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Abstract

Let k be an odd integer and N a positive integer such that 4 | N .

Let χ be a Dirichlet character modulo N . Shimura decomposes the space of

half-integral weight forms Sk/2(N,χ) as

Sk/2(N,χ) = S0(N,χ)⊕
⊕
φ

Sk/2(N,χ, φ)

where φ runs through the newforms of weight k−1 and level dividing N/2 and

character χ2; Sk/2(N,χ, φ) is the subspace of forms that are Shimura-equivalent

to φ; and S0(N,χ) is the subspace generated by single-variable theta-series.

We give an explicit algorithm for computing this decomposition.

Once we have the decomposition, we can explore Waldspurger’s theorem

expressing the critical values of the L-functions of twists of an elliptic curve

in terms of the coefficients of modular forms of half-integral weight. Following

Tunnell, this often allows us to give a criterion for the n-th twist of an elliptic

curve to have positive rank in terms of the number of representations of certain

integers by certain ternary quadratic forms.

v



Chapter 1

Introduction

1.1 Overview of previous work

In 1983 J. B. Tunnell gave a remarkable solution to the congruent number

problem, assuming the celebrated Birch and Swinnerton-Dyer Conjecture. This

ancient Diophantine question asks for the classification of congruent numbers,

those positive integers which are the areas of right-angled triangles whose sides

are rational numbers.

Let n be a square-free positive integer. It is relatively easy to show that

n is a congruent number if and only if the elliptic curve

En : Y 2 = X3 − n2X

has infinitely many rational points. If En has infinitely many rational points,

then by a theorem of Coates and Wiles (which is a special case of the Birch

and Swinnerton-Dyer Conjecture), L(En, 1) = 0, where L is the L-function of

the elliptic curve En. If we assume the Birch and Swinnerton-Dyer Conjecture,

then the reverse implication holds: if L(En, 1) = 0 then En has infinitely many

rational points.

Note here that En is the quadratic twist of the elliptic curve

E1 : Y 2 = X3 −X,

by n. Tunnell [42] proved the following theorem.
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Theorem 1.1.1 (Tunnell). If n is a square-free odd positive integer that is a

congruent number, then

#{x, y, z ∈ Z | n = 2x2 + y2 + 32z2} =
1

2
#{x, y, z ∈ Z | n = 2x2 + y2 + 8z2}.

If n is a square-free even positive integer that is a congruent number then,

#{x, y, z ∈ Z | n
2

= 4x2 + y2 + 32z2} =
1

2
#{x, y, z ∈ Z | n

2
= 4x2 + y2 + 8z2}.

If the weak Birch and Swinnerton-Dyer Conjecture is assumed for En, then,

conversely, these equalities imply that n is a congruent number.

The proof of Tunnell’s Theorem comprises of two main steps. The

first step is to explicitly construct certain cusp forms of weight 3/2 which

are “Shimura-equivalent” to the newform of weight 2 corresponding to the

elliptic curve E1 via the Modularity Theorem. The second is to apply Wald-

spurger’s Theorem 4.3.4 to these cusp forms; this relates the critical value of

the L-function of a modular form of even integral weight to the square of the

coefficients of the q-expansion of a corresponding form (again via Shimura-

equivalence) of half-integral weight.

Given an elliptic curve E/Q, one can ask similar questions:

• Which of the quadratic twists of E have infinitely many rational points?

• Is there a nice formula for the critical value of the L-function as in the

case of the congruent number curve?

To be able to answer such questions, we would like to explicitly construct

the half-integral weight forms corresponding via Shimura-equivalence to the

elliptic curve E. It is well-known by the results of Flicker (Theorem 4.3.1)

and Vigneras (Theorem 4.3.2) that such a half-integral weight forms exist,

although there is no indication of their levels.

One of the methods to construct cusp forms of weight 3/2 is as in the

paper of Tunnell. Let M1/2(N1, ψ1) be the space of modular forms of weight

1/2, level N1 and character ψ1, and let S1(N2, ψ2) be the space of cusp forms

of weight 1, level N2 and character ψ2. Then

M1/2(N1, ψ1)⊗ S1(N2, ψ2) ⊂ S3/2(N,ψ1.ψ2.χ−1)

2



where N = lcm(N1, N2). A basis for the space M1/2(N,ψ) is given by Serre

and Stark (see Theorem 2.3.4). Also, due to Deligne and Serre [15], there

is one-to-one correspondence between newforms in S1(N,ψ) and certain two-

dimensional Galois representations of the absolute Galois group GQ. For more

details, see for example, [2].

Tunnell in fact used this idea and constructed a unique normalized

newform g of weight 1, level 128 and character χ−2 :=
(−2
·

)
, having q-expansion

g =
∑
m,n∈Z

(−1)nq(4m+1)2+8n2

.

For an integer t it is known that θt =
∑∞
−∞ q

tm2
is a modular form of weight

1/2, level 4t and character χt :=
(
t
·

)
. Thus,

gθ2 ∈ S3/2(128, χtriv), gθ4 ∈ S3/2(128, χ2).

Moreover, it turns out that gθ2 and gθ4 are Shimura-equivalent to the newform

corresponding to E1. Let gθ2 =
∑
anq

n and gθ4 =
∑
bnq

n. Tunnell showed

that if d is an odd positive square-free integer, then

L(Ed, 1) = a2
d ·

Ω

4
√
d
, L(E2d, 1) = b2

d ·
Ω

2
√

2d

where Ω denotes the real period of E1 given by

Ω =

∫ ∞
1

dx

(x3 − x)1/2
= 2.62205 . . . .

In particular, L(Ed, 1) = 0 if and only if ad = 0 for d odd, and if and only if

b d
2

= 0 for d even. The Birch and Swinnnerton-Dyer Conjecture now implies

that d (respectively 2d) is congruent number if and only if ad = 0 (respectively

bd = 0).

In general, however, it is not known, given an elliptic curve E/Q, that

one can always construct corresponding modular forms of weight 3/2 by the

above method. For example, in [3], Basmaji considers the elliptic curve 53A

given by

E : Y 2 +XY + Y = X3 −X2.
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He examines the space of cusp forms of weight 3/2 and level up to 24 · 53,

using the above method. It turns out that there is no linear combination of

theta-series, obtained from multiplying theta-series of weight 1/2 with forms

of weight 1, that gives an eigenform corresponding to E. However there exists

an eigenform corresponding to E in S3/2(Γ0(24 · 53)), namely,

FE(z) = q−2q4−2q9+q13−q16−q17−2q24−q25+q28+q29+4q36+5q37+O(q40).

Another possible way to construct such cusp forms of weight 3/2 is

using positive-definite ternary quadratic forms. Each positive definite ternary

quadratic form of level N , gives rise to a theta-series of weight 3/2 and level N .

It is possible to obtain part of the space S3/2(N) this way, but not the whole

space in general. In particular, the cusp form of weight 3/2 corresponding

to the elliptic curve that we are interested in, might not arise from ternary

quadratic forms. For example, let E be the curve 121D, given by Weierstrass

equation

E : Y 2 + Y = X3 −X2 − 7X + 10.

Bungert in [7] examined the spaces of theta-series of positive-definite ternary

forms up to level 24 · 121, and showed that in these spaces, no cusp form of

weight 3/2 exists which corresponds to E. Bungert however constructed such

a cusp form of weight 3/2 using a two dimensional Galois representation as

mentioned above. We will be discussing more about such cusp forms which

come from ternary quadratic forms in the later chapters.

On the other hand, Kohnen in his paper [24] looks into a suitable sub-

space of the space of half-integral weight cusp forms for which the Shimura

correspondence turns out to be an isomorphism of Hecke modules. For N a

positive odd square-free integer, and λ a positive integer Kohnen defines what

is called the Kohnen plus space S+
λ+ 1

2

(4N), as follows:

S+
λ+ 1

2

(4N) := {g(z) =
∞∑
n=1

bnq
n ∈ Sλ+ 1

2
(4N) such that

bn = 0 for (−1)λn ≡ 2, 3 (mod 4)}.

It is shown by Kohnen that this subspace of cusp forms is invariant

4



under the action of the Hecke operators Tp2 for all primes p coprime to 4N .

Kohnen develops a theory of newforms for this subspace analogous to Atkin-

Lehner’s theory in the integral case and proves the strong ‘multiplicity-one

theorem’ for S+
λ+ 1

2

new
(4N) in this case. It is to be noted that the multiplicity-

one theorem does not hold for a general level N . Kohnen proved the following

remarkable theorem.

Theorem 1.1.2 (Kohnen). For N odd and square-free, there is an isomor-

phism between S+
λ+ 1

2

new
(4N) and Snew2λ (N) as Hecke modules.

The isomorphism is given by finite linear combination of Shimura cor-

respondences.

In the later papers Kohnen and Zagier [26] proved the following formula

for level 4 which was later generalized by Kohnen [25] to odd square-free level

N :

Let f(z) =
∑∞

n=1 anq
n ∈ Snew2λ (N) be a newform of odd square-free

level N and let g(z) =
∑∞

n=1 bnq
n ∈ S+

λ+ 1
2

new
(4N) be the corresponding form

under the above isomorphism. Let D be a fundamental discriminant such that

(−1)λD > 0 and (N,D) = 1. Then,

L(f,D, λ)

〈f, f〉
=

(b|D|)
2

〈g, g〉
πλ

2ν1(N)(λ− 1)!|D|λ−1/2
,

ν1(N) denotes for number of different prime divisors of N .

Kohnen’s work is based on explicit relations involving traces of Hecke

operators. This work has been generalized by Ueda [43] to a general odd

level and recently Sakata [31] has given generalizations for the Kohnen-Zagier

formula for such levels (with weights λ = 2 ).

1.2 This Thesis

This thesis attempts to answer the questions raised in the previous section.

We summarize the results step by step as follows:

1. Given a newform of even integral weight k, we give an algorithm to find

the space of forms of weight k + 1/2 which are “Shimura equivalent” to

5



the newform. In particular, this leads to an algorithm for computing an

eigenbasis for a space of half-integral weight forms under the action of

Hecke operators Tp2 with p not dividing the level.

2. We simplify Waldspurger’s Theorem in the case where the half-integral

weight forms correspond to newforms with trivial character, and develop

results that allow us to apply it.

3. We give examples of Tunnell-like formulae for L(En, 1) in terms of ternary

quadratic forms, for certain rational elliptic curves E and certain families

of twists En.

Chapter 2 of this thesis introduces basic definitions and parts of the

theory of modular forms that we require in the rest of the thesis. Chapter 3

consists of several results which finally lead to our algorithm for computing

the space of Shimura equivalent forms. In the process we also prove certain

interesting theorems which we will be using in the later chapters. In Chapter

4 we discuss Waldspurger’s Theorem in detail and simplify it for our use. We

present some examples of elliptic curves for which we use our algorithm and

Waldspurger’s Theorem to give some explicit formulae for the critical values of

L-functions of the quadratic twists. Finally in the last chapter we discuss the

relation between modular forms and quadratic forms and we conclude with

examples of Tunnell-like formulae in terms of ternary quadratic forms. In

the Appendix, we give a table for the dimension of S3/2(N) and some of its

subspaces, for N ≤ 2000.

What follows is an example of the results we develop in the thesis; it

is in fact Example 5.3.1 given in Chapter 5. Let E be an elliptic curve of

conductor 50 given by

E : Y 2 +XY + Y = X3 +X2 − 3X + 1.

Let Q1, . . . , Q4 be the following positive-definite ternary quadratic forms,

Q1 = 25x2 + 25y2 + z2, Q2 = 14x2 + 9y2 + 6z2 + 4yz + 6xz + 2xy

Q3 = 25x2 + 13y2 + 2z2 + 2yz, Q4 = 17x2 + 17y2 + 3z2−2yz−2xz+ 16xy.

6



Let n be positive square-free number such that 5 - n. Then,

L(E−n, 1) =
L(E−1, 1)√

n
· c2
n,

where

cn =
4∑
i=1

(−1)i−1

2
·#{(x, y, z) : Qi(x, y, z) = n}.

7



Chapter 2

Background

2.1 Congruence Subgroups

All the material in this section is standard, and can be found in any book on

modular forms; for example [16], [28], [23].

Let R be any commutative ring with unity. We denote by GL2(R), the

group of 2×2 matrices with entries in R and determinant an invertible element

of R. By SL2(R) we denote the subgroup of GL2(R) consisting of matrices

with determinant 1. We will be generally interested in these groups when the

ring R = R, Q or Z and in those cases GL+
2 (R) stands for the subgroup of

GL2(R) consisting of matrices with positive determinant.

Let C = C ∪ {∞}. The group SL2(R) acts on C by the Möbius trans-

formation, i.e., given A = [ a bc d ] ∈ SL2(R) and z ∈ C,

Az :=
az + b

cz + d
, A∞ :=

a

c
.

Let H = {z ∈ C | Im(z) > 0} be the complex upper half-plane. Then SL2(R)

acts on H since Im(Az) = |cz+d|−2det(A)Im(z) and one can easily prove that

the action of SL2(R) on H is transitive.

In what follows, we will be interested in the group SL2(Z), also known

as the full modular group, and some of its special subgroups:

8



Definition 2.1.1. Let N be a positive integer. Then

Γ(N) :=

{[
a b

c d

]
∈ SL2(Z) : a ≡ d ≡ 1 (mod N), b ≡ c ≡ 0 (mod N)

}
,

Γ1(N) :=

{[
a b

c d

]
∈ SL2(Z) : a ≡ d ≡ 1 (mod N), c ≡ 0 (mod N)

}
,

Γ0(N) :=

{[
a b

c d

]
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Definition 2.1.2. A subgroup of SL2(Z) is called a congruence subgroup of

level N if it contains Γ(N) for some positive integer N . Thus Γ(N), Γ1(N)

and Γ0(N) are congruence subgroups of level N .

Note that Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z) and that Γ(N ′) ⊂ Γ(N)

whenever N | N ′.

Proposition 2.1.3. Let N be a positive integer. Then

[SL2(Z) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
,

[SL2(Z) : Γ1(N)] = N2
∏
p|N

(
1− 1

p2

)
.

Proof. See either [23, Exercise III.1.7] or [16, Page 14].

It is easy to see that SL2(Z) acts transitively on the set Q ∪ {∞}.

Definition 2.1.4. Let Γ be a congruence subgroup of SL2(Z). Define a cusp of

Γ to be an equivalence class of Q∪{∞} under the action of Γ on H∪Q∪{∞}.

2.2 Modular Forms of Integral Weight

We continue reviewing standard material on modular forms.

Let k be a positive integer. The group GL+
2 (R) acts on the set of

complex valued function on H as follows. Let f : H → C and γ = [ a bc d ] ∈
GL+

2 (R), then

f |[γ]k(z) := det(γ)k/2j(α, z)−kf(γz)

9



is a function on H, where j(γ, z) = cz + d.

Let Γ be a congruence subgroup of level N .

Definition 2.2.1. A modular form of weight k for Γ is a holomorphic function

on H which satisfies

(i) f |[γ]k = f for all γ ∈ Γ, and

(ii) If γ0 ∈ SL2(Z), then f |[γ0]k(z) has a Fourier expansion of the form∑∞
n=0 anqN

n where qN := e2πiz/N .

The condition (ii) is interpreted as holomorphicity of f at all the cusps of Γ.

We call a modular form a cusp form if it vanishes at all the cusps of Γ, i.e.,

in (ii) above, a0 = 0 for all γ0 ∈ SL2(Z).

We denote by Mk(Γ) and Sk(Γ) respectively, the space of modular forms

and the space of cusp forms of weight k for level Γ.

If Γ ⊂ Γ′ then clearly Mk(Γ
′) ⊂ Mk(Γ). Also, note that since [ 1 1

0 1 ]

belongs to Γ0(N) and Γ1(N) for any N , if f belongs to either Mk(Γ0(N)) or

Mk(Γ1(N)) then f has a Fourier expansion at ∞ given by f(z) =
∑∞

n=0 anq
n

where q = e2πiz. Since
[ −1 0

0 −1

]
∈ Γ0(N), there are no nonzero modular forms

of odd weight k for Γ0(N).

Let χ be a Dirichlet character modulo N . We denote Mk(N,χ) and

Sk(N,χ) to be the respective subspaces of Mk(Γ1(N)) and Sk(Γ1(N)) consist-

ing of f(z) such that f |[γ]k = χ(d)f for all γ = [ a bc d ] ∈ Γ0(N). If χ is a

trivial character then we denote Mk(N,χ) and Sk(N,χ) simply by Mk(N) and

Sk(N).

From now on we will be only interested in the congruence subgroups

Γ0(N) and Γ1(N). We now give definition for Hecke operators on the space of

modular forms in terms of double cosets.

Definition 2.2.2. Let G be any group and Γ and Γ′ be two subgroups of G.

We say that Γ and Γ′ are commensurable if

[Γ : Γ ∩ Γ′] <∞ and [Γ′ : Γ ∩ Γ′] <∞.

Definition 2.2.3. Let α ∈ GL+
2 (R) such that Γ0(N) and α−1Γ0(N)α are

commensurable. Let n be a positive integer. Then for any f ∈Mk(N) we have

the following linear operators.

10



(i)

f |[Γ0(N)αΓ0(N)]k(z) := det(α)k/2−1

d∑
ν=1

f |[αν ]k(z),

where Γ0(N)αΓ0(N) =
⊔d
ν=1 Γ0(N)αν.

(ii)

Tn(f) :=
∑

f |[Γ0(N)αΓ0(N)]k,

where the sum is over all α = [ l 0
0 m ] with l,m positive integers, l | m,

(l, N) = 1 and lm = n.

(iii) If (n,N) = 1, then

T(n,n)(f) := f |[Γ0(N) [ n 0
0 n ] Γ0(N)]k.

The operators Tn and T(n,n) are called the Hecke operators.

The Hecke operators so defined preserve the cusp forms and one can

similarly define the Hecke operators on the space of modular forms with char-

acters. The following proposition lists the important properties of the Hecke

operators.

Proposition 2.2.4. (a) If (m,n) = 1, then Tmn = TmTn.

(b) If p is a prime dividing N , then Tpe = Tp
e for any positive integer e.

(c) If p is a prime such that (p,N) = 1, then for any positive integer e,

Tpe+1 = TpTpe − pT(p,p)Tpe−1 where for f ∈ Mk(N,χ) the action of T(p,p)

can be explicitly expressed as T(p,p)(f) = pk−2χ(p)f .

Proof. See [28, Lemma 4.5.7] and [28, Pages 142-143].

Hence the Hecke operators form an algebra over Z generated by Tp,

T(p,p) and Tq where p, q varies over primes with p - N and q | N . We can write

the action of Hecke operators in terms of q-expansions.

Proposition 2.2.5. Let f be a modular form in Mk(N,χ) with q-expansion

f(z) =
∑∞

n=0 anq
n. Then Tp(f)(z) =

∑∞
n=0 bnq

n where,

bn = apn + χ(p)pk−1an/p.

11



Here we take an/p = 0 if p - n.

Proof. See [28, Lemma 4.5.14].

A modular form f(z) ∈ Mk(N,χ) is called a Hecke eigenform if for

every positive integer m there exists λm ∈ C with Tm(f) = λmf .

Proposition 2.2.6. Let f(z) =
∑∞

n=0 anq
n ∈Mk(N,χ) be a Hecke eigenform

as above. Then,

(i) If f(z) is non constant, then a1 6= 0.

(ii) If f(z) is a normalised cusp form, that is, a1 = 1, then am = λm for all

m and amn = aman whenever (m,n) = 1.

(iii) If a0 6= 0, then λm =
∑

d|m χ(d)dk−1.

Proof. See [30, Proposition 2.6] or [28, Theorem 4.5.16].

Definition 2.2.7. Let f and g be cusp forms in Sk(N,χ). Then their Peters-

son inner product 〈f, g〉 is defined as

〈f, g〉 =
1

[SL2(Z) : Γ1(N)]

∫
Γ1(N)\H

f(z)g(z)yk
dxdy

y2
, z = x+ iy.

It is well-known that the Petersson inner product is well-defined and

induces a Hermitian scalar product on the space Sk(N,χ); for details see [28,

Page 44]. With respect to this inner product, if αn =
√
χ(n) and (n,N) = 1

then the operators αnTn are Hermitian:

Proposition 2.2.8.

〈αnTnf, g〉 = 〈f, αnTng〉 if (n,N) = 1.

Proof. See [28, Theorem 4.5.4].

Thus, Sk(N,χ) has a basis consisting of eigenforms under all Hecke

operators Tn with (n,N) = 1.

There are several other important operators on the space of integral

weight modular forms.
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Let p | N be a prime and Qp = pl. The Atkin-Lehner operator |[WQp ]k

on Mk(N) is defined by any matrix of the form

WQp :=

[
Qpα β

Nγ Qpδ

]
∈M2(Z), α, β, γ, δ ∈ Z

with determinant Qp; different choices of α, β, γ and δ do not affect the action

of WQp on Mk(N).

The Fricke involution |[WN ]k is defined by WN := [ 0 −1
N 0 ]. It is to be

noted that |[WQp ]k, |[WN ]k are involutions on Mk(N) and commute with the

Hecke operators Tn for (n,N) = 1 (see [30, Proposition 2.21]).

Further, we define V -operator and U -operator. Let d be a positive

integer and f(z) =
∑∞

n=0 anq
n ∈Mk(N,χ). Then,

V (d)f(z) :=
∞∑
n=0

anq
dn ∈Mk(Nd, χ),

U(d)f(z) :=
∞∑
n=0

adnq
n ∈Mk(N,χ) if d | N , else ∈Mk(Nd, χ).

It is clear that if f is a cusp form then V (d)f and U(d)f both vanish at infinity.

In fact, more is true: both V (d)f and U(d)f are cusp forms ( [30, Proposition

2.22]). It is easy to verify that Tp commutes with the operator U(d) and for p

coprime to d, Tp commutes with V (d).

Another important notion of modular forms we will be considering in

the later sections is that of a twist with a Dirichlet character.

Definition 2.2.9. Let f(z) =
∑∞

n=0 anq
n ∈ Mk(N,χ). If ψ is a Dirichlet

character, then the ψ-twist of f is defined by

fψ(z) =
∞∑
n=0

ψ(n)anq
n.

Proposition 2.2.10. Let f be as above and ψ be a Dirichlet character of

conductor m, then

fψ(z) =
∞∑
n=0

ψ(n)anq
n ∈Mk(Nm

2, χψ2).

13



Moreover, if f is a cusp form then so is fψ.

Remark. Note that here, fψ does not have to be in the new subspace at level

Nm2. However, if we suppose (N,m) = 1 and that f is a newform of level N ,

then that would be true.

Proof of Proposition 2.2.10. See Proposition 17 in [23, Chapter III] for the

proof.

For more details on this twisting operator, see for example Theorem

4.2.2.

Let us now recall the theory of newforms. Define the space of oldforms

Sold
k (N) in Sk(N) by

Sold
k (N) :=

⊕
M |N

1≤M<N

⊕
d|(N/M)

V (d)(Sk(M)).

The new subspace, Snew
k (N), is defined to be the orthogonal complement of

Sold
k (N) in Sk(N) with respect to the Petersson inner product. Note that these

spaces are preserved under Tn for (n,N) = 1.

Definition 2.2.11. An element of Snew
k (N) is called a newform if it is a

normalised eigenform under all Hecke operators Tn and the Atkin-Lehner in-

volutions |[WQp ]k for p | N and |[WN ]k.

We have the following theorem on newforms.

Theorem 2.2.12. (Atkin-Lehner) Let f(z) =
∑∞

n=0 anq
n ∈ Snew

k (N) be a

newform. Then,

(i) Tn(f) = anf for all n.

(ii) If p is a prime such that ordp(N) ≥ 2, then ap = 0.

(iii) If p | N with ordp(N) = 1, then ap = −ωppk/2−1, where ωp ∈ {±1} is

such that f |[WQp ]k = ωpf .

Proof. See either [23, Theorem 2.27] or [28, Theorem 4.6.17] for the proof.
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It is to be noted that a similar theorem holds for newforms with char-

acters (see [28, Theorem 4.6.17]); in particular the statement (i) of the above

theorem is true if f is a newform in Snew
k (N,χ).

It is a well-known result that, if f ∈ Snew
k (N) is a newform then the

coefficients an of f belong to the ring of integers OK for some number field

K [16, Page 234 ]. Moreover, from the above theorem it is clear that the

coefficients an are totally real, since they are the eigenvalues of Hermitian

operators.

We will be using the following proposition which can be deduced as a

corollary to the “multiplicity-one” theorem [28, Theorem 4.6.19] on newforms

in the later sections.

Proposition 2.2.13. Let f be a common eigenfunction f ∈ Sk(N,χ) of Tn

with eigenvalues an for all n prime to N . Then there uniquely exist a divisor

M of N satisfying Cond(χ) | M and a newform g ∈ Snew
k (M,χ) such that

Tn(g) = ang for all n prime to N , and f can be written as a linear combination

f =
∑

d|(N/M)

αdVd(g).

Proof. This is Corollary 4.6.20 in [28].

We will conclude this section by stating the following result due to

Sturm [40]. We start with a definition.

Definition 2.2.14. Fix a number field F and let OF be the ring of integers

of F and λ be a prime ideal of OF . Suppose f(z) =
∑

n≥0 anq
n is a formal

power series with coefficients in OF . Then we define ordλ(f) to be

ordλ(f) := inf{n : an /∈ λ}.

If an ∈ λ for all n, then we let ordλ(f) :=∞.

It is easy to see that ordλ(f1f2) = ordλ(f1) + ordλ(f2).

Theorem 2.2.15. (Sturm) Let Γ be a congruence subgroup and k be a positive

integer. Let f , g ∈Mk(Γ) such that f and g have coefficients in OF , the ring
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of integers of a number field F . Let λ be a prime ideal of OF . If

ordλ(f − g) >
k

12
[SL2(Z) : Γ],

then ordλ(f − g) =∞, i.e., f ≡ g (mod λ).

Proof. See [40, Page 276].

2.3 Half-Integral Weight Modular Forms

In this section we summarize standard material on modular forms of half-

integral weight found in Shimura’s paper [36], supplemented by material from

the papers of Serre and Stark [35] and Cohen and Oesterlé [12].

2.3.1 Definitions

Before getting into the definition of half-integral weight forms, we first define

the standard Kronecker symbol
(
c
d

)
and εd for c, d ∈ Z with d 6= 0:

(i)
(
c
d

)
= 0 if (c, d) 6= 1.

(ii) If d is an odd prime, then
(
c
d

)
is the usual Legendre symbol.

(iii) If d > 0, the map c 7→
(
c
d

)
is a character modulo d.

(iv) For c 6= 0, the map d 7→
(
c
d

)
is a character of conductor equal to the mod-

ulus of the discriminant of the field Q(
√
c)/Q. We denote this character

by χc.

(v)
(
c
−1

)
= 1 or −1 according as c > 0 or c < 0 and,

(
0
±1

)
= 1.

(vi)
(−1
d

)
= (−1)(d−1)/2 for all positive or negative odd integers d.

(vii) For odd d, εd = 1 or
√
−1 according as d ≡ 1 or 3 (mod 4).

Also, for z ∈ C, we shall take
√
z to be the branch of the square root having

argument in (−π/2, π/2].
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Let G be the group consisting of all ordered pairs (α, φ(z)), where α =

[ a bc d ] ∈ GL+
2 (Q) and φ(z) is a holomorphic function on H satisfying

φ(z)2 = t
cz + d√

detα

for some t ∈ {±1}, with the group law defined by

(α, φ(z)) · (β, ψ(z)) = (αβ, φ(βz)ψ(z)).

Let P : G → GL+
2 (Q) be the homomorphism given by the projection

map onto the first coordinate. The group G acts on the space of complex

valued functions on H by f |[ξ]k/2(z) := f(αz)φ(z)−k, where ξ = (α, φ(z)) ∈ G
and f : H→ C.

Let N be a positive integer with 4 | N . Then for γ = [ a bc d ] ∈ Γ0(N)

define

j(γ, z) :=
( c
d

)
ε−1
d

√
cz + d, ∆0(N) := {γ̃ := (γ, j(γ, z))|γ ∈ Γ0(N)}.

Then ∆0(N) is a subgroup of G. The map L : Γ0(4) → G given by γ 7→
γ̃ defines an isomorphism onto ∆0(4). Thus P |∆0(4) : ∆0(4) → Γ0(4) and

L : Γ0(4) → ∆0(4) are inverse of each other. Denote by ∆1(N) and ∆(N)

respectively the images of Γ1(N) and Γ(N).

Definition 2.3.1. Let k, N be positive integers with k odd and 4 | N .A holo-

morphic function f on H is a modular form of weight k/2 for ∆1(N) if f

satisfies f |[γ̃]k/2 = f for all γ ∈ Γ1(N) and is holomorphic at all the cusps

of Γ1(N). As before, f is called a cusp form if it vanishes on all cusps. We

denote such a space of modular forms by Mk/2(Γ1(N)) and the subspace of

cusp forms by Sk/2(Γ1(N)). Let χ be a Dirichlet character modulo N . Then

Mk/2(N,χ) (respectively Sk/2(N,χ)) is the subspace of Mk/2(Γ1(N)) (respec-

tively Sk/2(Γ1(N))) consisting of all elements f such that f |[γ̃]k/2 = χ(d)f for

all γ = [ a bc d ] ∈ Γ0(N).

For the precise meaning of ‘holomorphicity at cusps’ in the above defi-

nition, please refer to [36, Page 444].
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It is clear that the space Mk/2(N,χ) = 0 if χ is an odd character, that

is, χ(−1) = −1. Henceforth we will be assuming χ to be an even character. If

χ is a trivial character, we write Mk/2(N,χ) and Sk/2(N,χ) simply by Mk/2(N)

and Sk/2(N).

It is to be noted that since ([ 1 1
0 1 ] , 1) ∈ ∆1(N), a modular form f ∈

Mk/2(Γ1(N)) has a Fourier expansion of the form f(z) =
∑∞

n=0 anq
n where

q = e2πiz.

The theta-functions provides us with a large class of examples of half-

integral weight modular forms. We are interested in theta-functions of one

variable (also known as theta-forms).

Definition 2.3.2. Let ν be either 0 or 1. Let ψ be a Dirichlet character such

that ψ(−1) = (−1)ν. Then we define

Θ(ψ, ν, z) :=
∞∑

n=−∞

ψ(n)nνqn
2

, (2.1)

where 00 is taken to be 1.

Theorem 2.3.3. (Shimura) Let ψ be a Dirichlet character with conductor rψ.

(i) If ψ is even then Θ(ψ, 0, z) ∈M1/2(4r2
ψ, ψ).

(ii) If ψ is odd then Θ(ψ, 1, z) ∈ S3/2(4r2
ψ, ψ · χ−1).

Proof. See [36, Section 2].

Serre and Stark [35] proved in fact that every modular form of weight

1/2 can be written as a linear combination of theta-functions with ν = 0.

Theorem 2.3.4. (Serre and Stark) Let 4 | N and χ be an even Dirichlet

character modulo N . Let Ω(N,χ) be the set of pairs (ψ, t) with t ∈ N and ψ

an even primitive Dirichlet character with conductor rψ satisfying

i) 4r2
ψt | N, ii) χ(n) = ψ(n)

(
t

n

)
for n ∈ Z coprime to N.

Then the theta-functions Θ(ψ, 0, tz) with (ψ, t) ∈ Ω(N,χ) form a basis of

the space M1/2(N,χ). Moreover, let Ωe(N,χ) be the subset of pairs (ψ, t) in
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Ω(N,χ) with ψ a square of some character, of conductor rψ if rψ is odd, and

2rψ if rψ is even. Let Ωc(N,χ) = Ω(N,χ) − Ωe(N,χ). Then Θ(ψ, 0, tz) with

(ψ, t) ∈ Ωc(N,χ) form a basis for S1/2(N,χ).

Proof. See [35, Section 2] for the statements and [35, Sections 6,7] for the

proofs.

We will see later that there are many modular forms other than theta-

functions for weights ≥ 3/2.

2.3.2 Dimension Formulae

In this section we briefly state dimension formulae for Sk/2(N,χ) due to Cohen

and Oesterlé [12], for odd k. The above theorem of Serre and Stark gives

explicit bases in the case k = 1. Thus we restrict to k odd ≥ 3. As usual 4 | N
and χ(−1) = 1. Let f be the conductor of χ. Write

N =
∏

prp , f =
∏

psp .

Write

λp =


prp/2 + prp/2−1 if 2sp ≤ rp and rp is even

2p(rp−1)/2 if 2sp ≤ rp and rp is odd

2prp−sp if 2sp > rp.

The formulae involve another parameter ζ which we now define. If r2 ≥ 4 we

let ζ = λ2; if r2 = 3 we let ζ = 3. As 4 | N , the only case left is r2 = 2.

Suppose r2 = 2. Let (C) be the following condition:

(C) there is a prime p ≡ 3 (mod 4) such that p | N with either rp odd

or 0 < rp < 2sp.
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If (C) holds then we let ζ = 2. Suppose (C) does not hold. Let

ζ =



3/2 if s2 = 0 and k ≡ 1 (mod 4)

5/2 if s2 = 2 and k ≡ 1 (mod 4)

5/2 if s2 = 0 and k ≡ 3 (mod 4)

3/2 if s2 = 2 and k ≡ 3 (mod 4).

Theorem 2.3.5. (Cohen and Oesterlé [12, Théorème 2]) With notation as

above,

dimSk/2(N,χ)− dimM2−k/2(N,χ) =
k − 2

24
N
∏
p|N

(1 + 1/p)− ζ

2

∏
p|N,p 6=2

λp.

Here we take M2−k/2(N,χ) = 0 for k ≥ 5.

2.3.3 Operators

As in the case of integral weight modular forms we have several operators that

act on the spaces Mk/2(N,χ) and Sk/2(N,χ).

We will start with the Hecke operators which are defined again in terms

of double cosets. Let ξ be an element of G such that ∆1(N) and ξ−1∆1(N)ξ

are commensurable. Define an operator |[∆1(N)ξ∆1(N)]k/2 on Mk/2(Γ1(N))

by

f |[∆1(N)ξ∆1(N)]k/2 = det(ξ)k/4−1
∑
ν

f |[ξν ]k/2

where ∆1(N)ξ∆1(N) =
⋃
ν ∆1(N)ξν .

Now suppose m is a positive integer and α = [ 1 0
0 m ], ξ = (α,m1/4). Then

the Hecke operator Tm is defined as the restriction of |[∆1(N)ξ∆1(N)]k/2 to

Mk/2(N,χ). It is to be noted that by [36, Proposition 1.0], if m is not a square

and (m,N) = 1 then |[∆1(N)ξ∆1(N)]k/2 is the zero operator. So we assume

that m = n2 for a positive integer n. We write the Hecke operator Tn2 as

Tn2(f) := n
k
2
−2
∑
ν

χ(aν)f |[ξν ]k/2,

where ξν are the right coset representatives of ∆0(N) in ∆0(N)ξ∆0(N) such
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that P (ξν) = [ aν ∗∗ ∗ ]. We have the following theorem.

Theorem 2.3.6. (Shimura) Let f(z) =
∑∞

n=0 anq
n ∈ Mk/2(N,χ). Then

Tp2(f)(z) =
∑∞

n=0 bnq
n where,

bn = ap2n + χ(p)

(
−1

p

)λ(
n

p

)
pλ−1an + χ(p2)pk−2an/p2 ,

and λ = (k − 1)/2 and an/p2 = 0 whenever p2 - n.

Proof. See [36, Theorem 1.7].

As in the integral weight case, if (m,n) = 1, then Tm2n2 = Tm2Tn2 ; in

particular the Hecke operators Tm2 and Tn2 commute (see [36, Proposition

1.6] for details). The operators Tp2 with p prime generate the Hecke alge-

bra. Moreover, as before we can define a Petersson inner product on the space

Sk/2(N,χ) and with respect to this inner product χ(p)Tp2 are Hermitian when-

ever (p,N) = 1. Hence Sk/2(N,χ) has a basis of eigenforms under all Hecke

operators Tp2 with (p,N) = 1.

Example 2.3.7. Just as in the integral case, it is not true that the space

of cusp forms has a basis of eigenfunctions under all Hecke operators. We

computed the action of T4 on S3/2(N) for all N up to 180. We found that T4

is not diagonalizable for N = 160 only.

MAGMA gives the following basis for the space S3/2(160):

f1 = q − q9 − q25 − 2q41 + 3q49 +O(q60)

f2 = q2 − q10 − q18 + 2q22 − 2q30 − 2q38 + q50 + 2q58 +O(q60)

f3 = q4 − q20 − 2q24 − q36 + 2q40 + 2q56 +O(q60)

f4 = q5 − 2q21 − 3q45 +O(q60)

f5 = q6 − q10 − q14 + q30 + 2q34 − q46 − 2q54 +O(q60)

f6 = q7 − q15 − q23 + q47 +O(q60).

We find that T4(fi) = 0 for i = 1, 2, 4, 5, 6 and

T4(f3) = f1 − f4 − 2f5.
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Let M be the 6 × 6 matrix representing the action of T4 with respect to

the basis f1, . . . , f6. Then M has eigenvalue 0 with multiplicity 6. If T4 is

diagonalizable, then T4 = 0. Since this is not the case, we see that it is not

diagonalizable.

Further, we can define V -operators and U -operator as in the integral

weight case and we have the following proposition.

Proposition 2.3.8. Let f(z) ∈Mk/2(N,χ). Let d be a positive integer.

(i) V (d)(f) ∈Mk/2(Nd,
(

4d
.

)
χ).

(ii) If d | N , U(d)(f) ∈Mk/2(N,
(

4d
.

)
χ).

Moreover in above cases V (d) and U(d) take cusp forms to cusp forms.

Proof. See [30, Proposition 3.7].

One can verify as in the integral weight case that Tp2 commutes with

the operator U(d) and for p coprime to d, Tp2 commutes with V (d).

2.3.4 Shimura’s Correspondence

We will conclude this section by presenting a fundamental theorem of Shimura

[36] which connects the arithmetic of half-integral weight cusp forms and even

integer weight modular forms.

Theorem 2.3.9. (Shimura) Let N and k be positive integers such that 4 | N
and k ≥ 3. Let λ = (k − 1)/2. Let f(z) =

∑∞
n=1 anq

n ∈ Sk/2(N,χ). Let t be a

square-free integer and let ψt be the Dirichlet character modulo tN defined by

ψt(m) = χ(m)

(
−1

m

)λ(
t

m

)
.

Let At(n) be the complex numbers defined by

∞∑
n=1

At(n)n−s =

(
∞∑
i=1

ψt(i)i
λ−1−s

)(
∞∑
j=1

atj2j
−s

)
. (2.2)

Let Sht(f)(z) =
∑∞

n=1 At(n)qn. Then Sht(f) ∈ Mk−1(N/2, χ2). If k ≥ 5 then

Sht(f) is a cusp form. Further if k = 3 then Sht(f) is a cusp form if f is in
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the orthogonal complement of S0(N,χ), the subspace of S3/2(N,χ) spanned by

single variable theta-functions.

The formulation we used of Shimura’s Theorem is one found in Ono’s

book [30, Theorem 3.14]. Please refer to section 3.1 for the explicit definition

of S0(N,χ).

The Sht(f) is called the Shimura lift of f corresponding to t. In the

later chapters we will discuss deeper properties of Shimura lifts and several

results surrounding them.

2.4 Algorithms for Computing Half-Integral

Weight Modular Forms

As far as we know, the only algorithm found in the literature for computing a

basis for the space of half-integral weight modular forms is given in Basmaji’s

thesis [3]. Basmaji’s algorithm is for modular forms of half-integral weight

and level divisible by 16. However the computer algebra system MAGMA [5]

computes bases for spaces of half-integral weight modular forms of general

level. By reading the relevant part of the MAGMA source code written by Steve

Donnelly and William Stein, we have been able to write down the algorithm

it is relying on, which is a variant of Basmaji’s, and to verify its correctness.

Let k > 1 be an odd integer and N ∈ N such that 16 | N . Let χ

be a Dirichlet character modulo N . Basmaji in his thesis gives the following

algorithm for computing a basis for Sk/2(N,χ). The idea of the algorithm is

to use theta-series. Let

Θ(z) :=
∞∑

n=−∞

qn
2

= 1 + 2
∞∑
n=1

qn
2

,

Θ1(z) :=
1

2

∞∑
n=−∞

n≡1(mod2)

qn
2

=
∞∑
n=1

n≡1(mod2)

qn
2

where q = e2πiz.

From the work of Serre and Stark [35] we know that Θ ∈M1/2(4, χtriv)

and Θ1 ∈ M1/2(16, χtriv) where χtriv stands for the identity character; this is
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proved independently in Basmaji’s thesis. Let χ−1 be the nontrivial Dirichlet

character modulo 4 and

S = S k+1
2

(
N, χ · χ

k+1
2
−1

)
.

Basmaji defines the following embedding,

ϕ : Sk/2(N,χ)→ S × S, f 7→ (fΘ, fΘ1),

proving that fΘ and fΘ1 do indeed belong to S. Let U be the subspace of

S × S consisting of elements (f1, f2) such that

f1 ·Θ1 = f2 ·Θ (2.3)

holds. Then U is isomorphic to Sk/2(N,χ) via the map

(f1, f2) 7→ f1/Θ (= f2/Θ1).

There are standard methods for computing a basis for a space of mod-

ular forms of integral weight; see for example [39]. Thus one can start with

a given basis for S and form a system of linear equations in terms of the

coefficients of q-expansions of the basis elements and solve for (f1, f2) in the

equation (2.3), thereby recovering a basis for Sk/2(N,χ).

It is to be noted that the hypothesis 16 | N is only used to show that

fΘ1 belongs to the space S and so it seems possible to drop this hypothesis by

working with other theta-series. This is precisely what is done in the MAGMA

implementation for general level N . Suppose 4 | N and 16 - N . Let

Θ2(z) := Θ(2z) = 1 + 2
∞∑
n=1

q2n2 ∈M1/2(8, χ8)

where χ8 =
(

8
.

)
is the Dirichlet character modulo 8. Let N ′ = lcm(N, 8). Let

S be as before and

S ′ = S k+1
2

(
N ′, χ · χ8 · χ

k+1
2
−1

)
.
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Then we have an embedding as above given by

ϕ : Sk/2(N,χ)→ S × S ′

f 7→ (fΘ, fΘ2).

Lemma 2.4.1. If f ∈ Sk/2(N,χ) then fΘ2 ∈ S ′.

We shortly prove Lemma 2.4.1. Let U ′ be the subspace of S × S ′ con-

sisting of elements (g1, g2) such that

g1Θ2 = g2Θ.

As before this gives a system of linear equations that we can solve and recover

a basis for Sk/2(N,χ).

Proof of Lemma 2.4.1. Let γ = [ a bc d ] ∈ Γ0(N ′). Then

(fΘ2)(γz) = f(γz)Θ2(γz)

= χ(d)χ8(d)j(γ, z)k+1f(z)Θ2(z)

= (χ · χ8)(d)(j(γ, z)2)(k+1)/2f(z)Θ2(z)

= (χ · χ8)(d)(ε−2
d (cz + d))(k+1)/2f(z)Θ2(z)

= (χ · χ8 · χ(k+1)/2
−1 )(d)(cz + d)(k+1)/2(fΘ2)(z).

Note that fΘ2 is holomorphic on H as so are f and Θ2. We want to show

that fΘ2 is holomorphic at the cusps. Let s ∈ Q ∪ {∞} be any cusp. Then

s = α∞ for some α ∈ SL2(Z). Following the definitions one can easily show

that

(fΘ2)(z)|[α](k+1)/2
= κα · f(z)|[α]k/2Θ2(z)|[α]1/2 .

where κα is a fourth root of unity. Now the result follows since f is a cusp

form.

2.5 Automorphic Representations

Let F be a number field and AF be its ring of adeles. In this section we will

recall the theory of automorphic representations of GLn(AF ). We follow the
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standard material as presented in Bump’s book [6].

Definition 2.5.1. Let G be a locally compact abelian group. Then, by a qua-

sicharacter of G we mean a continuous homomorphism χ : G → C×. If

|χ(g)| = 1 for all g ∈ G, then χ is called a character. In particular, we say

that a character χν of F×ν is unramified if it is trivial on the unit group O×ν .

Here Fν is the completion of F at the place ν of F and Oν is the ring of

integers of Fν.

Note that an unramified character of F×ν is determined by its value on

any uniformizer. In our subsequent work we will be only interested in the case

of GLn(AF ) where F = Q and n ≤ 2.

If n = 1, an automorphic representation of GL1(AQ) is indeed simply

a Hecke character, i.e., a continuous homomorphism χ : A×Q/Q× → C× and

it corresponds to a primitive Dirichlet character. This follows from Tate’s

thesis [9, Chapter XV] and we will discuss this in more detail in Section 4.1.

We will henceforth assume that n = 2 and we will see that one can associate

automorphic representations of GL2(AQ) to classical Hecke eigenforms.

Before going into the definition of automorphic representations, we first

recall the theory of admissible representations of G = GL2(f) where f is a non-

Archimedean local field (that is a finite extension of Qp for some finite prime

p) with ring of integers o. Please refer to either [6, Chapter IV] or [14] for the

details of what follows.

A representation of G on a complex vector space V is smooth if the

stabilizer of any vector in V is an open subgroup of G; it is admissible if it is

smooth and for every open subgroup U of G the space V U of vectors stabilized

by U is finite dimensional. We will be interested in irreducible admissible

representations.

Let χ1 and χ2 be quasicharacters of f×. Let B(χ1, χ2) be the space of all

smooth (i.e, locally constant) functions f : G→ C which satisfy the following

identity

f

([
y1 x

0 y2

]
g

)
=

∣∣∣∣y1

y2

∣∣∣∣1/2 χ1(y1)χ2(y2)f(g).

Here | · | is the usual norm character of f×, which takes y ∈ f× to q−ordp(y)

where q is the cardinality of the residue field. Then G acts on B(χ1, χ2) by
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right translation, i.e., (gf)(g′) = f(g′g) and the resulting representation can

be shown to be an admissible representation of G. Further, if we assume that

χ1χ
−1
2 is not equal to either of the quasicharacters | · | or |·|−1, then B(χ1, χ2) is

irreducible (see [6, Theorem 4.5.1]) and in this case, the isomorphism classes of

the B(χ1, χ2) are called the principal series representations; the isomorphism

class of B(χ1, χ2) is denoted by π(χ1, χ2).

When χ1χ
−1
2 is equal to | · |±1, the representation B(χ1, χ2) has two

composition factors in its Jordan-Hölder series, a 1-dimensional factor and an

infinite dimensional factor. Precisely, say χ1χ
−1
2 = | · | and write χ1 = χ| · |1/2

and χ2 = χ| · |−1/2. Then B(χ1, χ2) has a unique irreducible subrepresenta-

tion St2(χ) which is infinite dimensional. The quotient B(χ1, χ2)/St2(χ) is

1-dimensional and G acts on it through the character g 7→ χ(detg). Write St2

in place of St2(χ) when χ is the trivial character. The representation St2 is

called the Steinberg representation. One has St2(χ) = St2 ⊗ χ.

An irreducible admissible representation (π, V ) of G is called supercus-

pidal if associated “Jacquet module” J(V ) is zero. We have the following

classification of the irreducible admissible representations of G which can be

gleaned from Bump’s book [6]; the formulation we use is that of [14].

Theorem 2.5.2. Let (π, V ) be an irreducible admissible representation of G.

If V is finite dimensional then it is 1-dimensional and there exists a quasichar-

acter χ of f× such that π(g)v = χ(det(g))v for all g ∈ G and v ∈ V . Otherwise,

(π, V ) is equivalent to one and only one of the following:

(i) An irreducible principal series representation π(χ1, χ2) with χ1χ
−1
2 6=

| · |±1.

(ii) A twist St2 ⊗ χ of the Steinberg representation St2.

(iii) A supercuspidal representation.

Proof. See [6, Section 4.5, 4.6, 4.7] for a complete proof.

Definition 2.5.3. An irreducible admissible representation (π, V ) of G is

called spherical (or unramified) if it has a vector which is invariant under

the maximal compact subgroup K = GL2(o).
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It is well-known (see [6, Theorem 4.6.4]) that (π, V ) is spherical if and

only if either it is a 1-dimensional representation given by g 7→ χ(det(g)) for

some unramified quasicharacter χ of f×, or it is a principal series of the form

π(χ1, χ2) with χ1 and χ2 unramified quasicharacters of f×.

We will now define an automorphic cuspidal representation of GL2(AF ).

Let ω be a Hecke character. Let L2(GL2(F )\GL2(AF ), ω) be the space of all

functions f : GL2(AF ) → C that are measurable with respect to the Haar

measure dg and satisfy

f([ z 0
0 z ] g) = ω(z)f(g), z ∈ A×F ,

f(γg) = f(g), γ ∈ GL2(F ),

and that are square integrable modulo centre ZAF (the group of scalar matrices

with entries in A×F ): ∫
ZAF GL2(F )\GL2(AF )

|f(g)|2dg <∞.

Let L2
0(GL2(F )\GL2(AF ), ω) be the closed subspace (cusp forms) satisfying

the cuspidal condition, that is,∫
F\AF

f([ 1 x
0 1 ] g)dx = 0

for almost all g ∈ GL2(AF ). The group GL2(AF ) acts on this L2 space by

right translation; this representation is called right regular representation and

is denoted by ρ. The space of cusp forms (L2
0 subspace) is invariant under

this representation and decomposes into an infinite direct sum of irreducible

invariant subspaces. If (π, V ) is a representation of GL2(AF ) that is isomorphic

to the representation on one of these invariant subspaces, then we say that

(π, V ) is an automorphic cuspidal representation with central character ω.

Let g∞ =
∏

ν∈S∞ gl2(Fν), where S∞ is the set of Archimedean places

of F and gl2(Fν) is the Lie algebra of GL2(Fν), i.e., the set of 2 × 2 matrices

over Fν . Let K =
∏

ν Kν where Kν = GL2(Oν) if ν is non-Archimedean,

Kν = O(2) if ν is a real and Kν = U(2) if ν is a complex; note that O(2) and

U(2) are respectively orthogonal group and unitary group of 2× 2 matrices.
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It turns out that if (π, V ) is an automorphic cuspidal representation of

GL2(AF ) then on the space of K-finite vectors in V one can write π = ⊗′νπν
where ⊗′ represents a restricted tensor product; here for each Archimedean

place ν of F , πν is an irreducible admissible (g∞, Kν)-module and for each

non-Archimedean place ν, πν is an irreducible admissible representation of

GL2(Fν). It is to be noted that πν is spherical for almost all ν, which allows

us to define the restricted tensor product. For details see [6, Theorem 3.3.2,

Theorem 3.3.3, Theorem 3.3.4].

Assume now F = Q. Let f ∈ Sk(N,χ) be such that f is an eigenfunc-

tion for all Hecke operators Tp with p - N . One can associate to χ a Hecke

character ω as remarked earlier. Let ω =
∏

p ωp. By the strong approximation

theorem [6, Theorem 3.3.1], it follows that any element g ∈ GL2(AQ) can be

written as g = γg∞k0 where γ ∈ GL2(Q), g∞ ∈ GL+
2 (R) and k0 ∈ K0(N);

here K0(N) =
∏

p<∞K0(N)p, where if p | N then K0(N)p is the subgroup

of GL2(Zp) of the form [ a bc d ] where c ≡ 0 (mod N) in Zp and for primes

p - N , K0(N)p = GL2(Zp). Let Ω be the character of K0(N) given by

Ω(
[
α β
γ δ

]
) =

∏
p|N ωp(δp).

Then the adelization of f is the function φf : GL2(AQ) → C defined

by φf (g) := f |[g∞]k(i) · Ω(k0). Since f is a cusp form, φf satisfies several

properties and in fact it turns out that φf is an automorphic form on GL2(AQ)

(see [6, Page 343 ] for details). We have the following theorem; the formulation

is as in [21, Page 93].

Theorem 2.5.4. Let πf be restriction of the right regular representation ρ of

GL2(AQ) on the subspace Vf of L2
0(GL2(Q)\GL2(AQ), ω) spanned by {ρ(g)φf :

g ∈ GL2(AQ)}. Then πf is irreducible and hence an automorphic cuspidal

representation with central character ω.
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Chapter 3

Shimura’s Correspondence

Shimura’s Correspondence relates certain cusp forms of half-integral weight to

modular forms of integral weight. In this chapter we give a precise statement

of this correspondence and use it to study eigenfunctions and what is known

as the Shimura decomposition.

Let k be an odd integer ≥ 3 and N a positive integer such that 4 | N .

Let χ be an even Dirichlet character modulo N . As we saw in the previous

chapter, Sk/2(N,χ) can contain single-variable theta-series for k = 3. We shall

denote by S0(N,χ) the subspace generated by single-variable theta-series. If

k ≥ 5 then S0(N,χ) = 0, but this is often not the case for k = 3.

The interesting part of the space Sk/2(N,χ) is the orthogonal com-

plement of S0(N,χ) with respect to the Petersson inner product, denoted

by S⊥k/2(N,χ). It is cusp forms belonging to this subspace that feature in

Shimura’s decomposition. To compute the dimension of S⊥k/2(N,χ) we need to

know the dimension of S0(N,χ). A generating set for this is given in several

references, e.g. Shimura’s paper [36]. We show that this generating set is in

fact a basis of eigenfunctions, although we have not found this result anywhere

in the literature.

As we will see in this chapter, Shimura decomposes the space S⊥k/2(N,χ)

as

S⊥k/2(N,χ) =
⊕
φ

Sk/2(N,χ, φ)

where φ runs through the newforms of weight k−1 and level dividing N/2 and

character χ2; Sk/2(N,χ, φ) is the subspace of forms that are Shimura-equivalent
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to φ. We give an explicit algorithm for computing this decomposition. This

decomposition will be crucial for our efforts later on to express the critical

values of L-functions of twists of elliptic curves in terms of coefficients of

modular forms of weight 3/2.

3.1 The Space S0(N,χ)

Let N be a natural number such that 4 | N . Let χ be an even Dirichlet

character of modulus N .

Let ψ be a primitive odd Dirichlet character of conductor rψ and

hψ(z) :=
1

2
Θ(ψ, 1, z) =

∞∑
m=1

ψ(m)mqm
2

.

Recall, by Theorem 2.3.3 that hψ ∈ S3/2(4r2
ψ, (

−1
.

)ψ). Consider the operator

V (t) (see section 2.2). By definition,

V (t)(hψ)(z) =
∞∑
m=1

ψ(m)mqtm
2 ∈ S3/2

(
4r2

ψt,

(
−4t

.

)
ψ

)
.

Following Shimura [36], we define the space S0(N,χ) to be a subspace of

S3/2(N,χ) spanned by

S = { V (t)(hψ) : 4r2
ψt | N and ψ is a primitive odd character of

conductor rψ such that χ =

(
−4t

.

)
ψ }.

The purpose of this section is to prove the following theorem.

Theorem 3.1.1. The set S constitutes a basis of eigenforms for S0(N,χ). In

particular, the dimension of S0(N,χ) is simply #S.

To prove the theorem we shall need a series of lemmas.

Lemma 3.1.2. V (t)hψ is an eigenform for the Hecke operators Tp2 for all
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primes p. Indeed,

Tp2V (t)hψ =

ψ(p)(1 + p)V (t)hψ if p - 2t

ψ(p)pV (t)hψ if p | 2t.

Proof. Let us write V (t)hψ(z) =
∑∞

n=1 anq
n. Thus

an =

ψ(m)m if n = tm2

0 otherwise.

Let p be any prime. Write Tp2V (t)hψ =
∑∞

n=1 bnq
n. Then by Theorem 2.3.6,

bn = ap2n +

(
4tn

p

)
ψ(p)an +

(
−4t

p

)2

ψ(p)2pan/p2 .

If n/t is not the square of an integer, then bn = 0. Write n = tm2. If p | 2t,

then bn = ap2n = atp2m2 = ψ(pm)pm. This completes the proof when p | 2t.

Suppose p - 2t. Then

bn = atp2m2 +

(
4t2m2

p

)
ψ(p)atm2 +

(
−4t

p

)2

ψ(p)2patm2/p2

= atp2m2 +

(
m2

p

)
ψ(p)atm2 + ψ(p)2patm2/p2

=

atp2m2 +
(
m2

p

)
ψ(p)atm2 if p - m

atp2m2 + ψ2(p)patm2/p2 if p | m

= ψ(pm)pm+ ψ(pm)m

= (1 + p)ψ(p)atm2 .

Hence the lemma follows.

Lemma 3.1.3. Let ψ be a Dirichlet character modulo r. Let ψ′ be a Dirichlet

character modulo R. Let N be a natural number such that r | R | N and

ψ(n) = ψ′(n) for all n with (n,N) = 1. If ψ′ is primitive character modulo R,

then R = r and ψ′ = ψ.

Proof. Let R =
∏k

i=1 p
αi
i and N =

∏k
i=1 p

βi
i ·
∏l

j=1 q
γj
j where p1, . . . , pk, q1, . . . , ql

are distinct primes, and βi ≥ αi. Let (n,R) = 1. Then by Chinese Remainder
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Theorem there exists an m such that

m ≡

n (mod
∏k

i=1 p
βi
i )

1 (mod
∏l

j=1 q
γj
j ).

So m ≡ n (mod R) and (m,N) = 1. Hence we have,

ψ(n) = ψ(m) = ψ′(m) = ψ′(n).

Thus ψ′ is induced by ψ. Since ψ′ is a primitive character modulo R we get

R = r and ψ′ = ψ.

We have following easy corollary to the above lemma.

Corollary 3.1.4. Let ψ1 and ψ2 be primitive Dirichlet characters modulo r1

and r2 respectively, and suppose r1 | N , r2 | N . Let χ be a Dirichlet character

modulo N such that ψ1(n) = ψ2(n) = χ(n) for all n such that (n,N) = 1.

Then r1 = r2 and ψ1 = ψ2.

Proof. Let the conductor of χ be r and ψ be the primitive Dirichlet character

modulo r which induces χ. Then r | r1 and r | r2. Hence the result follows

from the lemma.

Proof of Theorem 3.1.1. We will prove the theorem by showing that the ele-

ments of the set S are linearly independent. Let S = { V (ti)(hψi) : 1 ≤ i ≤ k }.
We claim that ti’s are all distinct. Suppose not. Then there exists i, j such

that ti = tj. We know that χ = (−4ti
.

)ψi = (
−4tj
.

)ψj. Thus, ψi(n) = ψj(n) for

all (n,N) = 1. Since ψi and ψj are primitive, we can apply Corollary 3.1.4 to

get that ψi = ψj and that V (ti)(hψi) = V (tj)(hψj). Hence the claim follows.

We can assume that t1 < t2 < · · · < tk.

Now let αi for 1 ≤ i ≤ k be such that

α1V (t1)(hψ1) + α2V (t2)(hψ2) + · · ·+ αkV (tk)(hψk) = 0.

By the above equation and the q-expansion of V (ti)(hψi), it follows that

coefficient of qt1 = α1ψ1(1) = 0.
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Hence α1 = 0. Repeating the same argument with t2, t3, . . . , tk, we get that

α2 = α3 = · · · = αk = 0. Thus we are done.

Remark. In the literature (see [30]), S0(N,χ) is referred to as the space

spanned by single variable theta-functions. Kohnen states in [25] that the

“space of theta-functions” is zero for square-free level and arbitrary character,

and also for cube-free level and trivial character. Kohnen does not give a

proof. We prove this statement in the following easy proposition.

Proposition 3.1.5. (Kohnen) Suppose either of the following holds:

1. N/4 is square-free, or

2. N/4 is cube-free and χ is a trivial character.

Then S0(N,χ) = 0.

Proof. In the case N/4 is square-free, it is clear that the set S = ∅. Let N/4

be cube-free and χ be a trivial character. Hence for any V (t)hψ ∈ S we have(−4t
n

)
ψ(n) = 1 for all (n,N) = 1. That is, for all such n, ψ(n) =

(−t
n

)
. It

is to be noted that the character
(−t
.

)
is a primitive character modulo 4t or t

depending on the value of t (mod 4) and hence using Corollary 3.1.4 we get

that rψ = 4t or rψ = t respectively. However, N = 4r2
ψt. This contradicts the

assumption that N/4 is cube-free. Thus, in this case the set S = ∅.

Note. Recall that for k ≥ 5, we defined S0(N,χ) = 0. In the upcoming

sections we will use the following notation:

S⊥k/2(N,χ) := S0(N,χ)⊥;

in words, the orthogonal complement to S0(N,χ) with respect to the Petersson

inner-product. Thus, for k ≥ 5,

S⊥k/2(N,χ) = Sk/2(N,χ).
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3.2 Shimura Lifts

For this section fix positive integers k, N with k ≥ 3 odd and 4 | N . Let χ be

an even Dirichlet character of modulus N . Let N ′ = N/2. We recall Shimura’s

Theorem.

Theorem 3.2.1. (Shimura) Let λ = (k − 1)/2. Let f(z) =
∑∞

n=1 anq
n ∈

Sk/2(N,χ). Let t be a square-free integer and let ψt be the Dirichlet character

modulo tN defined by

ψt(m) = χ(m)

(
−1

m

)λ(
t

m

)
.

Let At(n) be the complex numbers defined by

∞∑
n=1

At(n)n−s =

(
∞∑
i=1

ψt(i)i
λ−1−s

)(
∞∑
j=1

atj2j
−s

)
. (3.1)

Let Sht(f)(z) =
∑∞

n=1At(n)qn. Then

(i) Sht(f) ∈Mk−1(N ′, χ2).

(ii) If k ≥ 5 then Sht(f) is a cusp form.

(iii) If k = 3 and f ∈ S⊥3/2(N,χ) then Sht(f) is a cusp form.

(iv) Suppose f is an eigenform for Tp2 for all primes p and let Tp2f = λpf .

Then
∑∞

n=1A0(n)qn ∈Mk−1(N ′, χ2) where A0(n) is defined by

∞∑
n=1

A0(n)n−s =
∏
p

(1− λpp−s + χ(p)2pk−2−2s)−1. (3.2)

In fact if at 6= 0 then Sht(f)/at =
∑∞

n=1A0(n)qn.

Proof. For (i), (ii) and (iv) see [36, Section 3, Main Theorem, Corollary], for

the rest see [30, Theorem 3.14]. In particular, the fact that N ′ = N/2 was

proved by Niwa [29, Section 3].

The following is clear from Equation(3.1).
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Lemma 3.2.2. The Shimura lift Sht is linear.

Lemma 3.2.3. If Sht(f) = 0 for all positive square-free integers t then f = 0.

Proof. By Equation (3.1) we know that atj2 = 0 for all positive square-free

integers t and all positive integers j. Then an = 0 for all n.

In Ono’s book [30, Chapter 3, Corollary 3.16] and several other places

[24] we find the following result stated without proof.

Proposition 3.2.4. Suppose f ∈ Sk/2(N,χ). Let t be a square-free positive

integer. If p - 4tN is a prime then

Sht(Tp2f) = Tp Sht(f).

Here Tp2 is the Hecke operator on Sk/2(N,χ) and Tp is the Hecke op-

erator on Mk−1(N ′, χ2). We will denote by Tk/2 and Tk−1 the Hecke algebras

over Z acting on the space Mk/2(N,χ) and Mk−1(N ′, χ2) respectively.

For what follows we shall need the following strengthening of this result.

Proposition 3.2.5. Suppose f ∈ Sk/2(N,χ) and t a square-free positive inte-

ger. If p is a prime then

Sht(Tp2f) = Tp Sht(f).

We do not know why the above references impose the condition p - tN .

We shall give a careful proof that does not use this assumption.

Proof of Proposition 3.2.5. The proof uses the explicit formulae for Hecke op-

erators in terms of q-expansions. As in Shimura’s Theorem above, write

f(z) =
∑∞

n=1 anq
n. Fix t to be a positive square-free integer. To simplify

notation, we shall write An for At(n). Thus we have the relation

∞∑
n=1

Ann
−s =

(
∞∑
i=1

ψt(i)i
λ−1−s

)(
∞∑
j=1

atj2j
−s

)
.

We may rewrite this as

An =
∑
ij=n

ψt(i)i
λ−1atj2 . (3.3)
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Let

Tp2(f)(z) =
∞∑
n=1

bnq
n.

Then using Theorem 2.3.6 we get,

bn = ap2n + ψ1(p)

(
n

p

)
pλ−1an + χ2(p)pk−2an/p2 . (3.4)

The reader will recall that if n/p2 is not an integer then we take an/p2 = 0.

Let g = Sht(f)(z) =
∑∞

n=1 Anq
n. Write

Tp(g)(z) =
∞∑
n=1

Bnq
n.

Let

Sht(Tp2f)(z) =
∞∑
n=1

Cnq
n.

To prove the proposition, it is enough to show that Bn = Cn for all n. We

shall do this by direct calculation, expressing both Bn and Cn in terms of the

ai.

Since g(z) =
∑
Anq

n ∈Mk−1(N ′, χ2) and Tp(g)(z) =
∑
Bnq

n we know

by Proposition 2.2.5 that

Bn = Apn + χ2(p)pk−2An/p.

Substituting from (3.3) we have

Bn =
∑
ij=pn

ψt(i)i
λ−1atj2 +

∑
ij=n/p

χ2(p)ψt(i)p
k−2iλ−1atj2 ; (3.5)

here the second sum is understood to vanish if p - n.

Recall Tp2f(z) =
∑
bnq

n and Sht(Tp2f)(z) =
∑
Cnq

n. Hence by (3.3)

we have

Cn =
∑
ij=n

ψt(i)i
λ−1btj2 .
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Using (3.4) we obtain

Cn =
∑
ij=n

ψt(i)i
λ−1

(
ap2tj2 + ψ1(p)

(
tj2

p

)
pλ−1atj2 + χ2(p)pk−2atj2/p2

)
.

Note that ψ1(p)
(
tj2

p

)
= ψt(p)

(
j2

p

)
. So we can rewrite Cn as

Cn =
∑
ij=n

ψt(i)i
λ−1

(
ap2tj2 + ψt(p)

(
j2

p

)
pλ−1atj2 + χ2(p)pk−2atj2/p2

)
. (3.6)

Note that the Legendre symbol here is 1 unless of course p | j in which case it

is 0. Moreover atj2/p2 = 0 whenever p - j; this is because t is square-free.

We consider the following two cases.

Case p - n. In this case the formulae for Bn and Cn simplify as follows.

Bn =
∑
ij=pn

ψt(i)i
λ−1atj2

=
∑
ij=n

ψt(pi)(pi)
λ−1atj2 + ψt(i)i

λ−1atp2j2

=
∑
ij=n

ψt(i)i
λ−1(atp2j2 + ψt(p)p

λ−1atj2)

= Cn.

Case p | n. Write n = prm where r ≥ 1 and p - m. We rewrite (3.5) as

follows.

Bn =
∑

j|pr+1m

ψt(p
r+1m/j)(pr+1m/j)λ−1atj2

+
∑

j|pr−1m

χ2(p)ψt(p
r−1m/j)pk−2(pr−1m/j)λ−1atj2 .

This maybe re-expressed as Bn = B
(1)
n +B

(2)
n where

B(1)
n =

r+1∑
u=0

∑
k|m

ψt(p
r+1−um/k)(pr+1−um/k)λ−1atp2uk2
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and

B(2)
n =

r−1∑
u=0

∑
k|m

χ2(p)ψt(p
r−1−um/k)pk−2(pr−1−um/k)λ−1atp2uk2 .

Moreover, we can rewrite (3.6) as follows.

Cn =
∑
j|prm

ψt(p
rm/j)(prm/j)λ−1

(
ap2tj2 + ψt(p)

(
j2

p

)
pλ−1atj2 + χ2(p)pk−2atj2/p2

)
.

Thus we can write Cn = C
(1)
n + C

(2)
n + C

(3)
n where

C(1)
n =

r∑
u=0

∑
k|m

ψt(p
r−um/k)(pr−um/k)λ−1atp2u+2k2 ,

and

C(2)
n =

∑
k|m

ψt(p
r+1m/k)(pr+1m/k)λ−1atk2 ,

and

C(3)
n =

r∑
u=1

∑
k|m

χ2(p)ψt(p
r−um/k)(pr−um/k)λ−1pk−2atp2u−2k2 .

It is clear that B
(2)
n = C

(3)
n , and also that B

(1)
n = C

(1)
n + C

(2)
n ; here C

(2)
n corre-

sponds to the u = 0 terms in B
(1)
n . Thus Bn = Cn completing the proof.

3.3 Recursion Formula for the Hecke Opera-

tors Tp2l

We keep the notation as in the previous section. Let l be a positive integer

and p be a prime. In this section we are interested in the action of the Hecke

operator Tp2l on the space Mk/2(N,χ). In the case p | N we have the following

easy lemma.

Lemma 3.3.1. Let l be a positive integer and p be a prime dividing N . Let t

be a square-free positive integer. Then

(i) Tp2l = (Tp2)
l.
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(ii) Sht(Tp2lf) = Tpl(Sht(f)) for f ∈ Sk/2(N,χ).

In the above statements Tp2l ∈ Tk/2 and Tpl ∈ Tk−1.

Proof. Let f =
∑∞

n=0 anq
n ∈ Mk/2(N,χ). It follows using [36, Proposition

1.5] that Tp2l(f) =
∑∞

n=1 anp2lq
n. Now part (i) follows using Theorem 2.3.6.

Part (ii) follows by using Proposition 3.2.5 and part (b) of Proposition 2.2.4

since p | N ′.

We will assume that p - N for the rest of this section. The main aim of

this section is to prove the following result.

Theorem 3.3.2. Let p - N be a prime and l ≥ 2 be a positive integer. Then

the following identity of the Hecke operators holds in Tk/2:

Tp2l+2 = Tp2Tp2l − χ(p2)pk−2Tp2l−2 .

It is to be noted that for l = 1 the above relation does not hold. One

can check directly that in Tk/2,

Tp4 = (Tp2)
2 − χ(p2)(pk−3 + pk−2).

We need the following lemma on Gauss sums which can be easily deduced from

[28, Lemma 3.1.3]:

Lemma 3.3.3. Let p be a prime and n, α be a given positive integer. Then

(i)
∑pα−1

m=0

(
m
p

)
e

2πimn
pα =

0 if pα−1 - n

pα−1
(
n′

p

)
εp
√
p if n = pα−1n′.

(ii)
∑pα−1

m=0 e
2πimn
pα =

0 pα - n

pα pα | n.

Proof of Theorem 3.3.2. Let f ∈ Mk/2(N,χ). Let α = [ 1 0
0 p2l ], ξ = (α, pl/2).

Using [28, Lemma 4.5.6] we know that

Γ0(N)αΓ0(N) =
⋃
ν,m

Γ0αν,m, αν,m =

[
p2l−ν m

0 pν

]
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where 0 ≤ ν ≤ 2l, 0 ≤ m < pν and gcd(m, pν , p2l−ν) = 1. Let G be the group

defined in Subsection 2.3.1. Let ξν,m ∈ G be given by

ξν,m =


(
αν,m, p

−2l+2ν
4 ε−1

p

(
−m
p

))
if ν is odd

(αν,m, p
−2l+2ν

4 ) if ν is even.

One can verify that ξν,m with ν and m varying as above form a set of right

coset representatives of ∆0(N) in ∆0(N)ξ∆0(N) (see [36, Proposition 1.1]).

Then we know by definition of Tp2l (see Subsection 2.3.3) that

Tp2lf = (p2l)
k
4
−1

(
A0 + A2l +

2l−1∑
ν=1

Aν

)
, (3.7)

where

Aν =

pν−1∑
m=0

(m,p)=1

χ(p2l−ν)f |[ξν,m]k/2, A2l =

p2l−1∑
m=0

f |[ξ2l,m]k/2, A0 = χ(p2l)f |[ξ0,0]k/2.

Applying Tp2 to Equation (3.7) we obtain

Tp2Tp2lf = (p2l)
k
4
−1

(
2l−1∑
ν=1

Tp2Aν + Tp2A2l + Tp2A0

)

= (p2l+2)
k
4
−1

(
2l−1∑
ν=1

Bν +B2l +B0

)
,

(3.8)

where for ν with 0 ≤ ν ≤ 2l − 2 we have

Bν = χ(p2l−ν+2)

pν−1∑
m=0

(m,p)=1

f |[([ p2l−ν+2 m
0 pν

], p
−2l+2ν−2

4 rν,m)]k/2

+ χ(p2l−ν+1)

p−1∑
m′=1

pν−1∑
m=0

(m,p)=1

f |[([ p2l−ν+1 p2l−νm′+mp
0 pν+1 ], p

−2l+2ν
4 sν,m,m′)]k/2

+ χ(p2l−ν)

p2−1∑
m′=0

pν−1∑
m=0

(m,p)=1

f |[([ p2l−ν p2l−νm′+mp2
0 pν+2 ], p

−2l+2ν+2
4 rν,m)]k/2,
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where

rν,m =

ε−1
p

(
−m
p

)
ν odd

1 ν even
, sν,m,m′ =

ε
−2
p

(
mm′

p

)
ν odd

ε−1
p

(
−m′
p

)
ν even,

and B2l has the same expression as above with ν = 2l but without any copri-

mality condition on m, that is, we do not have (m, p) = 1 in the above terms

while writing the expression for B2l.

We express Tp2l+2f as in Equation (3.7) and compare it with Equa-

tion (3.8). Ruling out some of the terms using Euclidean algorithm and rewrit-

ing the action of matrices (we will give an example of the working later) we

obtain

(Tp2l+2 − Tp2Tp2l)(f) = −(p2l+2)
k
4
−1

(
S0 + S2l +

2l−1∑
ν=1

(Dν + Eν)

)
(3.9)

where

S0 =

p2−1∑
m′=0

χ(p2l)f |[([ p2l p2lm′
0 p2

], p
−l+1

2 )]k/2

S2l =

p2l−1∑
m=0

(m,p)6=1

χ(p2)f |[([ p
2 m

0 p2l
], p

l−1
2 )]k/2

Dν = χ(p2l−ν)

p2−1∑
m′=0

pν−1∑
m=0

(m,p)=1

f |[([ p2l−ν p2l−νm′+mp2
0 pν+2 ], p

−2l+2ν+2
4 rν,m)]k/2

Eν = χ(p2l−ν+1)

p−1∑
m′=1

pν−1∑
m=0

(m,p)=1

f |[([ p2l−ν+1 p2l−νm′+mp
0 pν+1 ], p

−2l+2ν
4 sν,m,m′)]k/2.

Further

χ(p2)pk−2Tp2l−2f = p2(p2l+2)
k
4
−1

(
2l−3∑
ν=1

Cν + C2l−2 + C0

)
, (3.10)
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where for ν with 0 ≤ ν ≤ 2l − 3 we have

Cν =

pν−1∑
m=0

(m,p)=1

χ(p2l−ν)f |[([ p2l−ν−2 m
0 pν

], p
−2l+2ν+2

4 rν,m)]k/2

and C2l−2 has the same expression as above with ν = 2l − 2 but without

the condition (m, p) = 1 in the above sum. We first claim that the following

relations hold:

(i) Dν = p2Cν for 1 ≤ ν ≤ 2l − 3, and S0 = p2C0.

(ii) Eν = 0 for 1 ≤ ν ≤ 2l − 2.

We will only show the computation for part (ii) for case ν odd. The rest of

the claim follows by similar method. Fix an odd ν with 1 ≤ ν ≤ 2l − 3. Fix

1 ≤ m′ ≤ p − 1. Then for each m with 0 ≤ m ≤ pν − 1 there exist unique a

and b with 0 ≤ b ≤ pν− 1 such that m+ p2l−ν−1m′ = apν + b. Moreover m ≡ b

(mod p). Hence

(m, p) = 1 ⇐⇒ (b, p) = 1,

(
−m
p

)
=

(
−b
p

)
.

We can rewrite Eν as

Eν = χ(p2l−ν+1)

p−1∑
m′=1

pν−1∑
m=0

(m,p)=1

f

(
p2l−ν+1z + p2l−νm′ +mp

pν+1

)(
p
−2l+2ν

4 ε−2
p

(
mm′

p

))−k

= χ(p2l−ν+1)εkp

p−1∑
m′=1

(
−m′

p

) pν−1∑
m=0

(m,p)=1

f

∣∣∣∣∣
[(

[ p
2l−ν p2l−ν−1m′+m
0 pν

], p
−2l+2ν

4 ε−1
p

(
−m
p

))]
k/2

= χ(p2l−ν+1)εkp

p−1∑
m′=1

(
−m′

p

) pν−1∑
b=0

(b,p)=1

f

∣∣∣∣∣
[(

[ p
2l−ν b
0 pν

], p
−2l+2ν

4 ε−1
p

(
−b
p

))]
k/2

= 0.

The second last equality follows since as elements of G we have(
[ p

2l−ν p2l−ν−1m′+m
0 pν

], p
−2l+2ν

4 ε−1
p

(
−m
p

))
= ([ 1 a

0 1 ], 1)·
(

[ p
2l−ν b
0 pν

], p
−2l+2ν

4 ε−1
p

(
−b
p

))
.
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By working out similarly as above one can further see that

p2C2l−2 −D2l−2 = χ(p2)

p2−1∑
m′=0

p2l−2−1∑
m=0

(m,p)6=1

f |[([ p
2 p2m′+mp2

0 p2l
], p

l−1
2 )]k/2 =: F2l−2.

Thus to prove the theorem we are left to show that

F2l−2 − S2l − E2l−1 −D2l−1 = 0.

We claim that D2l−1 = 0 and F2l−2−S2l−E2l−1 = 0 which proves the theorem.

We first show that D2l−1 = 0. Let f(z) =
∑∞

n=0 ane(nz) where e(nz) =

e2πinz. Rewriting D2l−1 in terms of coefficients an we obtain

D2l−1 = χ(p)p
−lk
2 εkp

(
−1

p

) p2−1∑
m′=0

p2l−1−1∑
m=0

(m,p)=1

∞∑
n=0

ane

(
npz + npm′ + nmp2

p2l+1

)(
m

p

)

= χ(p)p
−lk
2 εkp

(
−1

p

) ∞∑
n=0

ane

(
nz

p2l

) p2−1∑
m′=0

e

(
nm′

p2l

) p2l−1−1∑
m=0

e

(
nm

p2l−1

)(
m

p

)

= χ(p)p
−lk+4l−3

2 εk+1
p

(
−1

p

) ∞∑
n=0

p2l−2|n

ane

(
nz

p2l

)(
n/p2l−2

p

) p2−1∑
m′=0

e

(
nm′/p2l−2

p2

)

= 0,

where last two equalities follows using Lemma 3.3.3 on Gauss sums. In order

to prove the final claim we again use the coefficients method as above to obtain

F2l−2 − S2l = χ(p2)p
(−l+1)k+4l−2

2

∞∑
n=0

p2l−2‖n

ane

(
nz

p2l−2

)
,

E2l−1 = χ(p2)p
(−l+1)k+4l−2

2 ε2k+2
p

∞∑
n=0

p2l−2‖n

ane

(
nz

p2l−2

)
.

Now ε2k+2
p = 1 since 2k + 2 ≡ 0 (mod 4). Hence we are done.
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Corollary 3.3.4. Let p - N be a prime and l ≥ 2. Let f ∈ Sk/2(N,χ). Then

Sht(Tp2lf) = (Tpl − χ(p2)pk−3Tpl−2)(Sht(f)),

where as before Tp2l ∈ Tk/2 and Tpl, Tpl−2 ∈ Tk−1.

Proof. We use induction on l. Recall from part (c) of Proposition 2.2.4 that

for prime p - N , we have

Tpe+1(Sht f) = (TpTpe − χ(p2)pk−2Tpe−1)(Sht f). (3.11)

As we remarked earlier, for l = 2 we have the following relation in Tk/2:

Tp4 = (Tp2)
2 − χ(p2)(pk−3 + pk−2).

Hence we get

Sht(Tp4f) = Sht((Tp2)
2f)− χ(p2)(pk−3 + pk−2)(Sht f)

= ((Tp)
2 − χ(p2)pk−2)(Sht f)− χ(p2)pk−3(Sht f)

= (Tp2 − χ(p2)pk−3)(Sht f).

Assume the statement holds for all l ≤ e. Then

Sht(Tp2e+2f) = Sht(Tp2Tp2ef)− χ(p2)pk−2 Sht(Tp2e−2f)

= Tp(Sht(Tp2ef)− χ(p2)pk−2 Sht(Tp2e−2f)

= (TpTpe − χ(p2)(pk−3TpTpe−2 + pk−2Tpe−1) + χ(p4)p2k−5Tpe−3)(Sht f)

= (Tpe+1 − χ(p2)pk−3(Tpe−1 + χ(p2)pk−2Tpe−3) + χ(p4)p2k−5Tpe−3)(Sht f)

= (Tpe+1 − χ(p2)pk−3Tpe−1)(Sht f).

The first equality uses Theorem 3.3.2, third equality follows by using inductive

hypothesis for l = e and l = e− 1, the others follow by using Equation (3.11).

We also prove the following proposition, independently of the proof of

Theorem 3.3.2.

Proposition 3.3.5. Let p - N be a prime and l be a positive integer. For
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positive integers r such that 1 ≤ r ≤ b l
2
c we give the following recursive

construction of sequences Ar,l(m) and Br,l(m):

A1,l(m) = 1, Ar,l(m) = Ar−1,l(m)−
(
l − 2(r − 1)

m− (r − 1)

)
Ar−1,l(r − 1);

B1,l(m) =

(
l

m

)
− 1, Br,l(m) = Br−1,l(m)−

(
l − 2(r − 1)

m− (r − 1)

)
Br−1,l(r − 1).

Let αr,l = Ar,l(r) and βr,l = Br,l(r). Then the following relation holds between

operators in Tk/2:

Tp2l = (Tp2)
l −

b l
2
c∑

r=1

χ(p2r)(αr,lp
r(k−2)−1 + βr,lp

r(k−2))(Tp2)
l−2r.

Proof. Let f =
∑∞

n=0 a(n)qn ∈ Mk/2(N,χ). Our strategy will be to compare

the nth coefficient of action of the above operators on f on both sides. Sub-

stituting the q-expansion of f in Equation (3.7) and using Lemma 3.3.3 on

Gauss sums we obtain

Tp2lf = I0 + I2l +
2l−1∑
ν=1
νodd

Iodd
ν +

2l−1∑
ν=1
νeven

Ieven
ν

where

I0 = χ(p2l)p(k−2)l

∞∑
n=0

a(n/p2l)qn, I2l =
∞∑
n=0

a(np2l)qn

Iodd
ν = χ(p2l − ν)p( k

2
−1)(2l−ν)− 1

2 εk+1
p

(
−1

p

) ∞∑
n=0

p2l−ν−1|n

a(n/p2l−2ν)

(
n/p2l−ν−1

p

)
qn

Ieven
ν = χ(p2l − ν)p( k

2
−1)(2l−ν)−1(

∞∑
n=0

p2l−ν |n

a(n/p2l−2ν)(p− 1)qn −
∞∑
n=0

p2l−ν−1‖n

a(n/p2l−2ν)qn).

Let n be a positive integer with p2(l−1) | n. We can write the n-th coefficient
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of T lp2f as

a(np2l) +
l−1∑
m=1

(
l

m

)
χ(p2m)p(k−2)ma(np2l−4m)+

χ(p2l−1)

(
−1

p

) k−1
2
(
n/p2l−2

p

)
p
k−3
2

+(k−2)(l−1)a(n/p2l−2) + χ(p2l)p(k−2)la(n/p2l).

Thus the n-th coefficient of T lp2f − Tp2lf is

l−1∑
m=1

((
l

m

)
− 1

)
χ(p2m)p(k−2)ma(np2l−4m) +

l−1∑
m=1

χ(p2m)p(k−2)m−1a(np2l−4m).

We want to subtract a suitable multiple of T l−2
p2 f from the above so as to remove

the terms involving a(np2l−4) and a(np4−2l), thereby reducing the number of

terms in the above sum. Indeed we obtain that the n-th coefficient of

(T lp2 − Tp2l − χ(p2)(pk−3 + (l − 1)pk−2)T l−2
p2 )f is

l−2∑
m=2

(
1−

(
l − 2

m− 1

))
χ(p2m)p(k−2)m−1a(np2l−4m)+

l−2∑
m=2

((
l

m

)
− 1− (l − 1)

(
l − 2

m− 1

))
χ(p2m)p(k−2)ma(np2l−4m).

We iterate this process of subtracting suitable multiples of T l−2r
p2 f which leads

us to the recursive formulae for αr,l and βr,l.

We obtain the following combinatorial result as a corollary of Theo-

rem 3.3.2 and Proposition 3.3.5

Corollary 3.3.6. Keeping the notation as in the previous proposition we get

the following combinatorial identities for 2 ≤ r ≤ b l
2
c − 1:

αr−1,l−2 + αr,l − αr,l−1 = 0, βr−1,l−2 + βr,l − βr,l−1 = 0.

Proof. Let p - N be any prime. We substitute the formula for Tp2l given by

Proposition 3.3.5 in the identity of Theorem 3.3.2,

Tp2l+2 − Tp2Tp2l + χ(p2)pk−2Tp2l−2 = 0
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to obtain

−
b l
2
c∑

r=2

χ(p2r)(αr,lp
r(k−2)−1 + βr,lp

r(k−2))(Tp2)
l−2r

+

b l−1
2
c∑

r=2

χ(p2r)(αr,l−1p
r(k−2)−1 + βr,l−1p

r(k−2))(Tp2)
l−2r

−
b l−2

2
c+1∑

r=2

χ(p2r)(αr−1,l−2p
r(k−2)−1 + βr−1,l−2p

r(k−2))(Tp2)
l−2r = 0.

It is clear, with fixed l and varying r, that the operators (Tp2)
l−2r are linearly

independent elements of Tk/2 and hence

−αr,l + αr,l−1 − αr−1,l−2 + (βr,l + βr,l−1 − βr−1,l−2)p = 0.

Since this holds for any prime p with p - N the above corollary follows.

3.4 Eigenforms in Half-Integral Weight

In the integral weight case, one way of computing the simultaneous cuspi-

dal eigenspaces under the action of all the Hecke operators is to repeatedly

split the new space using Hecke operators until the simultaneous eigenspaces

are 1-dimensional. This works in the integral weight case because of the

multiplicity-one theorem, which asserts that simultaneous eigenspaces are in-

deed 1-dimensional. The analogue of the multiplicity-one theorem in the half-

integral weight case is false. The following two examples illustrate what can

happen.
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3.4.1 Two Examples

Example 3.4.1. In this example, we compute an eigenbasis for the space

S3/2(44). Using MAGMA we obtain the following basis for this space

f1(z) = q − q4 − q5 + q12 − 2q14 + 2q15 +O(q20)

f2(z) = q3 − q4 − q11 − q12 + q15 + 2q16 +O(q20).

We also find using 3.1.5 that the space S0(44) is zero-dimensional, hence f1

and f2 is a basis for S⊥3/2(44). We compute

T32(f1) = −f1, T52(f1) = f1, T72(f1) = −2f1, T112(f1) = f1,

and

T32(f2) = −f2, T52(f2) = f2, T72(f2) = −2f2, T112(f2) = f2.

To compute an eigenbasis for S3/2(44) we note that

T22(f1)(z) = −q + q3 + q5 − q11 − 2q12 + 2q14 − q15 + 2q16 +O(q20)

T22(f2)(z) = −q − q3 + 2q4 + q5 + q11 + 2q14 − 3q15 − 2q16 +O(q20).

Thus

T22(f1) = −f1 + f2, T22(f2) = −f1 − f2.

By diagonalizing the matrix of T22 with respect to the basis f1, f2 we find that

an eigenbasis is

h1 = −f1 + if2, h2 = −f1 − if2,

and

T22(h1) = (−1 + i)h1, T22(h2) = (−1− i)h2.

Since these eigenspaces are 1-dimensional it is impossible to split them further

and so h1, h2 is a simultaneous eigenbasis for all the Hecke operators. Let

us check our computation against Shimura’s correspondence (Theorem 3.2.1).

We take h1 and construct its Shimura lift g(z) =
∑∞

i=1 biq
i ∈ S2(22). For each

prime p let Tp2(h1) = λp(h1). Then we can recover the bi from the following

recipe from (3.2):

1. b1 = 1,
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2. bp = λp for all primes p,

3. bpv = λpbpv−1 − χ(p)pk−2bpv−2 for v ≥ 2,

4. bmn = bmbn if m, n are relatively prime.

In our case χ = χtriv is the trivial character of conductor 44 and so χ(p) = 1

for all primes except χ(2) = χ(11) = 0. Moreover our k = 3.

We find

g(z) = q+(−1+ i)q2−q3−2iq4 +q5 +(1− i)q6−2q7 +(2+2i)q8−4q9 +O(q10).

Using MAGMA we computed the following basis for S2(22):

g1(z) = q − q3 − 2q4 + q5 − 2q7 + 4q8 − 2q9 + q11 +O(q12)

g2(z) = q2 − 2q4 − q6 + 2q8 + q10 +O(q12).

We observe that g = g1+(i−1)g2 up to the coefficient of q11, which is consistent

with Shimura’s correspondence.

Example 3.4.2. MAGMA gives the following basis for S3/2(72):

f1 = q − 2q10 − 2q13 + 4q22 − q25 + 2q34 + 4q37 − 4q46 − 3q49 +O(q50)

f2 = q2 − q5 − 2q14 + q17 + 3q29 − q41 +O(q50).
(3.12)

Here S0(72) = 0 and so S⊥3/2(72) = S3/2(72). Using the formula for the action of

Hecke operators in Theorem 2.3.6, we computed the action of Hecke operators

Tp2 for all primes p ≤ 50; here we needed to work with cusp expansions with

precision of O(q5000). We found that f1 and f2 are eigenfunctions for each of

these Tp2 with the same eigenvalue. Thus it seems the whole space S3/2(72) is

a simultaneous eigenspace for all the Hecke operators, although we have not

yet proved this.

It is to be noted that S3/2(24) = S3/2(36) = 0. Thus S3/2(72) is made

up entirely of the new subspace and still seems not to satisfy a multiplicity-one

result.
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3.4.2 Generators for the Hecke Action

Theorem 3.4.3. Let k, N be positive integers with k ≥ 3 odd, and 4 | N . Let

χ be a Dirichlet character modulo N . Let N ′ = N/2. Let T be the restriction

of Hecke algebra Tk−1 to Sk−1(N ′, χ2) and suppose T is generated as a Z-

module by the Hecke operators Ti for i ≤ r. Then the Hecke operators Ti2 for

i ≤ r generate the restriction of Hecke algebra Tk/2 to S⊥k/2(N,χ) as a Z[ζϕ(N)]-

module. In particular, f ∈ S⊥k/2(N,χ) is an eigenform for all Hecke operators

if and only if it is an eigenform for Ti2 for i ≤ r.

Proof. Let n be a positive integer with prime factorization n = pn1
1 p

n2
2 · · · pnss .

Let f ∈ S⊥k/2(N,χ). Let t be a square-free positive integer. Using Theo-

rem 3.3.2 or Proposition 3.3.5, for any prime p and a positive integer l we can

express the action of Tp2l as

Tp2l =
l∑

j=0

γjT
j
p2 , γj ∈ Z[ζϕ(N)]. (3.13)

Note that in the above expression γl = 1 and hence the Hecke operators T jp2

with 1 ≤ j ≤ l generates the same Z[ζϕ(N)]-module as do the Hecke operators

Tp2j with 1 ≤ j ≤ l. Thus we have

Sht(Tn2f) = Sht(Tp2n11
T
p
2n2
2
· · ·Tp2nss

f)

= Sht

((
n1∑
j1=0

γj1T
j1
p21

)
· · ·

(
ns∑
js=0

γjsT
js
p2s

)
f

)

=

(
n1∑
j1=0

γj1T
j1
p1

)
· · ·

(
ns∑
js=0

γjsT
js
ps

)
(Sht f)

=
r∑
i=1

δiTi(Sht f),

(3.14)

where the last equality follows since the Ti, with 1 ≤ i ≤ r, generate T as a

Z-module, while the second last equality follows by Proposition 3.2.5.

Recall from Proposition 2.2.4, for any prime q and a positive integer l,
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the action of a Hecke operator Tql on Sk−1(N ′, χ2) can be expressed as

Tql =
l∑

j=0

αjT
j
q , αj ∈ Z[ζϕ(N ′)] ⊂ Z[ζϕ(N)].

Let 1 ≤ i ≤ r have prime factorization i = qm1
1 qm2

2 · · · qmvv . Then each

term Ti(Sht f) in Equation (3.14) can be written as

Ti(Sht f) = Tqm1
1
Tqm2

2
· · ·Tqmvv (Sht f)

=

(
m1∑
j1=0

αj1T
j1
q1

)
· · ·

(
mv∑
jv=0

αjvT
jv
qv

)
(Sht f)

= Sht

((
m1∑
j1=0

αj1T
j1
q21

)
· · ·

(
mv∑
jv=0

αjvT
jv
q2v

)
f

)

= Sht

((
m1∑
j1=0

βj1Tq2j11

)
· · ·

(
mv∑
jv=0

βjvTq2jvv

)
f

)

= Sht

(
i∑

j=1

AjTj2f

)
,

(3.15)

where Aj ∈ Z[ζϕ(N)]. In the above equalities we repeatedly use Proposi-

tion 3.2.5 and Equation (3.13). For the second last equality we use the remark

below Equation (3.13). Now using Equations (3.14) and (3.15) we get

Sht(Tn2f) = Sht

(
r∑
i=1

BiTi2f

)
, Bi ∈ Z[ζϕ(N)].

Since this is true for all positive square-free integers t, using Lemma 3.2.3 we

deduce that

Tn2f =
r∑
i=1

BiTi2f.

Hence Ti2 , i ≤ r generate the restriction of Tk/2 to S⊥k/2(N,χ) as a Z[ζϕ(N)]-

module.

We shall need the following theorem which is a consequence of Sturm’s

bound [40].

Theorem 3.4.4. (Stein [39, Theorem 9.23]) Suppose Γ is a congruence sub-
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group that contains Γ1(N). Let

r =
km

12
− m− 1

N
, m = [SL2(Z) : Γ].

Then the Hecke algebra

T = Z[. . . , Tn, . . . ] ⊂ End(Sk(Γ))

is generated as a Z-module by the Hecke operators Tn for n ≤ r.

From Theorem 3.4.4 we deduce the following.

Corollary 3.4.5. Let k, N be positive integers with k ≥ 3 odd, and 4 | N .

Let χ be a Dirichlet character modulo N . Let N ′ = N/2.

m = N ′
2
∏
p|N ′

(
1− 1

p2

)
, R =

(k − 1)m

12
− m− 1

N ′
.

Then Ti2 for i ≤ R generate the restriction of Tk/2 to S⊥k/2(N,χ) as a Z[ζϕ(N)]-

module. In particular the set of operators Tp2 for primes p ≤ R forms a

generating set as an algebra. Moreover, f ∈ Sk/2(N,χ) is an eigenform for all

Hecke operators if and only if it is an eigenform for Tp2 for p ≤ R.

Proof. Note that Sk−1(N ′, χ2) ⊂ Sk−1(Γ1(N ′)). Now the corollary follows by

applying Theorem 3.4.3 and Theorem 3.4.4 to the congruence subgroup Γ1(N ′)

and using the formula for [SL2(Z) : Γ1(N ′)] (see Proposition 2.1.3).

Corollary 3.4.6. With the same hypothesis as in the above corollary, further

suppose that χ is a quadratic character. Then the same result holds as above

with

m = N ′
∏
p|N ′

(
1 +

1

p

)
, R =

(k − 1)m

12
− m− 1

N ′
.

Proof. Since χ is a quadratic character Sk−1(N ′, χ2) = Sk−1(N ′). So we apply

Theorem 3.4.4 to the group Γ0(N ′) and we now use the formula for [SL2(Z) :

Γ0(N ′)].

Example 3.4.7. We now return to Example 3.4.2. We found that the space

S⊥3/2(72) = S3/2(72) consists entirely of the new subspace, with basis f1, f2
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given in (3.12). Moreover, f1, f2 are eigenfunctions with the same eigen-

value for Tp2 for primes p < 50. From Corollary 3.4.6 we find that Tp2 with

p = 2, 3, 5, 7 generate the Hecke algebra. Therefore f1, f2 are eigenfunctions

with the same eigenvalue for all Hecke operators. We note here the failure of

‘multiplicity-one’.

3.5 Shimura’s Decomposition

In this chapter we shall state and refine a theorem of Shimura that conveniently

decomposes the space of cusp forms of half-integral weight.

Fix positive integer k, N with k odd and 4 | N . Let χ be an even

Dirichlet character of modulus N . Let N ′ = N/2. For M | N ′ such that

Cond(χ2) |M and a newform φ ∈ Snew
k−1(M,χ2) define

Sk/2(N,χ, φ) = {f ∈ S⊥k/2(N,χ) : Tp2(f) = λp(φ)f for almost all p - N};

here Tp(φ) = λp(φ)φ.

Theorem 3.5.1. (Shimura) We have S⊥k/2(N,χ) =
⊕

φ Sk/2(N,χ, φ) where φ

runs through all newforms φ ∈ Snew
k−1(M,χ2) with M | N ′ and Cond(χ2) |M .

This theorem is attributed to Shimura by Waldspurger [45, Proposition

1] although no reference is given. It is also stated without reference in [19,

page 60]. For us this theorem is not suitable for computation since for any

particular prime p - N , we do not know if it is included or excluded in the

‘almost all’. In fact we shall prove this theorem with a more precise definition

for the spaces Sk/2(N,χ, φ).

From now on and for the rest of the thesis we take the following as the

definition of the space Sk/2(N,χ, φ).

Definition 3.5.2. With notation as above take

Sk/2(N,χ, φ) = {f ∈ S⊥k/2(N,χ) : Tp2(f) = λp(φ)f for all p - N}.

We say that f ∈ S⊥k/2(N,χ) is Shimura equivalent to φ if f belongs to

the space Sk/2(N,χ, φ).
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Theorem 3.5.3. Shimura’s decomposition in Theorem 3.5.1 holds with this

new definition.

Proof. Let f1, f2, . . . , fn be an eigenbasis for S⊥k/2(N,χ) with respect to the

operators Tp2 for p - N . Let f be one of the fi. Let ψ = Sht(f) (i.e. the image

of f under Shimura’s correspondence (Theorem 3.2.1)) with any square-free t.

We know that ψ ∈ Sk−1(N ′, χ2). Moreover, for all p - N we know that ψ is

an eigenfunction for Tp, with eigenvalue the same as that of f under Tp2 ; see

Proposition 3.2.5. By the theory of newforms (see Proposition 2.2.13) we know

that there exists uniquely a divisor M of N ′ with Cond(χ2) |M and a newform

φ ∈ Snew
k−1(M,χ2) such that φ has the same Tp-eigenvalues as ψ for all primes

p - N ′. Thus f ∈ Sk/2(N,χ, φ). We show that that the above decomposition is

actually a direct sum. For this, we just need to show that if h1, h2, . . . , hr are

all the elements of the above eigenbasis that belong to Sk/2(N,χ, F0) where

F0 is a fixed newform in Snew
k−1(M0, χ

2) with M0 | N ′ and Cond(χ2) | M0, then

they actually form a basis for the space Sk/2(N,χ, F0). We can reorder our

basis elements such that fi = hi for 1 ≤ i ≤ r. Let h ∈ Sk/2(N,χ, F0) and

suppose h = α1f1 +α2f2 + · · ·+αnfn. We show that αi = 0 for r+ 1 ≤ i ≤ n.

We will show that αr+1 = 0 and the same argument follows for the others.

We know that fr+1 ∈ Sk/2(N,χ, F ) for some suitable newform F and F0 6= F .

This implies there exists a prime p such that λ0
p 6= λp where λ0

p and λp are

corresponding Tp-eigenvalues of F0 and F . Applying Tp2 to h we get αr+1 = 0.

The theorem follows.

In fact, as a corollary to the proof of Theorem 3.5.3 we can deduce the

following precise relationship between the Shimura lift ψ and the newform φ.

Corollary 3.5.4. Let φ be a newform belonging to Snew
k−1(M,χ2) where M | N ′

and Cond(χ2) | M . Let f ∈ Sk/2(N,χ, φ) and let ψ = Sht(f) for any square-

free t. Then we can write ψ as a linear combination

ψ =
∑

d|(N ′/M)

αdVd(φ).

We need later the following fact.
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Lemma 3.5.5. Our definition of Sk/2(N,χ, φ) agrees with Shimura’s defini-

tion. In other words, write

SSh
k/2(N,χ, φ) = {f ∈ S⊥k/2(N,χ) : Tp2(f) = λp(φ)f for almost all p - N};

then SSh
k/2(N,χ, φ) = Sk/2(N,χ, φ).

Proof. Clearly, the right-hand side is contained in the left-hand side. Suppose

f is in left-hand side. We use the decomposition Theorem 3.5.3 with our

definition of summands. Let θ run through the newforms of levels dividing

N/2. Then we can write f =
∑
fθ where fθ ∈ Sk/2(N,χ, θ). Here φ is one of

the θs. We know that for almost all primes p,

Tp2f = λφpf =
∑

λφpfθ

where Tpφ = λφpφ. But,

Tp2(f) =
∑

Tp2(fθ) =
∑

λθpfθ

where Tpθ = λθpθ. Thus ∑
(λφp − λθp)fθ = 0.

By the fact that the summands belong to a direct sum, we see that each

summand must individually be zero. If fθ 6= 0 then λφp = λθp for almost all

p which forces θ = φ by the multiplicity-one theorem [28, Theorem 4.6.19].

Thus f = fφ ∈ Sk/2(N,χ, φ) as required.

Example 3.5.6. As we shall see in Chapter 5, we may obtain some cuspforms

of weight 3/2 by taking differences of theta-series of positive-definite ternary

quadratic forms belonging to the same genus. Let

Q1 = x2
1 + 11x2

2 + 11x2
3,

Q2 = 3x2
1 + 2x1x2 + 4x2

2 + 11x2
3.

Let θ1 and θ2 be the theta-series associated to these positive-definite ternary

forms Q1 and Q2. It turns out that

θ1(z) = 1+2q+2q4+2q9+O(q10), θ2(z) = 1+2q3+2q4+2q5+2q9+O(q10).
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Let F = θ1 − θ2. Then F ∈ S3/2(44) (see 5.1 for details). Note that

F = 2q − 2q3 − 2q5 +O(q10).

In Basmaji’s thesis [3, page 61] it is claimed that F is a simultaneous eigenform

for all the Hecke operators. It is easy to check using the formula for Hecke

operators (Theorem 2.3.6) that F is indeed an eigenform for Tp2 for p =

3, 5, 7, 11. However,

T22(F )(z) = 4q3 − 4q4 +O(q10)

which is clearly not a multiple of F . The space spanned by theta-forms

S0(44) = 0. Thus S3/2(44) = S⊥0 (44). By Shimura’s Theorem 3.5.3,

S3/2(44) =
⊕

S3/2(44, φ)

where the sum is taken over all newforms φ of weight 2 and level dividing

44/2 = 22. There is precisely one such newform which is at level 11, which

we denote by ψ. Thus S3/2(44) = S3/2(44, ψ). In particular, for all p - 44,

Tp2F = λp(ψ)F . From the above computations, F is an eigenform for Tp2 for

all odd primes p, but not for p = 2.

3.6 Algorithm for Computing Shimura’s De-

composition

We recall Shimura’s decomposition (Theorem 3.5.3). Fix positive integer k,

N with k odd and 4 | N . Let χ be an even Dirichlet character of modulus

N . Let N ′ = N/2. For M | N ′ such that Cond(χ2) | M and a newform

φ ∈ Snew
k−1(M,χ2) define

Sk/2(N,χ, φ) = {f ∈ S⊥k/2(N,χ) : Tp2(f) = λp(φ)f for all p - N};
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here Tp(φ) = λp(φ)φ. Theorem 3.5.3 states that

S⊥k/2(N,χ) =
⊕
φ

Sk/2(N,χ, φ) (3.16)

where φ runs through all newforms φ ∈ Snew
k−1(M,χ2) with level M | N ′ and

Cond(χ2) |M . The following lemma is obvious.

Lemma 3.6.1. Each Sk/2(N,χ, φ) is contained in a single Tp2-eigenspace for

every prime p - N .

The following theorem gives our algorithm for computing the Shimura

decomposition.

Theorem 3.6.2. Let φ1, . . . , φm be the newforms of weight k − 1, character

χ2 and level dividing N ′. For prime p, and φ one of these newforms, write

Tp(φ) = λp(φ)φ. Let p1, . . . , pn - N be primes such that the m vectors of

eigenvalues (λp1(φ), . . . , λpn(φ)), with φ = φ1, . . . , φm, are pairwise distinct. If

f ∈ S⊥k/2(N,χ) is an eigenform for Tp2i for i = 1, . . . , n then f belongs to one

of the summands Sk/2(N,χ, φ).

Proof. Suppose f ∈ S⊥k/2(N,χ) is an eigenform for Tp2i for i = 1, . . . , n. Write

Tp2i f = µif . By Shimura’s decomposition, we can write

f =
∑
φ

fφ

for some unique fφ ∈ Sk/2(N,χ, φ); here φ varies over φi, 1 ≤ i ≤ m. Thus∑
φ

λpi(φ)fφ = Tp2i f = µi
∑
φ

fφ.

As the decomposition is a direct sum, we find that

(λpi(φ)− µi)fφ = 0, i = 1, . . . , n.

We will show that at most one fφ is non-zero. This will force f to be in one

of the components Sk/2(N,χ, φ) which is what we want to prove. Suppose
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therefore that fφ1 6= 0 and fφ2 6= 0. Then

λpi(φ1) = µi = λpi(φ2), i = 1, 2, . . . , n.

This contradicts the assumption that the vectors of eigenvalues are distinct,

and completes the proof.

An Alternative Proof of Theorem 3.6.2. This proof is inspired by a similar ar-

gument in [2, page 18] (however there is a certain step in that paper that we

were unable to follow).

Let T′ be the subalgebra of the Hecke algebra of S⊥k/2(N,χ) generated

by Tp2 for p 6= pi such that p - N . Let

V = Span{Tf : T ∈ T′}.

We note the following:

(i) We claim that V is fixed under the action of the Hecke operators Tp2 for

p - N . If Tp2 ∈ T′ then this is clear. If p = pi, then Tp2i commutes with

every T ∈ T′. But f is an eigenform for Tp2i , which proves the claim.

Hence, we can write an eigenbasis g1, . . . , gr for V with respect to the

Hecke operators Tp2 for p - N .

(ii) Every element of V is an eigenfunction for Tp2i having the same eigen-

values as f . This again follows from the fact that each Tp2i commutes

with each T ∈ T′. Thus for each i, the eigenfunctions g1, . . . , gr share

the same Tp2i -eigenvalue.

Let g be one of the gj. Consider Sht(g). This is an eigenfunction for

all the Hecke operators Tp with p - N acting on Sk−1(N ′, χ2). By Proposi-

tion 2.2.13, there is a unique φi such that Sht(g) and φi share the same Tp-

eigenvalues for all p - N . If g, g′ ∈ V are two elements of the eigenbasis then

it follows from (ii) and the hypothesis about the vectors of eigenvalues that

Sht(g), Sht(g
′) correspond to the same φi. By the properties of the Shimura

lift, g, g′ will have precisely the same Tp2-eigenvalues for all p - N . Because f

is a linear combination of these eigenbasis elements, it is an eigenform for Tp2

for all p - N .
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Remark. Our first proof is not only simpler but it also gives a good idea of

the strategy that we will use to compute the summands in (3.16).

We can reframe Theorem 3.6.2 as follows.

Corollary 3.6.3. Let φ be a newform of weight k−1, level M dividing N ′, and

character χ2. Let p1, . . . , pn be primes not dividing N satisfying the following:

for every newform φ′ 6= φ of weight k − 1, level dividing N ′ and character χ2,

there is some pi such that λpi(φ
′) 6= λpi(φ), where Tpi(φ) = λpi(φ) · φ. Then

Sk/2(N,χ, φ) =
{
f ∈ S⊥k/2(N,χ) : Tp2i (f) = λpi(φ)f for i = 1, . . . , n

}
.

Recall that S⊥k/2(N,χ) = Sk/2(N,χ) except possibly when k = 3. We

have the following refinement of the above corollary which takes care of the

case when S⊥k/2(N,χ) ( Sk/2(N,χ), that is, S0(N,χ) 6= 0.

Corollary 3.6.4. Assuming the notation in the above corollary, the following

stronger statement holds:

Sk/2(N,χ, φ) =
{
f ∈ Sk/2(N,χ) : Tp2i (f) = λpi(φ)f for i = 1, . . . , n

}
.

Proof. Let f1, . . . fr be the basis of eigenforms for S0(N,χ) as stated in The-

orem 3.1.1. Recall that fi = V (ti)hψi where ψi is primitive odd character of

conductor rψi such that 4r2
ψi
ti | N and χ =

(−4ti
.

)
ψi. Let q = pi for some

fixed i. We claim that Tq2(fi) 6= λq(φ)fi for any 1 ≤ i ≤ r. Since φ is

a newform of weight 2 we know by Deligne’s work on Weil conjectures that

|λq(φ)| ≤ 2
√
q. By Lemma 3.1.2, Tq2(fi) = ψi(q)(1 + q)fi as q - N . Clearly

|ψi(q)(1 + q)| = |1 + q| > 2
√
q. Hence the claim follows.

Let g ∈ Sk/2(N,χ) such that Tp2i (g) = λpi(φ)g for 1 ≤ i ≤ n. We can

write g = g1 + g2 where g1 ∈ S0(N,χ) and g2 ∈ S⊥k/2(N,χ). Since g1 and

g2 are linearly independent we get that Tp2i (gj) = λpi(φ)gj for all 1 ≤ i ≤ n

and j = 1, 2. Thus by the above corollary g2 ∈ Sk/2(N,χ, φ). We show that

g1 = 0. Let g1 =
∑r

i=1 aifi. In particular for the prime q we must have

aiTq2(fi) = aiλq(φ)fi. The above claim implies that ai = 0 for all 1 ≤ i ≤ r.

Hence we are done.
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3.7 An Example of Non-Injectivity of Shimura

Lifts

In this section we take the notation as above. We study the following problem.

Suppose φ is a newform belonging to Snew
k−1(M,χ2) where M | N ′ and

Cond(χ2) |M . Let f ∈ Sk/2(N,χ) such that Sht(f) = φ. Then does f belong

to Sk/2(N,χ, φ)?

We show by providing an example that the above statement is not

true in general. However in the cases where the Shimura Correspondence is

injective, the above is clearly true because the Hecke operators commutes with

Shimura lifts (see Proposition 3.2.5) and we have

Sht(Tp2(f)) = Tp(Sht(f)) = Tp(φ) = λpφ = λp(Sht(f)) = Sht(λpf),

where λp is the eigenvalue of φ under Tp.

We first provide an example where Shimura Correspondence is not in-

jective. Consider S3/2(68, χtriv) where χtriv is the trivial character modulo 68.

A basis for this space is given by

f1(z) = q − q2 + q4 − q8 − q9 − 2q13 + q16 + q17 + 3q18 − 2q19 +O(q20)

f2(z) = q3 − q7 − q11 +O(q20)

f3(z) = q5 − q6 − q7 + q10 + q12 − q17 +O(q20).

We claim that Sh1(f2) = 0. Recall that Sh1(f2) ∈ S2(34). Let f2(z) =∑
anq

n. Then by definition of Shimura lifts, Sh1(f2)(z) =
∑∞

n=1A1(n)qn where

A1(n) =
∑

ij=n χtriv(i)
(−1
i

)
aj2 . Since a1 = 0, we have A1(1) = 0. Similarly

A1(2) = 0 and A1(3) = 0.

Using MAGMA [5] we get the following basis for the space S2(34),

g1(z) = q − 2q4 − 2q5 + 4q7 + 2q8 − 3q9 +O(q12)

g2(z) = q2 − q4 − q8 − q10 +O(q12)

g3(z) = q3 − 2q4 − q5 + q6 + 4q7 − 2q9 + q10 − 3q11 +O(q12).

This clearly shows that A1(n) = 0 for all n and hence we are done with the

claim.
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Let

φ1 = q − q2 − q4 − 2q5 + 4q7 + 3q8 − 3q9 + 2q10 +O(q12) ∈ Snew
2 (17)

φ2 = q + q2 − 2q3 + q4 − 2q6 − 4q7 + q8 + q9 + 6q11 +O(q12) ∈ Snew
2 (34).

Following our algorithm for computing the Shimura decomposition (see

section 3.6) we get

S3/2(68, χtriv) = S3/2(68, χtriv, φ1)
⊕

S3/2(68, χtriv, φ2)

= 〈f2, f3〉
⊕
〈f1〉.

From Corollary 3.5.4, it follows that Sh1(f1) = φ2. Let f = f1 +

f2. Then Sh1(f) = Sh1(f1) = φ2, however clearly f does not belong to

S3/2(68, χtriv, φ2). Hence we have our example.

3.8 Modular Forms are Determined by Coef-

ficients Modulo n

As usual N is a positive integer divisible by 4, χ a Dirichlet character modulo

N . Let k be an odd integer. Let φ be a newform of weight k−1, level dividing

N/2 and character χ2. To apply Waldspurger’s Theorem, we need to know

(see page 85) for certain primes p, certain ω ∈ Q×p /Q×p
2

and certain forms

f =
∑
anq

n ∈ Sk/2(N,χ, φ), whether there is some n such that the image of

n in Q×p /Q×p
2

is ω and an 6= 0. Given such p, f and ω we can write down the

first few coefficients of f and test whether the image of n in Q×p /Q×p
2

is ω and

an 6= 0. If there is such an n then we should be able to find it by writing down

enough coefficients. However, sometimes it appears that an = 0 for all n that

are equivalent in Q×p /Q×p
2

to ω. To be able to prove that, we have developed

the results in this section.

Theorem 3.8.1. Let N be a positive integer such that 4 | N and χ be a

Dirichlet character modulo N . Let f(z) =
∑∞

n=1 anq
n ∈ Sk/2(N,χ). Let a, M

be integers such that (a,M) = 1. Let R = k
24

[SL2(Z) : Γ1(NM2)]. Suppose

an = 0 whenever n 6≡ a (mod M) for all integers n up to R+ 1. Then an = 0

whenever n 6≡ a (mod M) for all n.
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We will be requiring the following analogue of Theorem 2.2.15 in the

case of half-integral weight forms.

Lemma 3.8.2. Let Γ′ be a congruence subgroup such that Γ′ ⊆ Γ0(4), and let

k′ be a positive odd integer. Then the statement of Theorem 2.2.15 is valid for

Γ = Γ′ and k = k′/2.

Proof. Let h := f − g ∈ Sk′/2(Γ′). By assumption, ordλ(h) > k′

24
[SL2(Z) : Γ′].

Let h′ = h4. Then h′ ∈ M2k′(Γ
′). This is because for any γ = [ a bc d ] ∈ Γ′ and

z ∈ H,

h′(γz) = h4(γz)

= j(γ, z)4k′h4(z)

= (cz + d)2k′h′(z).

Also, ordλ(h
′) = 4 · ordλ(h) > 2k′

12
[SL2(Z) : Γ′]. So we apply Theorem 2.2.15 to

h′ to get that ordλ(h
′) =∞. Hence ordλ(h) =∞.

We note that the above lemma still holds if f , g ∈ Mk′/2(Γ0(N), χ);

the above proof works by taking h′ = h4n where n is the order of Dirichlet

character χ.

We will need the following lemmas for the proof of Theorem 3.8.1.

Lemma 3.8.3. Let M be a positive integer and a ∈ Z such that (a,M) = 1.

Define

Ia(n) :=

1 if n ≡ a (mod M)

0 otherwise.

Then we have

Ia(n) =
∑

ψ∈X(M)

ψ(a)−1

ϕ(M)
ψ(n)

where X(M) denotes the group of Dirichlet characters of modulus M and ϕ is

Euler’s phi function.

Proof. For the proof see [34, Page 63, Chapter 6].

Before starting our next lemma we will recall Proposition 2.2.10. It is

to be noted that an analogue of this proposition in the case of half-integral
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weight forms is quoted as a well known result in Chapter III of Ono’s book

[30] and no proof is given. We will give a proof below not only for the sake

of completeness but also because later we will see that changing the proof in

some places leads us to another useful version of this proposition. The proof

essentially follows the proof of Proposition 2.2.10 for the integral weight case

with some changes.

Proposition 3.8.4. Let k be a positive odd integer, χ be a Dirichlet character

modulo N where 4 | N and f(z) =
∑∞

n=0 anq
n ∈Mk/2(N,χ). If ψ is a Dirichlet

character of conductor m, then

fψ(z) =
∞∑
n=0

ψ(n)anq
n ∈Mk/2(Nm2, χψ2).

Moreover, if f is a cusp form then so is fψ.

Proof. Let ζ = e2πi/m and let g =
∑m−1

j=0 ψ(j)ζj be the Gauss sum. Note that

1

m

m−1∑
ν=0

ζ(l−n)ν =

0 if l 6≡ n (mod m)

1 if l ≡ n (mod m).

Thus we have
m−1∑
l=0

ψ(l)

(
1

m

m−1∑
ν=0

ζ(l−n)ν

)
= ψ(n).
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Hence we can write fψ as follows,

fψ(z) =
m−1∑
l=0

ψ(l)
∞∑
n=0

(
1

m

m−1∑
ν=0

ζ(l−n)ν

)
anq

n

=
1

m

m−1∑
l,ν=0

ψ(l)ζ lν
∞∑
n=0

ane
2πin(z−ν/m)

=
1

m

m−1∑
l,ν=0

ψ(ν)ψ(lν)ζ lν
∞∑
n=0

ane
2πin(z−ν/m)

=
1

m

m−1∑
ν=0

ψ(ν)

(
m−1∑
l=0

ψ(lν)ζ lν

)
f(z − ν/m)

=
g

m

m−1∑
ν=0

ψ(ν)f(z − ν/m)

=
g

m

m−1∑
ν=0

ψ(ν)f(γνz),

where for each 0 ≤ ν < m, γν is the matrix
[

1 −ν/m
0 1

]
.

Let γ = [ a bc d ] be any matrix in Γ0(Nm2). We want to show that fψ is

invariant under [γ̃]k/2. Recall from Section 2.3 that γ̃ stands for (γ, j(γ, z)) ∈
∆0(Nm2).

For each 0 ≤ ν, ν ′ < m,

γνγγ
−1
ν′ =

[
a− cν/m b+ (ν ′a− νd)/m− cνν ′/m2

c d+ cν ′/m

]
.

Since a and d are coprime to m one can choose ν ′ uniquely for each ν such that

ν ′a ≡ νd (mod m) and for each such pair (ν, ν ′) we have γνγγ
−1
ν′ ∈ Γ0(N).
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Thus,

fψ(γz) =
g

m

m−1∑
ν=0

ψ(ν)f(γνγγ
−1
ν′ γν′z)

=
g

m

m−1∑
ν=0

ψ(ν)χ(d+ cν ′/m)j(γνγγ
−1
ν′ , γν′z)

k
f(γν′z)

=
g

m

m−1∑
ν=0

ψ(ν)χ(d) ε−kd+cν′/m

(
c

d+ cν ′/m

)k
(cγν′z + d+ cν ′/m)k/2f(γν′z)

=
g

m

m−1∑
ν=0

ψ(ν)χ(d)ε−kd

( c
d

)k
(cz + d)k/2f(γν′z).

The last two equalities follow since 4 | N | (cν ′/m) and
(

c
d+cν′/m

)
=
(
c
d

)
,

the proof of which follows by Lemma 3.8.5 below. It is clear that ψ(ν) =

(ψ(d))2ψ(ν ′). Hence,

fψ(γz) = χ(d)(ψ(d))2j(γ, z)k
g

m

m−1∑
ν=0

ψ(ν ′)f(γν′z) = χψ2(d)j(γ, z)kfψ(z).

Now we will show fψ is holomorphic on H and at all cusps, and that if

f is a cusp form then so is fψ. It is to be noted that when f is a cusp form,

an = O(nk/4) (see [36]) and so anψ(n) = O(nk/4), thus it follows from [28,

Lemma 4.3.3] that fψ is holomorphic on H. In fact in the integral weight case

we have coefficient estimates for the modular forms and so holomorphicity on

H follows (see [28, Theorem 4.5.17, Theorem 4.7.3] for details).

We will be proving holomorphicity of f on H without the coefficient

estimates. First, we will be dealing with the cusps. Let s be any cusp of

Γ0(Nm2) and s = α∞ for some α ∈ SL2(Z). Let ξ = (α, φ(z)) be an element

of G corresponding to α. Then,

fψ(z)|[ξ]k/2 = fψ(αz)(φ(z))−k =
g

m

m−1∑
ν=0

ψ(ν)f(γναz)(φ(z))−k.

One can easily show that an inverse image of γν in G is γ̃ν = (γν , tγν ) where
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tγν is a fourth root of unity. Hence,

f(z)|[γ̃νξ]k/2 = f(γναz)(φ(z)tγν )
−k.

Thus fψ(z)|[ξ]k/2 is a linear combination of f(z)|[γ̃νξ]k/2 . Since s is a cusp so is

s − ν/m and we are done. By the similar working as above for any z in H,

fψ(z) is a linear combination of f(z)|[γ̃ν ]k/2 . Since f(z)|[γ̃ν ]k/2 = f(γνz).t−kγν and

f is holomorphic at γνz we are done.

Lemma 3.8.5. Let [ a bc d ] ∈ Γ0(N) and m2 | N . Let 0 ≤ ν ′ < m and cν′

m
≡ 0

(mod 4). Then,
(

c
d+cν′/m

)
=
(
c
d

)
.

The proof of the above lemma requires the following reciprocity law as

stated in Cassels and Fröhlich [9, Page 350]:

Proposition 3.8.6. Let P , Q be positive odd integers and a be any non-zero

integer with a = 2αa0, a0 odd. Then,( a
P

)
=

(
a

Q

)
if P ≡ Q (mod 8a0).

Proof of Lemma 3.8.5. We write c = m222rc′ where r ≥ 0 such that ord2(c′) ≤
1. Thus we want to show that

(
m222rc′

d+m22rc′ν′

)
=
(
c
d

)
. Since c is coprime to both

d and d+ cν ′/m, this is equivalent to showing that
(

c′

d+m22rc′ν′

)
=
(
c′

d

)
. By the

hypothesis, m22rc′ν ′ ≡ 0 (mod 4), hence r ≥ 1. We have following cases:

(i) Supposem22rc′ν ′ ≡ 0 (mod 8). Let c′ = 2γc0, c0 odd. Thenm22rc′ν ′ ≡ 0

(mod 8c0). Using Proposition 3.8.6 we are done.

(ii) Suppose m22rc′ν ′ 6≡ 0 (mod 8). Then r = 1 and c′, m are odd. Hence(
d+4mc′ν′

c′

)
=
(
d
c′

)
. Now using the Quadratic Reciprocity Law, we are

done.

Proposition 3.8.7. Assume the hypotheses of Proposition 3.8.4 hold. In ad-

dition assume that m2 | N . Then,

(i) If N
m
≡ 0 (mod 4) then fψ ∈Mk/2(N,χψ2).
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(ii) If N
m
≡ 2 (mod 4) then fψ ∈Mk/2(2N,χψ2).

Proof. The condition that N
m
≡ 0 (mod 4) and N

m
≡ 2 (mod 4) is to ensure

that hypothesis of Lemma 3.8.5 holds so that we can replace the level Nm2

by N and 2N respectively in the proof of Proposition 3.8.4.

Lemma 3.8.8. Let k, N be positive integers such that 4 | N and k odd.

Suppose f(z) =
∑∞

n=1 anq
n ∈ Sk/2(N,χ). Let a, M be positive integers such

that (a,M) = 1. Define

g(z) :=
∞∑
n=1

Ia(n)anq
n.

Then g ∈ Sk/2(Γ1(NM2)).

Proof. We have

g(z) =
∞∑
n=1

Ia(n)anq
n

=
∞∑
n=1

∑
ψ∈X(M)

ψ(a)−1

ϕ(M)
ψ(n) anq

n

=
∑

ψ∈X(M)

αψ

∞∑
n=1

ψ(n) anq
n

=
∑

ψ∈X(M)

αψfψ ,

where αψ = ψ(a)−1

ϕ(M)
. Since Sk/2(NM2, χψ2) ⊂ Sk/2(Γ1(NM2)), using Propo-

sition 3.8.4, for all ψ ∈ X(M) we have fψ ∈ Sk/2(Γ1(NM2)). Hence g ∈
Sk/2(Γ1(NM2)).

Now we are ready to prove Theorem 3.8.1.

Proof of Theorem 3.8.1. Let h = f−g where we take g as in the above lemma.

It is easy to see that f ∈ Sk/2(Γ1(NM2)) and hence, so does h. It is clear that

coefficient of qn in h =

an if n 6≡ a (mod M)

0 otherwise.

68



Thus, h(z) =
∑

n6≡a (mod M)

anq
n ∈ Sk/2(Γ1(NM2)). Since we have assumed

an = 0 whenever n 6≡ a (mod M) for all integers n up to R + 1, we get that

nth coefficient of h is zero for all integers n up to R+1. Applying Lemma 3.8.2

to h we get that h = 0. Hence the theorem follows.

We have the following corollary to the Lemma 3.8.8 which can be stated

on the similar lines as Theorem 3.8.1.

Corollary 3.8.9. Let N be a positive integer such that 4 | N and χ be a

Dirichlet character modulo N . Let f(z) =
∑∞

n=1 anq
n ∈ Sk/2(N,χ). Let a, M

be integers such that (a,M) = 1. Let R = k
24

[SL2(Z) : Γ1(NM2)]. Suppose

an = 0 whenever n ≡ a (mod M) for all integers n up to R+ 1. Then an = 0

whenever n ≡ a (mod M) for all n.

Proof. Take g as in the Lemma 3.8.8. It is clear from the hypothesis that

the coefficients of qn in g are zero for all integers n up to R + 1. Applying

Lemma 3.8.2 we get that g = 0. Thus the result follows.

Remark. It is to be noted that the bound R in Theorem 3.8.1 and Corol-

lary 3.8.9 in general can be very large and hence it might be practically im-

possible to check the Fourier coefficients until such a large R. For example,

when N = 1984, k = 3 and M = 8 we get that R = 1509949440. However

in certain special cases we can indeed work with comparatively much smaller

values of R.

Theorem 3.8.10. Let N be a positive integer such that 4 | N and χ be a

Dirichlet character modulo N . Let f(z) =
∑∞

n=1 anq
n ∈ Sk/2(N,χ). Let a, M

be integers such that (a,M) = 1 and M2 | N . Let

R =

 k
24

[SL2(Z) : Γ1(N)] if N
M
≡ 0 (mod 4)

k
24

[SL2(Z) : Γ1(2N)] if N
M
≡ 2 (mod 4).

Now suppose an = 0 whenever n 6≡ a (mod M) for all integers n up to R+ 1.

Then an = 0 whenever n 6≡ a (mod M) for all n.

Proof. The proof basically follows as in the case of Theorem 3.8.1. The mod-

ification is due to applying Proposition 3.8.7 to Lemma 3.8.8.
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It is to be noted that applying this theorem to the example given in the

remark above, and since all Dirichlet characters modulo 8 are quadratic we in

fact get a new improved bound which is given by R = 3
24

[SL2(Z) : Γ0(1984)] =

384.
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Chapter 4

Waldspurger’s Theorem and

Applications

We finally come to Waldspurger’s Theorem which relates the critical values of

L-functions of twists of newforms of integral weight to coefficients of cusp forms

of half-integral weight. Our objective is to apply Waldspurger’s Theorem to

elliptic curves. In this chapter we state and simplify Waldspurger’s Theorem

for our purposes.

Waldspurger’s Theorem uses the language of Hecke characters and auto-

morphic representations. In Section 4.1 we review the correspondence between

Dirichlet characters and Hecke characters and we prove a result that allows us

to evaluate the components of a given Dirichlet character. Next, in Section 4.2

we review the correspondence between modular forms of even integral weight

and automorphic representations and prove a result needed for simplifying the

hypotheses of Waldspurger’s Theorem. In Section 4.3 we state Waldspurger’s

Theorem in simplified form. To apply Waldspurger’s Theorem in conjunction

with the Birch and Swinnerton-Dyer Conjectures it is convenient to express

the period of the n-th twist of a given elliptic curve in terms of the period of the

elliptic curve itself. We do this in Section 4.4. The last section in this chapter

is devoted to extensive examples computed using Waldspurger’s Theorem.
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4.1 Correspondence between Dirichlet Char-

acters and Hecke Characters on A×Q/Q× of

Finite Order

We shall need the correspondence between Dirichlet characters and Hecke

characters on A×Q/Q× of finite order. This material is in Tate’s thesis [9,

Chapter XV], but we found the presentation in [6, Section 3.1] more useful.

We refer to our Section 2.5 for some background and definitions.

Proposition 4.1.1. Let χ = (χp) be a character on A×Q. Then there exists a

finite set S of places, including all the Archimedean ones, such that if p /∈ S,

then χp is trivial on the unit group Z×p .

Recall that if χp is trivial on the unit group Z×p , then χp is unramified.

Thus by the above proposition, χp is unramified for all but finitely many p.

Theorem 4.1.2. ([6, Proposition 3.1.2]) Suppose χ = (χp) is a character of

finite order on A×Q/Q×. There exists an integer N whose prime divisors are

precisely the non-Archimedean primes p such that χp is ramified, and a primi-

tive Dirichlet character χ modulo N such that if p - N is non-Archimedean then

χ(p) = χp(p). This correspondence χ 7→ χ is a bijection between characters of

finite order of A×Q/Q× and the primitive Dirichlet characters.

In our work, we shall need to start with a Dirichlet character χ of

modulus N and then do computations with the corresponding adelic character

χ. We collect here some facts that will help us with these computations.

Lemma 4.1.3. We keep the notation of Theorem 4.1.2.

(i) For any α ∈ Q×,
∏
χp(α) = 1.

(ii) Suppose p = ∞ and α ∈ Q×∞ = R×. Then χ∞(α) = 1 if α > 0, or if χ

has odd order.

(iii) Let p be a non-Archimedean prime such that p | N and α, β ∈ Zp be

non-zero. Suppose that β ≡ α (mod αNZp). Then χp(β) = χp(α).

(iv) Let p be non-Archimedean such that p - N then, χp is unramified.
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Proof. (i) follows from the fact that χ is a character on A×Q/Q×.

Now suppose that p =∞ and α ∈ R×. Let d be the order of χ. If d is

odd or α is positive, then we can write α = βd for some β ∈ R. Thus

1 = χd∞(β) = χ∞(βd) = χ∞(α),

proving (ii).

In [6, Proposition 3.1.2] it is shown that for a non-Archimedean prime

p with p | N , the character χp is trivial on {x ∈ Zp : x ≡ 1 (mod NZp)}.
Suppose that β ≡ α (mod αNZp). It is clear that β/α ∈ Z×p and β/α ≡ 1

(mod NZp). Thus χp(β/α) = 1 and (iii) follows.

We again refer to [6, Proposition 3.1.2] for a proof of the fact that χp

is trivial on Z×p whenever p - N and hence (iv) follows.

4.1.1 How to Evaluate χp?

In Waldspurger’s Theorem (see Theorem 4.3.4) we start with a Dirichlet char-

acter χ modulo N and we need to evaluate χp(a) for certain primes p and

certain non-zero a ∈ Z. We have failed to find a reference for how to do these

computations, so we give below our own method.

Proposition 4.1.4. Let χ be a Dirichlet character modulo N (not necessarily

primitive) and let χ = (χp) be the corresponding character on A×Q/Q×. Let

a ∈ Z be non-zero.

(a) If q - N then χq(a) = χ(q)r where r = ordq(a).

(b) Suppose q divides N and let q1, . . . , qr be the other primes dividing N .

Let b be a positive integer satisfying

b ≡

a (mod aNZq)

1 (mod NZqi) i = 1, . . . , r;

such b can easily be constructed by the Chinese Remainder Theorem.
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Write

b = qordq(a)

s∏
j=1

`
βj
j

where the `j are distinct primes. Then

χq(a) =
s∏
j=1

χ(`j)
−βj .

Proof. Let N ′ be the conductor of χ and note that N ′ | N . Now if q - N then,

χq is unramified. Write a = qra′ where q - a′. Then a′ ∈ Z×q . Thus by definition

of unramified, χq(a
′) = 1. Moreover, from Theorem 4.1.2, χq(q) = χ(q). This

proves (a).

Now suppose q | N and let q1, . . . , qr be the other primes dividing N .

Let b be as in the proposition. Since N ′ | N , we have

b ≡

a (mod aN ′Zq)

1 (mod N ′Zqi) i = 1, . . . , r.

By Lemma 4.1.3, χq(b) = χq(a), and χqi(b) = 1 for i = 1, . . . , r. Now

χq(a) = χq(b)

=
∏
p 6=q

χp(b)
−1 by (i) of Lemma 4.1.3,

=
∏
p-N

χp(b)
−1 since χqi(b) = 1,

=
s∏
j=1

χ(`j)
−βj using part (a).

This completes the proof.

Example 4.1.5. Here is an example of an evaluation that will be needed later

in Section 4.5. Let χtriv be the trivial character modulo 496. Let χ be the

Dirichlet character modulo 496 given by

χ(n) =

(
−1

n

)
χtriv(n).
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Note that 496 = 24 × 31. Let us evaluate χ31(31). We follow the recipe in

Proposition 4.1.4. We want a positive integer b such that

b ≡

31 (mod 312)

1 (mod 24).

Using the Chinese Remainder we can take b = 1953. Now 1953 = 32× 7× 31.

Thus by part (b) of Proposition 4.1.4

χ31(31) = χ(3)−2χ(7)−1 =

(
−1

3

)−2(−1

7

)−1

= −1.

4.2 Correspondence between Modular Forms

of Even Integer Weight and Automorphic

Representations

For the background on automorphic representations of GL2(AQ) and how they

correspond to Hecke eigenforms, please refer to Section 2.5.

Let k be a positive odd integer with k ≥ 3. Let φ =
∑∞

n=1 anq
n ∈

Snew
k−1(N,χ) be a newform of weight k − 1, level N and character χ.

Recall that we can associate to φ an automorphic representation ρ. Let

ρp be the local component of ρ at a prime p. Recall that ρp is an irreducible

admissible representation of GL2(Qp). Hence ρp is either a principal series or a

supercuspidal representation or it is some twist of the Steinberg representation

(sometimes also referred to as a special representation).

Recall that if φ =
∑∞

n=1 anq
n is an eigenform, then we have defined its

twist by a character µ to be the modular form φµ =
∑∞

n=1 anµ(n)qn. Wald-

spurger works with a different definition of twist:

Definition 4.2.1. Let φ be a newform of weight k − 1 and character χ. Let

µ a Dirichlet character. We denote by φ⊗ µ the (unique) newform of weight

k−1 with character χµ2 satisfying λp(φ⊗µ) = µ(p)λp(φ) for almost all primes

p, where λp is the eigenvalue under Tp.

Now fix a prime number p. Let ξp be the set of primitive Dirichlet
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characters with p-power conductor. The following holds (see [45, Section III]):

(i) ρp is supercuspidal if and only if for all µ ∈ ξp, the level of φ ⊗ µ is

divisible by p and λp(φ⊗ µ) = 0.

(ii) ρp is an irreducible principal series if and only if either

(a) there exists a character µ in ξp such that p does not divide the level

of φ⊗ µ; or,

(b) there exist two distinct characters µ1, µ2 in ξp such that λp(φ⊗µ1) 6=
0, λp(φ⊗ µ2) 6= 0.

(iii) ρp is a special representation if and only if the following conditions hold:

(a) for all µ ∈ ξp, the level of φ⊗ µ is divisible by p;

(b) there exists a unique µ in ξp such that λp(φ⊗ µ) 6= 0.

We shall need the following theorem which is extracted from the paper

of Atkin and Li [1].

Theorem 4.2.2. (Atkin and Li) Let φ =
∑∞

n=1 anq
n be a newform of weight

k − 1, character χ and level N . Let µ be a primitive character of conductor

m. Then

(a) If gcd(m,N) = 1 then φ⊗ µ = φµ, and it is a newform of weight k − 1,

character χµ2 and level Nm2 ([1, Introduction]).

(b) Suppose µ is of q-power conductor where q | N and write N = qsM

where q - M . Then φ ⊗ µ is a newform of weight k − 1, character χµ2

and level qs
′
M for some s′ ≥ 0. Moreover, λp(φ⊗µ) = µ(p)λp(φ) for all

primes p - N ([1, Theorem 3.2]). In particular if s = 1 and χ is trivial,

then for µ with conductor qr, r ≥ 1, it turns out that φ ⊗ µ = φµ is a

newform of level q2rM and character µ2 ([1, Corollary 4.1]).

(c) Let q | N . Suppose φ is q-primitive and aq = 0. Then for all characters

µ of q-power conductor, φ⊗ µ = φµ is a newform of level divisible by N

(Recall that φ is q-primitive if φ is not a twist of any newform of level

lower than N by a character of conductor equal to some power of q) ([1,

Proposition 4.1]).
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(d) Let N = qsM where q - M ; let Q = qs. Let χQ be the Q-part 1 of the

character χ. If s is odd and cond χQ ≤
√
Q then φ is q-primitive.

Now suppose q = 2. Then, if s = 2 then φ is always 2-primitive; if s is

odd then φ is 2-primitive if and only if cond χQ <
√
Q; if s is even and

s ≥ 4 then φ is 2-primitive if and only if cond χQ =
√
Q ([1, Theorem

4.4]).

We deduce the following corollaries which we will be using later.

Corollary 4.2.3. Let φ =
∑∞

n=1 anq
n ∈ Snew

k−1(N) be a newform with trivial

character. Let ρ2 be the local component at 2 of the corresponding automorphic

representation. Suppose either

(i) N is odd; or

(ii) ν2(N) = 1 and a2 6= 0.

Then ρ2 is not supercuspidal.

Further if ν2(N) ≥ 2 and φ is 2-primitive then ρ2 is supercuspidal. In

particular, if either ν2(N) = 2 or ν2(N) is odd then ρ2 is supercuspidal.

Proof. If N is odd, take µ to be the identity character. Thus µ ∈ ξ2 and the

level of φ ⊗ µ is odd and hence ρ2 is not supercuspidal. If N = 2M such

that M is odd and a2 6= 0, again taking µ as identity character we get that

λ2(φ⊗ µ) = a2 6= 0 and thus ρ2 is not supercuspidal.

Let ν2(N) ≥ 2. Then a2 = 0 (see Theorem 2.2.12). If φ is 2-primitive

then it follows using part (c) of the Theorem 4.2.2 that for any µ ∈ ξ2,

φ ⊗ µ = φµ is newform of level divisible by 2. Write T2(φµ) =
∑∞

n=1 bnq
n.

By Proposition 2.2.5, bn = a2nµ(2n) + µ2(2)2k−2an/2µ(n/2) for all n. Thus

T2(φµ) = 0. Therefore, λ2(φ⊗ µ) = λ2(φµ) = 0 and ρ2 is supercuspidal. Note

that we have not yet used the condition that φ has trivial character, but we

need it to prove the final statement which is indeed a direct application of part

(d) of the Theorem 4.2.2.

Corollary 4.2.4. Let φ be as in the above corollary.

1Let χ be a Dirichlet character with modulus pr11 · · · pr
n

n where the pi are distinct primes.
Then χ can be written uniquely as a product

∏
χprii

where χprii
has modulus prii . See [1].
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(i) If N = pM with M coprime to p and ap 6= 0, then ρp is a special

representation.

(ii) If p - N , then ρp is an irreducible principal series.

Proof. We first prove (i). By part (b) of the Theorem 4.2.2, for any µ ∈ ξp,
the level of φ⊗ µ is divisible by p. Further if µ is the identity character then

λp(φ ⊗ µ) = ap 6= 0; we claim that this is unique such character in ξp. Let

µ ∈ ξp be such that µ is a character of conductor pr, r ≥ 1. Then φ⊗ µ = φµ

is a newform in Sk−1(p2rM,µ2) such that λp(φµ) = apµ(p) = 0 (see Theorem

2.2.12) and hence λp(φ⊗ µ) = 0.

The proof of (ii) is obvious and does not require the condition that

newform φ has trivial character.

4.3 Waldspurger’s Theorem and Notation

In this section we will present Waldspurger’s Theorem. We will introduce and

simplify the notation used in the theorem. This is needed in the following

section where we will discuss how to use the theorem for elliptic curves and

compute critical values of L-functions in terms of coefficients of corresponding

half-integral weight forms. An important application is the computation of

orders of the Tate-Shafarevich groups assuming the Birch and Swinnerton-

Dyer Conjecture.

Let k be positive integers with k ≥ 3 odd. Let χ be an even Dirich-

let character with modulus divisible by 4. Fix a newform φ of level Mφ in

Snew
k−1(Mφ, χ

2). Let p be a prime number. Let νp be the p-adic valuation on Q
and Q×p . Let mp = νp(Mφ) and λp be the Hecke eigenvalue of φ corresponding

to the Hecke operator Tp.

Let ρ be the automorphic representation associated to φ and ρp be the

local component of ρ at p. Let S be the (finite) set of primes p such that ρp is

not irreducible principal series. If p /∈ S, ρp is equivalent to π(µ1,p, µ2,p) where

µ1,p and µ2,p are two continuous characters on Qp such that µ1,pµ2,p 6= |·|±1.

Let (H1) be the following hypothesis:

(H1) For p /∈ S, µ1,p(−1) = µ2,p(−1) = 1.
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Theorem 4.3.1. (Flicker) There exists N such that Sk/2(N,χ, φ) 6= {0} if

and only if the hypothesis (H1) holds.

It is to be noted that Flicker [20] made this statement with Shimura’s

definition of Sk/2(N,χ, φ). However, we saw in Lemma 3.5.5 that this agrees

with our definition. We shall also need the following theorem of Vigneras.

Theorem 4.3.2. (Vigneras) Flicker’s condition (H1) always holds whenever

φ is a newform of even weight with trivial character.

Proof. For the proof refer to [44].

From the theorems of Flicker and Vigneras we have the following easy

corollary.

Corollary 4.3.3. Let φ be a newform of weight k − 1, level Mφ and trivial

character χtriv. Let χ be a Dirichlet character satisfying χ2 = χtriv. Then there

exists some N such that Sk/2(N,χ, φ) 6= {0}.

Henceforth, we will always assume that φ has trivial character and χ is

quadratic, thus the conclusion of the corollary holds. We will now introduce

several pieces of notation used by Waldspurger [45, Section VIII] before stating

his main theorem.

Let χ0 be the Dirichlet character associated to χ given by

χ0(n) := χ(n)

(
−1

n

)(k−1)/2

.

Note that χ0 has modulus N and its conductor is equal to conductor of χ

whenever k ≡ 1 (mod 4). Let χ0,p be the local component of χ0 at prime p.

For each prime p we will later define non-negative integer ñp that depends only

on the local components ρp and χ0,p. Let Ñφ be given by

Ñφ :=
∏
p

pñp .

For prime p and natural number e, we will later define a set Up(e, φ) which con-

sists of some finite number of complex-valued functions on Q×p having support

in Zp ∩Q×p .
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Let Nsc be the set of positive square-free numbers and for n ∈ N, let nsc

be the square-free part of n. Let A be a function on the set Nsc having values

in C and E be an integer such that Ñφ | E. Denote ep = νp(E) for all prime

numbers p and let c = (cp) be any element of
∏

p Up(ep, φ). Define

f(c, A)(z) :=
∞∑
n=1

A(nsc)n(k−2)/4
∏
p

cp(n)qn, z ∈ H

and let U(E, φ,A) be the space generated by these functions f(c, A) on H
where c ∈

∏
p Up(ep, φ).

With the above notation, we are now ready to state the main theorem

of Waldspurger [45, Page 481].

Theorem 4.3.4. (Waldspurger) Let (H2) be the following hypothesis: One of

the following holds:

(a) the local component ρ2 is not supercuspidal;

(b) the conductor of χ0 is divisible by 16;

(c) 16 |Mφ.

Let χ be a Dirichlet character and φ be a newform of weight k − 1 and

character χ2 such that (H1) and (H2) hold. Then there exists a function Aφ

on Nsc such that for t ∈ Nsc:

Aφ(t)2 := L(φ⊗ χ−1
0 χt, 1) · ε(χ−1

0 χt, 1/2).

Moreover, for N ≥ 1,

Sk/2(N,χ, φ) =
⊕

U(E, φ,Aφ)

where the sum is over all E ≥ 1 such that Ñφ | E | N .

Recall from Section 2.3 that χt =
(
t
·

)
is a quadratic character with con-

ductor |t| if t ≡ 1 (mod 4), otherwise with conductor |4t| if t ≡ 2, 3 (mod 4).

Remark. Note that the function Aφ depends only on χ and φ. However Aφ

is not deterministic, so we cannot use this theorem for computing the basis for
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the space Sk/2(N,χ, φ). However, if we know a basis for the space Sk/2(N,χ, φ)

and if f(z) =
∑∞

n=1 anq
n is one of the basis elements, then we can express the

critical value of the L-function of twist of the newform φ with character χ−1
0 χt,

in terms of the square of the Fourier coefficient at and the factor ε(χ−1
0 χt, 1/2)

which depends on the local components of φ and χ0.

It is to be noted that ε(χ, 1/2) for any Hecke character χ can be com-

puted as shown in Tate’s article [41] (see also Tunnell [42]). In particular, when

χ is quadratic, ε(χ, 1/2)=1. Since we will be only dealing with the quadratic

characters, we can ignore the ε-factor. Moreover, note that if χ is quadratic,

then the conductor of χ0 is at most divisible by 8, so we do not need to consider

possibility (b) of the hypothesis (H2).

Further by Corollary 4.2.3, possibilities (a) and (c) of the hypothe-

sis (H2) can be simply stated in terms of the level Mφ. Assuming χ to be

quadratic, Waldspurger’s Theorem is applicable whenever either Mφ is odd;

or ν2(Mφ) = 1 and λ2 6= 0; or ν2(Mφ) ≥ 4. The last condition is the same as

possiblility (c) of (H2).

We also state the following corollaries of Waldspurger; the proofs can

be found in [45, Page 483].

Corollary 4.3.5. (Waldspurger) Let N ≥ 1. If the conductor of χ is not

divisible by 16, it is assumed that N is not divisible by 8. Then we have the

following decomposition :

Sk/2(N,χ) =
⊕
φ,E

U(E, φ,Aφ)

where the sum is over all newforms φ ∈ Snew
k−1(Mφ, χ

2) for Mφ dividing N/2

such that φ satisfies (H1) and over the integers E ≥ 1 such that Ñφ | E | N .

Corollary 4.3.6. (Waldspurger) Let φ ∈ Snew
k−1(Mφ, χ

2) be a newform such that

φ satisfies (H1). Suppose 2 f(z) =
∑∞

n=1 anq
n ∈ Sk/2(N,χ, φ) for some N ≥ 1

such that Mφ divides N/2. Suppose that n1, n2 ∈ Nsc such that n1/n2 ∈ Q×p
2

for all p | N . Then we have the following relation:

a2
n1

L(φχ−1
0 χn2 , 1)χ(n2/n1)n

k/2−1
2 = a2

n2
L(φχ−1

0 χn1 , 1)n
k/2−1
1 .

2In this corollary we do not require f to be of the form f(c, Aφ).
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In what follows (· , ·)p stands for the Hilbert symbol defined on Q×p ×Q×p .

Recall that (see for example, [10]) if p = 2 and a, b are odd then

(2sa, 2tb)2 =

(
2

|a|

)t(
2

|b|

)s
(−1)

(a−1)(b−1)
4 .

For an odd prime p and a, b coprime to p,

(psa, ptb)p =

(
−1

p

)st(
a

p

)t(
b

p

)s
.

In particular, for an odd n, (n,−1)2 = (−1)
n−1
2 and (2, n)2 = (−1)

n2−1
8 . Also,

if νp(n) = 0 then (p, n)p =
(
n
p

)
and, if νp(n) = 1 and n = pn′, then (p, n)p =(

−n′
p

)
.

We now write down explicitly the definitions of the integers ñp and the

local factors U(e, φ) used in Waldspurger’s Theorem, but only in the cases we

need for the purposes of this thesis. Recall that U(e, φ) will be a finite set

of complex-valued functions on Q×p having support in Zp \ {0}. It is to be

noted that for Waldspurger’s Theorem, we would be only requiring the values

of the functions in Up(e, φ) at square-free positive integers. We will first define

a certain set of functions.

Case 1. p odd.

Waldspurger considered the following set of functions which we will be denoting

as Λp:

Λp = {c0
p[δ], c

∗
p[δ], c

′
p[δ],

′cp[δ],
′′cp[δ], c

s
p[δ],

scp[δ] : δ ∈ C}.

We will simplify the notation of Waldspurger and for any δ ∈ C we will denote

c0
p[δ] as c

(0)
p,δ, c

∗
p[δ] as c

(1)
p,δ, c

′
p[δ] as c

(2)
p,δ,

′cp[δ] as c
(3)
p,δ,

′′cp[δ] as c
(4)
p,δ, c

s
p[δ] as c

(5)
p,δ

and scp[δ] as c
(6)
p,δ. Hence with our notation,

Λp = {c(0)
p,δ, c

(1)
p,δ, c

(2)
p,δ, c

(3)
p,δ, c

(4)
p,δ, c

(5)
p,δ, c

(6)
p,δ : δ ∈ C}.

We will be only interested in values of the functions in Λp at square-free

numbers in Zp \ {0}. Let n ∈ Zp \ {0} be square-free, hence we have νp(n) = 0
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or νp(n) = 1. We get the following after simplification:

c
(0)
p,δ(n) =

{
1 νp(n) = 0

1 νp(n) = 1,

c
(1)
p,δ(n) =

{
1 νp(n) = 0

δ νp(n) = 1,

c
(2)
p,δ(n) =

{
1− (p, n)pχ0,p(p)p

−1/2δ−1 νp(n) = 0

1 νp(n) = 1,

c
(3)
p,δ(n) =

{
1 νp(n) = 0

δ − (p, n)pχ0,p(p)p
−1/2 νp(n) = 1,

c
(4)
p,δ(n) =

{
0 νp(n) = 0

δ(p− 1)−1 νp(n) = 1,

c
(5)
p,δ(n) =


21/2 νp(n) = 0, (p, n)p = −p1/2χ0,p(p

−1)δ

0 νp(n) = 0, (p, n)p = p1/2χ0,p(p
−1)δ

1 νp(n) = 1,

c
(6)
p,δ(n) =


1 νp(n) = 0

21/2δ νp(n) = 1, (p, n)p = −p1/2χ0,p(p
−1)δ

0 νp(n) = 1, (p, n)p = p1/2χ0,p(p
−1)δ.

Case 2. p = 2.

As in the above case, here again we will simplify the notation of Waldspurger

and for any δ ∈ C we will denote c∗2[δ] as c
(0)
2,δ , c

′
2[δ] as c

(1)
2,δ , c

′′
2[δ] as c

(2)
2,δ
′c2[δ]
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as c
(3)
p,δ,

′′c2[δ] as c
(4)
2,δ , c

s
2[δ] as c

(5)
2,δ and sc2[δ] as c

(6)
2,δ . Hence, we consider the

following set of functions which we will be denoting as Λ2:

Λ2 = {c(0)
2,δ , c

(1)
2,δ , c

(2)
2,δ , c

(3)
2,δ , c

(4)
2,δ , c

(5)
2,δ , c

(6)
2,δ : δ ∈ C},

Let n ∈ Z2 \ {0} be square-free so that either ν2(n) = 0 or ν2(n) = 1. We

have:

c
(0)
2,δ(n) =

{
1 ν2(n) = 0

δ ν2(n) = 1,

c
(1)
2,δ(n) =


δ − (2, n)2χ0,2(2)2−1/2 ν2(n) = 0, (n,−1)2 = χ0,2(−1)

1 ν2(n) = 0, (n,−1)2 = −χ0,2(−1)

1 ν2(n) = 1,

c
(2)
2,δ(n) =


δ ν2(n) = 0, (n,−1)2 = χ0,2(−1)

0 ν2(n) = 0, (n,−1)2 = −χ0,2(−1)

0 ν2(n) = 1,

c
(3)
2,δ(n) =


δ−1 ν2(n) = 0

δ − (2, n)2χ0,2(2)2−1/2 ν2(n) = 1, (n,−1)2 = χ0,2(−1)

1 ν2(n) = 1, (n,−1)2 = −χ0,2(−1),

c
(4)
2,δ(n) =


0 ν2(n) = 0

2δ − (2, n)2χ0,2(2)2−1/2 ν2(n) = 1, (n,−1)2 = χ0,2(−1)

1 ν2(n) = 1, (n,−1)2 = −χ0,2(−1),
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c
(5)
2,δ(n) =


0 ν2(n) = 0, (n,−1)2 = χ0,2(−1), (2, n)2 = 21/2χ0,2(2−1)δ

21/2δ ν2(n) = 0, (n,−1)2 = χ0,2(−1), (2, n)2 = −21/2χ0,2(2−1)δ

1 ν2(n) = 0, (n,−1)2 = −χ0,2(−1)

1 ν2(n) = 1,

c
(6)
2,δ(n) =


δ−1 ν2(n) = 0

0 ν2(n) = 1, (n,−1)2 = χ0,2(−1), (2, n)2 = 21/2χ0,2(2−1)δ

21/2δ ν2(n) = 1, (n,−1)2 = χ0,2(−1), (2, n)2 = −21/2χ0,2(2−1)δ

1 ν2(n) = 1, (n,−1)2 = −χ0,2(−1).

We will be interested in the above functions for only particular values

of δ. We will specify and further simplify them later.

Recall that λp is the Hecke eigenvalue of φ corresponding to the Hecke

operator Tp for any prime p, and mp = νp(Mφ). Let λ′p = p1−k/2λp. For p -Mφ

let αp and α′p be such that

αp + α′p = λ′p,

αp · α′p = 1.

It is to be noted that if φ is rational newform of weight 2 then αp 6= α′p, since

otherwise λ2
p = 4pk−2, which is a contradiction as λp is rational (p-th Fourier

coefficient of φ).

Next, we need to consider a subset of Q×p /Q×p
2
, denoted by Ωp(φ), which

is defined as

Ωp(φ) = {ω ∈ Q×p /Q×p
2

: ∃ f ∈ Sk/2(N,χ, φ) for some N and ∃ n ≥ 1 such

that i) image of n in Q×p /Q×p
2

is ω ; ii) nth coefficient of f 6= 0}.
(4.1)

It is to be noted that the set Ωp(φ) depends on the newform φ and character χ

that we started with. Computation of this set is important in our applications

and we will see that we need this set only in the case when mp ≥ 1 and λp = 0.

Since this set consists of at most eight elements when p = 2, and four when p

is an odd prime, computation doesn’t seem to be difficult. Indeed, we can use
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the results of Section 3.8 and our algorithm in Section 3.6 to compute most of

the elements.

We define another set of local functions on Q×p /Q×p
2

which takes values

in Z/2Z and denote this set by Γp,

Γp = {γe,υ : e ∈ Z, υ ∈ Q×p /Q×p
2
such that νp(υ) ≡ e (mod 2)},

where

γe,υ(u) =

{
1 u ∈ υQ×p

2
, νp(u) = e

0 else.

If p = 2, we further define

γ′e,υ =
1

2
(γe,υ + γe,5υ),

γ
′′

e (u) =

{
1 ν2(u) = e

0 else,

and

γ0
e (u) =

{
1 ν2(u) = e, (u,−1)2 = −χ0,2(−1) or ν2(u) = e+ 1

0 else.

Now we are ready to define the local factors ñp and the set Up(e, φ) for

e = ñp. We will be dealing with several cases and subcases and in each of

them we will be simplifying Waldspurger’s formulae and making them more

explicit for our use.

Case 1. p odd and mp ≥ 1.

We consider the following subcases:

(a) λp = 0.

In this case we need to compute Ωp(φ). We know that Q×p /Q×p
2

=

{1, p, u, pu} where u is unit in Zp which is a non-square mod p.

If there exists a ω ∈ Ωp(φ) such that νp(ω) = 0 then ñp = mp, and
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Up(ñp, φ) = {γ0,ω : ω ∈ Ωp(φ) and νp(ω) = 0}. In this case, the set

Up(ñp, φ) consists of at most the functions γ0,1 and γ0,u. Otherwise, for

all ω ∈ Ωp(φ), νp(ω) = 1. In this case ñp = mp + 1, and Up(ñp, φ) =

{γ1,ω : ω ∈ Ωp(φ) and νp(ω) = 1}, hence Up(ñp, φ) consists of at

most γ1,p and γ1,pu. It is clear from the definition given above that

γ0,1, γ0,u, γ1,p, γ1,pu are characteristic functions of 1, u, p, pu modulo

Q×p
2

respectively.

(b) λp 6= 0.

In this case we must have mp = 1, since by the theory of newforms

(see Section 2.2.12), mp ≥ 2 implies that λp = 0. Recall that S is the

collection of primes p such that ρp is not irreducible principal series.

We have further subcases:

(i) p /∈ S.

By Waldspurger, in this case ñp = mp = 1. Let βp ∈ C such that

β2
p = λ′p. Then Up(1, φ) = {c(1)

p,βp
}.

However we note that we do not need to consider this subcase since by

Corollary 4.2.4, ρp is a special representation and hence not a principal

irreducible series. Thus in this case we always have p ∈ S.

(ii) p ∈ S.

Here we have the following subcases:

(i’) χ0,p is unramified.

Here again ñp = mp = 1 and Up(1, φ) = {c(5)
p,λ′p
}. We use the theory

of newforms (2.2.12) to simplify the function c
(5)
p,λ′p

. Since mp = 1 we

get that λp = ±p(k−3)/2 and λ′p = ±p−1/2. Hence we have in this

case,

c
(5)
p,λ′p

(n) =


21/2 νp(n) = 0,

(
n
p

)
= ∓χ0,p(p

−1)

0 νp(n) = 0,
(
n
p

)
= ±χ0,p(p

−1)

1 νp(n) = 1.

(ii’) χ0,p is ramified.

We have ñp = mp = 1 and Up(1, φ) = {c(6)
p,λ′p
}. As in the above
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subcase, we get the following simplification:

c
(6)
p,λ′p

(n) =


1 νp(n) = 0

±21/2p−1/2 νp(n) = 1, (p, n)p = ∓χ0,p(p
−1)

0 νp(n) = 1, (p, n)p = ±χ0,p(p
−1).

Case 2. p odd and mp = 0.

We have the following subcases:

(a) χ0,p is unramified.

Here, ñp = mp = 0 and Up(0, φ) = {c(0)
p,λ′p
}. It is to be noted that c

(0)
p,λ′p

takes the value 1 at any square-free n.

(b) χ0,p is ramified.

We have ñp = 1 and Up(1, φ) = {c(3)
p,αp , c

(3)
p,α′p
} if αp 6= α′p, else Up(1, φ) =

{c(3)
p,αp , c

(4)
p,αp}.

We note that Mφ | (N/2), so if N has no factor of prime p, then

we do not need to consider the part (b) because in this case χ0,p is

unramified by Lemma 4.1.3.

Case 3. p = 2 and m2 ≥ 1.

Consider the following subcases:

(a) λ2 = 0.

We compute Ω2(φ). Note that Q×2 /Q×2
2

= {±1, ±2, ±5, ±10}. If

there exists a ω ∈ Ω2(φ) such that ν2(ω) = 0 then ñ2 = m2 + 2, and

U2(ñ2, φ) = {γ0,ω : ω ∈ Ω2(φ) and ν2(ω) = 0}. In this case, the set

U2(ñ2, φ) consists of at most γ0,1, γ0,3, γ0,5, and γ0,7 . Otherwise, for

all ω ∈ Ω2(φ), ν2(ω) = 1 and then ñ2 = m2 + 3, and U2(ñ2, φ) =

{γ1,ω : ω ∈ Ω2(φ) and ν2(ω) = 1}, hence U2(ñ2, φ) consists of at most

γ1,2, γ1,6, γ1,10 and γ1,14. As above, γ0,i for i ∈ {1, 3, 5, 7} are the

characteristic functions of an odd residue class modulo 8 and γ1,j for

j ∈ {2, 6, 10, 14} are the characteristic functions of even residue class

modulo Q×2
2
.
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(b) λ2 6= 0.

By the similar argument as in Case 1 (b), we must have m2 = 1. We

have the following subcases:

(i) 2 /∈ S.

In this case ñ2 = m2 + 1 = 2. Let β2 ∈ C such that β2
2 = λ′2. Then

U2(2, φ) = {c(0)
2,β2
}.

We point out that this subcase does not arise since as before by Corol-

lary 4.2.4, ρ2 is a special representation and hence p ∈ S.

(ii) 2 ∈ S.

Then, we have the following subcases:

(i’) χ0,2 is trivial on 1 + 4Z2.

Here ñ2 = 2 and U2(2, φ) = {c(5)

2,λ′2
}. Since m2 = 1 we get that

λ2 = ±2(k−3)/2 and λ′2 = ±2−1/2. Hence we have,

c
(5)

2,λ′2
(n) =


0 ν2(n) = 0, (−1)

n−1
2 = χ0,2(−1), (−1)

n2−1
8 = ±χ0,2(2−1)

±1 ν2(n) = 0, (−1)
n−1
2 = χ0,2(−1), (−1)

n2−1
8 = ∓χ0,2(2−1)

1 ν2(n) = 0, (−1)
n−1
2 = −χ0,2(−1)

1 ν2(n) = 1.

(ii’) χ0,2 is nontrivial on 1 + 4Z2.

Here ñ2 = 3 and U2(3, φ) = {c(6)

p,λ′2
, γ

′′
0} and we get the following

simplification:

c
(6)

2,λ′2
(n) =


±21/2 ν2(n) = 0

0 ν2(n) = 1, (n,−1)2 = χ0,2(−1), (2, n)2 = ±χ0,2(2−1)

±1 ν2(n) = 1, (n,−1)2 = χ0,2(−1), (2, n)2 = ∓χ0,2(2−1)

1 ν2(n) = 1, (n,−1)2 = −χ0,2(−1).

Case 4. p = 2 and m2 = 0.

We have the following subcases:

(a) χ0,2 is trivial on 1 + 4Z2.

We have ñ2 = 2 and U2(2, φ) = {c(1)
2,α2

, c
(1)

2,α′2
} if α2 6= α′2, else U2(2, φ) =

{c(1)
2,α2

, c
(2)
2,α2
}.
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(b) χ0,2 is nontrivial on 1 + 4Z2.

Here ñ2 = 3 and U2(3, φ) = {c(3)
2,α2

, c
(3)

2,α′2
, γ

′′
0} if α2 6= α′2, else U2(3, φ) =

{c(3)
2,α2

, c
(4)
2,α2

, γ
′′
0}.

We would like to point out the following useful lemma:

Lemma 4.3.7. Let χ be a quadratic character modulo N such that ν2(N) is

at most 2. Then, χ0,2 is trivial on 1 + 4Z2.

Proof. Since χ is a quadratic character, χ0 is also quadratic with modulus

lcm(4, N) = 4N ′ where 2 - N ′. Now the lemma follows from part (iii) of

Lemma 4.1.3.

Remark. These simplifications along with our method to compute the ba-

sis for Sk/2(N,χ, φ) for suitable N and χ lead to an algorithm for computing

critical values of the L-functions of certain quadratic twists of φ. For ex-

ample, if Mφ = pα for some odd prime p, then the possible choices for Ñφ

are either 4pα or 4pα+1, hence we compute bases for spaces Sk/2(4pα, χtriv, φ)

and Sk/2(4pα+1, χtriv, φ) and the sets U2(2, φ), Up(α, φ), Up(α + 1, φ) to apply

Theorem 4.3.4 in order to get the desired results.

It is to be noted that in the above we have discussed computation of

Up(e, φ) only for e = ñp. But in certain cases as we will see later, working with

the level Ñφ is not sufficient to get the complete information and one might

need to go to higher levels.

4.4 Period

Lemma 4.4.1. Let E be an elliptic curve, given by a minimal Weierstrass

model, and let En be the minimal model of its twist by square-free positive

integer n. Then there is a computable non-zero rational number αn such that

Ω(En) =
αnΩ(E)√

n
.

The proof we give also explains how to compute αn.
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Proof. Let ω = dx/(2y + a1x+ a3) be the invariant differential for the model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

By definition, the period

Ω(E) =

∫
E(R)

|ω|.

Recall [37, page 49] that a change of variable

x = u2x′ + r, y = u3y′ + u2sx′ + t

leads to a model E ′ with invariant differential ω′ = uω; thus the periods are

related by Ω(E ′) = |u|Ω(E). Completing the square in y we obtain the model

E ′ : y′
2

= x′
3

+ Ax′
2

+Bx′ + C

where

A =
b2

4
, B =

b4

2
, C =

b6

4
.

Since u = 1 in this change of variable, ω′ = ω and Ω(E ′) = Ω(E). Now let the

model E ′′ be the twist of E ′ by n:

E ′′ : y′′
2

= x′′
3

+ Anx′′
2

+Bn2x′′ + Cn3.

Note that these are related by the change of variable

y′′ = n3/2y′, x′′ = nx′.

Thus the invariant differentials satisfy

ω′′ =
dx′′

2y′′
=

ω′√
n
.

Thus

Ω(E ′′) =
Ω(E ′)√

n
=

Ω(E)√
n
.

Now the model E ′′ is not necessarily minimal (nor even integral at 2), but by
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Tate’s algorithm there is a change of variables

x′′ = u2X + r, y′′ = u3Y + u2sX + t

with rational u, s, t (and u 6= 0) such that the resulting model En is minimal.

By the above

Ω(En) = uΩ(E ′′) =
|u|Ω(E)√

n
.

Example 4.4.2. Let E : Y 2 = X3 − 53 (which is already in minimal Weier-

strass model). Then E5 : Y 2 = X3−56. This model is clearly non-minimal. A

minimal model is given by E5 : Y 2 = X3 − 1. Following the above argument

we see that α5 = 5. To check our computations we find using MAGMA that√
5Ω(E5)/Ω(E) is equal to 5 to 29 decimal places.

Lemma 4.4.3. Let E : Y 2 = X3 +AX2 +BX+C be an elliptic curve with A,

B, C ∈ Z. Suppose that the discriminant of this model is sixth-power free. Let

n be a square-free positive integer. Then a minimal model for the n-th twist is

En : Y 2 = X3 + AnX2 + Bn2X + Cn3. Moreover, the periods are related by

the formula

Ω(En) =
Ω(E1)√

n
.

Proof. Let ∆ be the discriminant of the model E : Y 2 = X3 +AX2 +BX+C.

We are assuming that ∆ is sixth-power free. Thus it is 12-th power free, and

so E is minimal. Now the model En : Y 2 = X3 + AnX2 + Bn2X + Cn3

has discriminant ∆n = ∆ · n6. Since n is square-free this is 12-th power free.

Thus the model for En is minimal. The argument in the proof of Lemma 4.4.1

completes the proof.

4.5 Applications of Waldspurger’s Theorem

In this section we will present a few examples explaining how to use Wald-

spurger’s Theorem. The idea of using Waldspurger’s Theorem for an elliptic

curve is motivated by Tunnell’s famous work on the congruent number prob-

lem. We will see however that our case needs many more computations to get
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any desired result. In the examples that follow we will first use our algorithm

(Section 3.6) to compute the space of cusp forms that are Shimura equivalent

to the given elliptic curve and then use Waldspurger’s Theorem to get some

interesting results. We will follow the notation adopted in the previous section.

4.5.1 A First Example

Our first example will be the elliptic curve E over Q given by

E : Y 2 = X3 +X + 1.

The conductor of E is 496 = 16 × 31 and E does not have complex multipli-

cation. Let φ ∈ Snew
2 (496, χtriv) be the corresponding newform given by the

Modularity Theorem; φ has the following q-expansion,

φ(z) = q − 3q5 + 3q7 − 3q9 − 2q11 − 4q13 − q19 +O(q20).

It is to be noted that φ satisfies the hypothesis (H1)–this follows by Theo-

rem 4.3.2, and since 16 | Mφ, φ satisfies (H2). Let χ be a Dirichlet char-

acter with χ2 = χtriv. Hence by Theorem 4.3.1 there exists N such that

S3/2(N,χ, φ) 6= {0}. Note that we must have 496 | (N/2).

In order to apply Waldspurger’s Theorem we would like to compute

an eigenbasis for the summand S3/2(N,χ, φ) for a suitable N and χ. We

will assume χ to be the trivial character χtriv. We use our algorithm on

Shimura’s decomposition, see Section 3.6 for details. Using Corollary 3.6.4 it

turns out that S3/2(992, χ, φ) = {0}. At level 1984 however one can compute

using dimension formula 2.3.5 that the space S3/2(1984, χ) is 119-dimensional

and using Corollary 3.6.4 we get that the space S3/2(1984, χ, φ) has a basis

{f1, f2, f3} where f1, f2 and f3 have the following q-expansions:
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f1(z) = q3 + q43 − 2q75 + 2q83 + q91 + 3q115 − 3q123 +O(q145) :=
∞∑
n=1

anq
n

f2(z) = q15 + q23 − q31 + 2q55 + q79 − 3q119 +O(q145) :=
∞∑
n=1

bnq
n

f3(z) = q17 + q57 + q65 + 2q73 − q89 − q105 + q137 +O(q145) :=
∞∑
n=1

cnq
n.

We are now ready to apply Waldspurger’s Theorem. We are interested

in the level N = 1984. In this case χ0 = χtriv(·)
(−1
·

)
is a Dirichlet character

modulo 1984. By Waldspurger’s Theorem 4.3.4 there exists a function Aφ on

square-free positive integers n such that

Aφ(n)2 = L(E−n, 1)

and

S3/2(1984, χ, φ) =
⊕

U(E, φ,Aφ),

where the sum is over all E ≥ 1 such that Ñφ | E | 1984. We already know

the left-hand side of the above identity. Henceforth we will be interested in

computing the right-hand side. We will first compute Ñφ and then U(E, φ,Aφ)

for Ñφ | E | 1984.

Recall that Ñφ =
∏

p p
ñp and so we need to compute local components

ñp for each prime p. We consider the following cases. Please refer to the

Section 4.3 for details.

Case 1. p odd and p 6= 31.

In this case mp = 0 and since p - N the local character χ0,p is unram-

ified. Hence we get that ñp = 0.

Case 2. p = 31.

Here m31 = 1. Since λ31 6= 0 using Corollary 4.2.4 it follows that the

local component ρ31 is a special representation of GL2(Q31) and so

31 ∈ S. Also, note that Z×31/Z×31
2

is generated by 11 mod Z×31
2

and

using Proposition 4.1.4 we can show that χ0,31(11) = 1. Thus χ0,31 is
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unramified and so, ñ31 = 1.

Case 3. p = 2.

In this case m2 = 4 and it is clear from the q-expansion of φ that λ2 =

0. We need some information about the set Ω2(φ) (see Equation 4.1).

In our case, looking at f1, f2 and f3, we get that {1, 3, 7} ⊆ Ω2(φ).

Since ν2(1) = ν2(3) = ν2(7) = 0, we get ñ2 = m2 + 2 = 6.

Hence

Ñφ = 31× 26 = 1984.

Thus we have E = Ñφ = 1984 and we would like to know how the space

U(1984, φ, Aφ) looks. For that the next immediate task will be to compute

Up(ep, φ) where ep = νp(1984). We consider the following cases and again refer

to the previous section for details:

Case 1. p odd and p 6= 31.

Here, ep = 0 and Up(0, φ) consists of only one function c
(0)
p,λ′p

defined

on Q×p . Recall that c
(0)
p,λ′p

(n) = 1 for n square-free.

Case 2. p = 31.

In this case e31 = 1 and as already seen, 31 ∈ S and χ0,31 is un-

ramified. So, U31(1, φ) = {c(5)

31,λ′31
}. Note that λ31 = −1 and hence

λ′31 = (31)−1/2λ31 = −(31)−1/2. Again using Proposition 4.1.4 we can

show that χ0,31(31−1) = −1. Also note that (31, n)31 =
(
n
31

)
. So for n

square-free we have,

c
(5)
31,λ′p

(n) =


21/2 ν31(n) = 0,

(
n
31

)
= −1

0 ν31(n) = 0,
(
n
31

)
= 1

1 ν31(n) = 1.

Case 3. p = 2.

Here e2 = 6. Since λ2 = 0 and {1, 3, 7} ⊆ Ω2(φ), we see that

U2(6, φ) consists of γ0,1, γ0,3, γ0,7 which are the characteristic functions

of residue classes of 1, 3, 7 modulo 8 respectively. By our methods so

far we do not know whether 5 belongs to Ω2(φ) or not.
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Recall that U(E, φ,Aφ) is the space generated by the functions f(c, Aφ)

where c ∈
∏

p Up(ep, φ). Thus in our case c = (cp)p where, for odd primes

p 6= 31 we have cp = c
(0)
p,λ′p

, c31 = c
(5)

31,λ′31
and for c2 the possible choices are γ0,1,

γ0,3, γ0,5 and γ0,7. By using Waldspurger’s Theorem 4.3.4

S3/2(1984, χ, φ) = U(1984, φ, Aφ)

and so every cusp form in the space on the left-hand side can be written in

terms of

f(c, Aφ)(z) :=
∞∑
n=1

Aφ(nsc)n1/4
∏
p

cp(n)qn

for some c = (cp) ∈
∏
Up(ep, φ).

We use Theorem 3.8.10 to conclude that f1 have non-zero n-th coeffi-

cients only for n ≡ 3 (mod 8), f2 have non-zero coefficients only for n ≡ 7

(mod 8) and f3 have non-zero coefficients only for n ≡ 1 (mod 8).

Since f1 have non-zero an only for n ≡ 3 (mod 8), taking c as above

with c2 = γ0,3 we get that for n square-free,

an = β1Aφ(n)n1/4c2(n)c31(n) =
21/2β1Aφ(n)n1/4 ν31(n) = 0,

(
n
31

)
= −1, n ≡ 3 (mod 8)

β1Aφ(n)n1/4 ν31(n) = 1, n ≡ 3 (mod 8)

0 otherwise,

(4.2)

for some complex constant β1. Similarly, taking c2 = γ0,7 for f2 and c2 = γ0,1

for f3 respectively we get that

bn = β2Aφ(n)n1/4c2(n)c31(n) =
21/2β2Aφ(n)n1/4 ν31(n) = 0,

(
n
31

)
= −1, n ≡ 7 (mod 8)

β2Aφ(n)n1/4 ν31(n) = 1, n ≡ 7 (mod 8)

0 otherwise,

(4.3)
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for some complex constant β2 and

cn = β3Aφ(n)n1/4c2(n)c31(n) =
21/2β3Aφ(n)n1/4 ν31(n) = 0,

(
n
31

)
= −1, n ≡ 1 (mod 8)

β3Aφ(n)n1/4 ν31(n) = 1, n ≡ 1 (mod 8)

0 otherwise,

(4.4)

for some complex constant β3.

We have the following theorem which allows us to calculate the critical

values of the L-functions of E−n, the (−n)-th quadratic twists of E.

Theorem 4.5.1. Let E be as above and n be a positive square-free integer.

(i) If ν31(n) = 0, n ≡ 3 (mod 8) and
(
n
31

)
= −1 then,

L(E−n, 1) =
a2
n

2β1
2√n

.

(ii) If ν31(n) = 1, n ≡ 3 (mod 8) then,

L(E−n, 1) =
a2
n

β1
2√n

.

(iii) If ν31(n) = 0, n ≡ 7 (mod 8) and
(
n
31

)
= −1 then,

L(E−n, 1) =
b2
n

2β2
2√n

.

(iv) If ν31(n) = 1, n ≡ 7 (mod 8) then,

L(E−n, 1) =
b2
n

β2
2√n

.

(v) If ν31(n) = 0, n ≡ 1 (mod 8) and
(
n
31

)
= −1 then,

L(E−n, 1) =
c2
n

2β3
2√n

.
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(vi) If ν31(n) = 1, n ≡ 1 (mod 8) then,

L(E−n, 1) =
c2
n

β3
2√n

.

Proof. Using Waldspurger’s Theorem 4.3.4 we know the existence of a function

Aφ on square-free numbers such that Aφ(n)2 = L(E−n, 1). The proof follows

now using Equations (4.2), (4.3) and (4.4).

We have the following lemma which gives a partial result when n ≡ 5

(mod 8).

Lemma 4.5.2. Let E be as above and n be a positive square-free integer

such that n ≡ 5 (mod 8). Then L(E−n, 1) = 0 if either (i) ν31(n) = 1 or

(ii) ν31(n) = 0 and
(
n
31

)
= −1.

Proof. Recall that the space S3/2(1984, χ, φ) is generated by functions of the

form
∑∞

n=1 Aφ(nsc)n1/4
∏

p cp(n)qn. Recall that for c2 the choices are char-

acteristic functions of an odd residue class modulo 8. Since f1, f2, f3 spans

S3/2(1984, χ, φ) and none of them have a non-zero coefficient for n ≡ 5 (mod 8)

we get that

Aφ(n)c31(n) = 0 whenever n ≡ 5 (mod 8).

Since c31(n) 6= 0 if either ν31(n) = 1 or, ν31(n) = 0 and
(
n
31

)
= −1, the lemma

follows.

Later on, in Proposition 4.5.4, we will give another proof of this result

using root number calculations.

We will show now how we use the above to calculate the order of

the Tate-Shafarevich group X(E−n/Q). We will be assuming the Birch and

Swinnerton-Dyer Conjecture for rank zero elliptic curves:

L(E−n, 1) =
|X(E−n/Q)| · ΩE−n ·

∏
p cp

|E−n,tor|2
(4.5)

where ΩE−n stands for the real period of E−n (since E−n(R) is connected), cp

for the p-th Tamagawa number of E−n and E−n,tor stands for the torsion group

of E−n, all of which are easily computable.

We have the following lemma.
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Lemma 4.5.3. Let E : Y 2 = X3 +X + 1. Then En,tor = 0 for all square-free

integers n.

Proof. Let K = Q(
√
n). It is well-known that the map

En(Q)→ E(K)

given by

O 7→ O, (X, Y ) 7→
(
X

n
,
Y

n
√
n

)
is an injective group homomorphism 3. Thus it is sufficient to show that E(K)

has trivial torsion subgroup. Recall that the discriminant of E is −496 =

−16× 31. Let p 6= 2, 31 be a rational prime and let P be a prime ideal of K

dividing p. Then E has good reduction at P. Moreover, if eP < p − 1 then

the reduction map E(K)tor → E(FP) is injective [22, page 501], where eP is

the ramification index for P and FP denotes the residue field of P. Thus if

p ≥ 5 and p 6= 31 then this map is injective. Now we take p = 5, 7, so E(FP)

is a subgroup of E(F25) and E(F49) respectively. Using MAGMA we find

E(F25) ∼= Z/3Z× Z/9Z, E(F49) ∼= Z/55Z.

Since these two groups have coprime orders, it follows that E(K)tor = 0 and

so En,tor = 0.

Further, since the discriminant of E−1 is−496 = 24×31, by Lemma 4.4.3

we know that Ω(E−n) = Ω(E−1)/
√
n.

From (4.5) it is clear that the quantity L(E−n,1)
ΩE−nR(E−n/Q)

is an integer. Using

MAGMA we compute this integer for n ∈ {3, 15, 17} and using Lemma 4.4.3, one

gets that

ΩE−1 =
1

4β1
2 =

1

4β2
2 =

1

8β3
2 . (4.6)

Now recall that W (E−n/Q) denotes the root number for elliptic curve

E−n over rational numbers. We have the following proposition.

3As the map simply scales the variables, it takes lines to lines and so must define a
homomorphism of Mordell-Weil groups.
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Proposition 4.5.4. For E as above and n positive square-free the following

holds.

(i) If ν31(n) = 0 then,

W (E−n/Q) =



−1 n ≡ 1, 3, 7 (mod 8),
(
n
31

)
= 1 or

n ≡ 5 (mod 8),
(
n
31

)
= −1 or

n even,
(
n
31

)
= −1;

1 n ≡ 1, 3, 7 (mod 8),
(
n
31

)
= −1 or

n ≡ 5 (mod 8),
(
n
31

)
= 1 or

n even,
(
n
31

)
= 1.

(ii) If ν31(n) = 1 then,

W (E−n/Q) =


−1 n ≡ 5 (mod 8) or

n even;

1 n ≡ 1, 3, 7 (mod 8).

Proof. The methods used here to compute the root numbers are well-known

and we refer to [11]. We can express the global root number W (E−n/Q) as a

product of local root numbers

W (E−n/Q) =
∏
p

W (E−n, p)

where the product is taken over all primes including∞; hereW (E−n,∞) = −1.

The value of the local root number W (E−n, p) depends only on the isomor-

phism class of E−n over Qp and hence only on the value of n modulo (Q∗p)2.

For a fixed value of n and a fixed prime p we can use the computer algebra

package MAGMA to compute W (E−n, p). By writing down all the possibilities
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for n modulo squares in Q2, Q3 and Q31 we find the following:

W (E−n, 2) =



−1 n ≡ 1 (mod 8)

1 n ≡ 3, 5, 7 (mod 8)

1 2 | n, n/2 ≡ 1, 5 (mod 8)

−1 2 | n, n/2 ≡ 3, 7 (mod 8),

and

W (E−n, 3) =

−1 3 | n

1 3 - n,
W (E−n, 31) =


−1 31 | n

−1
(
n
31

)
= 1

1
(
n
31

)
= −1.

It remains to calculate the local root numbers at primes p 6= 2, 3, 31. We

consider the elliptic curve E−1,

E−1 : Y 2 = X3 +X − 1.

The conductor of E−1 is 248 and the discriminant ∆E−1 is −496 = −24 × 31.

Fix n positive and square-free, the n-th quadratic twist of E−1 is given by the

Weierstrass model,

E−n : Y 2 = X3 + n2X − n3.

The discriminant ∆E−n of E−n is −24 × 31× n6. Since n is square-free, ∆E−n

is 12-th power free and hence the model for E−n is minimal at every prime p.

For primes p such that p is odd and coprime to 31 and p - n, W (E−n, p) = 1.

Let p 6= 2, 3, 31 be a prime such that p | n. Then E has additive

reduction modulo p. Since νp(∆E−n) = 6, we get that [11, page 96]

W (E−n, p) =

(
−1

p

)
.

Thus we can summarize for all primes p 6= 2, 31 (note that we are now including
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p = 3)

W (E−n, p) =

1 p - n(
−1
p

)
p | n.

Write n = 2i31jn′ where 2, 31 - n′. Then

W (E−n/Q) = −
(
−1

n′

)
W (E−n, 2)W (E−n, 31).

The proof now follows by combining all the possibilities.

Before computing the order of the Tate-Shafarevich group X(E−n/Q),

we have the following refinement of Theorem 4.5.1.

Theorem 4.5.5. Let E : Y 2 = X3 +X+ 1 and f = f1 +f2 +
√

2f3 =
∑
dnq

n.

Then, for positive square-free n ≡ 1, 3, 7 (mod 8)

L(E−n, 1) =
2(ν31(n)+1)ΩE−1√

n
· d2

n.

Proof. Note that dn = an + bn +
√

2cn. It is important for the proof to note

that an = 0 for n 6≡ 3 (mod 8), and bn = 0 for n 6≡ 7 (mod 8), and cn = 0 for

n 6≡ 1 (mod 8); we proved this by applying Theorem 3.8.10. It follows from

equations (4.2), (4.3) and (4.4) that dn = 0 whenever n ≡ 1, 3, 7 (mod 8) and

the Kronecker symbol
(
n
31

)
= 1. Further by Proposition 4.5.4 if n ≡ 1, 3, 7

(mod 8) and
(
n
31

)
= 1 then W (E−n,Q) = −1 and so L(E−n, 1) = 0. Thus the

theorem follows when
(
n
31

)
= 1.

In the case when
(
n
31

)
= −1, the refinement follows by using Equation

(4.6) in Theorem 4.5.1.

We have now the following corollary which computes the order of the

Tate-Shafarevich group X(E−n/Q).

Corollary 4.5.6. Let E : Y 2 = X3 +X+1 and f = f1 +f2 +
√

2f3 =
∑
dnq

n.

Let n be positive square-free number such that n ≡ 1, 3, 7 (mod 8) and E−n

has rank zero. Then, assuming the Birch and Swinnerton-Dyer conjecture,

|X(E−n/Q)| = 2(ν31(n)+1)∏
p cp

· d2
n
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where the Tamagawa numbers cp of E−n are given by

c2 =

1 n ≡ 3, 7 (mod 8)

2 n ≡ 1, 5 (mod 8),
c31 =


1 31 - n,

4 31 | n,
(
n/31
31

)
= 1

2 31 | n,
(
n/31
31

)
= −1,

and cp = #E−1(Fp)[2] for p | n, p 6= 31, and cp = 1 for all other primes p.

Proof. From Lemma 4.5.3 we have E−n,tor = 0 for all square-free integers

n. Further since we are assuming that E−n has rank zero, R(E−n/Q) = 1.

Substituting these facts and Ω(E−n) = Ω(E−1)/
√
n in Equation (4.5) we get

that

|X(E−n/Q)| =
L(E−n, 1) ·

√
n

ΩE−1 ·
∏

p cp
=

2(ν31(n)+1)∏
p cp

· d2
n ;

the last equality follows by Theorem 4.5.5.

We will be using Tate’s algorithm (see [38, Pages 364–368]) to compute

the Tamagawa numbers cp for E−n for n odd and square-free. Recall that the

Weierstrass model for E−n is given by

E−n : Y 2 = X3 + n2X − n3.

The discriminant ∆E−n is 26×31×n6; since n is odd and square-free the above

model is minimal at every prime p. We note that Weierstrass coefficients are

a1 = a2 = a3 = 0, a4 = n2, a6 = −n3 and b2 = 0, b4 = 2n2, b6 = −4n3,

b8 = −n4.

Now fix a prime p such that p 6= 31 and p | n. Hence p3 | b6 and we are

in the step 6 of Tate’s algorithm. We need to consider the polynomial P (T ) =

T 3 +m2T −m3 where m = n/p. Note νp(m) = 0 and p - Disc(P ) = −31×m6.

Therefore,

cp = 1+#{α ∈ Fp : P (α) = 0} = 1+#{α ∈ Fp : α3+α−1 = 0} = #E−1(Fp)[2].

Let p = 31 and suppose p | n. Then the above polynomial P (T )

factorizes as P (T ) = (T + 3m)(T + 14m)2 over Fp. We are now in the step

7 of Tate’s algorithm. We translate X-coordinate in the Weierstrass equation
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so that double root of P (T ) is T = 0. This gives the following Weierstrass

equation for E−n,

Y 2 = X3 − 42nX2 + 589n2X − 2759n3.

We must consider the factorization of the polynomial Y 2 +89m3 over Fp (note

2759n3/p4 = 89m3). By the recipe in step 7, if
(
m
31

)
= 1, then c31 = 4; else

c31 = 2.

It is to be noted that for a fixed prime p, the value of cp depends only

on isomorphism classes of E−n over Qp and thus only on n modulo (Q∗p)2.

In particular for p = 2 using MAGMA we get that c2(E−1) = c2(E−5) = 2

and c2(E−3) = c2(E−7) = 1. Similarly for p = 31 such that p - n, we have

c31(E−1) = c31(E−3) = 1. Now the result follows combining all these possibil-

ities.

The following is a small check that our computed order of Tate-Shafarevich

group X(E−n/Q) is indeed a square. Note that

d2
n =

square n ≡ 3, 7 (mod 8)

2× square n ≡ 1 (mod 8).

Let f := x3 + x − 1; discriminant of f is ∆f = −31. By the above

corollary for p 6= 31 and p | n,

cp =


1 f has no roots over Fp
2 f has one root over Fp
4 f has three roots over Fp

It is easy to see that Galois group of f over Fp is either C1 or C3 if and only

if
(

∆f

p

)
= 1. Thus,

∏
p|n
p 6=31

cp =

square
(
n
31

)
= 1

2× square
(
n
31

)
= −1.
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We assume ν31(n) = 0 and
(
n
31

)
= −1. If n ≡ 3, 7 (mod 8) then c2 = c31 = 1

and so
∏

p cp = 2× square. If n ≡ 1 (mod 8) we have c2 = 2 and c31 = 1 and

so
∏

p cp is a square. Thus in these cases, |X(E−n/Q)| = 2∏
p cp
·d2
n is a square.

The other cases follow similarly.

We have the following easy corollary to Theorem 4.5.5.

Corollary 4.5.7. Suppose n ≡ 1, 3, 7 (mod 8) and
(
n
31

)
= −1. Then assum-

ing the Birch and Swinnerton-Dyer Conjecture,

Rank(E−n) ≥ 2⇔ dn = 0.

Proof. By Proposition 4.5.4, if n ≡ 1, 3, 7 (mod 8) and
(
n
31

)
= −1 then

W (E−n/Q) = 1. Thus the analytic rank is even, and so by BSD, the rank is

even. The corollary now follows using Theorem 4.5.5.

In order to get a complete solution we need to know what happens

when either n is even or n ≡ 5 (mod 8). From Proposition 4.5.4 it follows

that L(E−n, 1) = 0 whenever n is even or n ≡ 5 (mod 8) and either
(
n
31

)
= −1

or 31 | n. Thus we are unable to predict in these cases what happens 4 when

ν31(n) = 0 and
(
n
31

)
= 1.

We will be able to get a complete answer if we are working with higher

levels. So we are interested in similar computations as above for S3/2(N,χ, φ)

where N varies so that Ñφ = 1984 | N . We arrive at following conclusions:

(i) If N = 1984×2α then only interesting situation is when α = 1; indeed if

α > 1 then choices for c2(n) are the functions such that c2(n) 6= 0 only

when ν2(n) = α and hence are zero on n square-free. Suppose α = 1.

Then, ν2(N) = 7, ν31(N) = 1 and so c31(n) remains the same and the

possibilities for c2(n) are now the characteristic functions γ1,2, γ1,6, γ1,10

or γ1,14. Suppose 2, 6, 10, 14 ∈ Ω2(φ). Then c2(n)c31(n) 6= 0 only when

n ≡ 2, 6, 10, 14 (mod 8) and, either ν31(n) = 1 or
(
n
31

)
= −1. From the

root number argument above we have L(E−n, 1) = 0 in these cases. Using

4In fact doing computations using MAGMA we get for example, L(E−n, 1) 6= 0 for n = 5, 69,
101, 109, 133, 157, 165; these n satisfy the conditions n ≡ 5 (mod 8) and

(
n
31

)
= 1. However

for n = 149, 173, which also satisfy the same two conditions, we get that L(E−n, 1) = 0
(note thus using root number argument Rank(E−n) ≥ 2 for n = 149, 173). We do not
detect a general pattern.
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Waldspurger’s Theorem we can conclude that U(1984× 2, φ, Aφ) = {0}
and hence S3/2(1984 × 2, χtriv, φ) = S3/2(1984, χtriv, φ). We do not get

any new information.

(ii) Suppose now N = 1984× 31α. As before the only interesting case for us

will be α = 1 and we assume this. Hence ν2(N) = 6, ν31(N) = 2. Now we

will have two choices for c31(n), namely γ0,1 or γ0,u where u ∈ Q×31/Q×31
2

such that
(
u
31

)
= −1 and, four choices for c2(n), namely γ0,1, γ0,3, γ0,5

or γ0,7. If 5 ∈ Ω2(φ), choosing c2(n) = γ0,5 and c31(n) = γ0,1, we will be

able to conclude what happens when n ≡ 5 (mod 8) and
(
n
31

)
= 1 by

computing bases for the space S3/2(1984× 31, χtriv, φ).

(iii) In fact from the above two cases one can easily see that we need to

compute at least the bases for the space S3/2(1984 × 31 × 2, χtriv, φ) in

order to hope to get the complete solution.

The computation for S3/2(1984× 31× 2, χtriv, φ) is still in progress. We note

that the dimension of the space S3/2(1984× 31× 2, χtriv) is 7686.

4.5.2 Second Example

Our second example will be the rational elliptic curve E of conductor 144 given

by

E : Y 2 = X3 − 1.

The corresponding newform φ is given by

φ(z) = q + 4q7 + 2q13 − 8q19 − 5q25 + 4q31 − 10q37 − 8q43 + 9q49 +O(q50).

Here Mφ = 144. Since (H1) and (H2) are satisfied, there exists a N such

that S3/2(N,χ, φ) 6= {0}, where 144 | (N/2) and again χ2 = χtriv. We assume

that χ is the trivial character. Using Corollary 3.6.4 for computing Shimura’s

decomposition, we find that at the level 576, the space S3/2(576, χ, φ) 6= {0};
and this space has a basis {f1, f2, f3, f4} where f1, f2, f3 and f4 have the
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following q-expansion:

f1(z) = q − q25 + 5q49 − 6q73 − 6q97 +O(q100) :=
∞∑
n=1

anq
n

f2(z) = q5 + q29 − q53 − 2q77 +O(q100) :=
∞∑
n=1

bnq
n

f3(z) = q13 − 2q61 + q85 +O(q100) :=
∞∑
n=1

cnq
n

f4(z) = q17 − q41 − q89 +O(q100) :=
∞∑
n=1

dnq
n.

Doing similar calculations as in the previous example it turns out that

Ñφ = 576. Using Waldspurger’s Theorem there exists a function Aφ on square-

free numbers such that S3/2(576, χ, φ) = U(576, φ, Aφ). Following the compu-

tations we get that U(576, φ, Aφ) is spanned by
∑∞

n=1Aφ(nsc)n1/4
∏

p cp(n)qn

where the choices for c2 include the characteristic functions of 1, 5 modulo

Q×2
2
, while the choices for c3 are characteristic functions of 1, 2 modulo Q×3

2
.

The following lemma is a special case of a standard theorem on the

torsion of Mordell elliptic curves (i.e. elliptic curves of the form Y 2 = X3 +B).

For the proof see [8, page 52].

Lemma 4.5.8. Let E be as above and let n be a square-free integer. Then

En,tor
∼= Z/2Z unless n = −1 in which case E−1,tor

∼= Z/6Z.

The discriminant of the model E−1 : Y 2 = X3 + 1 is −432 = 24 × 33

which is sixth-power free. By Lemma 4.4.3, Ω(E−n) = Ω(E−1)/
√
n.

We have the following lemma on root numbers which can be proved on

similar lines as Proposition 4.5.4.

Lemma 4.5.9. Let E be as above. For n positive square-free the following

holds.

(i) If ν3(n) = 0 then,

W (E−n/Q) =


1 n ≡ 1, 5 (mod 8)

−1 n ≡ 3, 7 (mod 8)

−1 n even.
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(ii) If ν3(n) = 1 then,

W (E−n/Q) =


1 n/3 ≡ 1, 5 (mod 8)

−1 n/3 ≡ 3, 7 (mod 8)

1 n even.

Finally, we have the following theorem.

Theorem 4.5.10. Let E : Y 2 = X3 − 1. Let

f = f1/2 + f2 +
√

2f3 +
√

3f4 :=
∞∑
n=1

enq
n.

Let n 6= 1 5 be positive square-free integer such that n ≡ 1, 2 (mod 3). Then,

L(E−n, 1) =
ΩE−1√
n
· e2

n. (4.7)

Further assuming BSD, if E−n has rank zero then,

|X(E−n/Q)| = 4∏
p cp
· e2

n

where the Tamagawa numbers c2 = 3 if n ≡ 1 (mod 8), c2 = 1 if n ≡ 3, 5, 7

(mod 8); c3 = 2; cp = #E−1(Fp)[2] for p | n, p 6= 3; and cp = 1 for all other

primes p.

Proof. It is to be noted that using Theorem 3.8.10, we can prove that an is

non-zero only for n ≡ 1 (mod 24), bn is non-zero only for n ≡ 5 (mod 24),

cn is non-zero only for n ≡ 13 (mod 24) and dn is non-zero only for n ≡ 17

(mod 24). Thus we can choose f as in the theorem (the choice for coefficients

of fi in f are done using similar calculations as in Theorem 4.5.5). Using

Lemma 4.5.9, we see that both sides of equation (4.7) vanish if n ≡ 1, 2

(mod 3) and n ≡ 3, 7 (mod 8). So it is enough to consider the other cases.

Recall that Aφ(n)2 = L(E−n, 1) by Theorem 4.3.4. The proof of the first

statement now follows.

5In the case n = 1 we still have L(E−n, 1) =
ΩE−1√

n
· e2
n, but since |E−1,tor| = 6 we get

that |X(E−n/Q)| = 36∏
p cp
· e2
n.
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For the second statement, we use Lemma 4.5.8 and substitute Ω(E−n) =

Ω(E−1)/
√
n in the equation (4.5). The calculation for Tamagawa numbers cp

are done as before (see Corollary 4.5.6).

In order to consider the case of E−n when 3 | n we try to look at the

space S3/2(1728, χtriv, φ) but it turns out that this space is equal to the space

S3/2(576, χtriv, φ). Hence we do not get any new information.

Another possible way to deal with this situation is to work with the

quadratic character χ3 =
(

3
·

)
, instead of the trivial character. Our algorithm

shows that S3/2(576, χ3, φ) = {0} and S3/2(1728, χ3, φ) has a basis consisting

of g1, g2, g3 and g4 where gi’s are as follows:

g1 = q3−q75+5q147−6q219−6q291+O(q300), g2 = q39−2q183+q255+O(q300),

g3 = q15 + q87 − q159 − 2q231 +O(q300), g4 = q51 − q123 − q267 +O(q300).

Waldspurger’s Theorem now asserts the existence of a function Aφ (which now

depends on χ3 and φ) on Nsc such that Aφ(n)2 = L(E−3n, 1). Note that gi’s

have non-zero n-th coefficient only for n ≡ 3, 6 (mod 9). Further if n = 3m

then L(E−3n, 1) = L(E−m, 1). This leads us to obtain exactly the same results

as in Theorem 4.5.10.

Remark. It is to be noted that we cannot apply Waldspurger’s Theorem to

the elliptic curve E ′ given by

E ′ : Y 2 = X3 + 1

since it is easy to check that the hypothesis (H1) is not satisfied. However,

E ′ = E−1, hence by Theorem 4.5.10 we get information about the positive

n-th quadratic twists of E ′ for n with 3 - n. Further note that E3 is isogenous

to E−1, hence L(En, 1) = L(E−3n, 1) for all n. Thus computation of L(E−3n, 1)

for n positive square-free will lead to a formula for L(En, 1) and hence for

L(E ′n, 1) for all n square-free.
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4.5.3 Example with a Non-Rational Newform

In this example we start with a non-rational newform ψ and we show that

we can get similar formulae as before for the critical values of L-functions of

ψ ⊗ χ−n.

Let ψ ∈ Snew
2 (62, χtriv) be a newform of weight 2, level 62 and trivial

character given by the following q-expansion,

ψ(z) = q − q2 + aq3 + q4 + (−2a+ 2)q5 − aq6 + 2q7 − q8 + (2a− 1)q9 +O(q10)

where a has minimal polynomial x2 − 2x− 2.

As before using our algorithm (Corollary 3.6.4) we get that the space

S3/2(124, χtriv, ψ) = 〈f〉 where f has the following q-expansion,

f(z) = q+ (a+ 1)q2− q4− 2aq5− aq7 + (−a− 1)q8 + (a+ 1)q9− 2q10 +O(q12).

Note that Waldspurger’s theorem is applicable for the newform ψ as

the local automorphic representation of ψ at 2 is not supercuspidal; this fol-

lows since ν2(62) = 1 and the second coefficient of ψ is non-zero (see Corol-

lary 4.2.3).

We have the following proposition.

Proposition 4.5.11. Let ψ and f :=
∑∞

n=1 anq
n be as above. Let n be square-

free such that n 6≡ 3 (mod 8) and
(
n
31

)
6= −1. Then

L(ψ ⊗ χ−n, 1) =


β√
n
· a2

n if ν31(n) = 1

β
2
√
n
· a2

n if ν31(n) = 0

where β = 2 · L(ψ ⊗ χ−1, 1).

Proof. The proof follows by the similar calculations as shown in the previous

examples.

Remark. Using MAGMA, we have numerically checked the above formula for

the first ten values of n and we find that the two sides of the formula agree

to 30 decimal places. It is to be noted that as we increase the values of n,

the level of the newform ψ ⊗ χ−n becomes very large, for example the level of
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newform ψ ⊗ χ−n for n = 1, 2, 3, 5, 7, 10 are 496, 1984, 558, 12400, 3038, 49600

respectively.

In the next chapter we will study the relation between modular forms

of weight 3/2 and positive-definite ternary quadratic forms. In fact given a

quadratic character χ and a rational newform φ, we would like to compute the

subspace of S3/2(N,χ, φ) (for a suitable N) that is coming from the ternary

quadratic forms in a sense explained in the next chapter. This will lead us

to give Tunnell-like formulae for critical values of n-th quadratic twists of φ

in terms of ternary quadratic forms. We point out that given a newform it

might not always be possible to find forms of weight 3/2 that are Shimura

equivalent to the newform and that come from ternary quadratic forms. In

particular for the elliptic curve in our first example, E : Y 2 = X3 + X + 1,

the space S3/2(1984, χtriv, φE) has trivial intersection with the subspace of

S3/2(1984, χtriv) coming from ternary quadratic forms. We also note that the

space S3/2(1984, χtriv, φE) does not consist of any forms that one gets by mul-

tiplying weight one and weight half forms as explained in Chapter 1. However

for the elliptic curve in the second example, E : Y 2 = X3 − 1, we will see

(Example 5.3.3) that each of the basis elements fi of S3/2(576, χtriv, φE) comes

from ternary quadratic forms.
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Chapter 5

Ternary Quadratic Forms

The reader will recall that in Tunnell’s Theorem, the critical value of the L-

function of the n-th twist of the E : Y 2 = X3 − X is expressed in terms

of ternary quadratic forms. In the previous chapter we saw several examples

where such critical values are expressed in terms of coefficients of cusp forms of

weight 3/2. It turns out that for a given level N and quadratic character χ, a

subspace of S3/2(N,χ) is spanned by theta-series coming from positive-definite

ternary quadratic forms. To express our critical values in terms of quadratic

forms we need to compute theses subspaces.

5.1 Positive-Definite Quadratic Forms and as-

sociated Theta-Series

Let F ∈ Z[x1, . . . , xk] be a positive-definite quadratic form. Associated to F

is a theta-series

θF (z) :=
∑
m∈Zk

qF (m) =
∞∑
n=0

#{m ∈ Zk : F (m) = n} · qn; q = e2πiz.

Theorem 5.1.1. (Shimura [36]) With notation as above, let AF be the k × k
matrix

AF =

(
∂2F

∂xi∂xj

)
.

Define NF to be the smallest positive integer so that NFAF
−1 is an even matrix,
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that is, has integral entries, and even integers on the main diagonal. Then

θF ∈ Mk/2(NF , χdF ), where χdF =
(
dF
·

)
and dF = det(AF ) if k ≡ 0 (mod 4),

dF = − det(AF ) if k ≡ 2 (mod 4) and dF = det(AF )/2 if k ≡ 1 (mod 2).

We shall call NF as in Shimura’s Theorem the level of F , the integer

dF the discriminant of F , χdF the character of F and AF the matrix of F .

Let R be either Z or Zp (where we take Zp = R if p = ∞). Let F , G

be homogeneous quadratic forms in R[x1, . . . , xk]. We say that F and G are

R-equivalent if there exists a unimodular matrix U with coefficients in R such

that F (x) = G(xU). Now suppose F , G are homogeneous quadratic forms in

Z[x1, . . . , xk] with the same level and discriminant. We say that F and G are

in the same genus if F is Zp-equivalent to G for all p (including ∞).

It is clear that if F and G are Z-equivalent, then θF = θG.

Theorem 5.1.2. (Siegel [33]) Suppose F and G are in the same genus. Let

N be their level and χd be their character. Then θF − θG ∈ Sk/2(N,χd).

Now if F , G are homogeneous quadratic forms in Z[x1, . . . , xk] and

F = rG for some integer r, then θF (q) = θG(qr). Hence θF = V (r)(θG)

where V (r) is the V -operator. It is for this reason that we restrict to primitive

quadratic forms. It is clear that if a form is primitive, then all other forms

belonging to the same genus are primitive. We can therefore speak of primitive

genera. As we are most interested in modular forms of weight 3/2 we shall

restrict ourselves to the case k = 3; i.e. to the case of ternary quadratic forms,

and follow the exposition in Lehman’s paper [27].

Let F be a positive-definite, primitive ternary quadratic form with in-

teger coefficients given by

F = ax2 + by2 + cz2 + ryz + sxz + txy.

LetAij be the ij-th cofactor ofAF andM = gcd(A11, A22, A33, 2A23, 2A13, 2A12).

Let α = A11/M , β = A22/M , γ = A33/M , ρ = A23/M , σ = A13/M ,

τ = A12/M . Let

φ = αx2 + βy2 + γz2 + ρyz + σxz + τxy.

Then φ is a primitive positive-definite form and is called reciprocal of F . It
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turns out that NF = Nφ and dφ = N3
F/4dF . Moreover, the reciprocal of

equivalent forms are equivalent and if F and G are in the same genus, their

reciprocals are in the same genus; see [27, page 410].

Given N there are only finitely many choices for d such that we have

ternary quadratic forms of level N and discriminant d. In particular,

Theorem 5.1.3. ([27, Theorem 2]) Let F be as above. Suppose that

NF = 2n0pn1
1 p

n2
2 · · · pnrr

is the prime factorization of NF . Then n0 ≥ 2 and dF is of the form

dF = 2d0pd11 p
d2
2 · · · pdrr

with following restrictions on dis:

(i) either d0 = n0 − 2 or, d0 = 2n0 or, n0 ≤ d0 ≤ 2n0 − 2, and

(ii) for 1 ≤ i ≤ r we must have ni ≤ di ≤ 2ni.

Further if ni is even for 0 ≤ i ≤ r, then either n0 ≤ d0 ≤ 2n0− 2 or, di is odd

for some 1 ≤ i ≤ r.

Fix a level N and discriminant d. There are finitely many primitive

genera having level N and discriminant d. Each genus has finitely many forms

up to Z-equivalence.

Below we recall a standard algorithm, due to Dickson [17], for writ-

ing down the primitive genera of ternary quadratic forms of given level and

discriminant, and for each genus writing down a representative of each Z-

equivalence class. We shall follow the exposition of Dickson’s algorithm given

in [27].

We say that F is reduced if the following are true:

• a ≤ b ≤ c;

• r, s and t are all positive or all non-positive;

• a ≥ |t|; a ≥ |s|; b ≥ |r|;
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• a+ b+ r + s+ t ≥ 0;

• if a = t then s ≤ 2r; if a = s then t ≤ 2r; if b = r then t ≤ 2s;

• if a = −t then s = 0; if a = −s then t = 0; if b = −r then t = 0;

• if a+ b+ r + s+ t = 0 then 2a+ 2s+ t ≤ 0;

• if a = b then |r| ≤ |s|; if b = c then |s| ≤ |t|.

Theorem 5.1.4. ([27, Proposition 3]) Every primitive positive-definite ternary

quadratic form is equivalent to one and only one reduced form. Also, if f is

reduced and has discriminant d, then

d

4
≤ abc ≤ d

2
.

It follows from the above inequalities that if F is a reduced form of

discriminant d then

1 ≤ a ≤ 3

√
d

2
, a ≤ b ≤

√
d

2a
, max

(
b,

d

4ab

)
≤ c ≤ d

2ab
,

and either

−b ≤ r ≤ 0, −a ≤ s ≤ 0, −a ≤ t ≤ 0,

or

1 ≤ r ≤ b, 1 ≤ s ≤ a, 1 ≤ t ≤ a.

It is clear now, how in principle we can list all reduced forms of a given level

N and discriminant d. In fact, Lehman [27] gives additional bounds on the

coefficients. First c ≤ N/2. Thus

1 ≤ a ≤ min

(
N

2
,

3

√
d

2

)
, a ≤ b ≤ min

(
N

2
,

√
d

2a

)
. (5.1)

Let m = 4d/N and µ = N2/d. Then, moreover, either a ≡ 0 or −µ (mod 4).

The same is true for b, c in place of a. To this we add our own improvement,

given by the following lemma.
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Lemma 5.1.5. Let α = 4ab− t2. Then r is a root modulo α of the polynomial

aX2 − stX + (d+ bs2). Moreover,

c =
ar2 − str + d+ bs2

α
.

Proof. The discriminant d = det(Af )/2 and hence can be given by following

expression,

d = 4abc+ rst− ar2 − bs2 − ct2.

The lemma now follows.

To enumerate all primitive reduced forms of level N and discriminant

d, we run through the pairs a, b satisfying the inequalities (5.1) and the above

congruences. We then enumerate the pairs s, t that satisfy

−a ≤ s ≤ 0, −a ≤ t ≤ 0, or 1 ≤ s ≤ a, 1 ≤ t ≤ a.

Next we use the lemma to determine the possibilities for r modulo α, and write

down all r satisfying the above inequalities and these congruences. Finally, the

lemma gives the value of c. Once we have all the coefficients, we can check

that they indeed define a primitive reduced form of level N and discriminant

d.

In order to write down the cusp forms of level N and quadratic character

χD =
(
D
·

)
that are coming from primitive ternary quadratic forms, we first

need to consider the possible choices of discriminants d given by Theorem

5.1.3 with square-free part D. For each such choice of discriminant, we can

use the above algorithm to write down the reduced representatives in primitive

genera of ternary quadratic forms of level N . However since discriminants can

be very large, we modify the algorithm by using reciprocals. In particular, if

d > N3/4d we compute the reduced ternary forms of level N and discriminant

N3/4d and take their reciprocals which are now primitive forms of level N and

discriminant d. Note that taking reciprocal need not keep the forms reduced

but as remarked earlier it preserves each genus. Now we can use Theorem 5.1.2

to compute the subspace of S3/2(N,χd) which comes from primitive ternary

quadratic forms. Here we can test for forms being in the same genus using

an algorithm of Conway and Sloane [13, Chapter 15], which fortunately is
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implemented in MAGMA.

Notation. We will denote by [a, b, c, r, s, t], the ternary quadratic form given

by ax2 + by2 + cz2 + ryz + sxz + txy.

5.2 Action of Hecke operators on Theta-Series

The following theorem is a reformulation by Bungert [7] of the results of Eichler

[18] and Schulze-Pillot [32] which gives an explicit description of the action of

Hecke operators on theta-series of ternary quadratic forms.

Theorem 5.2.1. [7, Proposition 4] Let F be an integral positive-definite ternary

quadratic form with matrix AF . Let p be a prime not dividing the level NF of

the theta-series θF of F . Then the action of Hecke operator Tp2 is given by

Tp2(θF )(z) =
∑

S∈M/GL3(Z)

θSTAF S
p2

(z),

where M denotes the set of 3×3 matrices S over Z such that S has elementary

divisors 1, p, p2 and STAFS
p2

has integral entries and θSTAF S
p2

stands for theta-

series of the ternary quadratic form with matrix STAFS
p2

.

Let F be as in the theorem, having matrix A = AF , and let G be the

quadratic form represented by the matrix B = STAS
p2

. The reader might be

wondering why F and G have the same level. It is clear that the determinants

of A and B, and therefore discriminants of F and G, are equal. We know by

Theorem 5.1.3 that the two levels NF and NG have precisely the same prime

divisors. Since p - NF , we know p - NG. Now for any prime ` 6= p, the forms

F and G are Z`-equivalent. Therefore, ν`(NF ) = ν`(NG). Hence NF = NG.

To be able to compute the action of Hecke operators on theta-series, we

proved the following lemma.

Lemma 5.2.2. Let p be a prime and

M ′ = {S ∈ M3(Z) : S has elementary divisors 1, p and p2 }.
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Then the following are representatives of M ′/GL3(Z):p a b

0 p 0

0 0 p


0<a<p
0≤b<p

,

p 0 b

0 p c

0 0 p


0<c<p
0≤b<p

,

p 0 b

0 p 0

0 0 p


0<b<p

,

p
2 a b

0 p c

0 0 1


0≤a,b,c<p2

p|a

,

p
2 a b

0 1 0

0 0 p


0≤a,b<p2

p|b

,

p 0 b

0 p2 c

0 0 1


0≤c<p2
0≤b<p

,

p a 0

0 1 0

0 0 p2


0≤a<p

,

1 0 0

0 p2 c

0 0 p


0≤c<p2
p|c

,

1 0 0

0 p 0

0 0 p2

 .
Proof. Recall that given any S in M3(Z) there exists a unimodular matrix

U ∈ GL3(Z) such that S has unique Hermite normal form H and H = SU .

So we list matrices in Hermite normal form with elementary divisors 1, p and

p2.

Given a newform φ ∈ S2(Mφ) we would like to compute the subspace of

S3/2(N,χ, φ) for a suitable N with 2Mφ | N and χ quadratic that comes from

the theta-series of ternary quadratic forms. For a choice of N and character

χd we use the algorithm in Section 5.1 to compute the subspace of S3/2(N,χd)

that comes from the theta-series of ternary quadratic forms. We now apply

the above Lemma to compute the Hecke action on this subspace and use

the algorithm in Section 3.6 to compute the subspace of S3/2(N,χ, φ) coming

from ternary quadratic forms. In the upcoming section we will illustrate this

algorithm by presenting several examples.

5.3 Examples

For this section, we need to recall the methods used in Section 4.3, in addition

to the algorithm mentioned in the previous section.
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Example 5.3.1. Let E be an elliptic curve of conductor 50 given by

E : Y 2 +XY + Y = X3 +X2 − 3X + 1.

Let φ be the newform corresponding to E,

φE : q + q2 − q3 + q4 − q6 − 2q7 + q8 − 2q9 − 3q11 +O(q12).

Note that ν2(50) = 1 and second coefficient of φE is non-zero, hence

ρ2 is not supercuspidal and so we can apply Waldspurger’s Theorem. Please

refer to Section 4.3 for notation and details of the calculation.

We get that Ñφ = 100 and S3/2(100, χtriv, φE) has a basis consisting of

f1 and f2 where

f1 = q + q4 − q6 − q11 − 2q14 +O(q15) :=
∞∑
n=1

anq
n

f2 = q2 − q3 + q8 − q12 + 2q13 +O(q15) :=
∞∑
n=1

bnq
n.

In fact it turns out that f1 = (θQ1 − θQ2)/2 and f2 = (θQ3 − θQ4)/2

where Qi’s are quadratic ternary forms of level 50 given by

Q1 = [25, 25, 1, 0, 0, 0], Q2 = [14, 9, 6, 4, 6, 2],

Q3 = [25, 13, 2, 2, 0, 0], Q4 = [17, 17, 3,−2,−2, 16].

We have the following proposition which can be now proved on the

similar lines as Theorem 4.5.5.

Proposition 5.3.2. Let E be as above. Let n be positive square-free number

such that 5 - n. Then,

L(E−n, 1) =
L(E−1, 1)√

n
· c2
n

where

cn =
4∑
i=1

(−1)i−1

2
·#{(x, y, z) : Qi(x, y, z) = n}.
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Again we can compute the order of X(E−n/Q) assuming the BSD. For

example, we get that

|X(E−9318/Q)| = 332 = 1089.

We can further consider the real quadratic twists En. For this we work

with the elliptic curve E−1 of conductor 400,

E−1 : Y 2 = X3 +X2 − 48X − 172.

We can show that if 5 - n then,

L(En, 1) =


L(E1,1)√

n
· c2
n

(
n
5

)
= 1

L(E17, 1) ·
√

17
n
· c2
n

(
n
5

)
= −1,

where cn is the n-th coefficient of the following linear combination of theta-

series of weight 3/2 and level 1600 coming from the ternary quadratic forms:

− 1

5
· θ[5,5,17,−2,−4,0] +

1

5
· θ[5,9,10,2,2,4] +

1

10
· θ[1,4,400,0,0,0] −

1

10
· θ[5,17,20,−8,0,−2]

− 1

10
· θ[5,17,20,4,4,2] +

1

10
· θ[8,13,20,12,8,4] −

1

5
· θ[1,32,52,−16,0,0] +

1

5
· θ[8,13,17,6,4,4]

+
1

10
· θ[4,5,400,0,0,−4] −

1

10
· θ[4,16,101,0,−4,0] +

1

10
· θ[400,100,1,0,0,0]

− 1

10
· θ[125,100,4,0,0,100] +

1

5
· θ[89,56,9,−4,−2,−44] −

1

5
· θ[49,36,29,24,22,16]

− 1

2
· θ[400,13,8,4,0,0] −

1

10
· θ[100,25,17,10,0,0] +

1

10
· θ[52,32,25,0,0,16]

+
1

2
· θ[53,33,25,−10,−10,−14] +

1

2
· θ[400,400,1,0,0,0] +

9

10
· θ[400,25,16,0,0,0]

− 1

2
· θ[201,201,4,4,4,2] +

1

10
· θ[224,89,9,−2,−8,−88] −

1

10
· θ[209,36,25,20,10,36]

− 9

10
· θ[129,100,16,0,−16,−100] −

4

5
· θ[84,81,25,10,20,4] +

4

5
· θ[89,49,41,−6,−14,−38]

− 1

5
· θ[400,29,16,16,0,0] +

1

5
· θ[125,100,16,0,0,100] −

2

5
· θ[100,96,21,8,20,80]

+
2

5
· θ[84,69,29,2,12,28] −

2

5
· θ[400,32,13,8,0,0] +

2

5
· θ[117,52,32,−16,−24,−44]

+
1

5
· θ[400,25,17,10,0,0] +

1

5
· θ[212,48,17,8,4,48] +

1

10
· θ[208,32,25,0,0,32]
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− 1

5
· θ[212,33,25,−10,−20,−28] −

1

10
· θ[208,33,32,32,32,16] −

1

5
· θ[113,52,32,16,8,52].

Further using the root number arguments, we get that L(E−5n, 1) = 0

whenever n 6≡ 3 (mod 8) and L(E5n, 1) = 0 whenever n ≡ 5 (mod 8). For the

remaining cases, we look at the space S3/2(8000, φE).

Example 5.3.3. This example formulates Theorem 4.5.10 in terms of ternary

quadratic forms. Let E : Y 2 = X3 − 1. Let n be positive square-free integer

such that n ≡ 1, 2 (mod 3). Then

L(E−n, 1) =
ΩE−1√
n
· a2

n

where an is the n-th coefficient of the cusp form f of weight 3/2 and level 576

that can be written as follows as a linear combination theta series:

f =
∞∑
n=1

anq
n =

+
1

6
· θ[1,4,144,0,0,0] −

1

6
· θ[4,4,37,0,−4,0] +

1

6
· θ[4,5,36,0,0,−4] −

1

6
· θ[4,13,13,−10,0,0]

+
1

3
· θ[1,20,32,−16,0,0] +

1

6
· θ[4,5,29,−2,0,0] −

1

2
· θ[4,9,17,−6,0,0] +

1

2
· θ[1,36,45,−36,0,0]

− 1

2
· θ[4,9,37,0,−4,0] +

1

6
· θ[144,16,1,0,0,0] −

1

6
· θ[16,16,9,0,0,0] −

1

3
· θ[144,5,4,4,0,0]

+
1

6
· θ[37,16,4,0,4,0] +

1

6
· θ[16,13,13,10,0,0] +

1

6
· θ[32,21,4,−4,0,−16] −

1

6
· θ[29,16,5,0,2,0]

− 1

2
· θ[144,36,1,0,0,0] + 1 · θ[144,9,4,0,0,0] −

1

2
· θ[45,36,4,0,0,36] −

1

6
· θ[144,144,1,0,0,0]

− 1

2
· θ[144,16,9,0,0,0] +

2

3
· θ[49,36,16,0,−16,−36] +

1

4
· θ[144,13,13,10,0,0]

− 1

4
· θ[45,36,16,0,0,36] +

1

2
· θ[144,29,5,2,0,0] −

1

2
· θ[32,29,29,22,16,16]

− 1

6
· θ[80,32,9,0,0,32] +

1

2
· θ[80,17,17,−2,−16,−16] −

1

3
· θ[41,32,20,16,20,8].

Example 5.3.4. Let E : Y 2 +Y = X3−7 be an elliptic curve of conductor 27

and let φ be the corresponding newform. Using Corollary 4.2.3, we get that

ρ2, the local component of φ at 2 is not supercuspidal and hence we can apply
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Waldspurger’s Theorem. We have the following proposition.

Proposition 5.3.5. With E as above let n be a square-free integer.

(i) Suppose n ≡ 1 (mod 3). Let f be given by

f =
∞∑
n=1

anq
n = −1

2
· θ[1,6,15,−6,0,0] +

1

2
· θ[4,4,7,4,4,2] + θ[27,27,1,0,0,0]

− θ[28,27,4,0,4,0] −
1

2
· θ[27,7,4,2,0,0] −

1

2
· θ[16,9,7,−6,−4,−6] + θ[31,16,7,4,2,16].

If either ν2(n) = 1 or, ν2(n) = 0 and n ≡ 1, 5 (mod 8) then

L(E−n, 1) =
L(E−1, 1)√

n
· a2

n.

Otherwise,

L(E−n, 1) =
κ√
n
· a2

n

where κ =
√

19 · L(E−19, 1) if n ≡ 3 (mod 8) and κ =
√

7 · L(E−7, 1) if

n ≡ 7 (mod 8).

(ii) Suppose n ≡ 0 (mod 3) and let n = 3m. Let h ∈ S3/2(324, χtriv, φ) be

the cusp form having the following q-expansion

h = q3 − q21 + 2q30 − q39 − 2q48 − q57 − 2q66 + q75 +O(q80) :=
∞∑
n=1

bnq
n.

Further suppose
(
m
3

)
= 1. If either ν2(n) = 1 or, ν2(n) = 0 and n ≡ 1,

5 (mod 8) then

L(E−n, 1) = L(E−21, 1) ·
√

21

n
· b2
n.

If n ≡ 3, 7 (mod 8) then

L(E−n, 1) =
κ√
n
· b2
n

where κ =
√

3 · L(E−3, 1) if n ≡ 3 (mod 8) and κ =
√

39 · L(E−39, 1) if

n ≡ 7 (mod 8).
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(iii) If n = 3m and
(
m
3

)
= −1 then L(E−n, 1) = 0.

(iv) If n ≡ 2 (mod 3) then L(E−n, 1) = 0.

The proof of (i) and (ii) follows as in the previous examples, while for

(iii) and (iv) one can use root number arguments. We point out that the cusp

form h which appears in (ii) does not come from ternary quadratic forms.

Moreover since E is isogenous to E−3, for n positive square-free L(En, 1) =

L(E−3n, 1). Thus using above proposition we are able to compute the critical

values L(En, 1) for all n square-free.

Given a rational elliptic curve E of levelN odd and square-free, Böcherer

and Schulze-Pillot [4] showed that an inverse Shimura lift of φE comes from

ternary quadratic forms if and only if L(E, 1) 6= 0.

In each of the above examples, the level is not odd and square-free but

the result of Böcherer and Schulze-Pillot still holds.
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Appendix A

Tables

A.1 Dimensions

In the following table we give the dimension of the space S3/2(N) of cusp forms

of weight 3/2, level N and trivial character, for 1 ≤ N ≤ 2000 with 4 | N .

We compare it with the dimensions of the subspaces S0(N) and Θ(N), the

latter being the subspace spanned by theta-series of positive-definite ternary

quadratic forms, and with the intersection

Θ0(N) := S0(N) ∩Θ(N).

Table A.1: Dimensions of Theta Subspace

Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

4 0 0 0 0

8 0 0 0 0

12 0 0 0 0

16 0 0 0 0

20 0 0 0 0

24 0 0 0 0

28 1 0 1 0

32 0 0 0 0

36 0 0 0 0

Continued on next page
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Table A.1 – continued from previous page

Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

40 1 0 1 0

44 2 0 2 0

48 0 0 0 0

52 2 0 2 0

56 2 0 2 0

60 3 0 3 0

64 1 1 1 1

68 3 0 3 0

72 2 0 2 0

76 4 0 4 0

80 2 0 2 0

84 5 0 4 0

88 4 0 3 0

92 5 0 5 0

96 2 0 2 0

100 2 0 2 0

104 5 0 5 0

108 5 1 5 1

112 4 0 4 0

116 6 0 5 0

120 7 0 5 0

124 7 0 7 0

128 3 1 3 1

132 9 0 7 0

136 7 0 6 0

140 9 0 8 0

144 4 0 4 0

148 8 0 6 0

152 8 0 7 0

156 11 0 9 0

160 6 0 6 0

Continued on next page
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Table A.1 – continued from previous page

Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

164 9 0 8 0

168 11 0 8 0

172 10 0 8 0

176 8 0 8 0

180 10 0 9 0

184 10 0 7 0

188 11 0 11 0

192 7 1 5 0

196 6 0 5 0

200 8 0 8 0

204 15 0 11 0

208 10 0 9 0

212 12 0 9 0

216 11 1 8 0

220 15 0 13 0

224 10 0 10 0

228 17 0 11 0

232 13 0 9 0

236 14 0 13 0

240 14 0 12 0

244 14 0 11 0

248 14 0 11 0

252 18 0 16 0

256 8 2 7 2

260 17 0 12 0

264 19 0 13 0

268 16 0 12 0

272 14 0 13 0

276 21 0 15 0

280 19 0 13 0

284 17 0 15 0

Continued on next page
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Table A.1 – continued from previous page

Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

288 12 0 12 0

292 17 0 13 0

296 17 0 12 0

300 20 0 16 0

304 16 0 15 0

308 21 0 15 0

312 23 0 14 0

316 19 0 15 0

320 15 1 15 1

324 15 1 10 1

328 19 0 14 0

332 20 0 17 0

336 22 0 17 0

340 23 0 15 0

344 20 0 14 0

348 27 0 20 0

352 18 0 14 0

356 21 0 17 0

360 26 0 20 0

364 25 0 18 0

368 20 0 18 0

372 29 0 18 0

376 22 0 16 0

380 27 0 21 0

384 19 1 15 0

388 23 0 17 0

392 18 0 16 0

396 30 0 24 0

400 16 0 14 0

404 24 0 19 0

408 31 0 18 0

Continued on next page
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Table A.1 – continued from previous page

Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

412 25 0 21 0

416 22 0 22 0

420 41 0 24 0

424 25 0 16 0

428 26 0 19 0

432 22 2 19 2

436 26 0 17 0

440 31 0 21 0

444 35 0 25 0

448 23 1 18 0

452 27 0 18 0

456 35 0 20 0

460 33 0 24 0

464 26 0 21 0

468 34 0 28 0

472 28 0 20 0

476 33 0 27 0

480 34 0 24 0

484 20 0 10 0

488 29 0 20 0

492 39 0 24 0

496 28 0 25 0

500 28 0 21 0

504 38 0 27 0

508 31 0 23 0

512 21 3 19 3

516 41 0 25 0

520 37 0 22 0

524 32 0 26 0

528 38 0 28 0

532 37 0 24 0

Continued on next page
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Table A.1 – continued from previous page

Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

536 32 0 21 0

540 44 1 35 0

544 30 0 26 0

548 33 0 22 0

552 43 0 25 0

556 34 0 25 0

560 38 0 31 0

564 45 0 27 0

568 34 0 21 0

572 39 0 31 0

576 30 2 25 2

580 41 0 27 0

584 35 0 24 0

588 42 0 27 0

592 34 0 24 0

596 36 0 25 0

600 44 0 28 0

604 37 0 27 0

608 34 0 30 0

612 46 0 36 0

616 43 0 26 0

620 45 0 31 0

624 46 0 33 0

628 38 0 27 0

632 38 0 23 0

636 51 0 34 0

640 35 1 30 1

644 45 0 31 0

648 39 1 28 0

652 40 0 26 0

656 38 0 32 0

Continued on next page
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Table A.1 – continued from previous page

Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

660 65 0 35 0

664 40 0 27 0

668 41 0 33 0

672 50 0 36 0

676 30 0 13 0

680 49 0 28 0

684 54 0 43 0

688 40 0 30 0

692 42 0 29 0

696 55 0 31 0

700 50 0 38 0

704 39 1 31 0

708 57 0 32 0

712 43 0 29 0

716 44 0 32 0

720 52 0 42 0

724 44 0 30 0

728 51 0 31 0

732 59 0 36 0

736 42 0 30 0

740 53 0 34 0

744 59 0 31 0

748 51 0 35 0

752 44 0 39 0

756 62 1 46 1

760 55 0 31 0

764 47 0 37 0

768 44 2 30 0

772 47 0 29 0

776 47 0 31 0

780 77 0 44 0

Continued on next page
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Table A.1 – continued from previous page

Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

784 36 0 28 0

788 48 0 30 0

792 62 0 41 0

796 49 0 37 0

800 40 0 38 0

804 65 0 37 0

808 49 0 32 0

812 57 0 38 0

816 62 0 42 0

820 59 0 35 0

824 50 0 34 0

828 66 0 51 0

832 47 1 40 1

836 57 0 39 0

840 85 0 41 0

844 52 0 33 0

848 50 0 36 0

852 69 0 41 0

856 52 0 30 0

860 63 0 45 0

864 52 2 42 0

868 61 0 39 0

872 53 0 30 0

876 71 0 40 0

880 62 0 48 0

884 59 0 38 0

888 71 0 39 0

892 55 0 40 0

896 51 1 42 0

900 64 0 36 0

904 55 0 31 0
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Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

908 56 0 40 0

912 70 0 43 0

916 56 0 38 0

920 67 0 40 0

924 89 0 51 0

928 54 0 38 0

932 57 0 35 0

936 74 0 51 0

940 69 0 42 0

944 56 0 48 0

948 77 0 44 0

952 67 0 40 0

956 59 0 45 0

960 75 1 49 0

964 59 0 39 0

968 50 0 32 0

972 66 2 51 2

976 58 0 43 0

980 66 0 43 0

984 79 0 40 0

988 67 0 45 0

992 58 0 46 0

996 81 0 44 0

1000 63 0 42 0

1004 62 0 47 0

1008 76 0 62 0

1012 69 0 42 0

1016 62 0 37 0

1020 101 0 56 0

1024 46 4 31 4

1028 63 0 42 0
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Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

1032 83 0 43 0

1036 73 0 45 0

1040 74 0 49 0

1044 82 0 59 0

1048 64 0 40 0

1052 65 0 47 0

1056 82 0 56 0

1060 77 0 45 0

1064 75 0 43 0

1068 87 0 47 0

1072 64 0 45 0

1076 66 0 45 0

1080 92 1 57 0

1084 67 0 49 0

1088 63 1 54 1

1092 105 0 54 0

1096 67 0 38 0

1100 80 0 57 0

1104 86 0 57 0

1108 68 0 41 0

1112 68 0 41 0

1116 90 0 70 0

1120 82 0 56 0

1124 69 0 45 0

1128 91 0 44 0

1132 70 0 47 0

1136 68 0 53 0

1140 113 0 59 0

1144 79 0 47 0

1148 81 0 56 0

1152 70 2 60 2
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Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

1156 56 0 20 0

1160 85 0 48 0

1164 95 0 52 0

1168 70 0 50 0

1172 72 0 48 0

1176 90 0 49 0

1180 87 0 54 0

1184 70 0 52 0

1188 98 1 68 0

1192 73 0 42 0

1196 81 0 57 0

1200 88 0 62 0

1204 85 0 49 0

1208 74 0 42 0

1212 99 0 56 0

1216 71 1 56 0

1220 89 0 51 0

1224 98 0 65 0

1228 76 0 51 0

1232 86 0 59 0

1236 101 0 54 0

1240 91 0 49 0

1244 77 0 59 0

1248 98 0 60 0

1252 77 0 50 0

1256 77 0 48 0

1260 130 0 84 0

1264 76 0 54 0

1268 78 0 46 0

1272 103 0 52 0

1276 87 0 56 0
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Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

1280 76 2 60 2

1284 105 0 58 0

1288 91 0 51 0

1292 87 0 54 0

1296 78 2 54 2

1300 92 0 61 0

1304 80 0 45 0

1308 107 0 62 0

1312 78 0 58 0

1316 93 0 59 0

1320 133 0 59 0

1324 82 0 51 0

1328 80 0 63 0

1332 106 0 74 0

1336 82 0 49 0

1340 99 0 65 0

1344 107 1 71 0

1348 83 0 50 0

1352 72 0 44 0

1356 111 0 62 0

1360 98 0 60 0

1364 93 0 62 0

1368 110 0 72 0

1372 86 1 60 1

1376 82 0 60 0

1380 137 0 65 0

1384 85 0 49 0

1388 86 0 54 0

1392 110 0 73 0

1396 86 0 55 0

1400 104 0 63 0
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Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

1404 116 1 85 1

1408 83 1 57 0

1412 87 0 56 0

1416 115 0 54 0

1420 105 0 65 0

1424 86 0 66 0

1428 137 0 70 0

1432 88 0 50 0

1436 89 0 64 0

1440 116 0 90 0

1444 72 0 25 0

1448 89 0 52 0

1452 110 0 59 0

1456 102 0 68 0

1460 107 0 61 0

1464 119 0 57 0

1468 91 0 63 0

1472 87 1 61 0

1476 118 0 80 0

1480 109 0 59 0

1484 105 0 66 0

1488 118 0 68 0

1492 92 0 56 0

1496 103 0 60 0

1500 133 0 81 0

1504 90 0 66 0

1508 101 0 61 0

1512 128 1 79 0

1516 94 0 57 0

1520 110 0 76 0

1524 125 0 66 0
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Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

1528 94 0 54 0

1532 95 0 69 0

1536 101 3 67 1

1540 137 0 73 0

1544 95 0 51 0

1548 126 0 86 0

1552 94 0 65 0

1556 96 0 59 0

1560 157 0 71 0

1564 105 0 71 0

1568 84 0 72 0

1572 129 0 67 0

1576 97 0 51 0

1580 117 0 73 0

1584 124 0 93 0

1588 98 0 60 0

1592 98 0 58 0

1596 153 0 80 0

1600 90 2 64 2

1600 90 2 64 2

1604 99 0 61 0

1608 131 0 64 0

1612 109 0 64 0

1616 98 0 74 0

1620 135 1 87 0

1624 115 0 62 0

1628 111 0 71 0

1632 130 0 76 0

1636 101 0 64 0

1640 121 0 61 0

1644 135 0 72 0
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Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

1648 100 0 76 0

1652 117 0 69 0

1656 134 0 82 0

1660 123 0 72 0

1664 99 1 85 1

1668 137 0 68 0

1672 115 0 65 0

1676 104 0 72 0

1680 170 0 93 0

1684 104 0 62 0

1688 104 0 54 0

1692 138 0 99 0

1696 102 0 68 0

1700 122 0 81 0

1704 139 0 67 0

1708 121 0 71 0

1712 104 0 71 0

1716 161 0 83 0

1720 127 0 68 0

1724 107 0 75 0

1728 115 5 88 3

1732 107 0 67 0

1736 123 0 67 0

1740 173 0 83 0

1744 106 0 66 0

1748 117 0 72 0

1752 143 0 66 0

1756 109 0 73 0

1760 130 0 88 0

1764 132 0 66 0

1768 121 0 65 0
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Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

1772 110 0 68 0

1776 142 0 90 0

1780 131 0 70 0

1784 110 0 65 0

1788 147 0 82 0

1792 108 2 75 0

1796 111 0 67 0

1800 148 0 96 0

1804 123 0 78 0

1808 110 0 70 0

1812 149 0 76 0

1816 112 0 64 0

1820 161 0 93 0

1824 146 0 86 0

1828 113 0 68 0

1832 113 0 65 0

1836 152 1 103 0

1840 134 0 89 0

1844 114 0 75 0

1848 181 0 80 0

1852 115 0 73 0

1856 111 1 84 1

1860 185 0 87 0

1864 115 0 59 0

1868 116 0 77 0

1872 148 0 112 0

1876 133 0 73 0

1880 139 0 69 0

1884 155 0 84 0

1888 114 0 82 0

1892 129 0 71 0
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Level N Dim S3/2(N) Dim S0(N) Dim Θ(N) Dim Θ0(N)

1896 155 0 73 0

1900 140 0 97 0

1904 134 0 97 0

1908 154 0 105 0

1912 118 0 66 0

1916 119 0 87 0

1920 163 1 97 0

1924 129 0 76 0

1928 119 0 67 0

1932 185 0 90 0

1936 100 0 58 0

1940 143 0 77 0

1944 138 2 85 0

1948 121 0 75 0

1952 118 0 84 0

1956 161 0 81 0

1960 146 0 81 0

1964 122 0 80 0

1968 158 0 91 0

1972 131 0 80 0

1976 135 0 75 0

1980 202 0 130 0

1984 119 1 86 0

1988 141 0 83 0

1992 163 0 73 0

1996 124 0 73 0

2000 126 0 91 0
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