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Spicules and the Effect of Rigid Rods on Enclosing Membrane Tubes
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Membrane tubes (spicules) arise in cells, or artificial membranes, in the nonlinear deformation regime
due to, e.g., the growth of microtubules, actin filaments, or sickle hemoglobin fibers towards a membrane.
We calculate the axial force f exerted by the tube, and its average radius, taking into account steric
interactions between the fluctuating membrane and the enclosed rod. We find a smooth crossover of the
axial force between f�

����
�
p

and f� � as the membrane tension � increases and the tube radius shrinks.
This crossover occurs around the most physiologically relevant membrane tensions. Our work may be
important in (i) interpreting experiments in which axial force is related to the tube radius or membrane
tension, and (ii) constructing dynamical theories for biopolymer growth in narrow tubes where these
fluctuation effects control the tube radius.
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FIG. 1. Sketch of an axial slice through a membrane tube (left)
and a section of tube (right) of average radius �r enclosing a
cylindrical rod (of fixed radius b). The radial fluctuations are of
amplitude �r�z;�� and have mean squared extent h�r2i.
There has been much recent interest in the formation of
tubular membrane tethers or spicules [1–9]. These arise
from the action of localized forces that act normal to the
membrane and give rise to narrow membrane tubes in the
nonlinear deformation regime. Such forces can arise from
the polymerization of fibers, including actin [10], tubulin
[11], or sickle hemoglobin [12], into stiff fibers or bundles
of fibers. The polymerization rate is sometimes fast, but
can be slow or stop altogether. Similar structures appear on
cell membranes as filopodia or smaller tubular excursions
[10,11], including the spicules of stellated or sickled red
blood cells containing sickle hemoglobin (HbS) [12] or
neural growth cones [13] as well as on vesicles observed
in vitro [9]. When the tube is long (many times its radius), it
is approximately cylindrical on average except very close
to its ends [10]; see Fig. 1. Throughout we will assume that
any growth of the fiber and tube is quasistatically slow
[14].

In the following section, we outline a self-consistent
mean-field analysis of the radial membrane fluctuations.
In this the average radial extent of the fluctuations are
controlled by the presence of the enclosed rod, an approach
that is analogous to Helfrich’s highly successful theory for
planar membranes [15,16]. We will work in units in which
kBT � 1.

In order to describe our cylindrical membrane, we use
the Hamiltonian H � HE �HS, with

HE �
Z �

��
�
2
c2

� ���
g
p
d�dz� fL;

HS �
Z �

A� J�r��; z� � �r� �
C

2
�r��; z� � �r�2

�
d�dz;

(1)

whereHE is the usual Hamiltonian for membrane elasticity
[16–18], containing both surface tension (�) and rigidity
(�) controlled terms, the latter varying with the square of
the local membrane curvature c. We have also included in
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HE an axial force term, f, which arises from the polymer-
izing fiber and controls the axial length, L, of our mem-
brane tube. In what follows we neglect any effects that
could arise from leaflet asymmetry or spontaneous curva-
ture. HS contains a harmonic potential (with strength �C)
that confines the size of the membrane fluctuations about
the average tube radius �r. It also contains a ‘‘radial force’’
(or pressure) term (with strength �J), which controls the
average radius �r of the membrane tube and arises from the
asymmetric nature of the constraint provided by the rod.
This term can also be used to include any hydrostatic or
osmotic pressure differences between the inside and out-
side of the tube, although we neglect these in what follows.
Additionally, HS contains a term involving A, which is
convenient for normalization of the steric potential. This
most general harmonic potential will be used to model the
steric interactions between our membrane and polymer rod
by way of a mean-field approach. An analogous treatment
has proven to be remarkably successful in describing the
steric repulsion between flat membranes [15,16]. We pro-
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ceed from Eq. (1) by writing r��; z� � �r� �r��; z� and
expanding the energy H to quadratic order [19–21] in the
radial perturbation �r��; z� about the average tube radius
�r. A convenient Fourier representation of the radial fluctu-
ations is

�r��; z� �
X1

n��1

X1
m��1

�rnm exp
�
im��

2�inz
L

�
: (2)

With q � 2��r
L this yields the energy which we write as a

perturbative expansion H � H0 � �H � �
2H � 	 	 	 with

H0 �
��L

�r
� 2��L�r� 2�AL� fL;

�H � 0) h�ri � 0) J � ���
�

2�r2 ;

�2H �
1

2

2��L

�r3

X1
n��1

X1
m��1

�rnm�r�n�mKnm;

(3)

involving a kernel

Knm � �n2q2 �m2�2 �
n2q2

2

�
1�

�r2

r2
0

�

�
5m2

2

�
1�

�r2

5r2
0

�
� 1�

C �r3

�
; (4)

which, in turn, involves the radial length scale r0 �
������
2�

p
.

The first order perturbative contribution is required to
vanish so that �r indeed represents the true average (or
ground state) membrane tube radius [19]. This condition
then implies [from Eq. (3)] that the radial force is J �
��� �

2�r2 . The quadratic fluctuations in the radial dis-
placement (around �r) contribute at order �2H and depend
on the strength of the harmonic potential in Eq. (1), via the
parameter C. The presence of the rod sterically constrains
the membrane radius, r��; z�, to remain always greater
than the rod radius b; see Fig. 1. It thus follows that the
presence of the rod has an effect on both the average radius,
�r, and the fluctuations, �r��; z�. The mean squared ampli-
tude of the fluctuations, h�r2i, depends on the parameter C,
as can be seen from Eq. (3). We must now determine this
self-consistently. In employing a harmonic potential, con-
trolled by the parameter C, we adopt an approximate
phenomenological treatment of the steric interactions.
Since this is at best a semiquantitative approach, one
should be cautious in relying on the numerical prefactors
that appear in our results. This limitation is common to all
studies that follow the spirit of the Helfrich approach.
Finally, it may help to note that the rod and the potential
that we employ to mimic it have the additional role of
suppressing instabilities that are known to occur on certain
‘‘rodless’’ cylindrical membrane tubes (such as ‘‘pearling’’
[22–24], for example).

The free energy of the tube F � H0 � �F can be shown
to involve the perturbative correction
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�F �
1

2

X1
n��1

X1
m��1

log�Knm�: (5)

We can now physically motivate an explicit choice for the
parameter A as follows. We aim to calculate the free energy
difference between the case when the rod is present and
when the rod is absent and the membrane is unconstrained.
In the latter case, the steric harmonic potential (of strength
C) vanishes, as do terms involving C that appear in Knm.
Thus we choose the parameter A so that in the limit C ! 0
we obtain �F ! 0 for consistency. We must then choose

A � �
1

4�L

X1
n��1

X1
m��1

log�KnmjC�0�: (6)

After we have integrated out all radial membrane fluctua-
tions, we therefore obtain

�F �
��L

�r
� 2��L�r� fL�

1

2



X1

n��1

X1
m��1

log
�

Knm
KnmjC�0

�
: (7)

Further, by converting the above summations into integrals
we can write our final expression for the free energy as

F �
��effL

�r
� 2��L�r� fL; (8)

in which we have defined an ‘‘effective’’ membrane bend-
ing modulus through which one may interpret all of the
effects of the steric potential

�eff � ��
1

8�2

Z 2�

0
d�

Z 1
0
d� log�1� C �r3=����� (9)

involving the variables � � n2q2 �m2 and � � tan�1 nq
m

with

� � �2 �
�
2

�
1�

�r2

r2
0

�
� 2�cos2�� 1: (10)

We can now state quantitatively the physical condition
that we wish to impose on our membrane to mimic the
steric influence of the rod [25],

�r�
�����������
h�r2i

q
� b: (11)

This gives the necessary self-consistency condition for the
strength of the harmonic potential given that

h�r2i �
�r3

2��L

X1
n��1

X1
m��1

K�1
nm: (12)

By again converting the summations into integrals and
changing variables, we arrive at the following consistency
equation for C:�

1�
b
�r

�
2
�

1

8�2�

Z 2�

0
d�

Z 1
0
d�

1

�� C �r3=�
: (13)
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In order to calculate the average radius �r for the membrane
tube, we merely need to minimize F by setting @F

@ �r � 0.
Similarly the force f required to maintain the axial length
L of our membrane tube follows from @F

@L � 0.
Wide tubes ( �r=b� 1, C �r3=�� 1).—This regime cor-

responds to the case when the equilibrium radius of the
membrane tube is typically much larger than the radius of
the enclosed rod (�r=b� 1). The steric effects of the rod in
this limit should therefore be weak (C �r3=�� 1), and as a
consistency check, we recover the results of [1], namely,
�r � r0 �

������
2�

p
and f � 2�

����������
2��
p

. For the present purposes
we can expand about �r � r0 using Eq. (13) to obtain C �

2��2

3r3
0

exp��4��
���
2
p
�. Stacks of membranes at large inter-

membrane separation have been studied before [26] and
have identified a similar exponential form for the confining
potential [27,28]. Substituting into Eq. (9) we obtain to
leading order

�eff=� � 1�
2�2

3
exp��4��

���
2
p
�: (14)

The rod-membrane steric interaction therefore produces a
small correction to � in this weak confinement limit
(b=r0 � 1). The energy F is given by substitution of
Eq. (14) into Eq. (8). Energy minimization @F

@ �r � 0 then
yields the radius �r, to leading order

�r=r0 � 1�
�2

3
exp��4��

���
2
p
�: (15)

The axial force can be obtained from mechanical equilib-
rium @F

@L�0, giving f�2�
����������
2��
p

�1� 2�2

3 exp��4��
���
2
p
��.

Both of these results recover the well-known limiting
forms [1], plus the leading order correction due to steric
effects. Given a typical value of � 
 10 (in units of kBT),
we can see that the steric correction terms in �r and f
become very small in the present limit (b=r0 � 1).
However, as b=r0 ! 1, we cross over to the narrow tube
regime in which there is strong confinement of the mem-
brane, as discussed below.

Narrow tubes ( �r=b ’ 1, C �r3=�� 1).—This case corre-
sponds to when the average radius of the membrane tube is
almost equal to the radius of the enclosed rod ( �r=b ’ 1).
The steric effects of the rod in this limit should therefore be
very strong, and the strength of the self-consistent, confin-
ing, harmonic potential becomes very large (C �r3=�� 1).
In this case we can approximate Eq. (13) as follows:

� �r� b�2

b2 ’
1

8�2�

Z 2�

0
d�

Z 1
0
d�

1

�2 � C �r3

�

!
1

8

������������
1

�Cb3

s

as C ! 1: (16)

Hence in this limit C � b
64�

1
��r�b�4

. Substituting this value

of C into Eq. (9) for �eff , we obtain to leading order (as
C ! 1 and �r! b)
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�eff=� � 1�
b2

32�2

1

��r� b�2
: (17)

From Eq. (17) we can see that the rod-membrane steric
interaction can dominate the effective rigidity in this strong
confinement limit. Furthermore, substituting this dominant
value of �eff into Eq. (8) we obtain (to leading order)

F � 2��Lb� 2��L� �r� b� � fL�
�bL
32�

1

��r� b�2
:

(18)

A contribution to the energy that scales as the inverse
squared distance, similar to the one appearing here, is
well known for flat, parallel membranes at small intermem-
brane separation [15,26–28].

Proceeding as before, we find

�r � b�
�

b
32��

�
1=3
; (19)

f � 2��b�
3�
2

�
�2b
4�

�
1=3
: (20)

The leading order result f 
 2��b arises from the work
done against surface tension in laying down an additional
membrane area near the surface of a rod of radius b.
Equation (19) and the ��2=3 correction in Eq. (20) are
two of the primary testable predictions of this study. These
results remain consistent for high enough tension or rod
radius ��b2 � 1. The �2=3 scaling can be traced to the
inverse square law for the membrane force as a function of
the membrane-rod separation [the last term in Eq. (18)].

Discussion.—Typical experimental parameter values for
biological membranes might be [1,10] � 
 10�19 J and
� 
 10�4 Jm�2, which give rise to a typical tube radius of
r0 
 20 nm. Comparing this value for the membrane tube
radius with typical biological fibers (or fiber bundles) with
radii b� 10–100 nm, we conclude that steric effects will
often be important and our results are therefore likely to be
of biological significance under physiologically relevant
conditions. Typical forces are also found to be in the
experimentally relevant range of f� 10–100 pN. The
steric corrections to �r and f when the membrane is strongly
confined by the presence of the enclosed rod are governed
by the dimensionless parameter ����b2��1=3, which is
significant for the typical values given above. Hence these
additional steric corrections may be expected to contribute
a measurable correction to the expected radius �r and force
f. Our work may be of significant importance since mea-
surements of the axial force are often used as an indirect
way of estimating the tube radius.

Conclusions.—In this work we have studied the effect of
an enclosed rod on the fluctuations of a cylindrical mem-
brane tube, or spicule. We calculate the axial force exerted
by the tube and its radius via a self-consistent harmonic
potential that models the steric constraint of the rod on the
1-3
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membrane fluctuations. The axial force diverges as the
tube radius decreases and the membrane approaches the
surface of the enclosed rod. Our approach is similar to that
used for flat membranes [15,16]. However, in the present
case, the fluctuating membrane tube is constrained only
from inside by the presence of the rod and not from outside.
This lack of symmetry gives rise to two parameters (C and
J) instead of one. We believe that our results will be of
importance in the context of polymerizing fibers within
cell membranes [29–31]. In particular, we give the first
quantitative treatment of the crossover between the ‘‘free’’
membrane tube, with radius �r� b, for which the axial
force is small f�

�������
��
p

and the �r! b regime, in which the
radius of the tube is almost constant and f� �. Our
analysis is also likely to be of significant utility in ap-
proaching such problems as the transport mechanism of
material within the tube, e.g., monomers destined to poly-
merize at the tip of a growing rod. Such polymerization
processes may be expected to depend intimately on the
tube radius in the high tension (narrow tube) regime. In this
sense, future dynamical theories for biopolymer growth in
tubes (spicules) are likely to rely on an accurate treatment
of the fluctuation effects that we have analyzed here.

The work was supported by NIH Grant No. HL 58512
from the National Heart, Lung, and Blood Institute.
[1] I. Derenyi, F. Julicher, and J. Prost, Phys. Rev. Lett. 88,
238101 (2002).

[2] B. Bozic, V. Heinrich, S. Svetina, and B. Zeks, Eur. Phys.
J. E 6, 91 (2001).

[3] D. J. Bukman, J. H. Yao, and M. Wortis, Phys. Rev. E 54,
5463 (1996).

[4] V. Heinrich, Biophys. J. 76, 2056 (1999).
[5] S. Zhang, J. Phys. Soc. Jpn. 68, 3603 (1999).
[6] A. S. Smith, E. Sackmann, and U. Seifert, Phys. Rev. Lett.

92, 208101 (2004).
[7] T. R. Powers, G. Huber, and R. E. Goldstein, Phys. Rev. E

65, 041901 (2002).
[8] D. Raucher and M. P. Sheetz, Biophys. J. 77, 1992 (1999).
[9] D. K. Fygenson, J. F. Marko, and A. Libchaber, Phys. Rev.

Lett. 79, 4497 (1997).
[10] D. Boal, Mechanics of the Cell (Cambridge University

Press, Cambridge, England, 2001).
[11] B. Alberts et al., Molecular Biology of the Cell (Garland,

New York, 2002).
[12] R. W. Briehl et al., J. Mol. Biol. 245, 710 (1995).
[13] T. Mitchison and M. Kirschner, Neuron 1, 761 (1988).
[14] The quasistatic regime can be established experimentally,

by either varying the fiber growth rate or the time of
23810
measurement following a halt in growth. Equilibration
probably involves both relaxation of the leaflet asymme-
try, arising from differential transport of material into the
inner and outer monolayers of the tube, and the diffusive
transport of material along the tube. The former depends
on the interleaflet friction, as well as the structure and
morphology of the cell membrane, and is difficult to
estimate. The latter gives rise to a diffusional relaxation
time that might crudely be estimated as 	tube � �L=�r�2	,
where 	 is the relaxation time of a ‘‘blob’’ of the tube of
size �r, perhaps typically 	 
 10�5 s. For rod growth rates
that are up to k�
m=s the quasistatic regime is then
given by L=k� �L=�r�2	, which corresponds to L�
Lmax � �r2=�k	� 
 40 
m.

[15] W. Helfrich, Z. Naturforsch. 33a, 305 (1977).
[16] S. A. Safran, Statistical Thermodynamics of Surfaces,

Interfaces and Membranes (Addison-Wesley, Reading,
MA, 1994).

[17] P. M. Chaikin and T. C. Lubensky, Principles of
Condensed Matter Physics (Cambridge University Press,
Cambridge, England, 2000).

[18] D. Nelson, in Statistical Mechanics of Membranes and
Surfaces, edited by D. Nelson and T. Piran (World
Scientific, Singapore, 1989).

[19] O. Zhong-can and W. Helfrich, Phys. Rev. A 39, 5280
(1989).

[20] C. D. Santangelo and P. Pincus, Phys. Rev. E 66, 061501
(2002).

[21] D. S. Dean and R. R. Horgan, Phys. Rev. E 71, 041907
(2005).

[22] R. Bar-Ziv et al., Proc. Natl. Acad. Sci. U.S.A. 96, 10 140
(1999).

[23] P. Nelson, T. Powers, and U. Seifert, Phys. Rev. Lett. 74,
3384 (1995).

[24] J. M. Allain, C. Storm, A. Roux, M. BenAmar, and J. F.
Joanny, Phys. Rev. Lett. 93, 158104 (2004).

[25] It is perhaps more natural to motivate this relationship as
an approximate inequality �r�

�����������
h�r2i

p
* b. However, we

find that the tube fluctuations always require bounding and
we can therefore employ an equality. For simplicity we
refrain from introducing an additional phenomenological
term by setting ��r� b�=

�����������
h�r2i

p
� 1.

[26] K. R. Mecke, T. Charitat, and F. Graner, Langmuir 19,
2080 (2003).

[27] U. Seifert, Phys. Rev. Lett. 74, 5060 (1995).
[28] R. Podgornik and V. A. Parsegian, Langmuir 8, 557

(1992).
[29] C. S. Peskin, G. M. Odell, and G. F. Oster, Biophys. J. 65,

316 (1993).
[30] D. R. Daniels and M. S. Turner, J. Chem. Phys. 121, 7401

(2004).
[31] H. Delanoe-Ayari et al., Phys. Rev. Lett. 93, 108102

(2004).
1-4


