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Twisted Protein Aggregates and Disease: The Stability of Sickle Hemoglobin Fibers
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We describe how twist could play an essential role in stabilizing 20 nm diameter sickle hemoglobin
fibers. Our theory successfully reproduces the observed variation of helical pitch length with fiber
diameter. With no remaining adjustable parameters it also yields a prediction for the torsional rigidity of
sickle hemoglobin fibers that is in good agreement with experiment and hence retains the striking
feature that such fibers can be highly mechanically anisotropic, even with a ratio of bending to torsional
rigidity of about 50. We discuss how our study might be relevant to the development of treatment

strategies.
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Twisted protein aggregates such as amyloid fibrils and
sickle hemoglobin fibers are now implicated in diseases
from Alzheimer’s to sickle cell disease. In this Letter we
argue that the twisted nature of the fibrils is an important
feature in their (mis)design. We demonstrate how twist
effects may be fundamentally responsible for the meta-
stability, and hence proliferation of, pathological sickle
cell fibers.

Sickle cell hemoglobin (HbS) possesses a single muta-
tion at the 86 site (glu — val) leading to the polymeriza-
tion of its deoxy form into long fibers. The rigidification
of red blood cells that results is the primary cause of
sickle cell disease. It is now known that double strands of
hemoglobin molecules, thermodynamically stabilized by
intermolecular bonding associated with the (6 site, are
the fundamental building blocks of all known higher
sickle hemoglobin aggregates [1-5]. Fibers consisting of
seven double strands twisted about a common axis are
often observed, growing to indefinite lengths. These have
an average radius of approximately 11 nm and a mean
helical pitch length of approximately 270 nm, here de-
fined to be the length over which the fiber twists through
half a revolution, 180°. We refer to these structures alone
as fibers in what follows.

Other sickle hemoglobin aggregates are also known to
occur, including macrofibers [6—9]. These helical aggre-
gates contain from 20 to 200 or more double strands. The
narrowest macrofibers have pitch lengths that convinc-
ingly extrapolate down to the pitch length of a single
(sevenfold) fiber while the thicker macrofibers have sig-
nificantly longer pitch lengths, up to 2 wm or more. In
this case the constituent double strands are significantly
less twisted; see Fig. 1. A macrofiber with an infinite pitch
length would be a bulk crystal made up of untwisted
double strands. In what follows we refer to this simply
as the crystal state. The crystal has been reported to be
the thermodynamic equilibrium state [7,10—12].
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We now proceed to construct a theoretical model for
the thermodynamic stability (free energy) and equilib-
rium pitch length of fibers and macrofibers. A somewhat
similar treatment has been successfully applied to chiral
rodlike molecules [13—15]. We treat both fibers and mac-
rofibers as being comprised of some number of double
strands that are mechanically deformed in a well-defined
(helical) manner. The following simplifying assumptions
are aimed at preserving the essential physics: (i) The
macrofiber is treated as if it had circular cross section,
whereas in practice it is sometimes slightly elliptical.
(i1)) We assume that both fibers and macrofibers have a

FIG. 1. Idealized sketch of a sickle hemoglobin fiber (a)
containing 7 double strands of hemoglobin molecules and a
macrofiber (b) of twice the radius assumed to contain 19 double
strands. Both sketches are to scale for the radii and pitch
lengths (twist) [1,8]. The macrofiber has unwound significantly
with respect to the fiber; its pitch length has roughly doubled.
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pitch length A that is always much greater than its
radius R, as is confirmed by experimental observations
[8]. Thus we throughout neglect contributions to the en-
ergy density that are higher than leading order in R/A.
(ii1) We treat the deformation of the double strands mak-
ing up the macrofiber interior within a continuum theory
for R that does not explicitly restrict the number of double
strands to an integer. Such an approach should be asymp-
totically exact for macrofibers comprised of many indi-
vidual double strands and semiquantitative even when
there are only a few. (iv) Motivated by the fact that axial
strains dominate when the twist is small we model the
lateral intercations between the double strands as a simple
(average) attractive contact energy.

We propose that the distortion energy per unit volume
of macrofiber of radius R and pitch length A is given by

F= Fsurf + Fbe~ (1)

Here F, represents the free energy cost associated with
those hemoglobin surfaces that are on the exterior surface
of the macrofiber and therefore benefit from fewer attrac-
tive (e.g., hydrophobic) interactions with neighboring
molecules than do those in the macrofiber interior. A
fair approximation to this may be obtained by employing
an interfacial energy cost per unit area of external macro-
fiber surface v, leading to a total interfacial energy 27 Ry
per unit length of cylindrical macrofiber and a corre-
sponding energy density

qurf 27/R (2)

which does not depend on the macrofiber pitch length A.
The second term in Eq. (1), Fy., represents the mechani-
cal bending and extensional energy of packing the double
strands into the helical macrofiber. This can be estimated
using simple geometry and continuum mechanics, as we
now describe.

A double strand that is located some radial distance r
from the central symmetry (z) axis of the macrofiber is
subject to both bending strain, being helical, and either
extensional or compressional strain. To see this note that
the outermost double strands, which wrap around the
external surface of the macrofiber, have a longer contour
per unit length of macrofiber than do those near its core.
That all of the strands have the same pitch is seen in ex-
perimental 3D reconstructions of fibers and macrofibers.
Moreover electron density projections of fiber reconstruc-
tions made with the electron density of hemoglobin (from
x-ray crystallography) and the position of the hemoglobin
molecules (from the reconstructions) yield excellent cor-
respondence between the micrographs and the projections
[2,16—18]. Thus we assume that the fibers cannot slide
freely against one another axially and so the outer fibers
are extended and the core ones compressed.

The energy density Fy.,q due to bending of the con-
stituent double strands can be derived by identifying the
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unit vector field t that is locally tangential to the orienta-
tion of the double strands. To leading (ﬁrst) order in r/A
the double strand tangent vector is £ =2 + Omr/A,
where Z, 6, and # are the usual orthogonal unit vectors
in cylindrical coordinates. The local squared bending
curvature is then simply C?> = Zt 4t at the same order
[19]. In order to determine the total bendlng energy den-
sity we need to take an average over the bending energy
of all double strands located throughout the macrofiber
interior. Noting that the magnitude of the curvature C
does not depend on z this energy per unit volume of
aggregate is given by

1 «
Foena = —zﬂ C*dr, (3)
mac 2 r<R

where [,_pd*r = [37d0 [8rdr and the factor 1/(ma®)
accounts for the area density of double strands within the
macrofiber interior with a the effective radius of a double
strand. The parameter k4 is the bending rigidity of a
single double strand. Using the classical result for the
rigidity of a circular cylinder of radius a made up of an
isotropic elastic material with extensional modulus E [19]
we have k4, = mEa*/4. Thus we obtain

Fbend Eal/A4 (4)

with a; = ma*R*/16.

We next calculate F,,, the energy density of extending
or compressing the double strands. With this aim in mind
the length of a helical double strand located at a distance
r from the macrofiber axis (per unit length of macro-
fiber) is L = 1 + 1r%(a/A)? by the Pythagorean theorem.
Thus the average length of the double strands (per unit
length of macrofiber) can be easily shown tobe L = 1 +
1(/A)*R? and the extensional energy follows from in-
tegrating the squared extensional strain [19], o =
L(r) — L at leading order,

E
Fext = _f a-ext(r)zdzr- (5)
2 r<R

Hence
Fext = EaZ/A4 (6)

with @, = 7°R%/96. Thus F,. is merely the sum of the
energies per unit macrofiber length Eqs. (4) and (6),
divided by its area 7R?. Hence Eq. (1) becomes

F =2y/R + Eas/A*, 7

where a3 = 7*(a’*R*/16 + R*/96). The scaling Fy, ~
A~* merely follows the average strain ~A 2, squared.
This result represents the distortion energy of a macro-
fiber of a specified pitch length A and radius R. How-
ever, in the absence of any propensity for the macro-
fibers to be twisted, the minimum of this energy is at
zero twist A~! — 0. This reflects the fact that we have not
yet included the molecular twist that leads to helical
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macrofibers. Since the macrofiber prefers to twist slightly
into long pitch length helices we approximate the free
energy density as

G=F— /A, (8)

which can be thought of as a truncated expansion of the
free energy in powers of the twist A~!'. Here ¢ is a
homogeneous, positive Lagrange multiplier that controls
the pitch length of the helical macrofiber. We propose that
¢ represents a material property of the HbS strands
reflecting the orientation and positions of molecules.
For sufficiently small twists this is a rigorous description
of the resulting twisting forces (torques). The Lagrange
multiplier ¢ will appear as our single fit parameter. We
first test the agreement of our theory with experimental
data for the distribution of macrofiber pitch lengths.
When we later examine how well the theory predicts
the torsional rigidity of a single fiber we will not make
any further adjustments to the fit parameter . We believe
that this represents a fairly stringent test on the accuracy
of our theory.

The equilibrium pitch length, for a given macrofiber
radius, corresponds to the minimum free energy state
96 — (). which is satisfied at

IA
A = A* = (4Ea3 /i)' /3. 9)

This expression can be fitted to the experimental data of
[8], see Fig. 2, where the single best least squares fit
parameter is found to be

y=35%x104Tm>2 (10)

While the agreement shown in Fig. 2 supports our theo-
retical description an additional test is that our model
correctly reproduces the torsional rigidity obtained
from measurements of thermal fluctuations in pitch
length [20]. In the regime of small twist the free energy
of a fiber per unit length is related to the torsional rigidity

c and the overtwist 7(A) = ¥ — & according to [19]
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FIG. 2. Experimental data for the variation of the pitch
length of sickle hemoglobin macrofibers A (nm) with their
radius R (nm) (solid circles) [8] is to be compared with the
theoretical curve given by Eq. (9) as shown. There is a single fit
parameter ¢ = 3.5 X 1074 Jm ™2,

128103-3

G=GMﬂ+%ﬂMWWRH (11)

where the factor 1/7R? converts the energy per unit fiber
length to an energy density. Thus equating the derivative
ng(f of this with the corresponding derivative of Eq. (8) at
A = A*, using Egs. (7) and (9), we obtain the torsional
rigidity of a macrofiber of radius R,

c =3(4Ea3)\PR*Y*3 |, (12)

which defines the torsional persistence length according
tol, = c/kgT.

Thus our theory yields a prediction for the torsional
persistence length of a single fiber in terms of its exten-
sional modulus E via Eq. (12). Using the parameter
values for R = 11 nm, a = 4 nm, £ = 51 MPa [20], and
¢ Eq. (10) this gives

I, =2.5 um, (13)

which is in agreement with the experimental estimate
reported elsewhere [20] to two significant figures. This
level of agreement must be regarded as somewhat fortui-
tous given that our theory neglects corrections of order
R/A = 10%. Nonetheless, the fact that the theoreti-
cal estimate is close to the experimental estimate is a
feature that strongly supports our model. It is particularly
notable that our model reproduces the large observed
material anisotropy so closely with no additional fit pa-
rameters. This anisotropy may be quantified by compar-
ing the /. with the corresponding bending persistence
length [, = 130 wm [20]. For an isotropic material these
should be comparable but for sickle hemoglobin fibers
l./1, = 1/50.

We now examine the free energy density G of a macro-
fiber of radius R by substitution of Eqgs. (7) and (9) into
Eq. (8),

G = 2y/R + 543 ) (283 E\3al/), (14)

where we recall that a; is itself a function of R.

The free energy G is shown in Fig. 3. Broadly speaking
it exhibits the following properties: For large values of
the interfacial energy y = 7 uJm™~? the free energy den-
sity is monotonic decreasing for all radii of interest with a
global minimum at R — oo, which indicates that the
crystal is the most thermodynamically stable state. As
the interfacial energy is reduced y < 6.5 wJm™2 a local
minimum appears in the free energy. For values as small
as y = 6 uJm~2 the global free energy minimum has
shifted to very thin fibers where our continuum theory
becomes less reliable. It is reasonable to expect all aggre-
gation to be strongly suppressed at the smallest values of
v. Thus our theory is able to correctly reproduce the
known global thermodynamic stability of the crystal
and even predicts an energy barrier for transition from
metastable fibers to the crystal. This would contribute to
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FIG. 3. Theoretical prediction for the free energy density G
(Im™3) of a macrofiber of radius R (nm) according to Eq. (14)
with ¢ = 3.5 X 107* Im™2, as determined earlier; see Fig. 2.
Three curves are shown: the lower (small dashes), middle
(solid), and upper (large dashes) lines correspond, respectively,
to fiber-solution interfacial tensions of y = 5, 6, and 7 uJm™2.
The local minimum around R = 11 nm, corresponding to a
single hemoglobin fiber, is clearly visible for vy = 6 uJm™2.
For small interfacial tensions thin macrofibers, with less in-
ternal strain, are stable, while larger interfacial tensions sta-
bilize thicker macrofibers, even at the expense of larger
internal strains.

the observed proliferation and persistence of fibers of this
thickness.

A recent analysis of the attraction between sickle he-
moglobin aggregates, which employs observations of how
they “zipper” together, yields an interaction energy per
unit length of the order of o = 7kzT/um [21]. It was
argued that this is similar to the scale of interactions that
one would expect from van der Waals and colloidal de-
pletion forces, although screened electrostatic repulsion
may also play an important role. An interfacial energy
vy = 6.5 wJm~? would yield an attraction of magnitude o
within a naive contact energy treatment provided the
average width of the effective contact strip between the
two fiber surfaces was of the order of o/2y = 2 nm. This
scale seems quite plausible in view of the structure and
dimensions of the fiber. Thus fiber interfacial energies for
which our theory predicts metastability around R =
10 nm may indeed be physically reasonable.

Our results may give clues for potential therapeutic
treatments given that (i) either a reduction or an increase
in the effective interfacial tension will serve to destabi-
lize fibers. In the case of a reduction in y hemoglobin
molecules become more soluble and destabilize large
aggregates. In the case of an increase in 7y hemoglobin
molecules become less soluble and stabilize both large
macrofibers and the crystal with respect to single fibers.
Since networks of single fibers are thought to drive the
rigidification of red blood cells a mitigation of the pa-
thology might apear in either case. Solvent conditions
including, e.g., salinity, pH, and the concentrations of
both HbS and O, may be expected to affect the parameter
v. (i1) A reduction in the magnitude of the parameter ¢
controlling the inherent propensity to twist will result in
(macro)fibers that are less twisted. This stabilizes thick
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macrofibers and the crystal relative to thinner macro-
fibers and fibers. It also serves to reduce the twist rigidity
¢ ~ ¢*/3 of the macrofibers which would likely enhance
the kinetic rate at which they grow thicker. It may be that
this reduction in ¢ can be acheived via the introduction
of a suitable mutant hemoglobin, selected on the grounds
of it having a crystal structure consistent with less
twisted packings. Ultimately this might lead to gene
therapy strategies using these mutants. It is encouraging
that the destabilization of high aspect ratio fibers could
lead to significant mitigation of the pathology of the
disease, even if the total volume fraction of aggregated
hemoglobin does not decrease appreciably; freely sus-
pended crystals of hemoglobin contribute little to cellular
rigidification.
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