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The force generated by biological membranes on a polymer rod
and its response: Statics and dynamics
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We propose a theory for the force exerted by a fluctuating membrane on a polymer rod tip. Using
statistical mechanical methods, the expression for the generated force is written in terms of the
distance of the rod tip from the membrane “frame.” We apply the theory in calculating the stall
force and membrane displacement required to cease the growth of a growing fiber induced by
membrane fluctuations, as well as the membrane force and membrane displacement required for
rod/fiber buckling. We also consider the dynamics of a growing fiber tip under the influence of a
fluctuation-induced membrane force. We discuss the importance of our results in various biological
contexts. Finally, we present a method to simultaneously extract both the rigidity of the semiflexible
rod and the force applied by, e.g., the membrane from the measurements of the bending fluctuations
of the rod. Such a measurement of the force would give information about the thermodynamics of
the rod polymerization that involves the usual Brownian ratchet mechanisn200 American
Institute of Physics.[DOI: 10.1063/1.1794551

I. INTRODUCTION force on a growing rod tip in terms of the membranes under-
. . . L . lying “elastic constants.” The consequences of our model for

It |s'0ften of 9on3|de_rable interest in blolog!cal contexts o thermodynamics and kinetics of a rod/membrane system
to consider the interactions between the flexible rods anQviII be discussed in further detail in the following sections,

-3 . . . .
mhembLang%l. 'Gl;/en that these m%earacthns .oftenl anse put firstly, we proceed to outline the theory that we are going
through biological membranes and rédgoming into close ;" <o to describe the fluctuating membrane.

and sustained contact with each otlidue to the packing

constraints in a cell for examplé® an interesting issue

arises as to how to get some measure of the forces at wotk THEORY
within enclosed biological celts:!! In this paper, we con- . .
sider the force exerted by a membrane on a growing fibeg1S fz\llliv[\:l)salrametenze the position R of ou L. membrane
(see Fig. 1 that typically arises in many biological '

scenario$:*>~** This fluctuating membrane force impinges  R=xi+yj+u(x,y)k, )
heavily on the late-time dynamics of the fiber growth as -
found in “biological thermal ratchets* 10161735 well as the whereu(x,y) measures the deviation of our membrane from

a local flatness, which we take to be they plane. We also
need to specify the boundary conditions at the edges of our
finite-size membrane as(0y)=0, u(L,y)=0 for O<y

<L, andu(x,0)=0, u(x,L)=0 for O<x=<L. These bound-

overall stability* and possible buckling transitiots* of a

rod/membrane system as found in the polymerizing microtu

bules confined in vesiclésand membrane-enclosed fibérs.
Via careful consideration of both the statistical mechan-

ics and dynamics, we are theoretically able, in this work, to?rY conditions, when taken together, ensure that the mem-

account for the interaction between a fluctuating membrangrane behaves sensibly a_long_ its periméter, at Ia[ge c_j|s-
and a fiber tip. Unlike previous works1012-141613ye gre  tanceg and cannot be arbitrarily translated along thexis.

able to quantitatively calculate the force generated by a fluc! he specification of these boundary conditions constitutes an

tuating membrane on a fiber tip via a “microscopic” model @PPropriate “framing™ of our membrane. We assume

and derive the force generated as a function of the rod to thiiroughout that the size of the frame is large enough such
membrane distance. Previous wdiikd12-141617 50 a5-  that all physical results obtained in this work are relatively

sumed or postulated a definite functional forte.g., insen;itive to the shape of 'the frame boundgry. Givgn the
Hookean for the membrane force as a function of the rod tomentioned boundary conditions, we can wriigx,y) in

the membrane distance, whereas in the work presented het&'ms of the following discrete Fourier modes:

we explicitly derive the membrane force. Furthermore, using © nwx  nay

the approach outlined in this work and via a well-knd#n ux,y)= > > UymSin—— sin—-. )
microscopic model for membrane fluctuations, we are also n=1m=1 L L

able to parameterize the strength of the membrane-induced For the purposes of this work, we will use the following
harmonic free energgsee the Appendix for the discussion of

Author to whom correspondence should be addressed. Electronic maivhen thliS formalism remains validfor the displacement
d.r.daniels@warwick.ac.uk u(x,y),:
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z,= A1 25 8
_ AT EX 8 n 2| (8)
/-\ T a Now, carrying out a final integration over, we arrive at the
AN, S - - desired expression fat
1 7 1'_“ p z
Z,=expg —AZ), 9

where we have defined for convenience the constant
(which does however depend on the characteristic param-

| eters of our membranes
FIG. 1. Diagram of a fluctuating membrane interacting with a fiber Aip. 27y
denotes the height of the rod as measured from the membrane framme at A= —Q ) (10
=0 (shown as a dashed horizontal line inl 1+ Y
K2

where() is the area of the membrane frarfeeg.,Q=L2 in
1 (L L - ) our cas¢ Now, Z, in Eq. (9) represents the partition function
Fu=35 fo dxjo dy(x(Viu)*+y(V, u)?), (3 for the midpoint fluctuations of our membrane, fixed at some
arbitrary valuez. In order to complete the calculation of the
which contains a surface tensiog) term as well as a cur- partition function for our membrane, including the presence
vature (k) penalizing term. Note that the free energy in Eq.of the rod, we need to further integrafe from the position
(3) is only really valid for relatively small displacementswf of the tip of the rod,A, to «. In this way, we realize the
(see the Appendix for further details physical constraint that we wish to impose; that the mem-
We now need to consider the form of the coupling be-brane midpoint must fluctuate entirely above the rod tip—
tween our membrane and the tip of a polymer rod lyingand never below it. So we writéntroducing a convenient
along the kaxis (see Fig. 1 Note that we assume the rod tip normalization
to be “pointlike,” which is a valid approximation as long as

the rod radius is less than the “mesh size” of the membrane A= JadzZ, (11)
(given by~ \/k/y). To begin with, we fix the midpoint fluc- [Z.dzz
tzuaat;o% SI’ISJVZW membrane to be fixed at some arbitrary Value\ivhereA is the position of the tip along the &xis. Carrying

out the integrals in Eq.11), we end up with our final expres-
u(L/2L/2)=z. (4)  sion forZ, [where erfg) is the error functioh

We incorporate this constraint into the calculation of the
sum overall the membrane conformations, represented by
our partition functionZ,, via the following relation:

ZAzé(l—erf(\/KA)). (12)

From Eq.(12), we are now in a position to be able to calcu-
late the force exerted by the membrane on the polymer rod

Zz:f d\Z, expliNz), (5)  tip as follows:

where Z, is defined as(unless otherwise stated, we take . _ _ dIn(Zy) _ \/E exp(—AA?)
keT=1) 4 JA 7T1—erf(VAA)

The force, as given by Eq.l3), is plotted in Fig. 2
against the membrane frame to the tip distance and possesses
the following limits of interesi{see also the Appendix

(13

ZA=J Duexp —ihu(L/2L/2)—F,). (6)

Carrying out the functional integrélin Eq. (6), we arrive at

the following expression forZ, (normalized such that fi—2AA as A—+o,
Z)\|)\=O:l)' A 4
y » faA—2\/—t+t—AA as A—OQ, (14
2\ 1 1 T T
Z,=exp _TE E I —— ,
myi=1m=1 | Knm L A
Knm"'ﬁ fa— ;exp(—AAz) as A——o,
(7

From these limits and Fig. 2, we can discern the follow-
where we have defined,,=(2n—1)?+(2m—1)2. Unfor-  ing behavior of our rod/membrane system. For large, positive
tunately, the summations ovarandm present in Eq(7) do A (i.e., when the rod tip strongly distorts the membrane up-
not lead to closed, convenient expressions. Therefore, for theardg, the force generated by the membrane on theftip,
purposes of this work and ease of use, we approximate theecomes Hookean with a spring constant giver#8A. For
sums by integrals, enabling us to write small A, the force is again Hookean tyfeith a spring con-
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the rate of the monomer subtraction does not. Also note that
2./ 2 in what follows, we assume that the available monomers are
able to diffuse easily to the locally growing fiber tjgee,

10 e.g., Eq.(4) for an example of when this may not be the

gl casd. This assumption is tantamount to asserting that in this
work, we take the rate-limiting step for the fiber growth to be

6 the force exerted by our membrane and not the diffusion
constant of the monomefs’

al In the presence of a local forcg, , acting on the grow-
ing rod tip and via the elementary Kramers transition rate

5 theory*®it can be shown that the rate constants of the mono-
mer (of typical sized) addition and subtraction are modified

, : : : JAA in the following way**

: a(fr)=a(0)exp(—frd),
FIG. 2. Plot of the(normalized force exerted by membrarfg/2\A/m vs

(normalized distance of the tip from the membrane fram@A. B(fr)=p(0). (18)
In Eq. (18), f, & represents the work required to add one

stant now of=4/mA) but does not vanish as the rod tip monomer of sizes to the growing tip, when the tip is at a
approaches the membrane frame, but rather in this liigit, distanceA from the membrane frame. Note that it is usually
approaches the constant value of 2. Lastly, when the assume®® that only the rate of the monomer addition is
rod tip is far away from the membrane frarfe large and  modified under the action of the local force, whereas the rate
negative, the force generated by the membrane decays awayf the monomer subtraction remains unaffected by*° For
rapidly to zero, as one would expect. For comparison of thehe purposes of this section, it is unnecessary to solve for the
typical force magnitudes predicted by our model versusomplete dynamics of the growing fiber, which we post-
those found experimentally, see the Appendix. poned to a later section. Since we are predominantly inter-

We can also use the partition functiah for the mid-  ested in this section in the stall for¢ee., the force required
point fluctuations of our membrane, as given by B, to  to halt the growth of the fibérwe only need to consider the
calculate the average distance between the fiber tip and th&yuilibrium or steady-state behavior of the rod. Via elemen-
fluctuating membrane, given that the midpoint fluctuations oftary thermodynamical argumerfts,it is straightforward to
the membrane must lie entirely above the rod tip—and nevegee that the rod growth stalls when theew force-
below it. So we are required to calculate with given by  dependentrate of the monomer addition equals the rate of

Eq. (9), the monomer subtraction, which implies the following
[dz22, result®®
(Z)=—F—- (15 f 0
[1dzz, a(fy) Lt I a( )) 19
) . ) ) ﬁ(fA) Astall™ (O)
Carrying out the integrals in Eq15), we arrive at the
following expression for the averade). Equation (19) expresses the simple idea that the rod
A2 growth stalls when the energy gaior loss of entropy pro-
(Z)= / exp(—AAY) (16) duced by adding a monomer to the growing tip exactly bal-
Al—erf(\VA \/—A) ances the corresponding energy cost of doing the required

) - work against the membrane. The following two limits are
As a by-product of this analysis and by combining H4$) likely to be of most interest for stalling. If we focus on the

and (13), we can obtainas a useful consistency chedke
force exerted by the membrane as a function of the avera semaIIA Hookean regime, we find that the onset of the stall-

. ng occurs when
membrane displacement from zefa), as follows: 9

_ ) 1
fn=2A2), 17 A= 4A5In(;(0))—§\/§. (20

which can be seen to possess a simple Hookean functional
form, as of course it should, since we began with a freeOn the other hand, if we focus on the large Hookean

energy quadratic in the membrane displaceniBat (3)]. regime, we find that the onset of the stalling occurs when
Ill. ROD GROWTH STALL FORCE A 1 a(O) 2D
stall™ 2A5 ﬁ(o)

The dynamics of a growing fibéas found in “Brownian
Ratchets*~1%16js governed by the rate of the monomer ad-whereA in both expressions is as given by H@0). Using
dition, a(0)=k,J{ M], and the rate of the monomer subtrac- these limiting results, the corresponding value of the stall
tion, B(0)=k. Note that it is typically assumed that the force in both the small and largk regimes can be straight-
rate of the monomer addition to the fiber depends on théorwardly obtained via inspection of the relevant limits given
concentration of the locally available monomevk,whereas in Eq. (14) (see also the Appendix
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IV. ROD BUCKLING A (L)
6

Linear stability analysi$~**for a rod of length]_,,4 and
intrinsic stiffness,x,,q, shows that a rod will buckle when

the local force applied at the rod tip reaches the critical value
0f12—l4

772

f buckie= Krod 5 - (22
rod o110 120130 a0 150"
Equating the critical forcef e Of EQ. (22), with the
force exerted by the membrane, giventyof Eq. (13), we -2
can solve forAp,.qe- The following two limits are likely to
be of most interest for buckling. In particular, if we focus on

the smallA, Hookean regime, we find that the onset of the
buckling occurs roughly when FIG. 3. Plot of the(normalized fiber-tip position vSnormalized time with

«(0)/8(0)=2.0. From top to bottomy/A5%=0.25, 0.50, and 0.75.
Kiogm™ 1 |m
Apuckie™ a2, 2 VA (23
rod tion size ~/6%/(Z?), so that a high value of/As? corre-
On the other hand, if we focus on the large Hookean sponds to a more rigid, hard-wall-type membrane, whereas a

regime, we find that the onset of the buckling occurs whensmall value ofAs? corresponds to a more flexible, highly
fluctuating surface. A typical value ofAs°~0.4 can be

A _ KrodT? (24) found experimentallysee the Appendix and Refs. 2, 4, 12,
PN and 19. We can see from Fig. 3 thé&for a given polymer-
) ) ) o ization rate the less flexible the membrane, the sooner the
where A in both expressions is again given by HQ0).  fiper growth begins to stall, whereas the more flexible the

Using these limiting results, the corresponding value of thnemprane, the later the fiber growth stalls. From Fig. 3, we
buckling force, in both the small and largeregimes, canbe 5, g15g see that the late-time, asymptotic valué @) is
straightforwardly obtained via inspection of the relevant “m'larger for the highly fluctuating membrane than that of the

its given in Eq.(14) (see also the Appendix more rigid membrane. Reassuringly, all the plots shown in
Fig. 3 converge for large negative fiber-tip membrane frame
V. ROD GROWTH DYNAMICS distances at earlytimes. One can understand these results

qualitatively in terms of the underlying membrane fluctua-
We now proceed to give an approximate “mean-field-tions. The more highly fluctuating the membrane, the less the
type” description for the rod growth dynamics in close prox- |ocal, average forcéor elastic constahtoecomes on a rod
imity to a fluctuating membrane. More complicated dynami-tip as the rod approaches the membrane surface. Further-
cal models can be found in the |ite|’atljr_é,0'16 but for the more, a h|gh|y ﬂuctuating membrane is more ||ke|y on aver-
purposes of this work, we prefer to use a simple and tractablgge to be able to accommodate the placement of a mono-
model as possible, which nevertheless manages to accurateyeric unit at the fiber tip than a rigid membrane, thus

capture the underlying physics and furthermore renders thgmeliorating the steric constraints, allowing the rod to grow
underlying physics as transparent as possible. Moreover, iBnger.

the “reaction-limited” case as studied here, it can be shown  shown in Fig. 4 is the time evolution of the fiber-tip
[see, for example, Eq4)] that Eq.(25) can be derived from  position at a fixed value of the membrane elastic constant

more complicated dynamical models. Thus, using the resultg_2A5 for three different values of the ratio of the monomer
of the previous sections, we can write down {la@eraged

over membrane fluctuationslynamical equation obeyed by

the fiber tip a&~1%1¢ A (E)
dA 26
gi ~ dlaexp(—110)=p). (25) 15
From the right-hand side of ER5), we can see that the 1

rod growth comes to an end whenever the energy cost of 5

adding a monomer becomes greater than the energy gain via

entropy loss. Using Eq13) for f,, we can solve Eq(25) 0.5

for A=A(t) numerically, as shown in Figs. 3 and 4. -1
Shown in Fig. 3 is the time evolution of the fiber-tip

position at a fixed value of the rate constants for the mono- =

mer addition and subtractioa(0)/B8(0), for three different -2

values ofyAs°. The parameter/Ad~ roughly measures the FiG. 4. Plot of thenormalized fiber-tip position vs(normalized time with
ratio of the monomer size to the typical membrane fluctua+/A5?=0.50. From top to bottom(0)/3(0)=3.0, 2.5, and 2.0.

80 10 120 140 Pt
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addition to subtractior(0)/8(0). A typical value ofa(0)/  (dh/dz)? for the small displacements of interest here. This
B(0)~2 can be found experimentafly.From Fig. 4, one can force acts to do work in storing excess fiber length within
easily see that increasing the rate of the monomer additiopo L.

makes the fiber tip approach its late-time, asymptotic posi- Assuming that the gradients of the fiber ends remain
tion more quickly and that, furthermore, this late-time, fiber-unconstrained by the membrane, we proceed to consider the
tip stall value increases as the rate of the monomer additiomode structure of the fluctuations by defining the Fourier
increases. These results can also be understood in terms gdir as

the membrane fluctuations as follows. Increasing the rate of

the monomer addition implies that for the fiber tip to stall, a ” nmz
greater force needs to be exerted by the membrane. Now, if h(z)= Z h, sinL—
the membrane elastic constants are held fixed, then in order i rod
to produce the required stall force, the membrane must bgng

deformed to a concomitantly higher degree, hence, the

greater late-time, asymptotic value of the fiber-tip position. 2 (Lrod . nwz
h,=— dzh(z)sin . (27
Lrod 0 Lrod
VI. BENDING FLUCTUATIONS OF THE CONFINED Thus, withg,=nm/L g,
SEMIFLEXIBLE FIBER .
. . . . L rod 2 4 2
Motivated by recent experiments, we consider a single- ~ Hy=—,~ 21 ha(kroddn— ). (28)
0=

living semiflexible rod or “fiber” in close proximity to a

fluctuating membrane. Here, the term “living” merely de- g inartition of the energy applied to this Hamiltonian then
notes that the fiber can grow or shrink by the accretion Og/ields

monomeric units. Such fibers could be, e.g., actin filaments,

microtubules, or sickle hemoglobin fibéfsThe geometries 2kgT
that we have in mind include a single fiber confined withina ~ (h2)= 7 > (29
vesicle or a red blood cell. Under certain conditions, such L rod( Kroddn = F)

living fibers have a tendency to grow in length. As usual, this . . . . . .
is due to a free-energy imbalance between the monomers %rcghf's expreisvs(;(:]nirc]ogeglg)|dTerr]1(';|f§ri ﬂl]i?ugfs(’;'iﬁ;biik“ng
solution and those in the fiber interior. When the end of amodé flbdgila’r:lgons diverqé ats.—>f rEnd are unbounded
growing fiber starts to approach the cell membrane, it is SUbfor fot 9 buckle:
ject to a longitudinal compressive confining forde,the buckle-

magnitude of which we have calculated earlier. Fiber fluctuations and the applied force  f and fiber

We parameterize the fluctuations of the fiber by way ofrigidity #qq
the normal displacemert(z) of the fiber from thez axis, By measuring the mode spectrum of the fiber fluctua-
chosen so as to be parallel to the end-to-end vector of thﬁons Eq.(29) can be used directly to calculatét for) the
fiber. The displ_acemenrt(z) is defined to be thg n_ormal dis- tWwo l:mknownsf and x,qq. Thus, the fluctuations give inde-
pIac_ement projected onto thez pl.ane.(sa)b. Similar fluc- pendent information on, and in principle, determine both of
tuations would be apparent in projection onto i@ plane,  paqe two unknown quantities. It has been previously re-

but these completely decouple from those in %ie plane ported how the measurements of the mean-squared displace-

for the sma!l amplitgde. beqding fluctuations qf int'erest' herement of the midpoint of freely suspended sickle fibers can be
Thus, the fiber projection is completely straighthit=0 is used to determine their rigiditiéd22 there being no force

displaced upwards locally whem=>0 ar_u_j displaced down- (f=0) for freely suspended fibers. For such fibers, the rigid-
wards wherh<<0. The boundary conditions at the ends areity was found to vary between the fibers, which could be

h(0)=h(L,ng=O. Itl canr;b_e shown ltlhat the .mechgnijcal €M interpreted as being due to the differences in the fiber thick-
ergy of a fiber of lengthloq is well approximated byH nesses. A similar technique can be employed for the confined

= Hut Hy with fibers as we will now show.
oo fLmdd Krog [ d2h 2 f(dh\2 The projected fiber displacement at a distamcalong
<)o 172 \az2) "2l

, (26)  the fiber ish(z). The mean-squared value of this is
provided that the fiber displacement everywhere is smallh 5 _i h2)sir? g7 2kg T SiPQpz
[h|/Lioq<1. Hy is similar but is independent of the normal (h(z) >_n=l< n) SN 0 Z= Lrod =1 k,0qq—fQ2
fiber displacement projected onto tixez plane and may oo "
therefore be neglected in what follows. We simply observe  Thus, the measurements @f(z)?) as few as two loca-
that there will be exactly similar fluctuations in tiez plane  tions is enough to extract the two unknowinand « by any
by symmetry. Herek,q iS, as before, the rigidity of the fiber appropriate fitting procedure. In practice, the optimum infor-
and is simply a Hookean constant that relates squared curvasation content is to be obtained by an analysis of as much of
ture to bending energy. The foré&an be shown to act as a the mode structure as possible, i.e., as manyodes or
Lagrange multiplier for excess lengthL, = 1/2fg’°ddz equivalentlyz values as possible. However, for very rigid

(30
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fibers, the procedure of measuring the mean-squared spatial(x,y)), as a function of the in-plane membrane coordi-

amplitudes at few locations can be nearly as efficient and isatesx andy, in the presence of the rod tip. Minimizing our

arguably more straightforward. free energy, Eq(3), subject to the boundary conditions on
The important conclusion here is that we can measur¢he membrane edges and E4g), we find that the shape of

the forcef and hence obtain thermodynamic informationthe membrane is given by

about the systerntby identifying the force as being due to a .

thermodynamic Brownian ratchet at a steady gtateder U(X,y) = ————g(x—L/2y—L/2), (A1)

conditions other than the speciahargina) case where the 9(0,0

fiber is jUSt Stal’ting to buckle. ThUS, there is no need to finthere the “Green function’g(xiy) satisfies

tune the force or the chemical conditions. This gives, in prin- ) 4

ciple, a new mechanism for mapping the thermodynamics of  (—¥Vi+«&V)g(x,y)=6(x)8(y). (A2)

fiber assembly under all conditions, under which the fibers |, grder to calculate the average membrane shape in the

appear, provided the fiber fluctuations remain measurablgyesence of the tip, we need to further average over the tip
This is a very significant, if rather subtle, improvement overposition such that

a technique that relies only on analyzing, e.g., fiber buckling. 2
z
VIIl. CONCLUSIONS (ux¥))= 55,0 9~ L/2y-L/2), (A3)

We have outlined the theory for the force exerted by awhere now(z) is given by Eq.(16) and is a function of the
fluctuating membrane on a polymer rod tip using statisticakip to the membrane frame distande Note that what we
mechanical methods. Unlike previous works, we do not asealculate here is the average displacement of the membrane,
sume or postulate a presubscribed functional form for thevhich is only nonzero due to the presence of the tip. In the
membrane force as a function of rod to the membranebsence of a tip, the average displacement of a membrane
distance’~101618 Rather, in this work, we explicitty and must strictly vanish. Using the rotational symmetry present,
quantitatively derive the membrane force acting on a fiber tigntroducing r = \/(x— L/2)?+ (y—L/2)? (such that the tip
via a microscopic model and are furthermore able to paramrpow sits atr =0), and converting to Fourier modes, we find
eterize the strength of this membrane-induced force in termthat
of the membranes underlying elastic constants. Using the
approach given in this work, we were able to calculate the _ f“’ Ppdp Jo(pr)

. SO g(r)= , (A4)
stall force required to cease the growth of a growing fiber 7L 27T yp?+ kp*

induced by membrane fluctuations, as well as the membrane

force needed for the rod/fiber buckling. We also studied thé(vhgrel]lo(pr)dis tf(\je famti)l_iar Bhessel futr;ction o\szeroth ordgr,
dynamics of a growing fiber tip under the action of atyplca y used in describing the membranes. We are now in a

fluctuation-induced membrane force. The results obtained iROS't'On to write(V, u) as

this work are likely to have a direct and important bearing on (z) ag(r)

the many relevant biological systems of interest, such as (V.U =900 ar (A5)
cells2=51112 polymerizing microtubules'?!® confined in

vesicles, and membrane-enclosed fibers or fddghe exten- It can be straightforwardly shown tha¥, u) has its

sion of the model presented in this work including the effectsMaximum value(V, U) max, whenr ~ yx/y. Substituting this
of spontaneous membrane curvature and/or membranes ¥glue of r into Eq. (35 and performing the integrals re-
spherical topology is left for future work. Finally, we have quired, we get

presented a method for the simultaneous extraction of the 5 5 1
(VLW ma= §<Z> \/;

—_—. A6
3 \ﬁ (A6)
7 Ve«
The condition for the breakdown of our model can now be

This work was supported by the NIH with Grant No. HL finally expressed as occurring when the average membrane
58512 from the National Heart Lung and Blood Institute.  displacement reaches a maximum vakl®,, of

fiber rigidity and appliedmembrang force from the mea-

surements of the bending fluctuations of the fiber. In
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APPENDIX: MODEL BREAKDOWN DISPLACEMENT (2) ma= > \ﬁm(ﬁ \ﬁ) (A7)
AND FORCE mx-2 Ny \awm Vi

Our free energy for the membrane displacements, ab/sing this result foxz) ., along with Eq.(17), we can also
given by Eq.(3), typically assumés’ that the excess area calculate the maximum forcé,,,, capable of being gener-
produced by the membrane height fluctuatidgoger some ated in our model before it breaks down, which is given
reference base plane relatively small.c')j‘r/?is translates into simply by
the condition that our model breaks dowrnwheneverv, u
~1, locally, anywhere over the entire membrane surface. In fmaXZSW\/W- (A8)
order to quantitatively predict when this breakdown occurs,  Plugging in typical membrane values, as probed
we need to find the average local membrane shapesxperimentallyy'?1®of k~10"1°J, y~104Jm 2, andL
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