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Abstract We examine a novel heterogeneous connection
scheme in a 1D continuum neural field model. Multiple two-
point connections are added to a local connection function in
order to model the “patchy” connections seen in, for example
visual cortex. We use a numerical approach to solve the equa-
tions, choosing the locations of the two-point connections
stochastically. We observe self-sustained persistent fluctua-
tions of activity which can be classified into two types (one
of which is similar to that seen in network models of discrete
excitable neurons, the other being particular to this model).
We study the effect of parameters such as system size and
the range, number and strength of connections, on the prob-
ability that a particular realisation of the connections is able
to exhibit persistent fluctuations.

Keywords Neural field model · Patchy connections ·
Persistent fluctuations

1 Introduction

Continuum neural field (CNF) models such as those proposed
by Wilson and Cowan (1972) and Amari (1977) in the 1970s
treat neural tissue as a continuous medium, and describe the
electrical activity (usually defined as the mean membrane
potential of a population of neurons) using scalar fields.
Such models examine behaviour on the mesoscopic scale,
bridging the gap between small networks of spiking neu-
rons [e.g. as modelled by Hopfield (1982) or Brunel (2000),
and realised experimentally with techniques such as cal-
cium imaging (Cossart et al. 2003) or multi-electrode arrays
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(Segev et al. 2002)] and high-level measurements such as
EEG and MEG (which have been extensively modelled, e.g.
by Robinson et al. 2002). Experimental probes of this mes-
oscopic length scale include local field potential and volt-
age sensitive dye imaging techniques (Bao and Wu 2003;
Wu et al. 1999). In the past CNF models have been used to
study phenomena such as visual hallucinations (Ermentrout
and Cowan 1979), spread of epileptiform activity at seizure
onset (Ermentrout and McLeod 1993; Pinto and Ermentrout
2001) and working memory (Amari 1977). One such model
describes the dynamics of the fields using the equations

τu
∂u

∂t
+ u(x, t) =

∫

Γ

w(x, x ′) f (u(x ′, t))dx ′ − gv(x, t),

(1)
τv

∂v

∂t
+ v(x, t) = f (u(x, t)).

Here we examine a 1D system in which the scalar fields
u(x, t) and v(x, t) represent the activity of populations of
excitatory and inhibitory neurons, respectively.1 Γ denotes
the extent of the system (in analytical work this is usually
extended to ±∞, whereas in numerical work it is common
to examine a finite system with periodic boundaries). In this
model the two populations exist in the same space, the excit-
atory population acting to increase the activity of its target
cells, and the inhibitory population to decrease the activ-
ity of target cells. The strength of the inhibition is given
by the constant g, and the response time of each population
by the constants τu and τv . Biologically τu and τv represent
the synaptic response time of the populations; in models of
this sort it is conventional to project the synaptic dynamics

1 In an alternative model of “linear feedback”, the v field represents not
only inhibitory cells but also other processes such as synaptic depres-
sion; the right hand side of the equation for ∂v/∂t is replaced f (u) → u.
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to a single response time.2 For simplicity (to reduce the
number of free parameters) we initially take τv = τu ; we
return to this simplification in a later section where we look
at the effect of changing τv . The choice τu = 1 sets the time
units for the system. The function f (u) gives the firing rate
of cells with activity u. Experimentally, for a population of
cells, this is found to be of sigmoid form; as is conventional
in these models, we approximate f as a discontinuous step
f (u) = Θ(u − θ) where Θ(y) = 1 for y ≥ 0 and Θ(y) = 0
otherwise. The firing threshold θ is assumed to be a constant
in space and time. A recent review of CNF models (Coombes
2005) discusses some of the possible variations of the model
and the solutions they support, whilst (Jirsa 2004) puts these
models in the wider context of information processing by net-
works. As a continuum, or mean field level model, features
such as axonal and dendritic tree structure are encapsulated
within the connection function, and the need to described
the irregular spiking of cells is removed by taking a “fir-
ing rate” approach; we also ignore finite axonal conduction
speeds. Although some of these features have been included
explicitly in CNF models by other authors [e.g. Hutt et al.
2003 examine the effect of finite axonal conduction velocity,
(Bressloff 1996; Coombes et al. 2003) consider the effect
of axonal and dendritic structure, and Brackley and Turner
(2007) consider the effect of spatially and temporally varying
threshold] here we study a simpler model in order that we
can attribute observed novel behaviour solely to inhomoge-
neous connections; we discuss this further in the conclusions
section.

The strength of synaptic connections from a point x ′ to a
point x is given by the function w(x, x ′). A common assump-
tion in previous work is that the connectivity is both
homogeneous and isotropic, and the connection function is
a simple function of separation w(x, x ′) = w(|x − x ′|)
(common choices including exponential or Gaussian shaped
functions). There is some experimental justification for such
forms, for example Hellwig (2000) studies pyramidal neu-
rons in cat visual cortex and finds that probability of finding
a connection between cells decrease with their separation,
roughly as a Gaussian function. Other studies show addi-
tional longer ranged connections, for example Malach et al.
(1994) and Buzás et al. (2001) have identified “patchy” con-
nections. Figure 1 shows an image of a cell in visual cortex
area V2 which has been stained with biocytin (allowing the
axonal fibres to be seen). As well as a central halo near the
stain injection point there are also patches where there is a
high density of axonal fibres at more distant points. Malach
et al. found that patches could have a width of up to approx-
imately 0.3mm and could be up to 5mm from the injection

2 The form of this dependence of the population synaptic response time
on measurable microscopic quantities such as the synaptic response of
a single cell or the distance from synapse to soma is an open problem.

Fig. 1 Image a shows axons in visual cortex area V2 after injection
with a stain. b shows the same image with axonal “patches” identified
using a boundary detection algorithm. Scale bar is 1 mm. Reproduced
from Malach et al. (1994) by permission of Oxford University Press

point. It is also found that cells tend to make patchy connec-
tions to regions of the cortex which have a similar response
to particular stimuli (e.g. to regions of similar orientation
preference or ocular dominance), and that the axonal density
within a patch decreases with distance from the injection site.

Previous attempts to include inhomogeneity in a field
model include work by Bressloff (2001), who introduces a
periodic inhomogeneity as a short length scale modulation
of an otherwise homogeneous function. In Bressloff (2003)
long-range horizontal connections were included in a 2D
model. Also in Brackley and Turner (2009) long range con-
nections with strength that varies stochastically (but continu-
ously) in space are found to support persistent fluctuations of
activity. In that slightly less general model, persistent activity
resulted from having adjacent regions of the system in one of
which there existed two stable steady states, with the other
only supporting one. Due to non-linear feedback, activating
the region with bistability resulted in persistent fluctuations at
the boundary between the regions. Our strategy in this study
is different in that we will model the “patchiness” of connec-
tions by introducing direct connections between individual
points in our 1D system. Jirsa and Kelso (2000) use a sim-
ilar idea in a slightly different model (which includes finite
axonal propagation velocity), adding a single delta function
connection between distant points to an otherwise homoge-
neous model. They examine pattern formation as a result of
a uniform steady state becoming unstable, and study how
this is effected by the distance over which the connection is
formed; also a later paper (Qubbaj and Jirsa 2007) examines
the effect of axonal conduction velocity on pattern formation.
In contrast, in the current study we do not look at pattern for-
mation, but focus on a parameter regime where the system
can be switched from uniform quiescence to an active state.

We propose to include many long distance two-point con-
nections with finite width. A similar idea is explored by Roxin
et al. (2004) in a network model of discrete integrate and fire
(IF) neurons. They create a small world network topology
by taking an initially locally connected network, and ran-
domly adding N unidirectional long ranged links. They study
a regime where the IF neurons are excitable and travelling
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pulses of activity are possible. Introducing a small number of
long range connections was shown to lead to a single pulse
generating pairs of new pulses, leading to self-sustained per-
sistent activity. Introducing more connections can lead to
persistent activity failure as multiple pulses annihilate each
other. Motivated by Roxin et al.’s work, in this work, we look
for persistent activity in a continuum model (in the regime
where travelling pulses are possible); i.e. we ask whether a
phenomena seen at the level of a small network of cells can
be seen in a continuum model at macroscopic length scales.
We introduce two-point connections between stochastically
selected points, which necessitates a numerical approach. We
look at a finite system of length L and employ periodic bound-
ary conditions.

In the next section we describe the heterogeneous connec-
tion function, before going on to look at persistent activity in
Sect. 4. We include details of our numerical methods as an
appendix at the end of the paper.

2 Heterogeneous connection functions

Since there is much evidence that locally the number of con-
nections between cells decreases with distance, we treat the
inhomogeneity as a small perturbation to a homogeneous
function

w(x, x ′) = wH (|x − x ′|) + AwI (x, x ′), (2)

where wH is the inhomogeneous function, A determines
the magnitude of the heterogeneous connections, and wI

(x, x ′) = wl(|x − x ′|)wA(x, x ′), where wl is a function of
separation, introduced to provide an envelope determining
the maximum range over which two-point connections can
be made. For the homogeneous connections we choose a
simple Gaussian

wH (y) = 1√
π

e−y2
, (3)

where the unit width of the function sets the length scale of
the system, and the pre-factor ensures the function normalises
to unity (setting the units of activity); i.e.

∫ ∞
−∞ wH (y)dy = 1.

For the inhomogeneous envelope we choose a similarly
shaped function with width l

wl(y) = N e−y2/ l2
. (4)

We discuss the normalisation N in Sect. 3.
The heterogeneous connection function wA contains N

two-point connections. For consistency we assume connec-
tion “patches” to have the same shape as the local connec-
tions,giving rise to a sum over Gaussian peaks in the x, x ′

plane

wA(x, x ′) =
N∑

n=1

1

N
exp

(−(x − xn)2 − (x ′ − x ′
n)2

d2

)
, (5)

where the N peaks have width d and amplitude 1/N and rep-
resent connections from start point x ′

n to end point xn . The
choice of amplitude 1/N means that increasing the number
of two-point connections preserves the total connection den-
sity (in contrast to Roxin et al. 2004 where they add extra
connections). Physically this assumes that neural tissue con-
tains a fixed number of synapses determined by A, and by
changing N (or l) we are altering how these are distributed
through the tissue. The width d represents the spatial extent
of the branching of dendrites and axons (for simplicity we
keep these the same, i.e. the width of the Gaussian peaks
are the same in the x and x ′ directions). Although Malach
et al.’s experimental work (see Malach et al. 1994; Fig. 1)
suggests the “width” of a patchy connection is less than that
of local connections, we choose d = 1 for simplicity; we
re-examine the effect of this in the conclusion section. To
construct a stochastic connection function we could choose
the positions of the peaks {xn, x ′

n} using a uniform random
number generator, however, this could lead to several peaks
lying on top of each other, introducing clusters of high-
connection density. Whilst this may in itself provide inter-
esting behaviour, in the first instance we seek to reduce such
clustering. Instead of generating (pseudo-)random numbers,
we use a sequence of (maximally avoiding) quasi-random
numbers (see the Appendix; Press et al. 1992). Note that
although each pair of coordinates xn, x ′

n represents a single
unidirectional two-point connection, there can be multiple
long range connections emanating from a single point.

Figure 2 shows a typical connection kernel wA as a colour
plot on the 2D x–x ′ plane for N = 150 two-point connec-
tions. Also shown is the full connection function w(x, x ′)
including the projection to x ′ = 35. Only the peaks in wA

which lie within a distance l of the diagonal x = x ′ contrib-
ute to the full connection function. We note that there are two
new quantities which describe the connections in our system;
N/L2 which gives the density of peaks in the x–x ′ plane, and
Nl/L which approximates the total number of connections
contributing to w(x, x ′).

3 Solutions to the model

In order to compare with results for IF neurons (Roxin et al.
2004) we focus on the regime where travelling pulse solutions
exist. As detailed in Coombes (2005) homogeneous CNF
models can support travelling fronts and travelling pulses,
depending the choice of parameters.
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Fig. 2 Left colour plot showing the function wA(x, x ′) for a system of
length L = 100 with N = 150 peaks. Centre colour plot showing the
full connection function w(x, x ′) with l = 20. Right plot of the same

connection function at the (arbitrary) output location x ′ = 35. Note that
although each connection peak in wA connects two single points, this
can lead to input to one point from multiple distant points

Travelling front solutions arise due to the fact that it is
possible to arrange the system so that there are two stable
steady states. Setting A = 0 to regain the homogeneous
model, these steady states are found by setting ∂t u, ∂tv = 0
and u(x, t) → ū in Eq. (1), giving

ū = f (ū)

⎡
⎣

∞∫

−∞
wH (|x − x ′|)dx ′ − g

⎤
⎦,

= f (ū)[1 − g]. (6)

From this we see that depending on the value of g there
may be either two solutions (two stable steady states, ū1 = 0
and ū2 = 1 − g) or one solution (a single stable steady state
ū1 = 0); a full treatment is given in Coombes (2005). Trav-
elling fronts are stable solutions in systems where there are
two steady states; if one region of a system is initiated such
that it resides in the upper steady state, and an adjacent region
in the lower steady state, a front of activity will join the two,
propagating with velocity depending on the threshold θ .

In the inhomogeneous case (A �= 0) the upper steady state
ū2 is a function of x , and may or may not exist for all x . Pro-
ceeding in the same way, taking the steady state of Eq. (1)
we get

ū(x) = f (ū(x))W (x), (7)

where ū is explicitly written as a function of x to reflect the
inhomogeneous connections, and

W (x) =
∞∫

−∞

[
wH (|x − x ′|) + AwI (x, x ′)

]
dx ′ − g, (8)

which describes the amplitude of connections into point x .
We note that two solutions to (7) only exist if W (x) ≥ θ

(since the firing rate function f is a step at threshold θ ). Any-
where where W (x) ≥ θ an upper steady state exits locally
(and the activity of this state is given by W (x)). At any point
x where W (x) < θ , there is only a single (ū = 0) steady
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Fig. 3 Plot showing a travelling pulse in a homogeneous system (A =
0) in a frame of reference where it is stationary (ξ = x − ct). In the
lab frame this would be travelling to the right with speed c. The width
of the pulse ∆ is defined as the length of the region in which activity is
above threshold

state. If two stable steady states exist for all x , travelling
front solutions are possible.

In the A = 0 system travelling pulse solutions exist as
a result of including the inhibitory feedback v(x, t), which
can provide a region of depressed activity in the wake of
an exited region—see Fig. 3. A full treatment for a homoge-
neous (A = 0) system is given in Amari (1977) and Coombes
(2005); there it is shown that the stability of travelling pulses
depends on parameters g and θ , as well as τv which here we
keep fixed—see Sect. 7. In a homogeneous system a choice
of g = 1 and θ = 0.1 gives stable pulses but not fronts
(see Coombes 2005), so we use this throughout the rest of
this study. To initialise a travelling pulse requires a localised
region of increased (greater than threshold) activity; this can
be achieved by injecting a transient localised external input
to an otherwise quiescent (u = 0) system.

We now discuss the normalisation constantN . Since W (x)

is an important quantity for determining what kind of solu-
tions are possible in our system it would be useful to be able to
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control this directly. With the choice g = 1 Eq. (8) becomes

W (x) = AN
∞∫

−∞
e− (x−x ′)2

l2

N∑
n=1

1

N
e

−(x−xn )2−(x ′−x ′
n )2

d2 dx ′ (9)

If we take the large N limit we can calculate the value of
the integral in this equation. We approximate that the sum is
over an infinite number of peaks which are evenly spaced on
the x, x ′ plane, i.e.

N∑
n=1

→ 1

δ2

∞∫

−∞

∞∫

−∞
dxndx ′

n,

where δ is the linear separation of the peaks. For N peaks in
an area L2, δ = L/

√
N . We thereby obtain the continuum

limit

W (x) = AN
L2

∞∫

−∞

∞∫

−∞

∞∫

−∞
dx ′dxndx ′

n

× e− (x−x ′)2
l2

− (x−xn )2+(x ′−x ′
n )2

d2 (10)

which can be solved to give W (x) = AN d2lπ3/2/L2. Thus
a normalisation

N = L2

d2lπ3/2 , (11)

is useful, as in the large N limit W (x) ≈ A; i.e. we can
control the strength of connections into point x by varying
a single parameter A. We expect interesting solutions when
W (x) is close to threshold so we examine A ∼ θ .

4 Persistent activity

We look for self-sustained persistent activity by initialising
the system such that u = 0 for all x , and injecting two
pulses which move away from each other in opposite direc-
tions (we discuss these initial conditions in the next section).
In the homogeneous (A = 0) case the pulses will travel
across the entire (periodic) system until they meet. When
two oppositely travelling pulses meet, the depressed “tails”
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Fig. 4 Plots showing how two oppositely travelling pulses annihilate
upon meeting. The arrows in the leftmost panel show the direction of
motion of each pulse

behind each pulse approach one-another; this results in the
system returning to the u = 0 state—the pulses annihilate
(see Fig. 4). By adding two-point connections we introduce a
mechanism for persistent self-sustaining activity; as in Roxin
et al.’s discrete neuron model a connection can act as a short-
cut from point x ′ to x . If a pulse reaches x ′ and the connection
to x is strong enough to raise the activity at x above threshold,
then two new oppositely travelling pulses will be created. By
a “strong enough connection”, here we mean that w(x, x ′) is
sufficiently large in this vicinity, which depends on param-
eters A and N , and the positioning of the peaks {xn, x ′

n}.
Figure 5 shows how this self production of new pulses can
lead to persistent activity in a particular realisation of the sys-
tem; panel (a) shows a schematic diagram of the connections,
(b) the integrated connection W (x) (Eq. 8), and (c) a colour
plot of activity changing in time. Panel (d) shows a snapshot
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Fig. 5 Plots showing the connections and resulting activity (following
injection of pulses into an initially quiescent system) of a particular real-
isation of the connections; each panel represents the same system, and
the same region of space and time. For this example with N = 6 we
observe self-sustained non-local persistent activity. a Schematic dia-
gram showing the positions of the two-point connections. Open circles
represent the start point of the connection and filled circles the end
point. b Plot of the integrated connection W (x), with lines showing the
locations and directions of the two-point connections. Again open and
filled circles represent the start and end point of the connections; the
vertical position is arbitrary. We note that the end points of the connec-
tions give rise to “bumps” in W (x). The length of the arrow represents
the range of the connection, and we see from W (x) that due to the
inhomogeneous envelope wl(y), the shorter the arrow, the stronger the
connection. c Colour plot showing the time evolution of the activity
u(x, t). d The black line shows a snapshot of u(x, t) at t = 60, the grey
line shows W (x) and the dotted line is u = θ . e Plot showing how the
spatial average of the activity varies with time
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of u(x, t), and (e) shows how in a macroscopic measure-
ment (in this case the spatial average of u), this manifests as
persistent fluctuations of activity.

As well as this type of persistent activity (which is the ana-
logue of the behaviour seen in Roxin et al. 2004), we observe
a second type of persistent behaviour which was observed in
the previous work (Brackley and Turner 2009). As we noted
in the previous section, due to the inhomogeneous connec-
tions there are regions where W (x) ≥ θ , where locally an
upper steady state exists. If this region is excited into the
upper steady state, fronts will be produced at the edges of
the region; as is detailed in Brackley and Turner (2009), due
to the non-linear feedback these fronts periodically oscillate
back and fourth about the boundary where W (x) = θ . If a
region where W (x) ≥ θ is large enough that the oscillating
fronts at each side of the region do not meet, the oscillation
will persist, leading to a “breathing bump” of activity;3 if the
bump in W (x) is too small, the fronts will meet and u → 0.
Since for the parameters chosen here (g = 1 and θ = 0.1)
travelling pulses are stable, the fluctuating fronts act as pulse
emitters. Figure 6 shows this behaviour in a system with the
same parameter set as in Fig. 5 but a different realisation of
the connections. In order to be clear in describing these two
very different types of behaviour we use the terms non-local
persistent fluctuations and breathing bump persistent fluc-
tuations referring to the phenomena seen in Figs. 5 and 6,
respectively.

In order to glean insight into the effect of different param-
eters on system behaviour, we must examine many realisa-
tions of the connections. Below we find the probability of
persistent fluctuations by looking at the proportion of reali-
sations in which it is seen. Although in Figs. 5 and 6 we can
clearly identify two different modes of fluctuation, we note
that without detailed inspection of the dynamics we cannot
tell the difference between them (e.g. from a macroscopic
measurement such as 〈u(x, t)〉t ). Indeed one would expect
a large system to have regions where non-local connections
can provide persistent activity and regions with breathing
bumps; thus for the majority of the following work we do
not distinguish between these behaviours. However, we are
able to distinguish between behaviour which depends on the
type of initial conditions used to excite the system. If we
inject a pulse into a system initially in the u(x) = 0 state,
then both of the modes of persistent activity are excited. An
alternative initial condition would be to set u(x) equal to
some constant greater than θ for all x ; since there are no
pulses, the system in Fig. 5 would not be excited into the
fluctuating state, and after some transient would move to the
u(x) = 0 steady state. The system in Fig. 6 on the other hand

3 We note that this breathing bump exists via a different mechanism
than reported in models with linear feedback (Coombes and Owen 2005;
Bressloff et al. 2003).
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Fig. 6 Plots showing the connections and resulting activity of a par-
ticular realisation of the connections; each panel represents the same
system, and the same region of space and time. For this example with
N = 6 we observe breathing bump persistent fluctuations. a Schematic
diagram showing the positions of the two-point connections. Open cir-
cles represent the start point of the connection and filled circles the end
point. b Plot of the integrated connection W (x), with lines showing the
locations and directions of the two-point connections. Again open and
filled circles represent the start and end point of the connections; the
vertical position is arbitrary. c Colour plot showing the time evolution
of the activity u(x, t). d The black line shows a snapshot of u(x, t) at
t = 60, the grey line shows W (x) and the dotted line is u = θ . e Plot
showing how the spatial average of the activity varies with time

would move into the fluctuating state since in has “bumps”
in W (x) large enough to lead to breathing bumps of activ-
ity and these would be excited. In conclusion, using a uni-
form initial condition (without injecting a pulse) can only
excite a system containing breathing bumps to the fluctuat-
ing state.4

5 The probability of fluctuating states

We have seen that with certain choices of parameters our sys-
tem can exist in either a quiet state or a fluctuating state, and
by application of a transient input we can switch between
the two. Such behaviour can be seen in working memory
tasks; for example Wang (2001) reviews work where cells
in primate cortex are seen to move in into a high-firing rate
state for the duration of the delay period of a stimulus-delay-
response task. Here we have shown that such behaviour can

4 We note that once breathing bumps are produced they will emit trav-
elling pulses which will spread throughout the system.
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not only be seen in models on scales of IF cell networks
(Roxin et al. 2004), but also in models at the population
level. The two types of persistent behaviour described above
both manifest as fluctuations when we look at a system wide
(i.e. spatial average) level; this could be linked to mesoscopic
scale measurements such as local field potentials (Wu et al.
1999).

Since we study stochastic connection functions, we can-
not say defiantly whether a system with certain parameters
will be able to support the fluctuating state, so in this sec-
tion we study the probability that a particular realisation
of the connections can exhibit persistent fluctuations Pfluct

and how this varies with the quantity Nl/L . In all results
below we look at 300 realisations of the connections, tak-
ing the proportion which exhibit fluctuations as the prob-
ability. Since examining u(x, t) for all x and t would be
both time consuming and computationally expensive, we
instead retain only the time series of the spatial average of
the activity 〈u(x, t)〉x . After discarding data from the first
100 time units of any simulation run to account for tran-
sient behaviour, we find the variance of the time series; if
this is greater than 10−4 activity units we class the sys-
tem as exhibiting persistent fluctuations. We measure Pfluct

by initialising the system such that u = 0 for all x , and
injecting travelling pulses by introducing a localised tran-
sient input. The value of u will increase at the site of the
input, and upon reaching threshold, two oppositely travel-
ling pulses will be produced. We choose a square shaped
input with height 0.2 and width 1 which lasts for a duration
of 7 time units (this choice is arbitrary—the only conditions
for generation of two pulses is that the input is symmetric
about its centre, and lasts sufficiently long that the activity
reaches threshold). As discussed above, by using a differ-
ent initial condition of u(x, t = 0) > θ , we can count the
number of systems in which breathing bumps are possible.
We denote this Pbreathe.5 Figure 7 shows Pfluct and Pbreathe

as functions of Nl/L for a system with L = 100, l = 20 and
A = 0.1. In order to understand the shape of these curves
we first consider the requirements for each type of persistent
activity.

Firstly non-local fluctuations; in order that a pulse travel-
ling over the start point of a connection produces new pulses
at the end point, the connection must be strong enough to
increase activity above threshold. That is, W (x) must be
greater than θ at the end point. The height of a “bump”
in W (x) (due to a single peak in wA, e.g.) is determined
by the height of peaks (1/N ) and the parameter A, as well
as the normalisation N = L2/d2lπ3/2. We must also con-
sider pulse annihilation which is due to the tail of depressed

5 In summary Pfluct gives the probability that a system can exhibit per-
sistent fluctuations. Pbreathe counts only systems which can support a
breathing bump.
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Fig. 7 Plot showing the probability that a particular realisation of the
connections can support persistent fluctuations Pfluct as a function of
Nl/L (points). Also shown (diamonds) is the probability that a reali-
sation supports breathing bump fluctuations Pbreathe. These results are
based on a sample of 300 realisations. The error bars (shown here and
in subsequent plots where they are larger than points) show the standard
deviation of a binomial distribution. The points (here and in subsequent
plots) are connected by linear interpolation as a guide for the eye

activity in the wake of the pulse (see Figs. 3, 4); this region
cannot recover quickly enough to allow a second oppositely
travelling pulse to propagate through it. If the start and end
points of a heterogeneous connection are too close together,
the two new pulses and the original pulse will annihilate each
other. As described in the previous section breathing bump
fluctuations require regions where W (x) ≥ θ to have signif-
icant spatial extent (Brackley and Turner 2009).

Returning to the shape of curves in Fig. 7, we expect,
at large N , the height of the peaks in wA will be too small
to allow either type of persistent activity. In this limit
W (x) ≈ A, and so W (x) does not cut through threshold any
where; the activity will reside in a steady state (whether one
or two steady states exist depends on A). We see that breath-
ing bump fluctuations only occur for Nl/L less than ∼0.05,
but non-local fluctuations still occur in approximately half
of all realisations for Nl/L ∼ 0.1. As Nl/L decreases Pfluct

increases; as the number of connection decreases there is less
chance of many pulses annihilating each other. The shape of
the curve in the region corresponds to the sigmoid shape of
the curves shown in Roxin et al. (2004) (where 1 − Pfluct is
plotted).

When Nl/L is small there is a low probability that a peak
in wA will be placed within l of the x = x ′ line on the x, x ′
plane, so we expect Pfluct to decrease again as Nl/L → 0.
Hence we see a peak in Pfluct. We note that Pfluct never reaches
1; this is because again there is a non-zero probability that all
the peaks in wA are placed further than a distance l away from
the x = x ′ line, and peaks placed too close to this line can
lead to pulse annihilation. These features are a result of our
quasi-random placing of peaks over the whole x, x ′ plane,
and the Gaussian form of wl .
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6 The role of connection strength A, maximum
range l and system size L

Figure 8 shows plots of Pfluct(Nl/L) for several different val-
ues of A close to threshold θ = 0.1. We see the trend that, as
we increase A, there is greater probability of fluctuations. The
peaks in wA have a height AN/N , so increasing this means
that there is more chance of having connections which lead
to new pulses being generated and hence fluctuating activity.
For A = 0.2 we see a non-zero probability of fluctuations at
much higher Nl/L than for smaller A. In the large N limit
W (x)→ A, so in this case where A>θ , we expect the activ-
ity to sit in the upper steady state; if, however, there is even
the smallest region where W (x) < θ and there is no upper
steady state, then this will not be possible and the remain-
ing options for the system are fluctuations, or collapse to
the u = 0 steady state. At small Nl/L there seems to be no
dependence on A; here the peaks in wA are large enough that
small variation in A does not change whether W (x) ≥ θ at
the end points of connections.

Figure 9a shows plots of Pfluct(Nl/L) for several differ-
ent values of l, the maximum range of long distance con-
nections. We see that, as we increase l for fixed number of
connections, Pfluct increases. For fixed Nl/L if we increase l
we are effectively spreading the same number of peaks over
a larger area on the x, x ′ plane. We noted in 5 that non-local
fluctuations require the start and end points of connections
to be sufficiently separated; spreading the same number of
points over a larger area allows start and end points to be
more separated, so we expect the probability of non-local
fluctuations to increase. Figure 9b shows that if we look only
at breathing bump fluctuations, the opposite trend is seen:
Pbreathe decreases with l. This again makes sense, since as
we decrease l for fixed Nl/L we are placing the same number
of peaks in a smaller area on the x, x ′ plane and increasing
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Fig. 8 Plot showing the probability that a realisation supports fluctu-
ations as a function of Nl/L for different A. Points, diamonds, squares
and crosses show A = 0.08, A = 0.1, A = 0.12 and A = 0.2, respec-
tively. The other parameters are θ = 0.1, l = 20 and L = 100
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Fig. 9 a Plot showing the probability that a realisation supports fluc-
tuations as a function of Nl/L for different envelope width l. Points,
diamonds, squares and crosses show l = 7, l = 10, l = 20 and l = 30,
respectively. The other parameters are A = 0.1 and L = 150. b Plot
showing data from the same systems but with initial conditions which
only allow breathing bump fluctuations to occur

the liklihood of peaks overlapping, which can give rise to sig-
nificantly extended regions where W (x) > θ . Malach et al.
(1994) finds that patches are located within several times the
local connection width, which corresponds to small l in our
model, where we find that there is a significant probability
of observing fluctuations.

In Fig. 10 we examine the effect of changing the system
size L . In this case we do not look at the probability of fluc-
tuations at different numbers of two-point connections Nl/L ,
but rather at the density of connections N/L2. As we expect,
both Pfluct and Pbreathe increase with system size for given
N/L2. If the probability of fluctuations not occurring in a sys-
tem of size L is 1 − P(L), then we expect that in a system of
length 2L the probability of fluctuations not occurring will
be [1 − P(L)]2. Following this argument, given a system
size L , a system of size βL has a probability of fluctuation
of P(βL) = 1 − [1 − P(L)]β . By using the largest system
we simulated (L = 200) as a reference we can construct an
equation for Pfluct for any value of L and connection density
N/L2

Pfluct(L) = 1 − [1 − P200(N/L2)]L/200, (12)

where P200 = Pfluct|L=200, and is found at any value of N/L2

by fitting a smoothing cubic spline to the L = 200 data shown
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Fig. 10 a Plot showing the probability that a realisation supports
fluctuations as a function of connection density N/L2 for different
system sizes. Points, diamonds, squares and crosses show L = 50,

L = 100, L = 150, and L = 200, respectively. The other parameters
are A = 0.1 and l = 10. b Plot shows the probability of breathing
bump fluctuations for the same systems
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Fig. 11 Plots showing Pfluct as a function of system size L at different
connection densities N/L2. Plots show a N/L2 = 0.005, b N/L2 =
0.008, c N/L2 = 0.011, and d N/L2 = 0.014. The solid line shows
Eq. (12). Error bars are shown where they are larger than the points

in Fig. 10a. This represents an approximation to the universal
probability that a system of size L fluctuates.

In Fig. 11 we plot probability against L at different densi-
ties; the error bars shows the standard deviation in the prob-
ability. Solid lines show Eq. (12). Figure 12 shows a 3D
surface plot Pfluct as a function of both L and N/L2 from

Fig. 12 Top Plot showing Pfluct as a function of system size L and
connection density N/L2 as given by Eq. (12). Values of P200(N/L2)

are found from data shown in Fig. 10a using smoothing cubic splines.
Bottom contour plot of the same function showing a single contour at
Pfluct = 0.5

Eq. (12). Also shown is a contour plot showing Pfluct = 0.5
in the L , N/L2 plane; this can be thought of as the bound-
ary between the region of parameter space where a system
is likely to exhibit fluctuations, and the region where it is
unlikely that a system can support fluctuations.

As we would expect, for stochastically placed connec-
tions, the larger the system, the greater the liklihood that there
will be an arrangement of connections which leads to fluctu-
ations. Experimentally, fluctuations have been seen in even
small isolated pieces of tissue; this could be an indication of
non-random structure in the connectivity of real tissue. We
note also that in this regime of travelling pulses, even if fluc-
tuations originate only at one point in a large system, these
will spread to cover the whole system.

We have also examined how the frequency of fluctuations
is effected by the density of connections and the length l. We
take the fast Fourier transform of the time series 〈u(x, t)〉x

for realisations where persistent fluctuations take place, and
examine the frequency with the largest amplitude. As Nl/L
is increased there is a decrease in frequency, but no effect
(to within standard error) when varying l at constant Nl/L
(data not shown). We expect this since, for non-local
persistent fluctuations, frequencies are determined by the
distance over which pulses travel between re-injection of
activity to produce new pulses. Using suitable order of mag-
nitude estimates for parameters (τu = 10 ms, see McCor-
mick et al. (1985)) the frequencies measured were within the
range 8–15Hz; although this model is mainly qualitative it
is encouraging that these frequencies are in the range seen
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experimentally in, for example local field potentials (Wu et al.
1999) or EEG (Nunez and Srinivason 2006).

7 Addressing further simplifications

As detailed in the introduction section, in order to reduce the
number of free parameters in our model, in the above calcu-
lations we take τv = τu . We have performed several calcu-
lations using different values of τv . Figure 13 shows that as
we increase τv (i.e. we slow down the response of the inhib-
itory population), the probability of fluctuations decreases.
(This is true except at small Nl/L where we argue that the
sample size is insufficient to get accurate statistics.) It can be
shown (by following methods in Coombes (2005)) that in the
homogeneous model, for a given τv there can be two travel-
ling pulse solutions, one stable and one unstable. Figure 14
shows the two branches of solutions for the speed (c) and
width (∆) of the pulse as a function of τv . We see that in the
stable branch, as τv increases, c remains constant whilst ∆

increases. Larger width means a larger region of depressed
activity in the wake of a travelling pulse; start and end points
of connections need to be further apart to avoid annihila-
tion, leading to decreased probability of persistent activity.
In summary slower inhibition leads to wider pulses which
reduces the liklihood of persistent fluctuations.

The other simplification we make is to take the width of
the heterogeneous connection patches d = 1, despite the fact
that evidence such as Fig. 1 suggests that long range patches
would have a width less than that of the homogeneous con-
nections. Since the local connections are present everywhere
in our system, one might argue that features on length scales
shorter than these would be averaged out. However, we also
note that the normalisation of the inhomogeneous compo-
nent of the connection function N contains a factor 1/d2; i.e.
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Fig. 13 Plot showing Pfluct as a function of Nl/L with L = 100, l = 10
and A = 0.1 for different values of the inhibitory population time
constant τv . Points, diamonds and squares show τv = 0.5, τv = 1,
and τv = 2, respectively
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Fig. 14 Plots showing a the speed c, and b the width ∆, of travel-
ling pulse solutions in a homogeneous system, as a function of τv with
g = 1. Stable branches are solid lines and unstable dashed
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Fig. 15 Plot showing Pfluct as a function of Nl/L with L = 100, l = 10
and A = 0.1 for different values of the width of long range two-point
connections d. Points and diamonds show d = 0.5 and d = 1, respec-
tively

reducing the width of peaks in wA will increase their height.
Figure 15 shows results for d = 0.5 and d = 1; we see a sim-
ilar difference between the two as we do when we increase
the amplitude of the connection A (Fig. 8).

8 Conclusions

With this model we have shown that the well known solu-
tions to homogeneous CNF models (travelling fronts and
pulses) are robust to the addition of a small number of het-
erogeneous connections between points in the system. Our
choice of inhomogeneous connections is motivated by previ-
ous work on networks of simple excitable integrate and fire
neurons, and experimental evidence of “patchy” connectivity
seen in visual cortex.

We have identified two new types of behaviour, which on
a system scale manifest as persistent fluctuations of activity.
The self sustained activity which occurs due to non-local con-
nections is analogous to that seen in a small-world network of
IF neurons (Roxin et al. 2004). Travelling pulses lead to the
re-injection of activity at distantly connected points; as with
the previous study the fact that two pulses annihilate (due to
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“tails” of depressed activity) means there is a mechanism to
switch between the fluctuating and quiet states.

The second mode of persistent fluctuation arises if a region
of the system receives sufficient incoming connections that
there exists locally an upper steady state. As we have seen
previously in similar models (Brackley and Turner 2009),
if such regions are sufficiently large, activity can remain in
the upper state locally, and fluctuations will be seen at the
boundaries. In the work presented here we choose a regime
where travelling pulses are stable, meaning pulses are emit-
ted from the fluctuating boundaries. This is in contrast to our
previous paper (Brackley and Turner 2009) where we look
at breathing bump type persistent activity in a model with a
different form of inhomogeneous connections, in a regime
which does not support pulses. There, instead of introducing
inhomogeneity by adding two-point connections, a contin-
uous inhomogeneous term with a power law envelope was
added; coherence of fluctuations across 1D and 2D systems
was investigated as a function of connection range.

In summary, in this study, we find that as we increase the
number of two-point connections the probability of persis-
tent fluctuations decreases. The reason for this is twofold;
firstly too many connections can lead to (almost) the entire
system being excited by a single pulse within a time too short
for the activity to recover to resting. Secondly our choice of
1/N normalisation of two-point connections means as N gets
large the incoming connections W (x) becomes constant in
space. We also see that Pfluct is extensive in system size.

For reasons of computational efficiency the work here
focuses on a 1D system. This might be applicable to, for
example thin channels of highly connected neurons (e.g. the
infrapyramidal bundle), or could represent functional space
rather than real space. The extension to 2D would a low for a
much more realistic representation of cortical tissue. We have
randomly positioned our connections, whereas a 2D model
would allow some structure to be introduced, e.g. increased
liklihood of connection between regions of similar orien-
tation preference. It would be interesting to look at spatial
correlations in the activity patterns, and see to what degree
these reflect the structure of the connections, although we
acknowledge that the development of more efficient meth-
ods for numerically evaluating integrals is a computational
challenge.

As discussed in the introduction section, a feature not
present in the current model (as it is neither in the classic
paper of Amari (1977)) is finite axonal propagation velocity
(in contrast to the work by the Jirsa group Jirsa and Kelso
2000; Qubbaj and Jirsa 2007). It would be an interesting
future study to see how including this might effect our results,
and is of particular concern for systems with long ranging
connections (large l in the present context) where finite veloc-
ity will become important. For example one might expect
that a delay in activation of a region via a long range

connection will have important consequences for the
annihilation of “daughter” pulses by a parent pulse if, for
example the axonal propagation velocity is of similar mag-
nitude as the pulse velocity. The current work could be used as
a guide to identify which phenomena are due to finite action
potential velocity and which are due to patchy connections.
Also Qubbaj and Jirsa (2007) and others (Hutt et al. 2003;
Venkov et al. 2007; Hutt and Atay 2005) study a parameter
regime where the uniform steady state becomes unstable (via
a Turing or Hopf instability) and spatio-temporal patterns are
seen, whereas we focus on a regime where the system can
be switched from fluctuating to quiet and back again. An
interesting extension to the present model and those works
mentioned above would be to examine the effect of multiple
“patchy” connections on spatio-temporal pattern formation
of this type.
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Appendix A: Numerical methods

The differential equations (1) are solved numerically by dis-
cretising a finite system of length L in space and time with
fixed grid size and time step a and δt , respectively. We thus
have a set of L/a coupled differential equations which we
solve using a fourth order Runge–Kutta routine based on
those in Press et al. (1992). We use periodic boundary con-
ditions.

The integral on left hand side of the equation for u can be
separated into two terms

x+ L
2∫

x− L
2

wH (|x − x ′|) f (u(x ′, t))dx ′

+
x+ L

2∫

x− L
2

Awl(|x − x ′|)wA(x, x ′) f (u(x ′, t))dx ′, (13)

where we have chosen the limits to take into account the
periodicity of the system. We note that the first integral is of
convolution form, and can therefore be evaluated using fast
Fourier transform routines (Frigo and Johnson 2005); this
method is very computationally efficient (and intrinsically
assumes periodic boundaries). The second integral is much
more computationally expensive to evaluate. Although there
are a wealth of well known standard methods for evaluat-
ing integrals most are unsuitable for this problem since the
integrand contains the discontinuous function f (u) and u is
only known at points on a regular grid. We resort to a simple
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application of the trapezium rule (again see Press et al. 1992).
This method is very time consuming, and we have to evalu-
ate the integral four times per time step (due to fourth order
Runge–Kutta). Since the integral is over the Gaussian func-
tion wl which has characteristic width l, we improve perfor-
mance by truncating this function when |x−x ′| = l

√
ln(500).

As described in Sect. 2, to generate wA(x, x ′) we place
peaks at maximally self avoiding positions using a sequence
of quasi-random numbers. These are generated using a
Sobol sequence (Press et al. 1992; Sobol’ 1967). This gener-
ates numbers between 0 and 1 in their binary representation
by changing each bit at different rates as you step though
the sequence. We use a 2D Sobol sequence; when points are
added to the plane they fill in gaps between existing points;
the first N peaks are maximally avoiding, as are the next N .
We can generate different realisations of the system by taking
successive groups of points from the sequence; the limit on
the number of points is the length of the binary “word” repre-
senting the numbers. Using a sequence like this reduces the
chance of several peaks sitting on top of each other in clusters
(although admittedly it may also introduce other features).

In all work presented here we use a = 0.05 and τ =
0.1. These values were chosen as a compromise between
computational runtime and accuracy; we performed several
calculations using smaller values (not shown) and found no
significant change in results. System sizes of L ∼ 100 were
used as a compromise between having the largest system
possible and computational runtime. We also note that sim-
ulating a 2D system with these methods is computationally
infeasible, both in respect of simulation runtime, and data
storage, for example of the values of the function wA(x, x ′)
at (L/a)2 grid points.
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