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We study the dynamics of a growing semiflexible fiber approaching a membrane at an angle. At late
times we find three regimes: fiber stalling, when growth stops, runaway, in which the fiber bends away
from the membrane, and another regime in which spicules form. We discuss which regions of the resulting
‘‘phase diagram’’ are explored by (i) single and bundled actin fibers in living cells, (ii) sickle hemoglobin
fibers, and (iii) microtubules inside vesicles. We complement our analysis with 3D stochastic simulations.
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Semiflexible polymer fibers, making up the cytoskele-
ton, interact with fluctating membranes continuously in
living cells [1]. The polymerization of filaments such as
actin, with persistence lengths lp � 10 �m, can deform
the outer plasma membrane of the cell, giving rise to
protrusions that can be sheetlike (lamellipodia) or more
localized (filopodia) [1]. Forces are thought to arise
through polymerization at the fiber tips [2,3]. A similar
mechanism is thought to drive growth of sickle hemoglobin
fibers, [4], as well as microtubules, such as can be grown in
artificial vesicles [5].

While the phenomenon of Euler buckling of a fiber of
fixed length impinging on a solid obstacle at an angle is
well studied [see, e.g., [6] and references therein], the case
in which the elastic fiber is growing, and the obstacle is a
fluctuating membrane, have so far received much less
attention, despite its more direct relevance to biological
systems. Thus here we propose a set of equations of motion
that describe the coupled dynamics of a growing semi-
flexible polymer close to a fluctuating membrane (Fig. 1).
We complement this treatment with full three-dimensional
dynamic Monte Carlo simulations (3DMCS). Our main
focus is on the dynamic regimes attained at late times.
We find that fibers may (i) stall, (ii) run away, i.e., bend
away from the membrane, or (iii) cause the formation of
tubular membrane spicules. What differentiates our ap-
proach from earlier work is the explicit description of the
flexibility of both the membrane and the polymer [3,6–9],
which allows us to include all three fates of the fiber.

The Hamiltonians governing the membrane and the
polymer elasticity, respectively Hm and Hp, are given by:
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where �m and � denote the membrane rigidity and surface
tension, respectively, and are typically �m � 10�19 J and
�� 10�4 J m�2 for biomembranes, u measures the nor-
mal deviation of the membrane from local flatness, which

we take to be the plane z � 0, � � kBTlp 	 lp=� is the
polymer bending rigidity, L is its (instantaneous) length,
and ��s; t� is the angle between the local direction of the
fiber at arc length position s and the plane z � 0 at time t,
see Fig. 1. The probability distribution of the membrane
displacement can be calculated from the conditional parti-
tion function that it is at fixed height zm at one point. This is
here approximated by [10] Zm � exp��Az2

m�, where A �
2���
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, � being the area of the ‘‘frame’’ supporting the

membrane patch under consideration. A measures the
membrane ‘‘softness’’ (A!1 corresponds to a hard wall),
and typically A=�� 10�4 J m�2 [10]. The partition func-
tion Zm can be integrated over all allowed zm to obtain the
entropic normal force acting on the fiber tip. We perform a
saddle point approximation on Hp in Eq. (1), and consider
the adiabatic limit in which, at all t, the fiber is in equilib-
rium. We seek to solve the following coupled equations
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Here kon;off are, respectively, the rates of polymerization

x

z

θ(s)

s
d

∆

FIG. 1 (color online). A growing fiber [of length L�t�] is
incident onto a membrane, anchored to some distant frame.
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and depolymerization at the fiber tip, d and � the initial
and instantaneous distances between the fiber tip and the
membrane frame, � the increase in length upon addition of
a monomer, while f��� is the force exerted by the mem-
brane on the fiber tip [10]. We assume constant rates kon;off

but time varying rates could be included to model, e.g.,
actin concentration fluctuations. The fiber is treated as if
clamped at one end ��s � 0; t� 	 ��s � 0� 	 �0, into the
cytoskeletal mesh, while the end at s � L�t� is free,
�@��s; t�=@s�s�L�t� � 0. Equation (5) has been derived by
assuming that the membrane and the fiber only interact via
excluded volume and that this can be introduced at a single
point (the fiber tip) [10]. This may fail for a highly bent
fiber that often contacts the membrane far from its tip [11].
We solve Eqs. (2)–(4) numerically, via a standard Euler
relaxation algorithm and finite difference discretization.
The solutions for the system of Eqs. (2)–(5) fall into two
classes. The fiber can either (a) grow until it stalls, or
(b) undergo a runaway transition [8]. This is distinct
from buckling, which is a purely equilibrium phenomenon.
The physical parameters determining the system dynamics
are

����
A
p

�, kon=koff ,
��

kBTd2 , and d=�. Equation (2) neglects

fluctuations around the average fiber shape (see below for a
discussion of the effect of these). Throughout we work at
physiological temperature T.

Figure 2 shows a cut of the ‘‘phase diagram’’: for �0 >
�c the fiber stalls, otherwise it is bent away by the mem-
brane. Here �c is established by variation of kon=koff , for
parameters typical of actin fibers in cells (caption).

As the incidence angle approaches the critical threshold
from below, the growth of the fiber is strongly nonlinear at
intermediate times [see Fig. 3(a)]. This is because the
growth rate is reduced by a factor exponential in f���
[see Eq. (2)]. This force bends the tip [Eq. (1)] and as a
result the growth speeds up again, as the factor
sin���L�t�; t�� decreases [Eq. (2)]. Far from the transition
line this behavior is not found and the fiber growth is nearly
linear at all times, see Fig. 3(a).

The physics of the transition between the metastable
stalled and the runaway state is controlled by the tangential

force on the fiber tip ft�L� [Fig. 3(b)]—ft is related to the
normal force in Eq. (5) via a factor sin���L�� to be deter-
mined from Eqs. (2)–(5). If the thermodynamic stall force
fstall � �kBT=�� log�kon=koff� is above the maximum of ft
the fiber runs away; otherwise, it stalls. However, as ft�L�
vanishes for very long fibers, the stalled state is, in fact,
metastable and the fiber may still run away provided it can
‘‘tunnel‘‘ through the free energy barrier present. Using
transition state theory, we can estimate the time required
for such a tunneling event as �� � �0 exp��

RL2
L1
dLft�

where �0 � ms is a typical microscopic relaxation time
and L1 and L2 are given by intercepts of the force curve
with the thermodynamic stall force, see Fig. 3(b). Fig-
ure 3(c) shows a representative plot of �� versus �0,
with actinlike parameters.

Actin fibers in cells can be biochemically capped [1]. If
the tunneling time is > than the inverse capping rate,
typically <1 s, growth will be halted. Tunneling from the
metastable stalled state may thus often be negligible.

While Eqs. (2)–(5) have to be solved numerically, one
can employ a Gaussian approximation for the fiber tip
fluctuations, controlled by Hp in (1), which permits some
analytic analysis and, in particular, yields an explicit for-
mula for ft�L�.

To achieve this, starting from Eq. (1), we adopt a stan-
dard path integral method [10], and compute the first two
moments of the probability distribution for the fiber tip
position
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FIG. 2 (color online). Plot of the critical angle �c (solid line)
below which runaway occurs, as a function of kon=koff , for
actinlike parameters (d � 100 nm, � � 10kBT �m,
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0:8, � � 2:5 nm). (The runaway state on the right comes from
3DMCS with �0 � 45
, kon=koff � 1 and
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� � 0:4.)
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FIG. 3 (color online). For 3 values of �0 (subscript dropped for
readability) we show (a) the fiber length as a function of time,
and (b) ft as a function of length. Here kon=koff � 5 (other
parameters as Fig. 2), so the fiber is stalled for �0 � 75
 and
runs away at the two smaller �0’s. This diagram serves to show
that all stalled states are metastable. The analytical prediction for
the adiabatic longitudinal force (dotted line) is compared to the
numerics for �0 � 45
. The time needed to tunnel the barrier to
runaway growth is proportional to the exponential of an energy
barrier, being the area of the colored region for �0 � 75
 in (b).
The linear-logarithmic plot of this tunneling time as a function of
�0, found by an application of Kramers’ theory, is shown in (c).
From top to bottom, kon=koff � 1:5, 3, 5, and 10.
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where 	 � L=2� and the subscript 0 denotes the fact that
these are derived in the absence of a membrane. Using
these moments we can approximate the distribution of
heights zp of the tip of the semiflexible polymer by a
Gaussian distribution, Zp � exp��B�zp � hzpi0�

2�, where
B � 1

2
1

hz2
pi0�hzpi20

. This approach is appropriate provided the

force on the fiber is � the Euler buckling threshold,
�2�=�4L2�. So far we have calculated separately: (i) the
membrane deformation, and (ii) the fiber tip distributions.
We now introduce the steric interaction between the rod
and membrane as follows:
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where U�x� � 1 if x > 0 and 0 otherwise.
It is reassuring that for completely rigid fibers we re-

cover the corresponding result derived in Ref. [10]. Using
Ztot one can calculate, e.g., the tangential force acting on
the tip�ft�L� � �

@ log�Ztot�
@L . This can be directly compared

with the full numerical treatment [see Fig. 3(b), in which
the comparison is shown for a fiber with �0 � 45
]. For
small incidence angle, up to �0 � 55
 (with the parameter
values of Figs. 2 and 3), the agreement is good, breaking
down gradually as the initial incidence angle approaches
normal incidence. The smoother force rise in the analytics
for �0 � 45
 is due to the inclusion of tip fluctuations,
which do not alter the value of the maximum. (We note that
if the membrane is softer then the agreement persists to a
larger angle.) To see why the analytics eventually break
down, we note that invoking a Gaussian tip distribution
amounts to replacing the fiber with a spring with a
Hookean constant B, which becomes stiffer with �0. For
�0 not too close to 90
, B ’ 3��

2L3cos2��� , in agreement with

the treatment of Ref. [6]. Our combined treatment of fiber
tip and membrane fluctuations using a Gaussian distribu-
tion can be seen as the natural generalization of the elastic
fiber model of Refs. [3,6] to the case of a fluctuating soft
membrane. As the incidence angle becomes close to nor-
mal, intuition suggests that the tip fluctuations will become
‘‘one sided’’ and the Gaussian approximation may then
become poor.

We note from Fig. 2 that in an eukaryotic cell [where
kon=koff � 100 [3] ], �c � 86
 for an actin fiber. Thus the
majority of fibers in a cytoskeletal actin network should
eventually run away from the membrane. Fibers stall at
smaller �0 if the initial fiber-membrane separation is
smaller (than d � 100 nm). Electron microscopy of the

actin network [12] reveals that some of the fibers are bent
into a submembrane ‘‘thatchwork,’’ which may help the
cytoskeleton sustain stress although might contribute less
efficiently to motility. However in lamellipodia and filopo-
dia, observed at the leading edge of a moving cell, the
fibres are actively pushing with their tips pointing towards
the membrane [13]. It is then natural to ask what ‘‘counter-
measures’’ a moving cell takes to avoid run away.

One efficient strategy is to combine many fibers into a
thicker, thus stiffer, bundle. If n fibers are cross linked into
one bundle, e.g., by the Ena or VASP proteins [13], the
aggregate can still be described as a single fiber obeying
Eqs. (2)–(5), up to a rescaling �! �

n , kon;off ! nkon;off ,
and �! n2�, which amounts to assuming that the fibers
are strongly cross linked. As a result of bundling both
stalling and runaway occur at larger membrane forces.

Figure 4 shows how the dynamic ‘‘phase diagram‘‘ of
Fig. 2 gets modified by bundling. Here we have taken n �
10, which may be a reasonable assumption for small
filopodia in vivo [7]. Solving Eqs. (2)–(5) shows that �c de-
creases with n, so that the stalling regime widens (Fig. 4).
More importantly, a stiffer fiber, or a bundle with larger n,
will deform the membrane more. As a result if n is large
enough, and �0 is close to 90
, nonlinear membrane de-
formation into tubular spicules [9] may occur before run-
away. We adopt a rough test for when spicules will be
formed that is related to the breakdown of the linear
membrane Hamiltonian (1), specifically that the maximum
average membrane gradient exceeds unity hjr?ujmaxi> 1.
It can be shown [10] that this spiculation condition can be
translated to a condition on the average membrane dis-
placement, namely, that it exceeds hzmi � d� 1

2A
@ log�Ztot�

@d ,
which can be calculated from (8) hzmi � d �

5��
2A

����������
�m�
p

.
Inserting appropriate physical values we estimate that spi-
cules form only if the (maximum) membrane displacement
is at least�100 nm or, equivalently, that the normal mem-
brane force is �80 pN [14]. Note that the boundary be-
tween spicule formation and fiber runaway is not sensitive
to the polymerization rate, unlike the boundary between
spicule formation and stalling. Thus, for physiological

FIG. 4 (color online). Phase diagram for a bundle of n � 10
actin fibers, with parameters scaled from those in Fig. 2 to this
bundle size (see text). The insets are 3DMCS with parameter as
in Fig. 2 except the spicule for which

����
A
p

� � 0:1.
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parameters, there is only a finite range of incidence angle
for which a bundled actin fiber can form a filopodium.

We know of at least two other mechanisms beyond fiber
bundling which the cell may employ to avoid excessive
runaway of actin fibers: (i) capping proteins [1], (ii) tether-
ing of fiber tips to the membrane [6].

It is interesting to consider a series of in vitro experi-
ments aimed at controlling cell motility via protein expres-
sion [15] in light of our results. These experiments showed
that lamellipodia only form when capping proteins are
present in the cell, and they can be thought of as a dense
network of short and mostly stalled fibers. Depleting the
cell of capping proteins, without decreasing the amount of
Ena or VASP proteins, results in massive growth of filopo-
dia, akin to spicules. Reducing the number of Ena or VASP

proteins as well, leads on the other hand to the formation of
membrane ruffles, which may be associated with extensive
fiber runaway, as we predict for actin fibers polymerizing
with cell-like conditions. All the states in our phase dia-
gram can thus be obtained in a cell by regulating the
concentrations of these key proteins.

The validity of our treatment is not limited to single and
bundled actin fibers. Microtubules and sickle hemoglobin
fibers may have parameters closer to �� 0:5 nm and lp�
0:1–1 mm. If we adopt d�1�m, comparable to the size of
the cell, stalling occupies a smaller region in the dynamic
‘‘phase diagram,’’ and runaway and spicule formation a
larger region. This is in agreement with experiments [5].

Nonlinear membrane deformations, leading to spicule
(or filopodia) formation cannot be described quantitatively
using Eqs. (2)–(5). To check our approximate threshold for
the onset of spicule formation, we have performed full
3DMCS, in which both membrane and fiber are discretized
into connected ‘‘beads.’’ A time step in the dynamic evo-
lution consists of attempting to move the position of all
beads in both the fiber and the membrane via local moves
[see Refs. [8,16] for details on the algorithm]. A local
move is accepted according to the Metropolis test with
discretized versions of Eq. (1).

Examples of runaway state and spicule, found via our
simulations, are shown as insets in Figs. 2 and 4.
(Parameters are given in the legends.) For �0 � 90
, we
confirm that there is a crossover between runaway and
spiculation. For

����
A
p

� ’ 0:2 this occurs when the persis-
tence length of the polymers exceeds 1:5–2 �m, in good
agreement with 1:25 �m found using our Gaussian ap-
proximation. In few cases for lower lp values the fiber does
not run away, but is ‘‘trapped‘‘ by the membrane fluctua-
tions giving rise to a spicule. We also find that the runaway
state (see Figs. 2 and 4) gives rise to a bump in the
membrane which may account for the observation of ruf-
fles [15]. Finally, if we require that a fiber does not runaway
for 108 Monte Carlo steps, 3DMCS predict that the cross-
over to the runaway state in Fig. 1 occurs for �c ’ 85
 for
kon=koff � 100 [Eqs. (2)–(5) led to �c ’ 86
].

In conclusion, we have solved the dynamic equations of
motion for a growing semiflexible polymer, incident onto a

fluctuating soft membrane at an angle, and found a dy-
namic transition between fiber runaway and stalling. Given
the kinetic polymerization rate of actin fibers in the cell, we
predict that most single actin fibers should bend and run
away from the membrane, and would not contribute to cell
motility. This is in agreement with in vitro investigations
under unphysiological conditions in which the behavior of
cells lacking bundling and capping proteins was investi-
gated. Moving cells seems to have taken ‘‘precautions’’ to
stop this phenomenon from happening excessively, by
bundling or capping fibers to render them stiffer. Our phase
diagram can be generalized to the case of an actin bundle,
and we show that in this case a third regime appears, in
which the fiber deforms the membrane in a nonlinear
fashion and spicules appear, which are akin to the filopo-
dial protrusions observed in motile cells. It is intriguing
that physiological values of the thermodynamic parameter
logkon=koff can be seen to lie in, or close to, the narrow
range of values for which actin filipodia can explore all
three different destinies. Finally, we show why microtu-
bules and sickle hemoglobin fibers are more likely to form
spicules or to run away than to stall.
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