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We propose a theory for the force exerted by a fluctuating membrane on a polymer rod tip. Using
statistical mechanical methods, the expression for the generated force is written in terms of the
distance of the rod tip from the membrane ‘‘frame.’’ We apply the theory in calculating the stall
force and membrane displacement required to cease the growth of a growing fiber induced by
membrane fluctuations, as well as the membrane force and membrane displacement required for
rod/fiber buckling. We also consider the dynamics of a growing fiber tip under the influence of a
fluctuation-induced membrane force. We discuss the importance of our results in various biological
contexts. Finally, we present a method to simultaneously extract both the rigidity of the semiflexible
rod and the force applied by, e.g., the membrane from the measurements of the bending fluctuations
of the rod. Such a measurement of the force would give information about the thermodynamics of
the rod polymerization that involves the usual Brownian ratchet mechanism. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1794551#

I. INTRODUCTION

It is often of considerable interest in biological contexts
to consider the interactions between the flexible rods and
membranes.1–3 Given that these interactions often arise
through biological membranes and rods2,3 coming into close
and sustained contact with each other~due to the packing
constraints in a cell for example!,2,3 an interesting issue
arises as to how to get some measure of the forces at work
within enclosed biological cells.4–11 In this paper, we con-
sider the force exerted by a membrane on a growing fiber
~see Fig. 1! that typically arises in many biological
scenarios.2,12–15 This fluctuating membrane force impinges
heavily on the late-time dynamics of the fiber growth as
found in ‘‘biological thermal ratchets’’,4–10,16,17as well as the
overall stability11 and possible buckling transitions12–14 of a
rod/membrane system as found in the polymerizing microtu-
bules confined in vesicles15 and membrane-enclosed fibers.2,3

Via careful consideration of both the statistical mechan-
ics and dynamics, we are theoretically able, in this work, to
account for the interaction between a fluctuating membrane
and a fiber tip. Unlike previous works,4–10,12–14,16,17we are
able to quantitatively calculate the force generated by a fluc-
tuating membrane on a fiber tip via a ‘‘microscopic’’ model
and derive the force generated as a function of the rod to the
membrane distance. Previous works4–10,12–14,16,17often as-
sumed or postulated a definite functional form~e.g.,
Hookean! for the membrane force as a function of the rod to
the membrane distance, whereas in the work presented here,
we explicitly derive the membrane force. Furthermore, using
the approach outlined in this work and via a well-known1,2

microscopic model for membrane fluctuations, we are also
able to parameterize the strength of the membrane-induced

force on a growing rod tip in terms of the membranes under-
lying ‘‘elastic constants.’’ The consequences of our model for
the thermodynamics and kinetics of a rod/membrane system
will be discussed in further detail in the following sections,
but firstly, we proceed to outline the theory that we are going
to use to describe the fluctuating membrane.

II. THEORY

We parameterize the position R of ourL3L membrane
as follows:1

R5xî1y ĵ1u~x,y!k̂, ~1!

whereu(x,y) measures the deviation of our membrane from
a local flatness, which we take to be thex-y plane. We also
need to specify the boundary conditions at the edges of our
finite-size membrane asu(0,y)50, u(L,y)50 for 0<y
<L, andu(x,0)50, u(x,L)50 for 0<x<L. These bound-
ary conditions, when taken together, ensure that the mem-
brane behaves sensibly along its perimeter~i.e., at large dis-
tances! and cannot be arbitrarily translated along thek̂ axis.
The specification of these boundary conditions constitutes an
appropriate ‘‘framing’’1 of our membrane. We assume
throughout that the size of the frame is large enough such
that all physical results obtained in this work are relatively
insensitive to the shape of the frame boundary. Given the
mentioned boundary conditions, we can writeu(x,y) in
terms of the following discrete Fourier modes:

u~x,y!5 (
n51

`

(
m51

`

unm sin
npx

L
sin

npy

L
. ~2!

For the purposes of this work, we will use the following
harmonic free energy~see the Appendix for the discussion of
when this formalism remains valid! for the displacement
u(x,y),:1
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Fu5
1

2 E0

L

dxE
0

L

dy~k~¹'
2 u!21g~¹'u!2!, ~3!

which contains a surface tension~g! term as well as a cur-
vature~k! penalizing term. Note that the free energy in Eq.
~3! is only really valid for relatively small displacements ofu
~see the Appendix for further details!.

We now need to consider the form of the coupling be-
tween our membrane and the tip of a polymer rod lying
along the kˆ axis ~see Fig. 1!. Note that we assume the rod tip
to be ‘‘pointlike,’’ which is a valid approximation as long as
the rod radius is less than the ‘‘mesh size’’ of the membrane
~given by;Ak/g). To begin with, we fix the midpoint fluc-
tuations of our membrane to be fixed at some arbitrary value,
z, as follows:

u~L/2,L/2!5z. ~4!

We incorporate this constraint into the calculation of the
sum overall the membrane conformations, represented by
our partition functionZz , via the following relation:

Zz5E dlZl exp~ ilz!, ~5!

where Zl is defined as~unless otherwise stated, we take
kBT51)

Zl5E Du exp~2 ilu~L/2,L/2!2Fu!. ~6!

Carrying out the functional integral18 in Eq. ~6!, we arrive at
the following expression forZl ~normalized such that
Zlul5051).

Zl5expS 2
2l2

p2g
(
n51

`

(
m51

` S 1

Knm
2

1

Knm1
gL2

p2k
D D ,

~7!

where we have definedKnm5(2n21)21(2m21)2. Unfor-
tunately, the summations overn andm present in Eq.~7! do
not lead to closed, convenient expressions. Therefore, for the
purposes of this work and ease of use, we approximate the
sums by integrals, enabling us to write

Zl5expS 2
l2

8pg
lnS 11

gL2

kp2D D . ~8!

Now, carrying out a final integration overl, we arrive at the
desired expression forZz

Zz5exp~2Az2!, ~9!

where we have defined for convenience the constantA
~which does however depend on the characteristic param-
eters of our membrane! as

A5
2pg

lnS 11
gV

kp2D , ~10!

whereV is the area of the membrane frame~e.g.,V5L2 in
our case!. Now, Zz in Eq. ~9! represents the partition function
for the midpoint fluctuations of our membrane, fixed at some
arbitrary valuez. In order to complete the calculation of the
partition function for our membrane, including the presence
of the rod, we need to further integrateZz from the position
of the tip of the rod,D, to `. In this way, we realize the
physical constraint that we wish to impose; that the mem-
brane midpoint must fluctuate entirely above the rod tip—
and never below it. So we write~introducing a convenient
normalization!

ZD5
*D

`dzZz

*2`
` dzZz

, ~11!

whereD is the position of the tip along the kˆ axis. Carrying
out the integrals in Eq.~11!, we end up with our final expres-
sion for ZD @where erf(x) is the error function#

ZD5
1

2
~12erf~AAD!!. ~12!

From Eq.~12!, we are now in a position to be able to calcu-
late the force exerted by the membrane on the polymer rod
tip as follows:

f D52
] ln~ZD!

]D
52AA

p

exp~2AD2!

12erf~AAD!
. ~13!

The force, as given by Eq.~13!, is plotted in Fig. 2
against the membrane frame to the tip distance and possesses
the following limits of interest~see also the Appendix!:

f D→2AD as D→1`,

f D→2AA

p
1

4

p
AD as D→0, ~14!

f D→AA

p
exp~2AD2! as D→2`.

From these limits and Fig. 2, we can discern the follow-
ing behavior of our rod/membrane system. For large, positive
D ~i.e., when the rod tip strongly distorts the membrane up-
wards!, the force generated by the membrane on the tip,f D ,
becomes Hookean with a spring constant given by.2A. For
smallD, the force is again Hookean type~with a spring con-

FIG. 1. Diagram of a fluctuating membrane interacting with a fiber tip.D
denotes the height of the rod as measured from the membrane frame atz
50 ~shown as a dashed horizontal line!.
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stant now of.4/pA) but does not vanish as the rod tip
approaches the membrane frame, but rather in this limit,f D

approaches the constant value of 2AA/p. Lastly, when the
rod tip is far away from the membrane frame~D large and
negative!, the force generated by the membrane decays away
rapidly to zero, as one would expect. For comparison of the
typical force magnitudes predicted by our model versus
those found experimentally, see the Appendix.

We can also use the partition functionZz for the mid-
point fluctuations of our membrane, as given by Eq.~9!, to
calculate the average distance between the fiber tip and the
fluctuating membrane, given that the midpoint fluctuations of
the membrane must lie entirely above the rod tip—and never
below it. So we are required to calculate withZz given by
Eq. ~9!,

^z&5
*D

`dzzZz

*D
`dzZz

. ~15!

Carrying out the integrals in Eq.~15!, we arrive at the
following expression for the average^z&.

^z&5A 1

pA

exp~2AD2!

12erf~AAD!
. ~16!

As a by-product of this analysis and by combining Eqs.~16!
and ~13!, we can obtain~as a useful consistency check! the
force exerted by the membrane as a function of the average
membrane displacement from zero,^z&, as follows:

f ^z&52A^z&, ~17!

which can be seen to possess a simple Hookean functional
form, as of course it should, since we began with a free-
energy quadratic in the membrane displacement@Eq. ~3!#.

III. ROD GROWTH STALL FORCE

The dynamics of a growing fiber~as found in ‘‘Brownian
Ratchets’’4–10,16is governed by the rate of the monomer ad-
dition, a(0)5kon@M #, and the rate of the monomer subtrac-
tion, b(0)5koff . Note that it is typically assumed that the
rate of the monomer addition to the fiber depends on the
concentration of the locally available monomers,M, whereas

the rate of the monomer subtraction does not. Also note that
in what follows, we assume that the available monomers are
able to diffuse easily to the locally growing fiber tip@see,
e.g., Eq.~4! for an example of when this may not be the
case#. This assumption is tantamount to asserting that in this
work, we take the rate-limiting step for the fiber growth to be
the force exerted by our membrane and not the diffusion
constant of the monomers.4,17

In the presence of a local force,f D , acting on the grow-
ing rod tip and via the elementary Kramers transition rate
theory,4,5 it can be shown that the rate constants of the mono-
mer ~of typical sized! addition and subtraction are modified
in the following way:4,5

a~ f D!5a~0!exp~2 f Dd!,
~18!

b~ f D!5b~0!.

In Eq. ~18!, f Dd represents the work required to add one
monomer of sized to the growing tip, when the tip is at a
distanceD from the membrane frame. Note that it is usually
assumed4,5 that only the rate of the monomer addition is
modified under the action of the local force, whereas the rate
of the monomer subtraction remains unaffected byf D .4,5 For
the purposes of this section, it is unnecessary to solve for the
complete dynamics of the growing fiber, which we post-
poned to a later section. Since we are predominantly inter-
ested in this section in the stall force~i.e., the force required
to halt the growth of the fiber!, we only need to consider the
equilibrium or steady-state behavior of the rod. Via elemen-
tary thermodynamical arguments,4,5 it is straightforward to
see that the rod growth stalls when the~new force-
dependent! rate of the monomer addition equals the rate of
the monomer subtraction, which implies the following
result:4,5

a~ f D!

b~ f D!
51⇒ f Dstall5

1

d
lnS a~0!

b~0! D . ~19!

Equation ~19! expresses the simple idea that the rod
growth stalls when the energy gain~or loss of entropy! pro-
duced by adding a monomer to the growing tip exactly bal-
ances the corresponding energy cost of doing the required
work against the membrane. The following two limits are
likely to be of most interest for stalling. If we focus on the
smallD, Hookean regime, we find that the onset of the stall-
ing occurs when

Dstall.
p

4Ad
lnS a~0!

b~0! D2
1

2
Ap

A
. ~20!

On the other hand, if we focus on the largeD, Hookean
regime, we find that the onset of the stalling occurs when

Dstall.
1

2Ad
lnS a~0!

b~0! D , ~21!

whereA in both expressions is as given by Eq.~10!. Using
these limiting results, the corresponding value of the stall
force in both the small and largeD regimes can be straight-
forwardly obtained via inspection of the relevant limits given
in Eq. ~14! ~see also the Appendix!.

FIG. 2. Plot of the~normalized! force exerted by membranef D/2AA/p vs
~normalized! distance of the tip from the membrane frame,AAD.
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IV. ROD BUCKLING

Linear stability analysis12–14for a rod of length,L rod and
intrinsic stiffness,k rod, shows that a rod will buckle when
the local force applied at the rod tip reaches the critical value
of12–14

f buckle5k rod

p2

L rod
2

. ~22!

Equating the critical force,f buckle of Eq. ~22!, with the
force exerted by the membrane, given byf D of Eq. ~13!, we
can solve forDbuckle. The following two limits are likely to
be of most interest for buckling. In particular, if we focus on
the smallD, Hookean regime, we find that the onset of the
buckling occurs roughly when

Dbuckle.
k rodp

3

4ALrod
2

2
1

2
Ap

A
. ~23!

On the other hand, if we focus on the largeD, Hookean
regime, we find that the onset of the buckling occurs when

Dbuckle.
k rodp

2

2ALrod
2

, ~24!

where A in both expressions is again given by Eq.~10!.
Using these limiting results, the corresponding value of the
buckling force, in both the small and largeD regimes, can be
straightforwardly obtained via inspection of the relevant lim-
its given in Eq.~14! ~see also the Appendix!.

V. ROD GROWTH DYNAMICS

We now proceed to give an approximate ‘‘mean-field-
type’’ description for the rod growth dynamics in close prox-
imity to a fluctuating membrane. More complicated dynami-
cal models can be found in the literature,4–10,16 but for the
purposes of this work, we prefer to use a simple and tractable
model as possible, which nevertheless manages to accurately
capture the underlying physics and furthermore renders the
underlying physics as transparent as possible. Moreover, in
the ‘‘reaction-limited’’ case as studied here, it can be shown
@see, for example, Eq.~4!# that Eq.~25! can be derived from
more complicated dynamical models. Thus, using the results
of the previous sections, we can write down the~averaged
over membrane fluctuations! dynamical equation obeyed by
the fiber tip as4–10,16

dD

dt
5d~a exp~2 f Dd!2b!. ~25!

From the right-hand side of Eq.~25!, we can see that the
rod growth comes to an end whenever the energy cost of
adding a monomer becomes greater than the energy gain via
entropy loss. Using Eq.~13! for f D , we can solve Eq.~25!
for D[D(t) numerically, as shown in Figs. 3 and 4.

Shown in Fig. 3 is the time evolution of the fiber-tip
position at a fixed value of the rate constants for the mono-
mer addition and subtractiona~0!/b~0!, for three different
values ofAAd2. The parameterAAd2 roughly measures the
ratio of the monomer size to the typical membrane fluctua-

tion size ;Ad2/^z2&, so that a high value ofAAd2 corre-
sponds to a more rigid, hard-wall-type membrane, whereas a
small value ofAAd2 corresponds to a more flexible, highly
fluctuating surface. A typical value ofAAd2;0.4 can be
found experimentally~see the Appendix and Refs. 2, 4, 12,
and 19!. We can see from Fig. 3 that~for a given polymer-
ization rate! the less flexible the membrane, the sooner the
fiber growth begins to stall, whereas the more flexible the
membrane, the later the fiber growth stalls. From Fig. 3, we
can also see that the late-time, asymptotic value ofD(t) is
larger for the highly fluctuating membrane than that of the
more rigid membrane. Reassuringly, all the plots shown in
Fig. 3 converge for large negative fiber-tip membrane frame
distances at earlytimes. One can understand these results
qualitatively in terms of the underlying membrane fluctua-
tions. The more highly fluctuating the membrane, the less the
local, average force~or elastic constant! becomes on a rod
tip, as the rod approaches the membrane surface. Further-
more, a highly fluctuating membrane is more likely on aver-
age to be able to accommodate the placement of a mono-
meric unit at the fiber tip than a rigid membrane, thus
ameliorating the steric constraints, allowing the rod to grow
longer.

Shown in Fig. 4 is the time evolution of the fiber-tip
position at a fixed value of the membrane elastic constant
AAd2 for three different values of the ratio of the monomer

FIG. 3. Plot of the~normalized! fiber-tip position vs~normalized! time with
a~0!/b~0!52.0. From top to bottom,AAd250.25, 0.50, and 0.75.

FIG. 4. Plot of the~normalized! fiber-tip position vs~normalized! time with
AAd250.50. From top to bottom,a~0!/b~0!53.0, 2.5, and 2.0.
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addition to subtractiona~0!/b~0!. A typical value of a~0!/
b~0!;2 can be found experimentally.4,5 From Fig. 4, one can
easily see that increasing the rate of the monomer addition
makes the fiber tip approach its late-time, asymptotic posi-
tion more quickly and that, furthermore, this late-time, fiber-
tip stall value increases as the rate of the monomer addition
increases. These results can also be understood in terms of
the membrane fluctuations as follows. Increasing the rate of
the monomer addition implies that for the fiber tip to stall, a
greater force needs to be exerted by the membrane. Now, if
the membrane elastic constants are held fixed, then in order
to produce the required stall force, the membrane must be
deformed to a concomitantly higher degree, hence, the
greater late-time, asymptotic value of the fiber-tip position.

VI. BENDING FLUCTUATIONS OF THE CONFINED
SEMIFLEXIBLE FIBER

Motivated by recent experiments, we consider a single-
living semiflexible rod or ‘‘fiber’’ in close proximity to a
fluctuating membrane. Here, the term ‘‘living’’ merely de-
notes that the fiber can grow or shrink by the accretion of
monomeric units. Such fibers could be, e.g., actin filaments,
microtubules, or sickle hemoglobin fibers.20 The geometries
that we have in mind include a single fiber confined within a
vesicle or a red blood cell. Under certain conditions, such
living fibers have a tendency to grow in length. As usual, this
is due to a free-energy imbalance between the monomers in
solution and those in the fiber interior. When the end of a
growing fiber starts to approach the cell membrane, it is sub-
ject to a longitudinal compressive confining force,f, the
magnitude of which we have calculated earlier.

We parameterize the fluctuations of the fiber by way of
the normal displacementh(z) of the fiber from thez axis,
chosen so as to be parallel to the end-to-end vector of the
fiber. The displacementh(z) is defined to be the normal dis-
placement projected onto thex-z plane ~say!. Similar fluc-
tuations would be apparent in projection onto they-z plane,
but these completely decouple from those in thex-z plane
for the small amplitude bending fluctuations of interest here.
Thus, the fiber projection is completely straight ifh50 is
displaced upwards locally whenh.0 and displaced down-
wards whenh,0. The boundary conditions at the ends are
h(0)5h(L rod)50. It can be shown that the mechanical en-
ergy of a fiber of lengthL rod is well approximated byH
5Hx1Hy with

Hx5E
0

Lrod
dzFk rod

2 S d2h

dz2 D 2

2
f

2 S dh

dzD
2G , ~26!

provided that the fiber displacement everywhere is small
uhu/L rod!1. Hy is similar but is independent of the normal
fiber displacement projected onto thex-z plane and may
therefore be neglected in what follows. We simply observe
that there will be exactly similar fluctuations in they-z plane
by symmetry. Here,k rod is, as before, the rigidity of the fiber
and is simply a Hookean constant that relates squared curva-
ture to bending energy. The forcef can be shown to act as a
Lagrange multiplier for excess lengthDL rod51/2*0

Lroddz

(dh/dz)2 for the small displacements of interest here. This
force acts to do work in storing excess fiber length within
(0,L rod).

Assuming that the gradients of the fiber ends remain
unconstrained by the membrane, we proceed to consider the
mode structure of the fluctuations by defining the Fourier
pair as

h~z!5 (
n51

`

hn sin
npz

L rod

and

hn5
2

L rod
E

0

Lrod
dzh~z!sin

npz

L rod
. ~27!

Thus, withqn[np/L rod,

Hx5
L rod

4 (
n51

`

hn
2~k rodqn

42 f qn
2!. ~28!

Equipartition of the energy applied to this Hamiltonian then
yields

^hn
2&5

2kBT

L rod~k rodqn
42 f qn

2!
. ~29!

This expression correctly identifies the classical buckling
force, f buckle, given in Eq.~22!. The amplitude of then51
mode fluctuations diverge asf→ f buckle, and are unbounded
for f . f buckle.

Fiber fluctuations and the applied force f and fiber
rigidity k rod

By measuring the mode spectrum of the fiber fluctua-
tions, Eq.~29! can be used directly to calculate~fit for! the
two unknownsf and k rod. Thus, the fluctuations give inde-
pendent information on, and in principle, determine both of
these two unknown quantities. It has been previously re-
ported how the measurements of the mean-squared displace-
ment of the midpoint of freely suspended sickle fibers can be
used to determine their rigidities,21,22 there being no force
( f 50) for freely suspended fibers. For such fibers, the rigid-
ity was found to vary between the fibers, which could be
interpreted as being due to the differences in the fiber thick-
nesses. A similar technique can be employed for the confined
fibers as we will now show.

The projected fiber displacement at a distancez along
the fiber ish(z). The mean-squared value of this is

^h~z!2&5 (
n51

`

^hn
2&sin2 qnz5

2kBT

L rod
(
n51

`
sin2 qnz

k rodqn
42 f qn

2
. ~30!

Thus, the measurements of^h(z)2& as few as two loca-
tions is enough to extract the two unknownsf andk by any
appropriate fitting procedure. In practice, the optimum infor-
mation content is to be obtained by an analysis of as much of
the mode structure as possible, i.e., as manyn modes or
equivalentlyz values as possible. However, for very rigid

7405J. Chem. Phys., Vol. 121, No. 15, 15 October 2004 Force generated by biological membranes on polymer rod

Downloaded 15 Apr 2005 to 129.98.60.97. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



fibers, the procedure of measuring the mean-squared spatial
amplitudes at few locations can be nearly as efficient and is
arguably more straightforward.

The important conclusion here is that we can measure
the force f and hence obtain thermodynamic information
about the system~by identifying the force as being due to a
thermodynamic Brownian ratchet at a steady state! under
conditions other than the special~marginal! case where the
fiber is just starting to buckle. Thus, there is no need to fine
tune the force or the chemical conditions. This gives, in prin-
ciple, a new mechanism for mapping the thermodynamics of
fiber assembly under all conditions, under which the fibers
appear, provided the fiber fluctuations remain measurable.
This is a very significant, if rather subtle, improvement over
a technique that relies only on analyzing, e.g., fiber buckling.

VII. CONCLUSIONS

We have outlined the theory for the force exerted by a
fluctuating membrane on a polymer rod tip using statistical
mechanical methods. Unlike previous works, we do not as-
sume or postulate a presubscribed functional form for the
membrane force as a function of rod to the membrane
distance.4–10,16,18 Rather, in this work, we explicitly and
quantitatively derive the membrane force acting on a fiber tip
via a microscopic model and are furthermore able to param-
eterize the strength of this membrane-induced force in terms
of the membranes underlying elastic constants. Using the
approach given in this work, we were able to calculate the
stall force required to cease the growth of a growing fiber
induced by membrane fluctuations, as well as the membrane
force needed for the rod/fiber buckling. We also studied the
dynamics of a growing fiber tip under the action of a
fluctuation-induced membrane force. The results obtained in
this work are likely to have a direct and important bearing on
the many relevant biological systems of interest, such as
cells,2–5,11,12 polymerizing microtubules5,12,15 confined in
vesicles, and membrane-enclosed fibers or rods.2,3 The exten-
sion of the model presented in this work including the effects
of spontaneous membrane curvature and/or membranes of
spherical topology is left for future work. Finally, we have
presented a method for the simultaneous extraction of the
fiber rigidity and applied~membrane! force from the mea-
surements of the bending fluctuations of the fiber.
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APPENDIX: MODEL BREAKDOWN DISPLACEMENT
AND FORCE

Our free energy for the membrane displacements, as
given by Eq.~3!, typically assumes1,2 that the excess area
produced by the membrane height fluctuations~over some
reference base plane! is relatively small. This translates into
the condition that our model breaks down1,2 whenever¹'u
;1, locally, anywhere over the entire membrane surface. In
order to quantitatively predict when this breakdown occurs,
we need to find the average local membrane shape,

^u(x,y)&, as a function of the in-plane membrane coordi-
natesx andy, in the presence of the rod tip. Minimizing our
free energy, Eq.~3!, subject to the boundary conditions on
the membrane edges and Eq.~4!, we find that the shape of
the membrane is given by

u~x,y!5
z

g~0,0!
g~x2L/2,y2L/2!, ~A1!

where the ‘‘Green function’’g(x,y) satisfies

~2g¹'
2 1k¹'

4 !g~x,y!5d~x!d~y!. ~A2!

In order to calculate the average membrane shape in the
presence of the tip, we need to further average over the tip
position such that

^u~x,y!&5
^z&

g~0,0!
g~x2L/2,y2L/2!, ~A3!

where now^z& is given by Eq.~16! and is a function of the
tip to the membrane frame distanceD. Note that what we
calculate here is the average displacement of the membrane,
which is only nonzero due to the presence of the tip. In the
absence of a tip, the average displacement of a membrane
must strictly vanish. Using the rotational symmetry present,
introducing r 5A(x2L/2)21(y2L/2)2 ~such that the tip
now sits atr 50), and converting to Fourier modes, we find
that

g~r !5E
p/L

` pdp

2p

J0~pr !

gp21kp4
, ~A4!

whereJ0(pr) is the familiar Bessel function of zeroth order,
typically used in describing the membranes. We are now in a
position to write^¹'u& as

^¹'u&5
^z&

g~0!

]g~r !

]r
. ~A5!

It can be straightforwardly shown that^¹'u& has its
maximum value,̂ ¹'u&max, whenr;Ak/g. Substituting this
value of r into Eq. ~35! and performing the integrals re-
quired, we get

^¹'u&max.
2

5
^z&Ag

k

1

lnS L

p
Ag

k D . ~A6!

The condition for the breakdown of our model can now be
finally expressed as occurring when the average membrane
displacement reaches a maximum value,^z&max of

^z&max.
5

2
Ak

g
lnS L

p
Ag

k D . ~A7!

Using this result for̂ z&max along with Eq.~17!, we can also
calculate the maximum force,f max capable of being gener-
ated in our model before it breaks down, which is given
simply by

f max.5pAgk. ~A8!

Plugging in typical membrane values, as probed
experimentally,2,12,19 of k;10219J, g;1024 J m22, and L
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;1026 m, we find that ^z&max;200 nm and f max;50 pN,
which are consistent with typically observed experimental
values for membrane displacements and forces as found in
Refs. 2, 12, and 19. If we take the typical size of a monomer,
d, to bed;2 nm,4 then we can see that^z&max;100 mono-
mers. Thus, the theory outlined in this work is capable of
providing a reasonable quantitative account of typical experi-
mentally measured membrane forces and displace-
ments.2,12,19Furthermore, the analysis carried out in this Ap-
pendix validates a posteriori, the initial use of a harmonic
free energy for membrane displacements, which conse-
quently also validates the resulting Hookean behavior of the
force at relatively large membrane displacements.
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