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Abstract

We model theoretically the response of the widely studied circadian oscillator of Neurospora crassa to inactivation of the frq gene.

The resulting organism has been termed ‘‘arrhythmic’’ under constant conditions. Under entrainment to periodic temperature cycles

Roenneberg, Merrow and coworkers have shown that the phase angle at which spore formation occurs depends on the entrainment

period, curiously even in the null frq mutants ( frq9 and frq10). We show that such a response does not imply the presence of a self-

sustained free-running oscillator. We derive a simple candidate model (a damped harmonic oscillator) for the null frq mutants that

successfully reproduces the observed phase angle response. An endogenous period of 21 h for the damped harmonic oscillator

coincides with the endogenous period of wild-type Neurospora. This suggests that the (noise driven) ‘‘residual system’’ present in the

mutants may have a significant timekeeping role in the wild-type organism. Our model (with no change of parameters) was then used

to investigate spore formation patterns under constant conditions and reproduces the corresponding experimental data of Aronson

et al. (Proc. Natl. Acad. Sci. USA 91 (1994) 7683.)

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Circadian rhythms are observed both in unicellular
organisms and in higher eukaryotes, but the mechanism
behind the rhythmicity of the circadian clock consists of
intracellular processes (Aschoff, 1981; Dunlap, 1999;
Goldbeter, 1996; Roenneberg and Merrow, 2001). The
circadian system of the fungus Neurospora crassa is one
such genetic model system that has been widely studied
(Bell-Pedersen et al., 2001; Crosthwaite et al., 1997;
Dharmananda, 1980; Feldman and Hoyle, 1973; Lakin-
Thomas, 1998; Liu et al., 1998; Loros and Feldman,
1986; Merrow et al., 1997, 1999, 2001; Roenneberg and
Merrow, 2001; Russo, 1988; Sargent et al., 1956;
Dunlap, 2003). Many of the circadian components in
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Neurospora are now known although the precise manner
in which they interact is still not fully characterized.
In Neurospora a negative feedback loop is thought to

give rise to regular oscillations with the observed period
of 21 h (Dunlap, 1999; Roenneberg and Merrow, 2001)
although, we will demonstrate that this period also
manifests itself in the null frq mutants. The output of
this circadian oscillator controls, amongst other things,
spore formation in Neurospora. The point in the cycle at
which this spore development occurs is used as the
clock ‘‘read-out’’, since it is a readily observable event
that occurs periodically with a period identical to that of
the clock components. It is not yet clear from the
experimental data that frq plays the exclusive time-
keeping role that this discussion suggests and indeed
other regulatory elements, only some of which are
mentioned above, certainly play important roles.
Rhythmic spore formation can be observed in frq null
mutants under various conditions (Aronson et al., 1994;
Lakin-Thomas and Brody, 2000; Loros and Feldman,
1986; Merrow et al., 1999).
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Fig. 1. Reproduction of the experimental results of Roenneberg and

Merrow (2001). The graph shows the phase angles (ordinate) at the

onset of spore formation under entrainment by temperature cycles of

different length (abscissa). Various frq mutants of Neurospora are

displayed: wild-type frq+, short frq1 and long frq7 period mutants and

‘‘null’’ mutants frq9 and frq10. Light gray areas represent 27�C, darker

gray 22�C, a convention that is maintained in later figures. Phase

angles are calculated in degrees of the respective temperature cycle (the

beginning of the warmer period being 0�). The very dark gray curve

was present in the original figure of Roenneberg and Merrow and

represents the phase angle of a hypothetical event that occurs a

constant 7 h after the warm to cold transition, irrespective of the length

of the temperature cycle. This curve has no significance within the

context of the present work.
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As well as exhibiting regular oscillations circadian
rhythms must also exhibit sensitivity to external condi-
tions. Detection of light in Neurospora causes changes in
frq RNA levels (Crosthwaite et al., 1997) and acts to
reset the circadian clock so that the phase of the clock
coincides with the phase of the external world (Dhar-
mananda, 1980; Pittendrigh, 1965). Temperature is
another factor that can affect the synchronization of
the cell. The Neurospora oscillator can be phase reset by
temperature changes (Liu et al., 1998; Merrow et al.,
1999) but its period is carefully temperature compen-
sated (Gardner and Feldman, 1981; Loros and Feld-
man, 1986). Entrainment of circadian systems to a
periodic external signal (zeitgeber) such as a temperature
cycle, is mediated by repeated phase resetting.
Entrainment phenomena are believed to occur in a

number of different systems. In response to periodic
stimulation, endogenous rhythms can become phase
locked to the stimulus giving periodic dynamics. The
effects of brief periodic stimulation of circadian
oscillators was presented by Pittendrigh and others
(e.g. Pittendrigh, 1965).
The idea of modeling general circadian systems using

coupled oscillators and feedback loops has been
investigated by many authors, including Roenneberg
and Merrow (1998,1999). However, these systems can be
mathematically quite complex, and it is our intention in
the present work to rather focus on the construction of a
minimal mathematical model for the residual circadian
network of a mutant organism that does not exhibit
regular oscillations.
The present work is motivated by the experimental

studies of Roenneberg and Merrow (Merrow et al.,
1999; Roenneberg and Merrow, 2001) who use tem-
perature entrainment to probe the circadian oscillator of
Neurospora. Several different frq mutants were entrained
to temperature cycles of varying periods, but we are
primarily interested in the behavior of two null mutants.
The frq9 allele is a mutation that is thought to result in a
truncated protein (Loros et al., 1986), and it shares the
same properties as frq10 (which produces no protein at
all) (Aronson et al., 1994). These mutants have been
described as ‘‘lacking circadian rhythms’’ under condi-
tions of constant temperature in the dark. This is quite a
subjective definition, but is generally accepted as mean-
ing that their rhythms are markedly less regular than
those of the wild type under standard experimental
conditions. We shall use this as a definition of
‘‘arrhythmic’’ throughout. The rhythm of the mutants
can be made more regular by entraining them to
temperature cycles of varying periods. For periods not
too different from 24 h, they entrained stably (period-
locked) to the zeitgeber cycle such that their spore
formation occurred once per cycle.
It has been observed (Merrow et al., 1999; Roenne-

berg and Merrow, 2001) that the phase angle at which
spore development occurs is dependent on the period of
the entrainment, even for the null mutants (which
remains a controversial observation (Dunlap, 2003)).
This might be regarded as somewhat surprising in view
of the fact that frq had been described as an integral
component of the circadian system, and yet the
organism still showed a response that suggested some
sort of internal timekeeping. An early suggestion that
the influences of FRQ and frq on each other did not
describe the whole system was by Lakin-Thomas et al.
(Lakin-Thomas and Brody, 2000). The residual timing
system has since been dubbed the FRQ-less oscillator

(FLO) (McWatters et al., 1999) and its biochemical
components are unknown. Our goal is to establish the
minimum mathematical requirements for this observed
behavior. As we will see, a good place to start is with a
linear approximation (an approach generally over-
looked by those building mathematically complex non-
linear systems).
In order to proceed, we first make some qualitative

observations of the data (Merrow et al., 1999; Roenne-
berg and Merrow, 2001) which we will require that our
model reproduces. The phase angle f at which spore
formation occurs in null mutants entrained to tempera-
ture cycles of varying periods To is reproduced in Fig. 1.
This data represents a few measurements sampled from
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the unknown function f(To) for the wild-type frq+ and
the mutants frq1, frq7, frq9 and frq10. No significant
difference was observed between the two arrhythmic
mutants frq9 and frq10. The behavior of these arrhyth-
mic mutants was the focus of our investigation.
One possible interpretation of the experimental data

shown in Fig. 1 is that some (hidden) endogenous period
of the null mutants ( frq9 and frq10) can be determined
by considering the known free-running periods of the
other mutants. The endogenous periods at 25�C of the
wild type ( frq+), the long period mutant ( frq7) and the
short period mutant ( frq1) are 21, 29 and 16 h,
respectively. This argument is based on the observation
that in each case when the driving period To is the same
as the endogenous period TO, spores form in the middle
of the colder period. The argument then continues that
the endogenous period of the null mutants can be found
by extrapolating the straight line through the experi-
mental data to the middle of the cold period and
assuming that the driving period that caused the spore
formation at that point is the endogenous period of the
null mutants. This would suggest that the endogenous
period of the null mutants is about 12 h (Merrow et al.,
1999; Roenneberg and Merrow, 2001). We do not favor
this interpretation and devote much of the rest of this
article to the analysis of an alternative.
Our goal is now to investigate what kind of residual

circadian system gives a qualitative response such as
that observed in the null mutants, and to determine
what is the simplest such model that also gives a
satisfactory quantitative fit to the data.
2. The circadian oscillator as a system of coupled rate

equations

The state of the circadian oscillator in Neurospora,
and indeed in any organism, at a given time may be
described by the concentrations of all the distinguishable
clock components. This may separately include the
concentrations of any partially or fully phosphorylated
proteins, their RNA and, indeed, these concentrations in
each different cellular compartment, most obviously the
cytoplasm and nucleus. Within this scheme, it seems
reasonable to neglect the effects of diffusion not
adequately treated by such a compartmentalization
approach on the grounds that characteristic diffusion
time for a protein to traverse a typical cell is on the scale
of seconds. These N concentrations can be represented
as an N-dimensional vector u(t), where every component
of the vector ui(t) is one such concentration that can
vary in time.
The advantage of this specification of the state of the

system is that it allows a rather compact mathematical
description of the circadian oscillator particularly if one
invokes a ‘‘mean field’’ approximation which amounts
to neglecting random fluctuations in concentrations and
assumes that it is only the rate of change (first
derivative) of these concentrations which is controlled
by the state of the system, rather than the second or
higher derivatives (which would correspond to direct

control of rates of acceleration of concentration).
The resulting mathematical description, which allows

for high-order chemical kinetics is

dui

dt
¼ bijuj þ cijkujuk þ dijklujukul þ?; ð1Þ

where the order in u at which this expansion is
truncated, corresponds to the highest order chemical
kinetics present. The matrix elements bij, cijk, dijkl, etc.
can be identified with first-, second- and third-order rate
constants, respectively. Most oscillators, including the
van der Pol oscillator, can be constructed from such a
system of equations. Their relevance to us here is that
removing components such as frq from the circadian
system reduces the dimensionality of u—we must now
specify fewer component concentrations. The ultimate
extrapolation of this is to one (and ultimately zero)
dimensions. The one-dimensional version of this equa-
tion, truncated at linear order in u ðcijk ¼ dijkl ¼ ? ¼ 0Þ
is the first-order decay model considered later. It is, in
this sense, the simplest possible residual circadian system
for the null mutants. The two-dimensional version of
this equation, also truncated at linear order in u, can be
shown to yield the damped harmonic oscillator (also
considered later).
The actual biochemical system is likely to be of the

form of a weakly attracting nonlinear system, but we
have no reason to assume any form for the nonlinearity
would be better than another. These linear systems are
good approximations on which to base such a weakly
attracting nonlinear model.
3. Method 1: modeling using a first-order decay equation

The simplest candidate behavior for the residual
circadian system in the null mutants is that of a first-
order decay process. By this we mean that the rate of
production of the component of the circadian system
that directly controls spore formation under entrain-
ment is a function of the temperature and that this
component undergoes simple decay characterized by a
single time constant t. The concentration of this
component is determined by the variable x which may
be thought of as the deviation from its average
concentration. In what follows, we study only phase
differences between the response of our model systems
and the entrainment cycle. The absolute phase is
arbitrary within our model and amounts to the choice
of whether spore development occurs when x is at a
maximum, a minimum, or at any other fixed point in its
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cycle. Mathematically the simple decay process we have
described is equivalent to

dxðtÞ
dt

þ xðtÞ=t ¼ f ðtÞ; ð2Þ

where the entrainment signal f (t) is proportional to
temperature and represents the effect of temperature on
the rate of production of the spore formation control-
ling component x. We consider first the most simple
idealization where the entrainment signal is sinusoidal
with some amplitude A and some frequency o (where
2p/o gives the length of the entrainment period, To):

f ðtÞ ¼ A cosot: ð3Þ

4. Results and discussion

The solution to Eq. (2) is

xðtÞ ¼
Atffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ o2t2
p cosðot þ fÞ; ð4Þ

where the phase angle varies with entrainment period
according to

tan f ¼ �
2pt
To

: ð5Þ

Fig. 2 shows the variation of f with period length To

that we can compare with the data of Fig. 1. It can be
seen that the response characterized by Eq. (5) fails to be
a good fit to the data. Experimentally, the total change
in phase angle between entrainment at the shortest and
longest periods is approximately 180� and certainly
greater than 90�. The line of best fit exhibits a maximum
phase angle change of 90� between very short and very
long period entrainment and, for the range of periods
studied experimentally (Merrow et al., 1999; Roenne-
Fig. 2. The experimentally observed phase angle f at which frq-

inactive Neurospora ( frq9 and frq10) conidiate as a function of the

period of the temperature entrainment cycle To (points). Data courtesy

of Roenneberg and Merrow (2001). Also shown is the curve of best fit

to a simple first order decay as given by Eq. (5), corresponding to

t=3.07. It can be seen that this model gives a bad fit to the

experimental data.
berg and Merrow, 2001), only a small fraction of 90�.
On these grounds, we eliminate this first-order decay
model as a candidate to model the residual circadian
system in the null mutants.
5. Method 2: modeling using a damped harmonic

oscillator

As the driven, first-order decay equation has been
found lacking, we investigate the next most simple
model for the FLO within a scheme that models the
system as a system of differential equations with an
increasing number of components and chemical kinetics.
This residual circadian system might more successfully
reproduce the phase angle behavior observed in the null
mutant experiments. With x again the concentration
difference, from its average value, of the component that
controls spore development we may define the driven,
damped harmonic oscillator as

d2xðtÞ
dt2

þ 2n
dxðtÞ
dt

þ kxðtÞ ¼ f ðtÞ ð6Þ

with f (t) again some driving term proportional to
temperature that models the temperature entrainment
signal and n and k are as yet unspecified (fit) parameters.
It is important to note that while this second-order
equation explicitly involves the concentration of only
one clock component (x) it can be shown to be
equivalent to the special case of Eq. (1) corresponding
to a system of two coupled first-order linear differential
equations, i.e. two relevant clock components control-
ling each other’s rates of production. Thus, it is the
natural next choice of candidate to describe the
Neurospora data in which one could trace the origin of
the apparently arbitrary parameters n and k to
(combinations of) the underlying rate constants in the
corresponding kinetic equations.
It is only in the special case n=0 that sustained,

periodic oscillatory variations in x can occur in the
absence of any driving (entrainment) term, f (t)=0. In
this case, the equation reduces to that of a simple
harmonic oscillator with frequency

ffiffiffi
k

p
: For values n>0

of interest to us in what follows there are no oscillatory
solutions in the absence of any driving term (see later
section on driving with noise). The only steady-state
solution in this case is a constant concentration.
However, the response of Eq. (6) to entrainment is still
rather different, depending on the sign of k�n2. If this is
negative then the oscillator is overdamped and Eq. (6)
actually reduces to that of a first-order decay, Eq. (2).
On the other hand if this quantity is positive, as we may
therefore assume in what follows, the system exhibits
damped oscillatory response. A familiar feature of a
damped oscillator would be the appearance of transient
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oscillations, with decaying amplitude, when entrainment
is switched off.
Fig. 3. The experimentally observed phase angle f at which frq-

inactive Neurospora ( frq9 and frq10) conidiate as a function of the

period of the temperature entrainment cycle To (points). Data courtesy

of Roenneberg and Merrow (2001). Also shown is the curve of best fit

to a driven, damped harmonic oscillator, corresponding to n ¼ 1
55:6 h

�1

and TO=2p/O=20.7 h. It can be seen that this model gives a good fit

to the experimental data.
6. Results and discussion

We first consider the case where the periodic
temperature variation used to entrain the null mutants
is sinusoidal according to Eq. (3). Eq. (6) can be solved
to find x(t) and in so doing a variable O (with the
dimensions of frequency) naturally appears. It is the
characteristic frequency of the damped oscillator and is
given by

O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k � n2

p
: ð7Þ

It can be shown that x(t) is given by

xðtÞ ¼
A cosðot þ fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n4 þ 2n2ðo2 þ O2Þ þ ðo2 � O2Þ2
q ; ð8Þ

where the phase angle f is now rather different to
Eq. (5)

tan f ¼
�2no

n2 þ O2 � o2
: ð9Þ

It can be seen from Eq. (8) that the response of the
driven harmonic oscillator is sinusoidal with the same
frequency o as the sinusoidal driving force, but lags the
driving force by a constant phase angle f, given by
Eq. (9). Since this phase angle is related to o, and
2p/o=To gives the period of the driving force, we can
plot the variation of the phase angle with the period of
the driving force. This can then achieved using a best fit
to the experimental results (Merrow et al., 1999;
Roenneberg and Merrow, 2001), where the driving force
is the temperature cycle.
If the experimental data points are represented by

F(To), and the fitting function is represented by f(To),
then the object is to minimize the least-squares residue,
as this will give the best fit. The least-squares residue is
defined as

E ¼
X

jFðToÞ � fðToÞj
2: ð10Þ

The best least-squares fit of our curve to the data
is shown in Fig. 3 with best fit parameter values of
n=1/55.6 h�1 and O=2p/20.7 h�1. Our curve gives a
least-squares residue of 9156 (the best straight line gives
a least-squares residue of 9162, showing that our curve is
the slightly better fit).
Thus, the damped harmonic oscillator, which we here

employ as a model for the null mutants residual
circadian system, is rather lightly damped but has a
characteristic period TO=20.7 h that is extremely close
to the 21 h endogenous period of wild-type Neurospora

( frq+). Therefore, the endogenous period of the wild-
type organism may be encoded into what remains of the
circadian circuitry of the null mutants. The same
qualitative conclusion might be reached merely by
identifying an inflection in the f(To) curve near
To=21h, also indicating that this period is built into
the null mutants. We have shown that frq is not uniquely
required to generate the circadian period in Neurospora.
One possibility is that frq does not play a true time-
keeping role, but rather powers the FLO that remains in
the null mutants ( frq9 and frq10) such that the clock is
able to sustain itself more efficiently, an idea proposed
by Roenneberg and Merrow (1998). The spring in a
mechanical clock plays a similar role by providing
energy to a separate time-keeping device, such as an
inertial pendulum.
The driving term in the above analysis, f(t), was

chosen to be sinusoidal for simplicity. We have also
examined numerically the effect of a square wave
driving signal (employed experimentally) where the
temperature was held constant for half of the period,
and then changed to a different temperature for the
other half. We conclude that the response observed is
rather similar, indeed probably experimentally indis-
tinguishable, from the sinusoidal driving previously
considered, as can be seen from Fig. 4.
In view of this quantitative similarity, Eq. (9) can

probably be employed as an analytic estimate for the
phase angle even under conditions of a square wave
entrainment signal.
7. Method 3: driving the model using internal noise

Experimental evidence produced by Aronson et al.
(1994) shows that the average delay between sporadic
spore formation events in the null mutants under
‘‘constant’’ conditions, is 21.4 h. This is similar, both
to the endogenous period of wild-type Neurospora in
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Fig. 4. The phase angle f of the signal from a driven damped

harmonic oscillator as a function of the entrainment period for (i) a

square wave using the values of n ¼ 1
55:6 h

�1 and O=2p/20.7 h�1, as
found from the experimental data fit in Fig. 3 (points) (ii) a sinusoidal

driving force fitted to these data points (solid line). The parameter

values for the curve obtained from the sinusoidal driving force are

n ¼ 1
56:8 h

�1 and O=2p/20.8 h�1.

Fig. 5. Our model for the behavior of the residual circadian circuit

under what might be experimentally termed ‘‘constant conditions’’. A

single realization of the concentration of the molecular component

controlling spore formation x(t) (arbitrary units) is plotted against

time t (hours). This is obtained from a numerical simulation of the

damped harmonic oscillator model for the residual circuit (Eq. (6))

driven by generic Gaussian noise, as defined in the text. The

model parameters are those obtained previously n ¼ 1
55:6 h

�1 and

O=2p/20.7 h�1.
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constant conditions and to the characteristic frequency
of our model of the null mutants under temperature
cycles. The remainder of this section will be devoted to
demonstrating that our model for the null mutants can
also predict the same average delay between spore
formation events under constant conditions.
It can be shown that the solution to Eq. (6) in the

absence of any driving term f(t)=0 always approaches
x=0, regardless of initial conditions. However, there
will always be some variation in the internal conditions
of the cell in the input pathway, due to stochastic
fluctuations in molecular concentrations, metabolic
levels, etc. (Thattai and van Oudenaarden, 2001; Vilar
et al., 2002). We will denote what drives this variation as
the ‘‘internal noise’’ of the system. In what follows, we
examine the response of the damped harmonic oscillator
model of the residual circadian system driven by a
generic form of noise. We are motivated by the belief
that this is more representative of the behavior of the
residual circadian circuit under what might be experi-
mentally termed ‘‘constant’’ conditions and aim to
compare our results with the experimental data
(Aronson et al., 1994).
We assume a canonical form for the noise f(t)=C(t)

in Eq. (6) with C(t) a Gaussian random variable with
zero mean /CðtÞS ¼ 0 (fluctuations are no more likely
to drive concentrations up than down) and second
moment given by

/CðtÞCðt0ÞS ¼ edðt � t0Þ ð11Þ

which specifies that the fluctuations are uncorrelated in
time (a fluctuation that drives the concentration up now
makes it no more or less likely that it is driven up again
at any later time).
8. Results and discussion

The use of Eq. (11) suggests that Eq. (6) now has only
stochastic solutions. Some of the statistical properties of
the response can be understood from the resulting
correlation function describing the average value of x at
two different times

/xðtÞxðt þ tÞS ¼ �
e expð�ntÞ
4nkO

ðn sinOtþ O cosOtÞ:

ð12Þ

The correlation function is oscillatory with the same
period as the natural frequency of the harmonic
oscillator, TO. The fact that the noise is now the only
driving signal means that the correlations decay with
characteristic time 1/n (mathematically this is due to the
exponential term in Eq. (12)), see Fig. 5. Thus, roughly
speaking, knowledge of the state of the system at an
earlier time only gives significant information on its state
for times up to 1/n later. This result implies that each
subsequent spore formation event is likely to occur
approximately TO after the previous one. Thus, the
response x(t) resembles a clock that remains roughly in
phase for 1/n hours. Indeed, a computer simulation of
Eq. (6) with such a Gaussian random driving term gives
precisely this behavior. The result of one typical
simulation run is shown in Fig. 5. It can be seen that
most reasonable choices of a criterion for spore
development result in such events occurring roughly
every 21 h, as might have been expected from our
knowledge of the correlation function. This behavior is
not sensitive to the amplitude of the noise (the system
still functions in the same way even if the noise is very
small). Thus, this is a reasonable simulation of ‘‘con-
stant’’ experimental conditions and our earlier (implied)
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Fig. 6. In dark gray: The results of the experiments of Aronson et al.

(1994) for the distribution of period lengths in the null mutants ( frq9

and frq10) at 25�C. The mean period between spore formations is

21.4 h and the standard deviation is 3.98 h. In light gray: A histogram

of the periods between spore formations obtained using our model for

the residual circadian circuit under what might be experimentally

termed ‘‘constant conditions’’. As before this is obtained from a

numerical simulation of Eq. (6) driven by generic Gaussian noise with

n ¼ 1
55:6 h

�1 and O=2p/20.7 h�1. The mean period is 20.7 h, and the

standard deviation is 3.36 h. The curve is a Gaussian fit to our data.
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assumption that entrainment is likely to suppress this
molecular noise is also justifiable.
The results from many simulations similar to that

shown in Fig. 5 are shown in Fig. 6, the periods being
determined by the time interval between one (upward)
crossing of the x-axis and the next. Also shown is the
experimental data of Aronson et al. (1994) and a
Gaussian curve fitted to the simulation data. It can be
seen that our model for the null mutants under
temperature cycles also gives an excellent fit to the
experimental data under ‘‘constant’’ conditions without
modification of the parameters.
9. General conclusions and overview

The phase angle at which spore formation occurs in
the null frq mutants of Neurospora is observed to depend
on the period of the entrainment signal (Merrow et al.,
1999; Roenneberg and Merrow, 2001). We show that
this behavior does not necessarily imply the presence of
a fully functional self-sustaining circadian oscillator. A
minimum mathematical model for the residual circadian
system in the null mutants that approximates the main
qualitative features of the experimental data is that of a
damped harmonic oscillator entrained (driven) by
temperature variation. Biochemically this corresponds
to at least two molecular components that linearly
control each others rate of production. Roenneberg and
colleagues have reached a similar conclusion using a
more complex damped oscillator model (Roenneberg
and Merrow, 1998). Our simpler model, with a
characteristic period of 20.7 h, correctly reproduces the
rapid change in the phase angle at which spore
formation occurs for entrainment periods around 21 h
and is a good fit beyond this. This period is remarkably
close to that of the endogenous period of the Neurospora

oscillator. We therefore claim to have found evidence
that this period may be encoded in the null mutants of
Neurospora. This may signify that the timekeeping part
of the oscillator circuitry is intact in the arrhythmic frq

mutants and thus that the primary timekeeping role may
not be exclusively due to frq regulation in the wild type
(in agreement with Merrow et al. (1999). If this is the
case then the FLO may be an essential part of the
wild-type oscillator (as opposed to a separate less
dominant oscillator unmasked by the removal of frq).
This supports speculation that the FLO could have
evolved to become the circadian clock in present day
Neurospora.
We also model the free-running null mutants by

driving the residual damped harmonic oscillator with
noise chosen so as to mimic natural internal variation in
molecular composition. We observe that the distribution
of period lengths in the response agrees well with the
experimental data obtained by Aronson et al. (1994).
This further supports our identification of the (noise
driven) residual circadian circuitry as resembling that of
a (noise driven) damped harmonic oscillator.
This damped harmonic oscillator model for the FLO

has been extended to linear models for the wild type and
long- and short-period mutants. The results of these will
be discussed in forthcoming work (to be submitted).
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