) is relatively generated
by its HY, that is, ¢*.Ox (D) — Ox (D) is surjective.

This proves (i), since for any sufficiently ample H € Pic Z, the linear system
|D+¢* H| is free outside a finite number of fibres of ¢, and then (D+¢*H)C' >
0 for every curve C' C X.

I prove the claim assuming dim Z = 2; then since —Ky is relatively
ample, all but a finite number of fibres of ¢ are isomorphic to conics. A nef
invertible sheaf on a conic is generated by its H°, and ¢*p,.Ox (D) — Ox (D)
in a neighbourhood of such a fibre follows by an easy use of coherent base
change.
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The cases dim Z = 1 or 3 are no harder, and are left to the reader.

(ii) follows from (i) and from Theorem 0.0: if D € N'X maps to 0 in
NY(X/Z) then by (i), for sufficiently ample H € N'X, D + ¢*H satisfies
the hypotheses of Theorem 0.0; the morphism corresponding to D + ¢*H
contracts the curves with (D + ¢*H)C = 0, and hence coincides with ¢, so
that D + o*H "~" o* M for some M € N'Z. Q.E.D.

Lemma 5.11 Suppose that H € NéX 1s relatively ample; write Hy = tH +
Kx, and set

b= inf{t cQ ‘ H, is relatively ample for go}.
Then b € Q.

This is a relative version of the rationality lemma 5.5, and will be proved
together with it (see 5.14).

Lemma 5.12 If dim N*(X/Z) > 2 then NE(X/Z) is the closed convex hull
of its proper good faces. In other words, defining a good supporting function
M e NéX in the obvious way,

NE(X/Z) = (ZM#O(ML NNE(X/Z ))_,

where the sum on the right-hand side is over all nonzero good supporting
functions M.

Proof As before, write B for the right-hand side; the inclusion D is trivial.
If 2 € NE(X/Z) \ B with z # 0 then there exists a separating function
M € NY(X/Z) such that Mz < 0 but M > 0 on B; by the compactness
of B N (unit sphere), I can shift M very slightly if necessary to ensure that
M € NyX and that M is not a rational multiple of Ky (since dim > 2).

Now Lemma 5.11 gives that M + aK x is a nonzero good supporting func-
tion of NE(X/Z) for some a € Q. I now have a contradiction, since on the
one hand Mz < 0 and (M + aK)z > 0 implies that a < 0, and on the other,
since M is positive on the good face (M + aKx)* NNE(X/Z), I get a > 0.
This proves Lemma 5.12.

It is clear from Proposition 5.10, (i) that a good face of NE(X/Z) is a
good face of NE(X); this proves Theorem 5.3.
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5.13 Proof of Key Rationality Lemma 5.5

STEP 1 Suppose that H, is an effective Q-divisor for some t € Q with t < b;
then by Kawamata’s theorem 5.4 there are finitely many curves [; C X such
that

NE(X) =NEy, + Y Ryl;.

Then clearly,

_KXlz
b— {t, } .
max i, eQ

STEP 2 Let t be an indeterminate, and consider the cubic polynomial
p(t) = H} = (tH + Kx)* € Q[t].
Then since p/(t) = 3H(tH + Kx)?,

H?} "X 0 <= bis a repeated root of p = b€ Q.

num

Thus I need only treat the case H? # 0.

STEP 3 If H} > 0 then there exists ¢,m € Z, ¢,m > 0 such that m/q < b
and H°(mH + qKx) # 0, hence by Step 1, b € Q.

Proof For m € Z, m > 0, set ¢ = [m/b]; then

q=

m
b q )

by definition of b,

is an ample Q-divisor, so that by Proposition 3.1, (ii),
1 1
h(mH + qKx) = g(mH +qKx)* - Z(mH +qKx)?Kx +0(m), (1)

where O(m) denotes terms bounded by a linear function of m. Write

mH + qKx = %(ijLKx) + (q— %)KX
(2)
e {2

where { } denotes “fractional part” of a real number. Then

1 m\ 3
W(mH + qix) = <H (5) +O(m?),

and tends to infinity with m. This proves this case.
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num

STEP 4 If H} =0 but H? # 0 then 2/b € Z.
Proof Substituting (2) into (1) and evaluating gives

_ 2

0 < KO(mH + qKx) = G{Tm} - i)HfKX<%> LOm).  (3)
Now H} = 0, H!H > 0 implies that H?Kx < 0. Furthermore, if b is
irrational, or if 1/b is rational with denominator > 3 then for infinitely many
values of m, I have {—m/b} > 2/3. The right-hand side of (3) is then negative
for large m, which is a contradiction. This completes the proof of Rationality
Lemma 5.5.

5.14 Proof of Lemma 5.11
If Z = pt then Lemma 5.11 is contained in 5.5. If dim Z =1 or 2, let

b = inf{t €Q } Ht|A is ample for a general fibre A of cp}.

The obviously & < b, and by the statement of Rationality Lemma 5.5 in
dimension 1 or 2 (the proof of which I leave to the reader), b’ € Q. If ¥’ < b
then there is some ¢ < b such that H, is relatively ample on the general fibre
of ¢; then for some sufficiently ample D € Pic Z, H; + ¢* D is effective, and
then b € Q follows from Kawamata’s Theorem 5.4 as in Step 1 above.

If ¢ is birational, then H; + ¢* D is effective for any ¢ € Q and sufficiently
ample D € Pic Z, so that I conclude in the same way.
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