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ABSTRACT We propose a general scheme for measuring the attraction between mechanically frustrated semiflexible fibers
by measuring their thermal fluctuations and shape. We apply this analysis to a system of sickle hemoglobin (HbS) fibers that
laterally attract one another. These fibers appear to ‘‘zip’’ together before reaching mechanical equilibrium due to the existence
of cross-links into a dilute fiber network. We are also able to estimate the rigidities of the fibers. These rigidities are found to be
consistent with sickle hemoglobin ‘‘single’’ fibers 20 nm in diameter, despite recent experiments indicating that fiber bundling
sometimes occurs. Our estimate of the magnitude of the interfiber attraction for HbS fibers is in the range 8 6 7 kBT/mm, or 4 6

3 kBT/mm if the fibers are assumed, a priori to be single fibers (such an assumption is fully consistent with the data). This value
is sufficient to bind the fibers, overcoming entropic effects, although extremely chemically weak. Our results are compared to
models for the interfiber attraction that include depletion and van der Waals forces. This technique should also facilitate a similar
analysis of other filamentous protein assembles in the future, including b-amyloid, actin, and tubulin.

INTRODUCTION

Sickle cell anemia is a blood disorder in which a genetic

mutation leads to the transcription of sickle hemoglobin

(HbS). A good review of sickle cell anemia, from its mole-

cular basis to the formation of an intracellular sickle hemo-

globin gel and the associated pathologies can be found in

Eaton and Hofrichter (1990). The main pathology of sickle

cell anemia is caused by the physical properties of the sickle

hemoglobin gel that forms inside the red blood cells under low

oxygen conditions. A consequence of this is that the rigidified

red blood cells are unable to circulate through narrow blood

vessels and perform their role in oxygen transportation. This

exacerbates the deoxygenation of the blood still further,

leading to an episode in sufferers of the disease known

clinically as a sickle cell crisis.

It has been known for some time that sickle hemoglobin

(HbS) differs fromnormal hemoglobin (HbA) by the presence

of a glu/val substitution at the protein’s b6 site. This val
substitution leads to the assembly of long, twisted, multi-

stranded fibers at physiological concentrations of deoxygen-

ated HbS. These compose the gel that rigidifies red blood

cells. An important result is that under a variety of conditions,

a common structure of a 21-nm diameter fiber has been ob-

served. This is referred to as a single fiber.

This single fiber has been found to have a very well-defined

structure, being composed of seven double strands of HbS,

packed together and twisted about a common axis,with a pitch

length of ;270 nm. Furthermore, single fibers have been

observed to form bundles, or macrofibers in HbS gels, and so

can be regarded as a fundamental building block of higher

order structures.

It has been known for some time that HbS fibers ‘‘zip’’

together to form larger bundles (Briehl, 1995). This is

indicative of an attraction between them, and because these

fibers compose the gel that is the primary cause of sickle cell

crises (Eaton and Hofrichter, 1990), an important step in

characterizing the microstructure of these gels is to calculate

the strength of this attraction between single fibers.

In what follows we will estimate the magnitude of the

interfiber attraction by analyzing a system in which two fibers

are observed to partially zip together, in real time. The details

of the technique used to provide this data are given in

Materials and Methods. These two fibers are mechanically

constrained from undergoing complete zippering due to con-

straining cross-links in the gel. As a result the region of

contact between the two fibers extends, eventually reaching

a frustrated mechanical equilibrium in which the two fibers

form the arms of a ‘‘Y’’ shape (see Figs. 1 and 2). The shape of

the fibers gives information about how the energy of attraction

per unit length (a force) between the fibers balances the

mechanical forces due to the distortion of the fibers. This

analysis provides an estimate of the interfiber attraction, s.

Although the focus of this analysis is the frustrated system

of fibers described above, our aim is to evaluate the attraction

per unit length between single fibers in general (We find that

our estimates of the rigidities of our fibers are consistent with

HbS single fibers). Therefore, the calculated parameter, s,

that measures the interfiber attraction, will have significance

beyond situations where fibers have such constraints. It is an

important control parameter for the gel, which has a number

of interpretations. For example, it quantifies the thermody-

namic stability of macrofibers, gives a surface energy useful

to thermodynamic models (Turner et al., 2003) and reveals

the extent to which the interfiber attraction under examina-

tion stabilizes the gel.

Despite the application of our analysis to a sickle hemo-

globin system, it should enjoy wider application to the study

of interactions between other filamentous protein assembles,
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e.g., b-amyloid, actin, tubulin, etc. The mathematics of this

analysis is treated in the various parts of the ‘‘Quantitative

analysis’’ section.

To calculate the equilibrium force between our fibers we

calculate the mechanical energy stored in the fibers, which in

turn depends on how much of the contour length of each

fiber comes into contact with its partner. Given that the fibers

are at mechanical equilibrium with respect to variations in

their zippered length, the change in mechanical energy with

this length is equivalent to the attraction energy per unit

length (force) between the fibers.

The subsection ‘‘Fiber Hamiltonans’’ introduces a free

energy for the system and shows how the interfiber attraction,

s, can be expressed in terms of Hamiltonians for the fibers.

The forms adopted for these Hamiltonians is also justified in

this subsection. The subsection ‘‘Variational minimizations

of the Hamiltonian to find the equilibrium fiber shape’’ out-

lines how variational minimization of the fiber Hamiltonians

can be used to derive an expression for the shapes of the fibers

in mechanical equilibrium.

The next step in our analysis is to estimate the rigidities of

the fibers. Both isolated fibers and those cross-linked into a gel

undergo thermal fluctuations, according to the principle of

equipartition of energy. Equipartition of energy may be

exploited to estimate the rigidities of interacting fibers using

a similar approach towork carried out tomeasure the rigidities

of microtubules and actin filaments (Gittes et al., 1993) or of

freely suspended HbS fibers (Wang et al., 2002). The rigidity

estimates that we obtain for the fibers that comprise our

mechanically frustrated structure, are consistent with single

fibers, (fibers composed of seven twisted double strands of

HbS) rather than bundles of several such fibers, as discussed

elsewhere (Wang et al., 2002; Turner et al., 2002). In the

subsection ‘‘Evaluating rigidities and persistence lengths

fromfluctuations of the fibers’’ we indicate how an analysis of

fibers’ fluctuations are used to estimate their rigidities.

This study provides an estimate of the attractive force

between sickle hemoglobin fibers that includes the effects of

tensions and torques that act on the observed fibers. Such

forces may always be present due to the cross-linked contacts

between the fibers and the cross-linked network in which they

reside. Our analysis will impose global force and torque

balance conditions to close our system of equations, as de-

tailed in the subsection ‘‘Calculating s, the energy of attrac-

tion between zippered fibers per unit length,’’ and thus

estimates for the interfiber attraction,s,may thenbe calculated.

The Results section presents the results of calculations

using the analysis of section 3, when applied to our data of

a system of mechanically constrained sickle hemoglobin

fibers. Confidence intervals for the fibers’ rigidities and the

estimate of the interfiber attraction, s, are given.

The Discussion section discusses the results, and their

implications for sickle hemoglobin gels. A comparison is

made between this experimentally derived estimate of the

interfiber attraction and models for physical interactions due

to depletion and Van der Waals attractions, renormalized by

thermal fluctuations (Jones et al., 2003).

MATERIALS AND METHODS

Hemoglobin S was purified chromatographically on DE-52, deoxygenated

with sodium dithionite in an anaerobic atmosphere and sealed into slides, all

near 4�C, as previously described (Briehl and Guzman, 1994). Optical

pathlengths were;10 mm. Fiber and gel formation was then induced, under

microscopic observation, by warming to;24�C. Studies were done in 0.1 M
potassium phosphate, pH 7.2, using 3.2 mM hemoglobin (20.6 gm/dl).

Observations were made by video enhanced differential interference contrast

(DIC) microscopy using a Zeiss Axioplan microscope with a 1003 plan-

neofluar oil objective. Images were obtained with a Hamamatsu Newvicon

FIGURE 1 A snapshot of the system obtained usingDICmicroscopy. Two

fibers are observed to merge. The zippered, or adhered, portion of the two

fibers forms the stem of the Y shape, on the right, and is referred to as the

(composite) third fiber. The distant contacts between these fibers and the gel/

network in which they reside, and that stabilize this shape, are not imaged

here.

FIGURE 2 A sketch outlining the basic principle of our analysis. At

equilibrium variation of the stored mechanical energy in the fibers balances

the variation of interfiber attraction with respect to change in the length of

the zippered ‘‘stem’’ (a force balance condition). The inset box indicates

how zippering proceeds and results in bending of the fibers. The more rigid,

and more tense, the fibers are, the less they will adhere.

2434 Jones et al.

Biophysical Journal 88(4) 2433–2441



camera and recorded with a Panasonic super VHS video cassette recorder.

Under DIC observation 20-nm diameter single HbS fibers, which cannot be

seen by bright field microscopy, appear;20 times wider than actual size, so

that diameters and hence sizes of fibers cannot be ascertained by direct

observation.

QUANTITATIVE ANALYSIS

The aim of this analysis is to calculate the attraction between

the fibers per unit length, s (or equivalently the mechanical

energy derivative with respect to the adjacent length of the

fibers). In doing so, we also estimate the rigidities of the fibers.

The analysis is broken down into the following subsections:

1. Hamiltonians for the mechanical energy in the fibers are

introduced and related to the interfiber attraction, s.

2. A variational minimization of the Hamiltonian is per-

formed to calculate the shapes of the fibers at mechanical

equilibrium. Alternative choices of boundary conditions

are justified.

3. An analysis of thermal fiber fluctuations is performed to

estimate fiber rigidities.

4. Finally global force and torque balance conditions are

applied to the system to obtain a closed system of equations

and therefore to calculate the contribution of the zippered

portion of the fibers to the interfiber attraction.

Fiber Hamiltonians

Referring to Figs. 1 and 2 we see that we may consider the

system as being composed of three fiber branches, each

representing one arm of a Y shape and joined at the zippering

point (defined to be the origin). We label the free arm of the

upper fiber as fiber 1, the free arm of the lower fiber as fiber

2, and the zippered portion of the fibers to be the composite

fiber 3.

Referring again to Fig. 2, the energy of this mechanically

constrained system can be expressed as

E ¼ L3s1 +
3

p¼1

HpfL3g; (1)

where L3 is the length of the zippered ‘‘stem’’ of the fibers at

mechanical equilibrium. The term, s, is the attraction per

unit of zippered length that holds the fibers together, whereas

each Hp is the mechanical energy stored in each fiber.

Zippering will cease when there is an energy minimum

with respect to the zippered distance, ðdE=dL3Þ ¼ 0, and

hence the interfiber attraction can be expressed as

s ¼ � +
3

p¼1

dHp

dL3

: (2)

The terms Hp above are Hamiltonians for the energy

stored in each of the fibers. To calculate s we must adopt

forms of Hp that express the fibers’ mechanical energy in

terms of their shape. To do this we describe the shape of each

of these fibers in the focal plane by a function up(x) (with p 2
f1, 2, 3g), which measures the displacement of the fiber at x
from the x axis (see Fig. 4). This x axis is chosen to pass

through the zippering point so that the gradients are zero

(u9p(x) ¼ 0) at the zippering point. Here, and in what follows

a prime (9) denotes differentiation with respect to x.
The Hamiltonian that describes the fiber energy must

include the contributions associated with bending and tension

of the fibers. These terms are included as the leading terms of

a truncating expansion of those powers of derivatives of the

fiber shape that do not vanish due to symmetry considerations.

Thus, we implicitly use a small gradient approximation for

ourmodel Hamiltonians that is consistent with the structure of

Fig. 2. In this scheme ðk=2Þu$2
p is the bending energy of a fiber

per unit length and ðg=2Þu92p gives the corresponding contri-

bution due to the action of tension. Both the terms act to raise

the energy if the fiber is not straight. Here the parameter, g, is

the tension acting along the fibers, and k is the fiber rigidity,

which is related to the persistence length lp of the fiber by

k ¼ kBTlp.
In addition to the terms representing the energy cost of

bending and tension in the fibers, the boundary conditions

acting upon the fibers must be incorporated into our model.

This is because if the fiber ends were free then both the state of

minimum mechanical energy and maximum attractive in-

teraction would correspond to fully zipped, parallel fibers

collinear with the x axis (say). Formally there are a number of

equivalent ways to incorporate the boundary conditions. One

way is to specify the gradient fp and displacement Dp of the

fibers at x ¼ L, where L is chosen to be near the edge of the

microscopic field. Alternatively, wemay employ the Lagrange

multipliers m and l for the effective forces and torques, re-

spectively, that act on the fibers to maintain the observed fiber

shape. To obtain closure for our equations, we must use both

sets of boundary conditions, as explained in the following

subsection.

Dropping the p index for the fibers for notational

simplicity, we employ the following expression for the

Hamiltonian yielding the total energy of each fiber

H ¼ HA 1HB: (3)

Here

HAðuÞ ¼
Z L

0

k

2
u$ðxÞ2 1 g

2
u9ðxÞ2dx (4)

¼ k

2

Z L

0

u$ðxÞ2 1 k
2
u9ðxÞ2dx; (5)

where k is defined to be

k ¼
ffiffiffiffiffiffiffiffi
g=k

p
; (6)

and the boundary conditions are specified in

HBðuÞ ¼
Z L

0

lu$ðxÞ1mu9ðxÞdx ¼ lf1mD; (7)
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where l and m are Lagrange multipliers for the torque and

force acting on the fiber at x ¼ L.

Variational minimization of the Hamiltonian to find
the equilibrium fiber shape

A variational minimization of the above Hamiltonians was

performed (as detailed in Appendix A), to calculate the shape

of the fibers in mechanical equilibrium (without fluctua-

tions).

For fibers 1 and 2, which are clearly visible at x ¼ L, we
can measure the boundary conditions u0(x ¼ L) ¼ D and u90
(x¼ L)¼ f from our data. These are then used to express the

fiber shapes in the form u0(x, k, L, D, f) as

It is useful to note that this form of u0(x, k, L, D, f) does
not depend explicitly on the fiber rigidity k. Hence the

variables k, L, D, f can be obtained by a simple least-squares

fit to the above equation for the fiber shape(s), as detailed in

Appendix C.

However, from our microscopic data we are not able to

clearly see the end of composite fiber 3. It is for this reason

that the following expression must also be derived for the

fiber shape u0(x, k, L, l, m, k) in terms of Lagrange multi-

pliers l and m for the torque and force acting at x ¼ L;

Hence the shape of composite fiber 3 must here be estab-

lished using a force and torque balance analysis, rather than

from direct measurement from the data.

For fibers 1 and 2, these Lagrange multipliers can be

related to the measured quantities u0(x ¼ L) ¼ D and

u90(x ¼ L) ¼ f by

m0 ¼ kuð3Þ
0 ðLÞ � gu90ðLÞ (10)

l0 ¼ �ku$0ðLÞ: (11)

The mathematical equivalence of the two alternate forms

for u0, Eqs. 8 and 9 can be derived using Eqs. 10 and 11.

Evaluating rigidities and persistence lengths
from fluctuations of the fibers

We next wish to relate thermal fiber fluctuations to the fiber

rigidity(s). Variational minimization of our model Hamil-

tonians, as described above, indicates that when Eqs. 10 and

11 are satisfied then for small fluctuations du about an equi-

librium fiber shape u0, the terms in the Hamiltonian involv-

ing u0 and du decouple and can therefore be considered

separately. Hence

Hðu0 1 duÞ � Hðu0Þ ¼ HAðduÞ1Oðdu4Þ; (12)

where the O(du4) term can be neglected for small

fluctuations. This result is completely natural: one should

expect a harmonic (Hookian) response for small fluctuations.

The principle of equipartition of energy is then applied (for

details see Appendix B), to obtain the following

ÆduðxiÞduðxjÞæ ¼
2 kBT

pk

Z N

0

ð1� cos qxiÞð1� cos qxjÞ
q
2ðq2

1 k
2Þ

dq;

(13)

where q ¼ ðnp=LÞ. This equation represents the thermal

contribution to the covariance of deviations of points on

the fiber from their average positions at the points xi and xj
on [0, L] provided that the fiber is cross-linked into the

network at a distance L far larger than L from the imaged

portion.

The values of the fiber rigidities extracted by this method,

are described in Appendix C where they are found to be close

to the estimated rigidity of single hemoglobin fibers (k¼ 130

kBT mm).

FIGURE 3 This sketch shows how the x axis is defined so as to pass

tangentially through the point at which adjacent fibers part from each other.

This point is referred to as the ‘‘zip’’ point. The thick dashed lines represent

fiber that is not in the focal plane and indicate that the system is constrained

by boundary conditions that lie outside of the field of visualization of the

data. The narrow dashed lines indicate positions where the fiber displace-

ments were measured, see Table 1.

u0ðxÞ ¼ ½2 ekL1 kx
kD1 e

kL ð�11 e
kL � e

kL1 kx
1 e

kL1 kx
kxÞðkD� fÞ1 e

kL
kfðL� 2 e

kx
L1 e

2kx
L1 2 e

kx
xÞ

1 e
kxðekx � e

kL1 kx � kx � 1ÞðkD1fÞ�=ðekxð�11 e
kLÞkð2� 2 e

kL
1 kL1 e

kL
kLÞÞ: (8)

u0ðxÞ ¼
ðmðekx � kx � 11 ð1� kx � e�kxÞe2kLÞ � lkekLð21 e�kx

1 ekxÞÞ
kk

3ðe2kL 1 1Þ
: (9)
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Calculating s, the energy of attraction between
zippered fibers per unit length

In the ‘‘Fibers Hamiltonians’’ subsection we saw how the

interfiber attraction, s, can be related to the chosen

Hamiltonians at a point of equilibrium with respect to the

adjacent length of fibers L3 by Eq. 2;

s ¼ � +
3

p¼1

dHp

dL3

:

The corresponding fiber shapes at this equilibrium have

the form u0, as mentioned in Appendix A. To establish the

contribution to the above expression from the composite

third fiber, it is necessary to use the form for u0 for this fiber
that involves the Lagrange multipliers for the forces and

torques (rather than measured displacement and gradient),

which are calculated using the following force and torque

balance equations for the system. This is necessary because

for the particular microscopic data we are analyzing, the

composite third fiber is not clearly visible (and in general

fiber 3 will exhibit the smallest displacement and so its shape

will anyway have the worst signal/noise properties). Fig. 4

illustrates the forces Fp and torques tp acting on each fiber at

x ¼ L. Force balance yields two conditions from the vector

identity

+
3

p¼1

Fp ¼ 0; (14)

whereas torque balance is a scalar identity

+
3

p¼1

Rp 3Fp 1 tp ¼ 0: (15)

We also adopt the approximation

g ¼ Fx; (16)

which is valid provided u0 everywhere has a small gradient.

Calculation of ðdHp=dL3Þ using the form u0(x, k, L, l, m,
k) gives the result

dHp

dL3

¼ ðk lsechðkLÞ1m tanhðkLÞÞ2

2kk
2 ; (17)

where l and m must be calculated from k, D, f, k using Eqs.
10 and 11 for fibers 1 and 2, whereas for the composite fiber

3, l, and m are calculated from force and torque balance as

follows.

The following sign convention is employed for the

Lagrange multipliers

t ¼ �l;Fy ¼ �m; (18)

and the linear small gradient approximation 16 allows us to

write Eqs. 14 and 15 as

+
3

p¼1

mp ¼ 0 (19)

l3 ¼ � +
2

p¼1

Lpmp 1 gpDp 1 lp; (20)

if we choose L3 ¼ 0.

From Eq. 17 for ðdHp=dL3Þ, we see that L3 ¼ 0 then

simplifies the equation to

dH3

dL3

¼ l
2

3

2k3

: (21)

Then s ¼ �+3

p¼1
ðdHp=dL3Þ from Eq. 2.

To calculate k3, the rigidity of the composite third fiber,

we use two models that are bounds for its value. One cor-

responds physically to a case where zippered fibers may be

able to smoothly slide past each other so that the rigidities

sum

k3 ¼ k1 1 k2; (22)

and would correspond to an upper bound for k3.

An upper bound for k3 can be specified by the model

k3 ¼ k
1=2

1 1 k
1=2

2

� �2

; (23)

which would physically correspond to the case where the

composite fiber formed a cylinder with a cross-sectional area

equal to the sum of the cross-sectional areas of fibers 1 and 2,

also modeled as cylinders.

RESULTS

As outlined in Appendix C, the confidence intervals for the

rigidities of fibers 1 and 2 are

k1 2 ½4:633 10
�25

Jm; 18:23 10
�25

Jm� (24)

k2 2 ½2:813 10
�25

Jm; 11:03 10
�25

Jm� (25)

which correspond (using k ¼ kBTlp) to the fiber persistence

lengths

l1 2 ½115mm; 455mm� (26)

l2 2 ½70mm; 274mm�: (27)

FIGURE 4 Sketch of the forces and torques acting on the fibers. At

equilibrium the two components of force and the (scalar) force moment must

balance.
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This is entirely consistent with the hypothesis that our

system is composed of HbS single fibers, based on literature

values for their persistence lengths (Wang et al., 2002),

(M. S. Turner, unpublished data).

The confidence interval for the interfiber attractive energy

per unit length, s is

s 2 ½�16 kBT=mm;�0:7 kBT=mm� with a mid-value of

;� 8 kBT=mm; (28)

using the model Eq. 22 for the rigidity k3 of the composite

third fiber, whereas using the model Eq. 23 for k3 gives

s 2 ½�12 kBT=mm;�0:7 kBT=mm� (29)

If we assume that our system is composed of single HbS

fibers (as is consistent with the fiber persistence lengths Eqs.

26 and 27), then the above ranges for s become respectively

s 2 ½�6:8 kBT=mm;�1:1 kBT=mm� with a mid-value of

;� 4 kBT=mm; (30)

when the model Eq. 22 is employed for k3, and

s 2 ½�5:5 kBT=mm;�1:0 kBT=mm�; (31)

when Eq. 23 is used for k3.

These estimates of s can be used to calculate the strength

of attraction between crossed fibers. The energy of attraction

will be E¼ sd, where d is the typical lengthscale over which
the attraction acts between the fibers, for which we use the

fiber diameter of 21 nm. This would give E; 0.1 kBT, much

less than the characteristic energy scale kBT in this system.

Therefore, we can see that the estimate of our lateral attrac-

tion s that we have calculated is not sufficient to explain

cross-links between sickle hemoglobin fibers. There must,

therefore, be another mechanism responsible for cross-links

of the fibers.

DISCUSSION

This study represents the first measurement of interfiber

force between protein filaments of which we are aware. It has

potential applications to systems containing other biological

fibers, such as actin or amyloid filaments, provided only that

they attract laterally (i.e., zip together).

In the case of sickle cell anemia, it is the physical properties

of the intracellular sickle cell hemoglobin (HbS) gel that are

the cause of the main pathology to the function of red blood

cells. To relate these properties of the gel to its fibrillar

microstructure, it is necessary to understand the mechanism

that stabilizes the various structures encountered at this

lengthscale. Because the HbS single fiber that is so ubiquitous

in HbS gels has a well-defined structure, and is known to

bundle into macrofibers, a calculation of the attraction s be-

tween single fibers provides a very useful parameter for

understanding these gels. Indeed, the estimates of the rigidity

that we extract are consistent with the fibers under scrutiny

themselves being single fibers.

As illustrated in Fig. 5, our estimates for s (28, 29, 30, and

31) give us information that may help in understanding

a number of properties of the gel as follows:

It directly quantifies the magnitude of this lateral attraction

in stabilizing the networks of fibers. As calculated in the

Results section, our estimate of the interfiber attraction is

insufficient to explain observed cross-linking of fibers, and

therefore this phenomenon must be due to a separate mech-

anism. Nevertheless, the lateral attraction s that we calculate

may still play a significant role in stabilizing the gel micro-

structure. It would be important in any future model or

computer simulation of the fiber networks that compose the

gel within a red blood cell.

The estimates of s also give us information on the binding

energy between bundles of single sickle hemoglobin fibers

that make up the more rigid macrofibers in the gel.

Estimates of s can additionally be related to the surface

energy of sickle hemoglobin as would be important in ther-

modynamic models (see, e.g., Turner et al., 2003).

Furthermore, our estimates of the rigidities of the fibers

(24, 25) can be exploited as a novel way of identifying the

type of fiber under observation, despite the limitations of the

resolution of the microscopic data. In this case the rigidities

estimated are consistent with literature values for single

sickle hemoglobin fibers (Wang et al., 2002).

The above confidence intervals for s indicate that the

interfiber attraction is chemically weak but sufficient to over-

come entropic effects and therefore are able to stabilize

bundles of sickle hemoglobin single fibers, as discussed

elsewhere (Jones et al., 2003).

There exists previous work in which depletion and Van der

Waals interactions between pairs of hemoglobin fibers were

estimated (Jones et al., 2003). The estimate for the interfiber

attraction, including effects due to the helical geometry of the

fibers and due to thermal bending fiber fluctuations where

a hydration layer was introduced as an (arbitrary) 5-Å mini-

mum fiber separation is

FIGURE 5 Diagrammatic summary of the various physical properties

controlled by interfiber attraction (s), which is related to the surface energy

of the fiber. Sketch 1 represents a network of sickle hemoglobin fibers,

bound together by interfiber forces. Sketch 2 represents a bundle of HbS

fibers that is also stabilized by interfiber forces. Sketch 3 represents the fact

that the interfiber forces can be related to the surface energy of a fiber, which

is necessary to determine a thermodynamic model of the fibers (e.g., Turner

et al., 2003).
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smodel � �20 kBT=mm ¼ �93 10
�14

J=m:

As a result of the semiqualitative nature of these

theoretical estimates, this number should be regarded as

encouragingly close to the improved experimental result

described in this study (28, 29, 30, and 31).

It is also worth noting that we have assumed that there is

little aggregation of the monomers, apart from those fibers

under scrutiny. If there was a significant reduction in the

monomer concentration due to aggregation into structures of

size intermediate between monomers and single fibers, this

would lower the osmotic pressure of HbS in the solution, and

reduce the depletion attraction between the fibers. A reduction

of the attractive force between fibers would also result from

any weak attraction that may exist between monomeric HbS

and the fibers.

The analysis of frustrated systems of sickle hemoglobin

fibers presented here indicates that depletion forces, as well

as Van der Waals forces, may play a significant role in the

mechanism of fiber zippering.

APPENDIX A: VARIATIONAL MINIMIZATION OF
HAMILTONIANS TO FIND EQUILIBRIUM FIBER
SHAPE U0

The mechanical equilibrium shape of the fibers will be that which minimizes

the fibers’ respective HamiltoniansH (in the absence of thermal fluctuations).

In this way we determine the equilibrium fiber shape u0 using variational

minimization to the integral Eq. 3. This is consistent with the treatment given

in, e.g., Landau and Lifshitz (1986).

Consider the fiber shape u(x) ¼ u0(x) 1 du(x) where du(x) is a small

deviation (fluctuation) about the equilibrium fiber shape, u0(x). Then we

have that

Hðu0 1 duÞ � Hðu0Þ ¼ HAðduÞ1HBðduÞ1 f ðu0; duÞ;
(32)

where the functional f(u0, du) includes only cross terms linear in both u0 and

du. Performing a variational minimization of Eq. 32 using the boundary

conditions du(0) ¼ 0, and du9(0) ¼ 0 while neglecting terms quadratic in du

gives a fourth-order ordinary differential equation in x for the fiber shape. It

also relates the Lagrange multipliers m and l for the effective forces and

torques acting at x ¼ L to the equilibrium fiber shape u0. Our ordinary

differential equation for the fiber shape is

k
2
u$0 � u

ð4Þ
0 ¼ 0 " x 2 ½0; L� (33)

m0 ¼ ku
ð3Þ
0 ðLÞ � gu90ðLÞ (34)

l0 ¼ �ku$0 ðLÞ; (35)

where a new characteristic inverse length k appears defined by

k ¼
ffiffiffiffiffiffiffiffi
g=k

p
: (36)

The boundary conditions u0(0)¼ 0, and u90(0)¼ 0 at the zip point are used to

determine u0. These boundary conditions, together with the boundary con-

ditions Eqs. 34 and 35 (for the Lagrangemultipliers for the effective force and

torque at x ¼ L), yield the following solution to Eq. 33 for the average fiber

shape of the form u0(x, k, L, l, m, k) given in Eq. 9

Some of the utility of this form lies in the fact that the displacement of the

zippered part of the system (composite fiber 3) was not clearly observed in

our experimental procedure (in general, fiber 3 will exhibit the smallest

displacement and its shape will anyway have the worst signal/noise pro-

perties). Hence, the shape of composite fiber 3 must here be established

using a force and torque balance analysis, rather than from direct measure-

ment from the data.

If instead of solving Eq. 33 using the boundary conditions Eqs. 34

and 35, we use the (measured) boundary conditions u0(x ¼ L) ¼ D and

u90(x ¼ L) ¼ f then we obtain u0(x, k, L, D, f) given by Eq. 8, which does

not depend explicitly on the fiber rigidity k. Hence the variables k, L, D, f

can be obtained by a simple least-squares fit to the above equation for the

fiber shape(s), as detailed in Appendix C.

APPENDIX B: CORRELATION FUNCTIONS IN
FOURIER SPACE

Initially it may seem that the way to proceed in analyzing the statistical

mechanics of fiber fluctuations would be to consider the HamiltonianHA(du)

as defined in Eq. 4, where the range of the integration is over [0, L]. In fact

this is not possible because our analysis of fluctuations relies on the use of

a Fourier series expansion for the fluctuations in the fiber slope u9, to exploit
the orthogonality of its Fourier amplitudes. There is no such choice of

Fourier series for either du or its derivatives that satisfies the boundary

conditions du(x ¼ 0) ¼ du9(x ¼ 0) ¼ 0 but du(x ¼ L) and du9(x ¼ L)

unspecified and with uncorrelated Fourier coefficients.

We, therefore, specify our Hamiltonian over the much larger, but still

finite, domain x 2 [0, L] on which an orthogonal Fourier series can be

chosen that does not explicitly violate our boundary conditions for du at

x ¼ L. If L is far enough away from L then choosing a Fourier series that

constrains the gradient du9(x ¼ L) will have a negligible effect on the fiber

shape at x ¼ L. We therefore define

HðduÞ ¼
Z L

0

k

2
ðdu$Þ2 1 g

2
ðdu9Þ2dx; (37)

as our Hamiltonian for the fiber fluctuations. Because Eq. 37 only contains

derivatives of du we define

duðxÞ ¼
Z x

0

wðxÞdx: (38)

We consider w(x) as being odd on the extended domain [�L, L] so that w(x)

may be expressed as a Fourier sine series, which ensures w(0) ¼ 0, con-

sistent with our assumed boundary conditions for du9 at x ¼ 0.

Because the set fsinðrpx=LÞ : r 2 Ng is orthogonal on [0, L] then the

Fourier series

wðxÞ ¼ +
N

r¼1

wr sin
rpx

L
; (39)

can be substituted into the Hamiltonian Eq. 37. Exploiting these orthog-

onality properties allows the Hamiltonian to be expressed in a form quadratic

in the Fourier coefficients, wr.

H ¼ +
N

r¼1

arw
2

r ; (40)

where ar ¼ ðL=4Þðkðrp=LÞ21gÞ. We now wish to calculate the ensemble

average of the quantity wnwm, which is the product of two of the Fourier

modes in the series for w(x). This is given by

Æwnwmæ ¼
1

Z

Z N

�N

wnwm expð�bHÞ
YN
r¼1

dwr; (41)

where b ¼ ð1=kBTÞ and Z is the partition function,
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Z ¼
Z N

�N

expð�bHÞ
YN
r¼1

dwr: (42)

Because the exponential term in both Eqs. 41 and 42 may be writtenQN
r¼1 expð�barw

2
r Þ, we can factorize Æwnwmæ and divide out all terms for

which r 6¼ n, m. Thus

Æwnwmæ ¼
RN

�N
wnwm expð�bðanw

2

n 1 amw
2

mÞÞdwndwmRN

�N
expð�bðanw

2

n 1 amw
2

mÞÞdwndwm

:

(43)

If n 6¼ m further factorization is possible, which gives a zero ensemble

average by symmetry. If, however, n ¼ m, then as usual we have

Æw2

næ ¼
RN

�N
w

2

n expð�banw
2

nÞdwnRN

�N
expð�banw

2

nÞdwn

¼ 1

2ban

:

Thus

Æw2

næ ¼
2kBTL

kðn2
p

2
1 k

2
L

2Þ
: (44)

Using the result that Æwnwmæ ¼ 0 for n 6¼ m and the definition Eq. 38 gives

ÆduðxiÞduðxjÞæ ¼ L
2 +

N

n¼1

Æw2

næ
n
2
p

2 1� cos
npxi
L

� �
1� cos

npxj
L

� �
;

(45)

where du(xi) and du(xj) are displacements at two points on the same fiber. As

L becomes larger, the above sum will tend to the result Eq. 13.

APPENDIX C: ANALYSIS OF THE DATA

Fitting the parameters D, f, k to the data

The parameters D, f and k were fitted to fibers 1 and 2 using measurements

taken from the data. (This procedure could not be carried out for the

composite third fiber because it was not clearly visible, and so a force and

torque balance analysis was applied to the system instead to calculate the

mechanical contribution of the third fiber to the interfiber attraction s.)

Twelve images from the video data were selected for the analysis on the

grounds of clearly showing a sufficiently large enough region of the system,

and also being separated by sufficient time intervals (.1 s) for the

fluctuations to be temporally uncorrelated.

For each of these 12 images an x axis was chosen so as to pass through the

zip point, tangentially to the fibers, consistent with the assumed boundary

conditions u0(x ¼ 0) ¼ u90(x ¼ 0) ¼ 0. Next the perpendicular distances yi
of the fiber from the x axis are measured at six equally spaced points for x 2
[0, L] (Fig. 3), the last of these points being at x ¼ L. This allows us to

specify D and f for each fiber. We then perform a least-squares fit of the

model fiber shape to the yi using the form u0 ¼ u0(x, k, L, D, f) to fit a value

of k to each fiber in each image.

This procedure gives for each of the twelve images, a set fD,f, kg, where
each k extracted corresponds to a tension g¼ k2k. The resulting values of the

parameters fD, f, kg are displayed in Table 1.

If we assume that these variables are Gaussian distributed, then 95%

Student’s t-test confidence intervals for the values of these variables are

D1 2 ½3:25mm; 3:88mm�

f1 2 ½0:36; 0:45�

k1 2 ½0:0029mm�1
; 0:24mm

�1�

D2 2 ½�4:17mm; �3:48mm�

f2 2 ½�0:48; �0:41�

k2 2 ½0:29mm�1
; 0:53mm

�1�

Establishing confidence intervals for the fiber
rigidities; multivariate Gaussian distribution

By considering the form of the ensemble average and examining the form of

the Hamiltonian H(du) Eq. 37, it can be seen that the measurements yi have

a multivariate (i.e. correlated) Gaussian distribution. The probability density

function of this distribution is Cowan (1998)

fðdu;VÞ5 1

ð2pÞN=2 jVj1=2
expð21

2
ZÞ; (46)

where

Z5du
T
V

21
du; (47)

is a quantity that has a x-squared statistical distribution (Cowan, 1998). Here

N is the number of data points (in this case 6), and du is a vector of the fiber

fluctuationmeasured at six points xi, defined by dui5 yi(xi)2u0(xi, k,L,D,f).

The covariance matrix V is defined by

½V�i;j5Covðyi; yjÞ5ÆduðxiÞduðxjÞæ1mdij; (48)

TABLE 1 Fitted values of k, D, f to each image for fibers 1 and 2

Image Time (s) k1 (mm
�1) D1 (mm) f1 k2 (mm

�1) D2 (mm) f2

1 00:28:30:37 �0.167 3.97 0.55 0.741 �3.86 �0.40

2 00:28:31:04 0.102 3.44 0.40 0.396 �4.38 �0.50

3 00:28:32:14 0.255 4.28 0.45 0.284 �3.76 �0.45

4 00:28:32:94 0.123 3.97 0.50 0.740 �3.76 �0.45

5 00:28:34:28 �0.128 4.17 0.45 0.313 �2.92 �0.35

6 00:28:39:68 �0.143 3.55 0.40 0.429 �3.34 �0.40

7 00:28:41:58 0.165 3.97 0.40 0.277 �2.92 �0.40

8 00:28:42:12 0.419 3.13 0.30 0.588 �4.38 �0.50

9 00:28:42:85 0.103 2.82 0.35 0.282 �4.49 �0.50

10 00:28:44:08 0.281 3.23 0.30 0.462 �3.76 �0.40

11 00:28:44:75 0.145 3.03 0.35 0.286 �4.07 �0.50

12 00:28:45:35 0.302 3.23 0.40 0.137 �4.28 �0.50
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where ÆduðxiÞduðxjÞæ is the covariance of thermal fiber fluctuations as defined

in Eq. 13. The quantity mdij represents the noise arising from the error of

measurement, which only contributes to diagonal elements of the covariance

matrixV. The greatest accuracy that ourmethod ofmeasurement of yi gives us
is650 nm. If themeasurement is uniformlydistributed in this interval, then its

variance is (29 nm)2. This is the value we use for m in the above equation.

So for each fiber in each image we calculate the statistic

Zj5duðk;D;fÞTVðk; kÞ21
duðk;D;fÞ: (49)

Because the previous subsection of this appendix fitted values for the

parameters fD, f, kg as shown in Table 1 then the only unknown parameter

in Eq. 13 is therefore k. To establish a meaningful confidence interval for k

we need to consider the statistics of all of the images together. This is

achieved by taking the sum of the x-squared variables over all of the images.

Ztot5+
12

j51

Z j: (50)

We utilize the fact that the sum of independent x-squared variables is also

a x-squared variable, which is justified because fiber fluctuations in different

data images are independent, although they share the same distribution, which

depends on the underlying values of the parameters fk, k, D, fg.
This has a x-squared distribution, and because there are 72 measure-

ments, but three fitted parameters fk, D, fg we construct a 95% confidence

interval for k by comparing Ztot to a x-squared distribution on 69 degrees of
freedom.

The values of fk, D, fg that are used are taken from the confidence

intervals of the previous subsection. The calculation of Ztot Eq. 50 is repeated

for each combination of the bounds of these confidence intervals. It is in this

way that uncertainty in the values of fk, D, fg is incorporated into our

confidence interval for k. Because this generates a slightly different

confidence interval for each repetition, the maximum and minimum values

of these confidence intervals are taken as bounds for k, which are

k1 2 ½4:63310
225

Jm; 18:2310
225

Jm�
k2 2 ½2:81310

225
Jm; 11:0310

225
Jm�

The corresponding persistence lengths of the fibers from k 5 kBTlp are

l1 2 ½115mm; 455mm�
l2 2 ½70mm; 274mm�

This is entirely consistent with the hypothesis that our system is

composed of HbS single fibers, based on literature values for their

persistence lengths.

Modeling the forces that act on a frustrated
system of fibers; the small gradient (small
curvature) approximation

Given the confidence interval for k for each fiber, based on an analysis of all

of the images together, and for each fiber in each image we now have fitted

values for fk, D, fg. These are now used to generate values for s to establish

its bounds.

Given that for each fiber, there is a confidence interval of the form k 2 [k

min, kmax ], each one of these bounds in turn is used to calculate values of l

and m using Eqs. 10 and 11, and the set of values of fk, D, fg that were fitted

to each fiber in each image. Therefore, for each bound for k, a set fk, l, mg is
generated for each fiber in each image. Equations 19 and 20 are then applied

where g 5 kk2 to calculate l and m for the composite third fiber, which has

L3 [ 0 and k3 given in Eqs. 22 and 23. Then the contribution to s from each

fiber was evaluated using Eqs. 17 and 21, for each of the bounds of k 2
[kmin, kmax]. The interfiber attraction s is then the sum of these

contributions.

Of all of the values of s generated by the above procedure, the upper and

lower bounds are taken, giving the following bounds for our attraction, s

when we use a model Eq. 22 for k3.

s 2 ½216 kBT=mm;20:7 kBT=mm�; (51)

whereas using the model Eq. 23 for k3 gives

s 2 ½212 kBT=mm;20:7 kBT=mm�: (52)

If we assume that the persistence length of the fibers analyzed is 130 mm,

then the corresponding ranges for s are

s 2 ½6:8 kBT=mm;21:1 kBT=mm�; (53)

when model Eq. 22 is employed for k3, and

s 2 ½25:5 kBT=mm;21:0 kBT=mm�; (54)

when Eq. 23 is used for k3.
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