The Maximum Number of K_{3}-Free and K_{4}-Free Edge 4-Colorings

Oleg Pikhurko* and Zelealem B. Yilma
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh, PA 15213

April 17, 2010

Abstract

Let $F(n, r, k)$ denote the maximum number of edge r-colorings without a monochromatic copy of K_{k} that a graph with n vertices can have.

Addressing two questions left open by Alon, Balogh, Keevash, and Sudakov [J. London Math. Soc., 70 (2004) 273-288], we determine $F(n, 4,3)$ and $F(n, 4,4)$ and describe the extremal graphs for all large n.

1 Introduction

Given a graph G and integers $k \geq 3$ and $r \geq 2$, let $F(G, r, k)$ denote the number of distinct edge r-colorings of G that are K_{k}-free, that is, do not contain a monochromatic copy of K_{k}, the complete graph on k vertices. Note that we do not require that these edge colorings are proper (that is, we do not require that adjacent edges get different colors). We consider the following extremal function:

$$
F(n, r, k)=\max \{F(G, r, k): G \text { is a graph on } n \text { vertices }\},
$$

the maximum value of $F(G, r, k)$ over all graphs of order n.
One obvious choice for G is to take a maximum K_{k}-free graph of order n. The celebrated theorem of Turán [15] states that ex $\left(n, K_{k}\right)$, the maximum size of a K_{k}-free graph of order n, is attained by a unique (up to isomorphism) graph, namely the Turán graph $T_{k-1}(n)$ which is the complete ($k-1$)-partite graph on n vertices with parts of size $\left\lfloor\frac{n}{k-1}\right\rfloor$ or $\left\lceil\frac{n}{k-1}\right\rceil$. Thus

$$
\begin{equation*}
\operatorname{ex}\left(n, K_{k}\right)=t_{k-1}(n), \quad \text { for all } n, k \geq 2, \tag{1}
\end{equation*}
$$

where $t_{k-1}(n)$ denotes the number of edges in $T_{k-1}(n)$. This gives the following trivial lower bound on our function:

$$
\begin{equation*}
F(n, r, k) \geq F\left(T_{k-1}(n), r, k\right)=r^{t_{k-1}(n)} . \tag{2}
\end{equation*}
$$

[^0]Erdős and Rothschild (see $[5,6]$) conjectured that this is best possible when $r=2$ and $k=3$. Yuster [16] proved that, indeed, $F(n, 2,3)=2^{t_{2}(n)}=2^{\left\lfloor n^{2} / 4\right\rfloor}$ for large enough n. Both sets of authors further conjectured that this holds for all k when we have $r=2$ colors. Alon, Balogh, Keevash, and Sudakov [1] not only settled this conjecture for large n but also showed that it holds for 3 -colorings as well, i.e., we have equality in (2) when $r=2,3, k \geq 3$, and $n>n_{0}(k)$.

The generalization of the problem where one has to avoid a monochromatic copy of a general graph F was also studied in [1]. The papers [8, 10, 11, 12] studied H-free edge colorings for general hypergraphs H. In particular, Lefmann, Person, and Schacht [12] proved that, for every k-uniform hypergraph F and $r \in\{2,3\}$, the maximum number of F-free edge r-colorings over n-vertex hypergraphs is $r^{\operatorname{ex}(n, F)+o\left(n^{k}\right)}$. Interestingly, this result holds for every F even though the value of the Turán function $\operatorname{ex}(n, F)$ is known for very few hypergraphs F. Also, Balogh [3] studied a version of the problem where a specific coloring of a graph F is forbidden. Alon and Yuster [2] considered this problem for directed graphs (where one counts admissible orientations instead of edge colorings).

Let us return to the original question. Surprisingly, Alon et al. [1] showed that one can do significantly better than (2) for larger values of r. In two particular cases, they were also able to obtain the best possible constant in the exponent. Namely they proved that

$$
\begin{align*}
& F(n, 4,3)=18^{n^{2} / 8+o\left(n^{2}\right)} \tag{3}\\
& F(n, 4,4)=3^{4 n^{2} / 9+o\left(n^{2}\right)} \tag{4}
\end{align*}
$$

Let us briefly show the lower bounds in (3) and (4), which are given by $F\left(T_{4}(n), 4,3\right)$ and $F\left(T_{9}(n), 4,4\right)$ respectively. Let W_{1}, \ldots, W_{k} denote the parts of $T_{k}(n)$. Consider $T_{4}(n)$ first. Fix a function π that assigns to each pair $\{i, j\}$ of $\{1, \ldots, 4\}$ a list $\pi(\{i, j\})$ of two or three colors so that each color appears in exactly four lists with the corresponding four pairs forming a 4-cycle. Up to a symmetry, such an assignment is unique and we have two lists of size 2 and four lists of size 3 . Generate an edge coloring of $T_{4}(n)$ by choosing for each edge $\{u, v\}$ with $u \in W_{i}$ and $v \in W_{j}$ an arbitrary color from $\pi(\{i, j\})$. Every obtained coloring is K_{3}-free and, if we assume that e.g. $n=4 m$, there are $3^{4 m^{2}} \cdot 2^{2 m^{2}}=18^{n^{2} / 8}$ such colorings. We proceed similarly for $T_{9}(n)$ except we fix the (unique up to a symmetry) assignment where each pair from $\{1, \ldots, 9\}$ gets a list of three colors while every color forms a copy of $T_{3}(9)$.

The goal of this paper is determine $F(n, 4,3)$ and $F(n, 4,4)$ exactly and describe all extremal graphs for large n. Specifically, we will show the following results.

Theorem 1.1 There is N such that for all $n \geq N, F(n, 4,3)=F\left(T_{4}(n), 4,3\right)$ and $T_{4}(n)$ is the unique graph achieving the maximum.

Theorem 1.2 There is N such that for all $n \geq N, F(n, 4,4)=F\left(T_{9}(n), 4,4\right)$ and $T_{9}(n)$ is the unique graph achieving the maximum.

Thus a new phenomenon occurs for $r \geq 4$: extremal graphs have many copies of the forbidden monochromatic graph K_{k}. This makes the problem more interesting and difficult.

Similarly to [1], our general approach is to establish the stability property first: namely, that all graphs with the number of colorings close to the optimum have essentially the same structure. However, additionally to the approximate graph structure, we also have to describe how typical
colorings look like. This task is harder and we do it in stages, getting more and more precise description of typical colorings (namely, the properties called satisfactory, good, and perfect in our proofs). We then proceed to show that the Turán graphs are, indeed, the unique graphs that attain the optimum. It is not surprising that our proofs are longer and more complicated than those in [1]. The case of $r \geq 4$ colors seems to be much harder than the case $r \leq 3$. It is not even clear if there is a simple closed formula for $F\left(T_{4}(n), 4,3\right)$ and $F\left(T_{9}(n), 4,4\right)$. Our proofs imply that

$$
\begin{align*}
& F\left(T_{4}(n), 4,3\right)=(C+o(1)) \cdot 18^{t_{4}(n) / 3} \tag{5}\\
& F\left(T_{9}(n), 4,4\right)=(20160+o(1)) \cdot 3^{t_{9}(n)} \tag{6}
\end{align*}
$$

where $C=\left(2^{14} \cdot 3\right)^{1 / 3}$ if $n \equiv 2(\bmod 4)$ and $C=36$ otherwise.
Unfortunately, we could not determine $F(n, r, k)$ for other pairs r, k, which seems to be an interesting and challenging problem. Hopefully, our methods may be helpful in obtaining further exact results.

This paper is organized as follows. In Section 2 we state a version of Szemerédi's Regularity Lemma and some auxiliary definitions and results that we use in our arguments. Theorem 1.1 is proved in Section 3 and Theorem 1.2 is proved in Section 4.

2 Notation and Tools

For a set X and a non-negative integer k, let $\binom{X}{k}$ (resp. $\binom{X}{\leq k}$) be the set of all subsets of X with exactly (resp. at most) k elements. Also, we denote $\binom{n}{\leq k}=\sum_{i=0}^{k}\binom{n}{i}$ and $[k]=\{1,2, \ldots, k\}$. We will often omit punctuation signs when writing unordered sets, abbreviating e.g. $\{i, j\}$ to $i j$.

As it is standard in graph theory, we use $V(G)$ and $E(G)$ to refer to the vertex and edge set, respectively, of a graph G. Also, $v(G)=|V(G)|$ and $e(G)=|E(G)|$ denote respectively the order and size of G. In addition, for disjoint $A, B \subseteq V(G)$, we use $G[A]$ to refer to the subgraph induced by A and $G[A, B]$ for the induced bipartite subgraph with parts A and B. Let

$$
N_{G}(x)=\{y \in V(G): x y \in E(G)\}
$$

be the neighborhood of a vertex x in G. Let $K\left(V_{1}, \ldots, V_{l}\right)$ denote the complete l-partite graph with parts V_{1}, \ldots, V_{l}.

It will be often convenient to identify graphs with their edge sets. Thus, for example, $|G|=e(G)$ denotes the number of edges while $G \triangle H$ is the graph on $V(G) \cup V(H)$ whose edge set is the symmetric difference of $E(G)$ and $E(H)$.

As we make use of a multicolor version of Szemerédi's Regularity Lemma [14], we remind the reader of the following definitions. Let G be a graph and A, B be two disjoint non-empty subsets of $V(G)$. The edge density between A and B is

$$
d(A, B)=\frac{e(G[A, B])}{|A||B|}
$$

For $\epsilon>0$, the pair (A, B) is called ϵ-regular if for every $X \subseteq A$ and $Y \subseteq B$ satisfying $|X|>\epsilon|A|$ and $|Y|>\epsilon|B|$ we have

$$
|d(X, Y)-d(A, B)|<\epsilon
$$

An equitable partition of a set V is a partition of V into pairwise disjoint parts V_{1}, \ldots, V_{m} of almost equal size, i.e., $\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$ for all $i, j \in[m]$. An equitable partition of the set of vertices of G into parts V_{1}, \ldots, V_{m} is called ϵ-regular if $\left|V_{i}\right| \leq \epsilon|V|$ for every $i \in[m]$ and all but at most $\epsilon\binom{m}{2}$ of the pairs $\left(V_{i}, V_{j}\right), 1 \leq i<j \leq m$, are ϵ-regular.

The following more general result can be deduced from the original Regularity Lemma of Szemerédi [14] (cf. Theorems 1.8 and 1.18 in Komlós and Simonovits [9]).

Lemma 2.1 (Multicolor Regularity Lemma) For every $\epsilon>0$ and an integer $r \geq 1$, there is $M=M(\epsilon, r)$ such that for any graph G on $n>M$ vertices and any (not necessarily proper) edge r-coloring $\chi: E(G) \rightarrow[r]$, there is an equitable partition $V(G)=V_{1} \cup \ldots \cup V_{m}$ with $1 / \epsilon \leq m \leq M$, which is ϵ-regular simultaneously with respect to all graphs $\left(V(G), \chi^{-1}(i)\right), i \in[r]$.

Also, we will need the following special case of the Embedding Lemma (see e.g. [9, Theorem 2.1]).

Lemma 2.2 (Embedding Lemma) For every $\eta>0$ and an integer $k \geq 2$ there exists $\epsilon>0$, such that the following holds for all large n. Suppose that G is a graph of order n with an equitable partition $V(G)=V_{1} \cup \ldots \cup V_{k}$ such that every pair $\left(V_{i}, V_{j}\right)$ for $1 \leq i<j \leq k$ is ϵ-regular of density at least η. Then G contains K_{k}.

While we have $t_{k}(n)=(1-1 / k+o(1))\binom{n}{2}$ for $n \rightarrow \infty$, the following easy bound holds for all $k, n \geq 1$:

$$
\begin{equation*}
\max \{e(G): v(G)=n, G \text { is } k \text {-partite }\}=t_{k}(n) \leq\left(1-\frac{1}{k}\right) \frac{n^{2}}{2} \tag{7}
\end{equation*}
$$

We will also use the following stability result for the Turán function (1).
Lemma 2.3 (Erdős [4] and Simonovits [13]) For every $\alpha>0$ and an integer $k \geq 1$, there exist $\beta>0$ and n_{0} such that, for all $n>n_{0}$, any K_{k+1}-free graph G on n vertices with at least $(1-1 / k) n^{2} / 2-\beta n^{2}$ edges admits an equitable partition $V(G)=V_{1} \cup \ldots \cup V_{k}$ with $\mid G \triangle$ $K\left(V_{1}, \ldots, V_{k}\right) \mid<\alpha n^{2}$.

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. Here we have to overcome many new difficulties that are not present for 2 or 3 colors. So, unfortunately, the proof is long and complicated. In order to improve its readability we split it into a sequence of lemmas. Since we use the Regularity Lemma, the obtained value for N in Theorem 1.1 is very large and is of little practical value. Therefore we make no attempt to determine or optimize it.

First, let us state some important definitions that are extensively used in the whole proof. Fix positive constants

$$
c_{0} \gg c_{1} \gg \ldots \gg c_{10}
$$

each being sufficiently small depending on the previous ones. Let $M=1 / c_{9}$ and $n_{0}=1 / c_{10}$.

Typically, the order of a graph under consideration will be denoted by n and will satisfy $n \geq n_{0}$. We will view n as tending to infinity with c_{0}, \ldots, c_{9} being fixed and use the asymptotic terminology (such as, for example, the expression $O(1)$ or the phrase "almost every") accordingly.

Let \mathcal{G}_{n} consist of graphs of order n that have many K_{3}-free edge 4-colorings. Specifically,

$$
\mathcal{G}_{n}=\left\{G: v(G)=n, F(G, 4,3) \geq 18^{n^{2} / 8} \cdot 2^{-c_{8} n^{2}}\right\}
$$

Let $\mathcal{G}=\cup_{n \geq n_{0}} \mathcal{G}_{n}$. The lower bound in (3) (whose proof we sketched in the Introduction) shows that \mathcal{G}_{n} is non-empty for each $n \geq n_{0}$.

Next, for an arbitrary graph G with $n \geq n_{0}$ vertices and a K_{3}-free 4-coloring χ of the edges of G, we will define the following objects and parameters. As the constants c_{8} and M satisfy Lemma 2.1 (namely, we can assume that M is at least the function $M\left(c_{8}, 4\right)$ returned by Lemma 2.1), we can find a partition $V(G)=V_{1} \cup \ldots \cup V_{m}$ with $1 / c_{8} \leq m \leq M$ that is c_{8}-regular with respect to each color. Next, we define the cluster graphs H_{1}, H_{2}, H_{3}, and H_{4} on vertex set [m], where H_{ℓ} consists of those pairs $i j \in\binom{[m]}{2}$ such that the pair $\left(V_{i}, V_{j}\right)$ is c_{8}-regular and has edge density at least c_{7} with respect to the ℓ-color subgraph $\chi^{-1}(\ell)$ of G. For $1 \leq s \leq 4$, let R_{s} be the graph on vertex set [m] where $a b \in E\left(R_{s}\right)$ if and only if $a b \in E\left(H_{\ell}\right)$ for exactly s values of $\ell \in[4]$. Let $R=\cup_{s=1}^{4} R_{s}$ be the union of the graphs R_{s}. Let $r_{s}=2 e\left(R_{s}\right) / m^{2}$.

We view $m, V_{i}, H_{i}, R_{i}, R, r_{i}$ as functions of the pair (G, χ). Although we may have some freedom when choosing the c_{8}-regular partition V_{1}, \ldots, V_{m}, we fix just one choice for each input (G, χ). We do not require any "continuity" property from these functions: for example, it may be possible that χ_{1} and χ_{2} are two colorings of the same graph G that differ on one edge only but $r_{i}\left(G, \chi_{1}\right)$ and $r_{i}\left(G, \chi_{2}\right)$ are quite far apart.

By Lemma 2.2, each cluster graph H_{i} is triangle-free and, by Turán's theorem (1), has at most $t_{2}(m)$ edges. By (7),

$$
\begin{equation*}
r_{1}+2 r_{2}+3 r_{3}+4 r_{4}=\frac{e\left(H_{1}\right)+e\left(H_{2}\right)+e\left(H_{3}\right)+e\left(H_{4}\right)}{m^{2} / 2} \leq 2 \tag{8}
\end{equation*}
$$

In addition, note that $R_{3} \cup R_{4}$ is triangle-free because a triangle in $R_{3} \cup R_{4}$ gives a triangle in some H_{i}. Therefore, by (1) and (7),

$$
\begin{equation*}
r_{3}+r_{4} \leq 1 / 2 \tag{9}
\end{equation*}
$$

We also need the following "converse" procedure for generating all K_{3}-free edge 4-colorings of G. Our upper bounds on $F(G, 4,3)$ and some structural information about typical colorings is obtained by estimating the possible number of outputs. Since the parameters r_{1}, \ldots, r_{4} play crucial role in these estimates, some guesses of the functions m, V_{i}, and H_{i} (and thus of R_{i}, R, and r_{i}) are also generated. The procedure is rather wasteful in the sense that it can generate a lot of "garbage". But the obtained inequalities (8) and (9) imply the crucial property that every K_{3}-free edge 4-coloring of G with the correct guess of m, V_{i}, and H_{i} is generated at least once provided $v(G) \geq n_{0}$.

The Coloring Procedure

1. Choose an arbitrary integer m^{\prime} between $1 / c_{8}$ and M.
2. Choose an arbitrary equitable partition $V(G)=V_{1}^{\prime} \cup \cdots \cup V_{m^{\prime}}^{\prime}$.
3. Choose arbitrary graphs $H_{1}^{\prime}, \ldots, H_{4}^{\prime}$ with vertex set $\left[m^{\prime}\right]$ such that we have

$$
\begin{align*}
r_{1}^{\prime}+2 r_{2}^{\prime}+3 r_{3}^{\prime}+4 r_{4}^{\prime} & \leq 2 \tag{10}\\
r_{3}^{\prime}+r_{4}^{\prime} & \leq 1 / 2 \tag{11}
\end{align*}
$$

where R_{i}^{\prime}, and r_{i}^{\prime} are defined by the direct analogy with R_{i} and r_{i}. (For example, for $i \in[4]$, R_{i}^{\prime} is the graph on $\left[m^{\prime}\right]$ whose edges are those pairs of $\binom{\left[m^{\prime}\right]}{2}$ that are edges in exactly i graphs $H_{1}^{\prime}, \ldots, H_{4}^{\prime}$.)
4. Assign arbitrary colors to all edges of G that lie inside some part V_{i}^{\prime}.
5. Select at most $4 c_{8}\binom{m^{\prime}}{2}$ elements of $\binom{\left[m^{\prime}\right]}{2}$ and, for each selected pair $i j$, assign colors to $G\left[V_{i}^{\prime}, V_{j}^{\prime}\right]$ arbitrarily.
6. For every color $l \in[4]$ and every $i j \in\binom{\left[m^{\prime}\right]}{2}$ color an arbitrary subset of edges of $G\left[V_{i}^{\prime}, V_{j}^{\prime}\right]$ of size at most $c_{7}\left|V_{i}^{\prime}\right|\left|V_{j}^{\prime}\right|$ by color l.
7. For every edge $x y$ of G that is not colored yet, let us say $x \in V_{i}^{\prime}$ and $y \in V_{j}^{\prime}$, pick an arbitrary color from the set $C_{i j}=\left\{s \in[4]: i j \in H_{s}^{\prime}\right\}$. If $C_{i j}=\emptyset$, then we color $x y$ with Color 1.

Lemma 3.1 For every graph G of order $n \geq n_{0}$, the number of choices in Steps 1-6 of the Coloring Procedure is at most $2^{c_{6} n^{2}}$.

Proof. Clearly, the number of choices in Steps $1-3$ is at most

$$
\begin{equation*}
M \cdot n^{M} \cdot\left(2^{\binom{M}{2}}\right)^{4}=2^{O(\log n)} \tag{12}
\end{equation*}
$$

Fix these choices. Since $m^{\prime} \geq 1 / c_{8}$, the number of edges that lie inside some part V_{i}^{\prime} is at most $m^{\prime}\binom{\left\lceil n / m^{\prime}\right\rceil}{ 2} \leq c_{6} n^{2} / 8$; so the number of choices in Step 4 is at most $4^{c_{6} n^{2} / 8}$. In Step 5 we have at $\operatorname{most} 2^{\binom{m^{\prime}}{2}} \cdot 4^{4 c_{8}\binom{m^{\prime}}{2}\left\lceil n / m^{\prime}\right\rceil^{2}}<2^{c_{6} n^{2} / 4}$ options. The number of choices in Step 6 is at most

$$
\binom{\left\lceil n / m^{\prime}\right\rceil^{2}}{\leq c_{7}\left\lceil n / m^{\prime}\right\rceil^{2}}^{4\binom{m^{\prime}}{2}}<2^{c_{6} n^{2} / 4}
$$

By multiplying these four bounds, we obtain the required.
The number of options in Step 7 can be bounded from above by

$$
\begin{equation*}
\left(2^{e\left(R_{2}^{\prime}\right)} \cdot 3^{e\left(R_{3}^{\prime}\right)} \cdot 4^{e\left(R_{4}^{\prime}\right)}\right)^{\left\lceil n / m^{\prime}\right\rceil^{2}} \leq\left(2^{r_{2}^{\prime}} \cdot 3^{r_{3}^{\prime}} \cdot 4^{r_{4}^{\prime}}\right)^{n^{2} / 2+O(n)}=2^{L n^{2} / 2+O(n)} \tag{13}
\end{equation*}
$$

where $L=r_{2}^{\prime}+\log _{2}(3) r_{3}^{\prime}+2 r_{4}^{\prime}$. One can easily show that the maximum of L given (10) and (11) (and the non-negativity of $\left.r_{1}^{\prime}, \ldots, r_{4}^{\prime}\right)$ is $\left(\log _{2} 18\right) / 4$. When combined with Lemma 3.1, this allows one to conclude that, for example,

$$
\begin{equation*}
F(n, 4,3) \leq 18^{n^{2} / 8} \cdot 2^{2 c_{6} n^{2}}, \quad \text { for all } n \geq n_{0} \tag{14}
\end{equation*}
$$

This is essentially the argument from [1]. We need to take this argument further. As the first step, we derive some information about r_{2} and r_{3} for a typical coloring χ. We call a pair (G, χ) (or the coloring χ) satisfactory if

$$
\begin{equation*}
r_{2}>1 / 4-c_{5} / 2 \quad \text { and } \quad r_{3}>1 / 2-c_{5} \tag{15}
\end{equation*}
$$

Otherwise, (G, χ) is unsatisfactory. Next, we establish some results about satisfactory colorings. Later, this will allow us to define two other important properties of colorings (namely, being good and being perfect).

Lemma 3.2 For every graph G with $n \geq n_{0}$ vertices the number of unsatisfactory K_{3}-free edge 4 -colorings is less than $18^{n^{2} / 8} \cdot 2^{-c_{6} n^{2}}$. In particular, if $G \in \mathcal{G}_{n}$ then almost every coloring is satisfactory.

Proof. We use the Coloring Procedure and bound from above the number of outputs that give unsatisfactory colorings. By Lemma 3.1, the number of choices in Steps $1-6$ is at most $2^{c_{6} n^{2}}$. We use (13) to estimate the number of choices in Step 7.

The value of L under constraints (10), (11), and

$$
\begin{equation*}
r_{3}^{\prime} \leq 1 / 2-c_{5} \tag{16}
\end{equation*}
$$

(as well as the non-negativity of the variables r_{i}^{\prime}) is at most

$$
L_{\max }=\left(1 / 4+3 c_{5} / 2\right)+\left(1 / 2-c_{5}\right) \log _{2} 3<\left(1 / 4-c_{5}^{2}\right) \log _{2} 18
$$

This can be seen by multiplying (10), (11), and (16) by respectively $y_{1}=1 / 2, y_{2}=0$, and $y_{3}=\log _{2} 3-3 / 2>0$, and adding these inequalities. The obtained inequality has $L_{\max }$ in the right-hand side while each coefficient of the left-hand is at least the corresponding coefficient of L, giving the required bound. (In fact, these reals y_{i} are the optimal dual variables for the linear program of maximizing L.)

Likewise, when we maximize L under constraints (10), (11), and

$$
\begin{equation*}
r_{2}^{\prime} \leq 1 / 4-c_{5} / 2 \tag{17}
\end{equation*}
$$

then we have the same upper bound $L_{\max }$ (with the optimal dual variables for (10), (11), and (17) being respectively $y_{1}=2-\log _{2} 3>0, y_{2}=4 \log _{2} 3-6>0$, and $\left.y_{3}=2 \log _{2} 3-3>0\right)$. Since in Step 7 we have only two (possibly overlapping) cases depending on which of (17) or (16) holds, the total number of choices in Step 7 is by (13) at most

$$
2 \cdot 2^{L_{\max } n^{2} / 2+O(n)}<18^{\left(1 / 8-c_{5}^{2} / 3\right) n^{2}} .
$$

By multiplying this by $2^{c_{6} n^{2}}$, we obtain the required upper bound on the number of unsatisfactory colorings.

For each satisfactory coloring of $G \in \mathcal{G}$ we record the vector $\nu(\chi)=\left(m, V_{i}, H_{i}\right)$ of parameters. Call a vector $\left(m, V_{i}, H_{i}\right)$ popular if

$$
\left|\nu^{-1}\left(\left(m, V_{i}, H_{i}\right)\right)\right| \geq 18^{n^{2} / 8} \cdot 2^{-3 c_{8} n^{2}}
$$

that is, if it appears for at least $18^{n^{2} / 8} \cdot 2^{-3 c_{8} n^{2}}$ satisfactory colorings, where $n=v(G)$. As the number of possible choices of vectors is bounded by (12), the number of satisfactory colorings for which the corresponding vector is not popular is at most

$$
2^{O(\log n)} \cdot 18^{n^{2} / 8} \cdot 2^{-3 c_{8} n^{2}} \leq 18^{n^{2} / 8} \cdot 2^{-2 c_{8} n^{2}}
$$

that is, $o(1)$-fraction of all colorings. Let $\operatorname{Pop}(G)$ be the set of all popular vectors and let

$$
\begin{equation*}
\mathcal{S}(G)=\nu^{-1}(\operatorname{Pop}(G)) \tag{18}
\end{equation*}
$$

be the set of satisfactory K_{3}-free edge 4-colorings of G for which the corresponding vector is popular. By Lemma $3.2, \mathcal{S}(G)$ is non-empty.

Our next goal is to exhibit a stability property, namely, that every graph $G \in \mathcal{G}$ is almost complete 4-partite. To this end, for every input graph G we fix a max-cut 4-partition $V(G)=$ $W_{1} \cup W_{2} \cup W_{3} \cup W_{4}$, that is, one that maximizes the number of edges of G across the parts. First we show that, for every popular vector $\left(m, V_{i}, H_{i}\right) \in \operatorname{Pop}(G)$, the cluster graph R is almost complete 4 -partite. Then we extend this result to G.

Lemma 3.3 Let $n \geq n_{0}, G \in \mathcal{G}_{n}$, and $\left(m, V_{i}, H_{i}\right) \in \operatorname{Pop}(G)$. Then there exist equitable partitions $[m]=A \cup B, A=U_{1} \cup U_{2}$, and $B=U_{3} \cup U_{4}$ such that

$$
\begin{align*}
\left|R_{3} \triangle K(A, B)\right| & <c_{4} m^{2} \tag{19}\\
\left|R_{2}[A] \triangle K\left(U_{1}, U_{2}\right)\right| & <2 c_{3} m^{2} \tag{20}\\
\left|R_{2}[B] \triangle K\left(U_{3}, U_{4}\right)\right| & <2 c_{3} m^{2} \tag{21}\\
\left|R \triangle K\left(U_{1}, U_{2}, U_{3}, U_{4}\right)\right| & <5 c_{3} m^{2} \tag{22}
\end{align*}
$$

Proof. We have already proved that R_{3} is triangle-free. As $\left(m, V_{i}, H_{i}\right)$ is associated with a satisfactory coloring, (15) is satisfied; in particular, $r_{3}>1 / 2-c_{5}$. Therefore, $e\left(R_{3}\right)=r_{3} m^{2} / 2>$ $t_{2}(m)-c_{5} m^{2} / 2$. As $c_{5} \ll c_{4}$, we can apply Lemma 2.3 to partition $V\left(R_{3}\right)=[m]$ into two sets A and B such that $|A|=\lfloor m / 2\rfloor,|B|=\lceil m / 2\rceil$, and (19) holds.

Since $R_{2} \cap R_{3}=\emptyset$, we have $\left|R_{2} \cap K(A, B)\right| \leq\left|K(A, B) \backslash R_{3}\right|<c_{4} m^{2}$. This and (15) imply that

$$
\begin{equation*}
e\left(R_{2}[A]\right)+e\left(R_{2}[B]\right)>e\left(R_{2}\right)-c_{4} m^{2}=r_{2} m^{2} / 2-c_{4} m^{2}>m^{2} / 8-2 c_{4} m^{2} . \tag{23}
\end{equation*}
$$

What we show in the following sequence of claims is that $R_{2}[A]$ and $R_{2}[B]$ are both close to being triangle-free and have roughly $m^{2} / 16$ edges each; then we can apply Lemma 2.3 to these graphs, obtaining the desired partitions of A and B.

For a vertex $a \in A$, let $B_{a}=N_{R_{3}}(a) \cap B$ be the set of R_{3}-neighbors of a that lie in B. Similarly, for a vertex $b \in B$, let $A_{b}=N_{R_{3}}(b) \cap A$.

Claim 3.3.1 For every $a \in A$ we have $K_{5} \nsubseteq R_{2}\left[B_{a}\right]$.

Proof of Claim. Assume that a set $\left\{b_{1}, b_{2}, \ldots, b_{5}\right\} \subseteq B_{a}$ spans a K_{5} in R_{2}. Each edge $a b_{i}$ is contained in R_{3} and, by definition, is labeled with a 3 -element subset of [4]. As there are five edges and only four 3 -element subsets of [4], at least two edges, say $a b_{1}$ and $a b_{2}$, receive identical labels, say $\{1,2,3\}$. However, $b_{1} b_{2}$, being an edge in R_{2}, is labeled with a 2 -element subset of [4] which has a non-empty intersection with $\{1,2,3\}$. This implies the existence of a triangle in some H_{i}, a contradiction. I

Claim 3.3.2 If $a_{1} a_{2} \in E\left(R_{2}[A]\right)$, then $K_{3} \nsubseteq R_{2}\left[B_{a_{1}} \cap B_{a_{2}}\right]$.

Proof of Claim. Suppose on the contrary that we have an edge $a_{1} a_{2}$ in $R_{2}[A]$ and a triangle in $R_{2}\left[B_{a_{1}} \cap B_{a_{2}}\right]$ with vertices b_{1}, b_{2}, and b_{3}. Let S be the multiset produced by the union of the labels of the edges $a_{1} a_{2}, a_{i} b_{j}$, and $b_{i} b_{j}$. As each edge $a_{i} b_{j}$ is labeled with a 3 -element subset of [4] and the remaining four edges are labeled with a 2-element subset of [4], we have $|S|=6 \cdot 3+4 \cdot 2=26$. By the pigeonhole principle, some member of [4] belongs to S with multiplicity at least 7. But this corresponds to some H_{i} having at least 7 edges among the 5 vertices $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}$. By Turán's result (1), this implies that H_{i} has a triangle, a contradiction. I

Define

$$
B^{\prime}=\left\{b \in B:\left|A_{b}\right|>|A|-\sqrt{c_{4}} m\right\}
$$

As each vertex of $B \backslash B^{\prime}$ contributes at least $\sqrt{c_{4}} m$ to $\left|K(A, B) \backslash R_{3}\right|$, there are less than $\sqrt{c_{4}} m$ such vertices by (19). Thus $\left|B^{\prime}\right|>|B|-\sqrt{c_{4}} m \geq\left(1 / 2-\sqrt{c_{4}}\right) m$. Similarly, we can define A^{\prime} to be the set of vertices $a \in A$ for which $\left|B_{a}\right|>|B|-\sqrt{c_{4}} m$ and note that $\left|A^{\prime}\right|>|A|-\sqrt{c_{4}} m>0$.

Claim 3.3.3 $e\left(R_{2}[B]\right)<3 m^{2} / 32+\sqrt{c_{4}} m^{2}$.
Proof of Claim. Consider B_{a} for some $a \in A^{\prime}$. By definition, $\left|B_{a}\right|>|B|-\sqrt{c_{4}} m$ and, by Claim 3.3.1, B_{a} contains no 5 -clique. By Turán's Theorem (1) (and (7)), the number of edges in $R_{2}[B]$ is at most $(3 / 4)\left|B_{a}\right|^{2} / 2+\sqrt{c_{4}} m|B|$, giving the required. I

Claim 3.3.4 $K_{3} \nsubseteq R_{2}\left[B^{\prime}\right]$.

Proof of Claim. Suppose on the contrary that b_{1}, b_{2}, b_{3} form a K_{3} in $R_{2}\left[B^{\prime}\right]$. Let $X=A_{b_{1}} \cap A_{b_{2}} \cap A_{b_{3}}$. By definition, $\left|A \backslash A_{b_{i}}\right|<\sqrt{c_{4}} m$. So, $|X|>|A|-3 \sqrt{c_{4}} m$. By Claim 3.3.2, there are no edges within X. So, $e\left(R_{2}[A]\right) \leq|A \backslash X| \cdot|A|<3 \sqrt{c_{4}} m^{2}$. However, when coupled with Claim 3.3.3, this contradicts (23). I

In particular, $R_{2}[B]$ may be made triangle-free by the removal of at most $\left|B \backslash B^{\prime}\right| \cdot|B|<\sqrt{c_{4}} m^{2}$ edges. Hence, we can improve the bound from Claim 3.3.3:

$$
\begin{equation*}
e\left(R_{2}[B]\right)<\left(1-\frac{1}{2}\right)|B|^{2} / 2+\sqrt{c_{4}} m^{2} \leq m^{2} / 16+2 \sqrt{c_{4}} m^{2} \tag{24}
\end{equation*}
$$

By (23) and (24), $e\left(R_{2}[A]\right)>m^{2} / 16-2 c_{4} m^{2}-2 \sqrt{c_{4}} m^{2}$. As above, by removing at most $\sqrt{c_{4}} m^{2}$ edges, we can form a graph R_{2}^{\prime} on vertex set A, which is triangle-free. We can now apply Lemma 2.3 to R_{2}^{\prime}, to find a partition $A=U_{1} \cup U_{2}$ such that $\left|R_{2}^{\prime} \triangle K\left(U_{1}, U_{2}\right)\right|<c_{3} m^{2}$. As R_{2}^{\prime} and $R_{2}[A]$ differ in at most $\sqrt{c_{4}} m^{2}$ edges, we derive (20). The existence of an equitable partition $B=U_{3} \cup U_{4}$ satisfying (21) is proved similarly.

By (19)-(21), we have $\left|\left(R_{2} \cup R_{3}\right) \triangle K\left(U_{1}, U_{2}, U_{3}, U_{4}\right)\right|<4 c_{3} m^{2}+c_{4} m^{2}$. Also, by (8) and (15), we have $r_{1}+r_{4} \leq 4 c_{5}$ and $\left|R_{1} \cup R_{4}\right| \leq 2 c_{5} m^{2}$. Now (22) follows, finishing the proof of Lemma 3.3.

For a graph $G \in \mathcal{G}$ and a popular vector $\left(m, V_{i}, H_{i}\right) \in \operatorname{Pop}(G)$, fix the sets $A, B, U_{1}, \ldots, U_{4}$ given by Lemma 3.3. For $i \in[4]$, let $\tilde{U}_{i}=\cup_{j \in U_{i}} V_{j}$ be the blow-up of U_{i}. Let $\tilde{F}=K\left(\tilde{U}_{1}, \tilde{U}_{2}, \tilde{U}_{3}, \tilde{U}_{4}\right)$.

Lemma 3.4 For every $n \geq n_{0}, G \in \mathcal{G}_{n}$ and $\left(m, V_{i}, H_{i}\right) \in \operatorname{Pop}(G)$, we have $|G \triangle \tilde{F}|<12 c_{3} n^{2}$.
Proof. It routinely follows that the size of $G \backslash \tilde{F}$ is at most the sum of the following terms:

- $m\binom{\lceil n / m\rceil}{ 2}$, the number of edges of G inside parts V_{i};
- $4 c_{8}\binom{[m]}{2} \cdot\lceil n / m\rceil^{2}$, edges between parts which are not c_{8}-regular for at least one color graph;
- $4 c_{7}\binom{n}{2}$, edges between parts of density at most c_{7} for at least one color;
- $\left|R \backslash K\left(U_{1}, U_{2}, U_{3}, U_{4}\right)\right| \cdot\lceil n / m\rceil^{2} \leq 5 c_{3} m^{2} \cdot\lceil n / m\rceil^{2}$, where we used (22).

Adding up, this gives less than $6 c_{3} n^{2}$.
Next, we estimate $|\tilde{F} \backslash G|$ by bounding the number of satisfactory colorings of G that give our fixed vector $\left(m, V_{i}, H_{i}\right)$. Again, we use the Coloring Procedure to generate all such colorings, where m, V_{i}, H_{i} are fixed in advance. By Lemma 3.1, we have at most $2^{c_{6} n^{2}}$ options in Steps 4-6. Once we have fixed the choices in these steps, the remaining uncolored edges of G are restricted to those between the parts while the graphs R_{1}, \ldots, R_{4} specify how many choices of color each edge has. Thus the number of options in Step 7 is at most

$$
\prod_{f=2}^{4} \prod_{i j \in R_{f}} f^{\lceil n / m\rceil^{2}-\left|K\left(V_{i}, V_{j}\right) \backslash G\right|} \leq\left(2^{2 c_{6} n^{2}} \cdot 18^{n^{2} / 8}\right) \prod_{i j \in R_{2} \cup R_{3}} 2^{-\left|K\left(V_{i}, V_{j}\right) \backslash G\right|}
$$

where we used a version of (14). Let us look at the last factor. If we replace the range of $i j$ in the product by $K\left(U_{1}, U_{2}, U_{3}, U_{4}\right)$ instead of $R_{2} \cup R_{3}$, this will affect at most $\left(c_{4}+4 c_{3}\right) m^{2}$ pairs $i j$ by (19)-(21) and we get an extra factor of at most $2^{5 c_{3} n^{2}}$. Thus

$$
\prod_{i j \in R_{2} \cup R_{3}} 2^{-\left|K\left(V_{i}, V_{j}\right) \backslash G\right|} \leq 2^{-|\tilde{F} \backslash G|} \cdot 2^{5 c_{3} n^{2}} .
$$

Since the vector $\left(m, V_{i}, H_{i}\right)$ is popular, we conclude that

$$
|\tilde{F} \backslash G| \leq 5 c_{3} n^{2}+2 c_{6} n^{2}+3 c_{8} n^{2} \leq 6 c_{3} n^{2}
$$

giving the required.

Lemma 3.5 (Stability Property) Let $n \geq n_{0}, G \in \mathcal{G}_{n}$, and $W_{1}^{\prime} \cup W_{2}^{\prime} \cup W_{3}^{\prime} \cup W_{4}^{\prime}$ be a partition of $V(G)$ with

$$
\left|G \cap K\left(W_{1}^{\prime}, W_{2}^{\prime}, W_{3}^{\prime}, W_{4}^{\prime}\right)\right| \geq\left|G \cap K\left(W_{1}, W_{2}, W_{3}, W_{4}\right)\right|-c_{3} n^{2}
$$

Then we have

$$
\begin{equation*}
\left|G \triangle K\left(W_{1}^{\prime}, W_{2}^{\prime}, W_{3}^{\prime}, W_{4}^{\prime}\right)\right| \leq 15 c_{3} n^{2} \tag{25}
\end{equation*}
$$

and for every popular vector $\left(m, V_{i}, H_{i}\right) \in \operatorname{Pop}(G)$ there is a relabeling of $W_{1}^{\prime}, \ldots, W_{4}^{\prime}$ such that for each $i \in[4]$,

$$
\begin{equation*}
\left|W_{i}^{\prime} \triangle \tilde{U}_{i}\right| \leq 2000 c_{3} n \tag{26}
\end{equation*}
$$

It follows that $\left|\left|W_{i}\right|-n / 4\right| \leq c_{2} n$ for each $i \in[4]$ and that $\left|G \triangle K\left(W_{1}, W_{2}, W_{3}, W_{4}\right)\right| \leq 15 c_{3} n^{2}$.
Proof. Let $F^{\prime}=K\left(W_{1}^{\prime}, W_{2}^{\prime}, W_{3}^{\prime}, W_{4}^{\prime}\right)$ and $F=K\left(W_{1}, W_{2}, W_{3}, W_{4}\right)$. As the max-cut partition $W_{1} \cup \ldots \cup W_{4}$ maximizes the number of edges across parts, we have $\left|F^{\prime} \cap G\right|+c_{3} n^{2} \geq|F \cap G| \geq|\tilde{F} \cap G|$. Since the partitions $[m]=U_{1} \cup \cdots \cup U_{4}$ and $[n]=V_{1} \cup \cdots \cup V_{m}$ are equitable, we have

$$
\begin{equation*}
\left|\left|\tilde{U}_{i}\right|-n / 4\right| \leq m+n / m \tag{27}
\end{equation*}
$$

Thus we have $|\tilde{F}| \geq\left|F^{\prime}\right|-c_{8} n^{2}$ and, by Lemma 3.4,

$$
\begin{align*}
\left|F^{\prime} \triangle G\right| & =\left|F^{\prime}\right|+|G|-2\left|F^{\prime} \cap G\right| \\
& \leq\left(|\tilde{F}|+c_{8} n^{2}\right)+|G|-2\left(|\tilde{F} \cap G|-c_{3} n^{2}\right) \tag{28}\\
& =|\tilde{F} \triangle G|+c_{8} n^{2}+2 c_{3} n^{2} \leq 15 c_{3} n^{2}
\end{align*}
$$

proving the first part of the lemma.
We look for a relabeling of $W_{1}^{\prime}, \ldots, W_{4}^{\prime}$ such that $\left|\tilde{U}_{i} \backslash W_{i}^{\prime}\right|<500 c_{3} n$ for each $i \in[4]$. Suppose that no such relabeling exists. Then, since $c_{3} \ll 1$ and e.g. each $\left|W_{i}^{\prime}\right| \leq n / 3$, there is $i \in[4]$ such that for every $j \in[4]$ we have that $\left|\tilde{U}_{i} \backslash W_{j}^{\prime}\right| \geq 500 c_{3} n$. Take $j \in[4]$ such that $\left|\tilde{U}_{i} \cap W_{j}^{\prime}\right| \geq\left|\tilde{U}_{i}\right| / 4$ and let $X=\tilde{U}_{i} \cap W_{j}^{\prime}$ and $Y=\tilde{U}_{i} \backslash W_{j}^{\prime}$. However, $X, Y \subseteq \tilde{U}_{i}$ and Lemma 3.4 imply that $e(G[X, Y])<12 c_{3} n^{2}$ whereas $X \subseteq W_{j}^{\prime}, Y \cap W_{j}^{\prime}=\emptyset$, and (28) imply that $e(G[X, Y]) \geq|X||Y|-15 c_{3} n^{2}>12 c_{3} n^{2}$, a contradiction. So take the stated relabeling. Then (26) follows from the observation that

$$
W_{i}^{\prime} \backslash \tilde{U}_{i} \subseteq \bigcup_{j \in[4] \backslash\{i\}}\left(\tilde{U}_{j} \backslash W_{j}^{\prime}\right)
$$

The last two claims of Lemma 3.5 can be derived by taking $W_{i}^{\prime}=W_{i}$ for $i \in[4]$ (and using (27)).
Define a pattern as an assignment $\pi:\binom{[4]}{2} \rightarrow\binom{[4]}{2} \cup\binom{[4]}{3}$ (to every edge of K_{4} we assign a list of 2 or 3 colors) such that $\pi^{-1}(i)$ forms a 4 -cycle for every $i \in[4]$. Up to isomorphism (of colors and edges) there is only one pattern. We say that an edge 4-coloring χ of $G \in \mathcal{G}_{n}$ follows the pattern π if for every $i j \in\binom{[4]}{2}$ we have

$$
\left|\chi^{-1}([4] \backslash \pi(i j)) \cap G\left[W_{i}, W_{j}\right]\right| \leq c_{2} n^{2}
$$

that is, at most $c_{2} n^{2}$ edges of $G\left[W_{i}, W_{i}\right]$ get a color not in $\pi(i j)$.
Recall that the set $\mathcal{S}(G)$ consists of all satisfactory colorings whose associated vector is popular.
Lemma 3.6 For every graph $G \in \mathcal{G}_{n}$ with $n \geq n_{0}$, every coloring $\chi \in \mathcal{S}(G)$ follows a pattern.

Proof. Take any $\chi \in \mathcal{S}(G)$. Recall that $A, B, U_{1}, \ldots, U_{4}$ are the sets given by Lemma 3.3. Let

$$
R^{\prime}=\left(R_{3} \cap K(A, B)\right) \cup\left(R_{2} \cap K\left(U_{1}, U_{2}\right)\right) \cup\left(R_{2} \cap K\left(U_{3}, U_{4}\right)\right)
$$

Let the label of an edge $u v$ in R be $\hat{\chi}(u v)=\left\{i \in[4]: u v \in E\left(H_{i}\right)\right\}$. So, for all edges $u_{i} u_{j} \in R^{\prime}$ $\operatorname{across} U_{i} \times U_{j}$, we have

$$
\left|\hat{\chi}\left(u_{i} u_{j}\right)\right|= \begin{cases}2, & \text { if }\{i, j\} \in\{\{1,2\},\{3,4\}\} \tag{29}\\ 3, & \text { otherwise }\end{cases}
$$

We show next that $\hat{\chi}$ has a very simple structure: with the exception of a small fraction of edges, $\hat{\chi}$ behaves as the blow up of some labeling on K_{4}. Furthermore, the latter labeling is isomorphic to some pattern π, as defined above.

Claim 3.6.1 Let the sets $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $\left\{w, v_{2}, v_{3}, v_{4}\right\}$ both span a K_{4}-subgraph in R^{\prime}, where $w \in U_{1}$ and each $v_{i} \in U_{i}$. Then $\hat{\chi}\left(v_{1} v_{i}\right)=\hat{\chi}\left(w v_{i}\right)$ for all $i \in\{2,3,4\}$.

Proof of Claim. First consider the restriction of $\hat{\chi}$ to $X=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Let S be the multi-set produced by the union of $\hat{\chi}\left(v_{i} v_{j}\right), 1 \leq i<j \leq 4$. So, $|S|=2 \cdot 2+4 \cdot 3=16$. As each $H_{t}[X]$ is trianglefree, it follows by the uniqueness of the Turán graph that $\hat{\chi}^{-1}(t)$ forms a 4 -cycle on X for each $t \in[4]$. When taking (29) into consideration, we see that there is only one possible configuration (up to isomorphism). A nice property of this configuration is that $\hat{\chi}\left(v_{i} v_{j}\right)=\hat{\chi}\left(v_{k} v_{\ell}\right)$ whenever $\{i, j, k, \ell\}=[4]$, i.e., edges that form a matching on X receive identical labels. As $\left\{w, v_{2}, v_{3}, v_{4}\right\}$ also spans a copy of K_{4}, we have $\hat{\chi}\left(w v_{j}\right)=\hat{\chi}\left(v_{k} v_{\ell}\right)=\hat{\chi}\left(v_{1} v_{\ell}\right)$, where $\{j, k, \ell\}=\{2,3,4\}$, proving the claim.

Now choose $X=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, where $v_{i} \in U_{i}$, such that $R^{\prime}[X] \cong K_{4}$ and, for each vertex $v_{i} \in X$, we have

$$
\begin{equation*}
\left|N_{R^{\prime}}\left(v_{i}\right) \cap U_{j}\right|>\left|U_{j}\right|-2 \sqrt{c_{3}} m \quad \text { for all } j \in[4] \backslash\{i\} \tag{30}
\end{equation*}
$$

We may build such a set iteratively by picking $v_{1} \in U_{1}$ satisfying (30), then $v_{2} \in U_{2} \cap N\left(v_{1}\right)$ satisfying (30), and so on. We are guaranteed the existence of such vertices as at most $2 c_{3} m^{2}$ edges across a pair U_{i}, U_{j} are missing from R^{\prime}. In fact, the number of vertices $u \in U_{i}$ that fail condition (30) is less than $3 \sqrt{c_{3}} m$.

Let $A_{i} \subseteq U_{i}$ consist of those vertices that lie in $N_{R^{\prime}}\left(v_{j}\right)$ for all $v_{j} \in X$ with $j \in[4] \backslash\{i\}$. As all vertices v_{j} satisfy (30), we have $\left|A_{i}\right|>\left|U_{i}\right|-6 \sqrt{c_{3}} m$. If $a_{i} a_{j} \in R^{\prime}\left[A_{i}, A_{j}\right]$, then all three sets $X,\left\{a_{i}, v_{j}, v_{k}, v_{\ell}\right\}$, and $\left\{a_{i}, a_{j}, v_{k}, v_{\ell}\right\}$ form 4-cliques in R^{\prime}, where $\{i, j, k, \ell\}=[4]$. By Claim 3.6.1 we have that $\hat{\chi}\left(v_{i} v_{j}\right)=\hat{\chi}\left(a_{i} v_{j}\right)=\hat{\chi}\left(a_{i} a_{j}\right)$. Thus, the labeling on X determines the labeling on all edges of R^{\prime} with the possible exception of at most $m \cdot 24 \sqrt{c_{3}} m$ edges incident to vertices of $\bigcup_{i=1}^{4}\left(U_{i} \backslash A_{i}\right)$. As $\left|R \backslash R^{\prime}\right|<5 c_{3} m^{2}$, we have a pattern π such that $\hat{\chi}\left(u_{i} u_{j}\right)=\pi(i j)$ for all but at most $25 \sqrt{c_{3}} m^{2}$ edges in R.

Now, (26) implies that for some relabeling of W_{1}, \ldots, W_{4}, we have

$$
\left|K\left(W_{1}, W_{2}, W_{3}, W_{4}\right) \backslash K\left(\tilde{U}_{1}, \tilde{U}_{2}, \tilde{U}_{3}, \tilde{U}_{4}\right)\right|<4 n \cdot 2000 c_{3} n
$$

Then, including at most $4 c_{7} n^{2}$ edges that disappear without a trace in any H_{i} during the application of the Regularity Lemma and at most $12 c_{3} n^{2}$ edges lost in Lemma 3.4, we have that $\chi\left(w_{i} w_{j}\right) \in \pi(i j)$ for all but at most

$$
4 c_{7} n^{2}+12 c_{3} n^{2}+25 \sqrt{c_{3}} m^{2} \cdot\lceil n / m\rceil^{2}+8000 c_{3} n^{2}<c_{2} n^{2}
$$

edges $w_{i} w_{j}$ in $G\left[W_{i}, W_{j}\right]$, proving the lemma.
Since c_{2} and c_{3} are small, Lemma 3.5 implies that the pattern π in Lemma 3.6 is unique. This allows us to make the following definition. A coloring $\chi \in \mathcal{S}(G)$ of a graph $G \in \mathcal{G}_{n}$ is good if for every $i j \in\binom{[4]}{2}$, every subsets $X_{i} \subseteq W_{i}$ and $X_{j} \subseteq W_{i}$ with $\left|X_{i}\right| \geq c_{1} n$ and $\left|X_{j}\right| \geq c_{1} n$, and every color $c \in \pi(i j)$ there is at least one edge $x y$ in $G\left[X_{i}, X_{j}\right]$ with $\chi(x y)=c$, where π is the pattern of χ. Otherwise χ is called bad.

Lemma 3.7 The number of bad colorings of any $G \in \mathcal{G}_{n}, n \geq n_{0}$, is at most $18^{n^{2} / 8} \cdot 2^{-c_{1}^{2} n^{2} / 8}$.

Proof. The following procedure generates each bad coloring of G at least once.

1. Pick an arbitrary pattern π, a pair $i j \in\binom{[4]}{2}$, and a color $c \in \pi(i j)$.
2. Choose up to $6 c_{2} n^{2}$ edges and color them arbitrarily.
3. Pick subsets $X_{i} \subseteq W_{i}$ and $X_{j} \subseteq W_{j}$ of size $\left\lceil c_{1} n\right\rceil$ each.
4. Color edges inside a part W_{i} arbitrarily.
5. Color all edges in $X_{i} \times X_{j}$ using the colors from $\pi(i j) \backslash\{c\}$.
6. For each $k \ell \in\binom{[4]}{2}$ color all remaining edges of $G\left[W_{k}, W_{\ell}\right]$ using colors in $\pi(k \ell)$.

The number of choices in Steps $1-3$ is bounded from above by

$$
O(1)\binom{\binom{n}{2}}{\leq 6 c_{2} n^{2}} 4^{6 c_{2} n^{2}}\binom{\left|W_{i}\right|}{\left|X_{i}\right|}\binom{\left|W_{j}\right|}{\left|X_{j}\right|}<2^{c_{1}^{3} n^{2}}
$$

The number of choices at Step 4 is at most $4^{15 c_{3} n^{2}}$ by Lemma 3.5. The number of choices in Steps 5-6 is at most

$$
\left(\frac{|\pi(i j)|-1}{|\pi(i j)|}\right)^{\left|X_{i}\right|\left|X_{j}\right|} \prod_{k \ell \in\binom{[4]}{2}}|\pi(k \ell)|^{\left|W_{k}\right|\left|W_{\ell}\right|} \leq(2 / 3)^{c_{1}^{2} n^{2}}\left(2^{2} 3^{4}\right)^{n^{2} / 16+c_{2} n^{2}}
$$

where we used Lemma 3.5. We obtain the required result by multiplying the above bounds.
Call a good coloring χ of a graph $G \in \mathcal{G}$ perfect if $\chi\left(v_{i} v_{j}\right) \in \pi(i j)$ for every $i j \in\binom{[4]}{2}$ and every edge $v_{i} v_{j} \in G\left[W_{i}, W_{j}\right]$, where π is the pattern of χ. Let $\mathcal{P}(G)$ denote the set of perfect colorings of G.

The following lemma provides a key step of the whole proof.
Lemma 3.8 Let G be a graph of order $n \geq n_{0}+2$ such that $F(G, 4,3) \geq 18^{n^{2} / 8} \cdot 2^{-c_{9} n^{2}}$ and for every distinct $v, v^{\prime} \in V(G)$ we have

$$
\begin{align*}
\frac{F(G, 4,3)}{F(G-v, 4,3)} & \geq\left(18-c_{3}\right)^{n / 4} \tag{31}\\
\frac{F(G, 4,3)}{F\left(G-v-v^{\prime}, 4,3\right)} & \geq\left(18-c_{3}\right)^{(n+(n-1)) / 4} \tag{32}
\end{align*}
$$

Then the following conclusions hold.

1. G is 4-partite.
2. Almost every coloring of G is perfect; specifically,

$$
|\mathcal{P}(G)| \geq\left(1-2^{-c_{9} n}\right) F(G, 4,3)
$$

3. If $G \not \equiv T_{4}(n)$, then there is a graph G^{\prime} of order n with $F\left(G^{\prime}, 4,3\right)>F(G, 4,3)$.

Proof. Since $F\left(G-v-v^{\prime}, 4,3\right)>F(G-v, 4,3) / 4^{n}>F(G, 4,3) / 16^{n}$ for any $v, v^{\prime} \in V(G)$, we have $G-v, G-v-v^{\prime} \in \mathcal{G}$ and the notion of a good coloring with respect to $G-v$ or $G-v-v^{\prime}$ is well-defined.

Claim 3.8.1 For any distinct $v, v^{\prime} \in V(G)$, there is a good coloring χ of $G-v$ (resp. of $G-v-v^{\prime}$) such that the number of ways to extend it to the whole of G is at least $\left(18-c_{2}\right)^{n / 4}$ (resp. at least $\left.\left(18-c_{2}\right)^{n / 2}\right)$.

Proof of Claim. By Lemma 3.7 the number of bad colorings of $G-v$ is at most $2^{-c_{1}^{2} n^{2} / 9} F(G, 4,3)$. If the claim fails for all good colorings of $G-v$, then

$$
F(G, 4,3) \leq 4^{n} \cdot 2^{-c_{1}^{2} n^{2} / 9} F(G, 4,3)+\left(18-c_{2}\right)^{n / 4} F(G-v, 4,3)
$$

contradicting (31). The claim about $G-v-v^{\prime}$ is proved in an analogous way. I

Claim 3.8.2 For all $i \in[4]$ and $v \in W_{i}$, we have $\left|N(v) \cap W_{i}\right|<8 c_{1} n$.

Proof of Claim. Suppose on the contrary that some vertex v contradicts the claim. Take the good coloring χ of $G-v$ given by Claim 3.8.1.

For each class W_{j} (defined with respect to G), let $n_{j}=\left|N(v) \cap W_{j}\right|$. Note that

$$
\begin{equation*}
n_{j} \leq\left|W_{j}\right| \leq n / 4+c_{2} n, \quad \text { for all } j \in[4], \tag{33}
\end{equation*}
$$

by Lemma 3.5. Let $W_{1}^{\prime} \cup W_{2}^{\prime} \cup W_{3}^{\prime} \cup W_{4}^{\prime}$ be the selected max-cut partition of $G-v$. As

$$
\left|G \cap K\left(W_{1}^{\prime} \cup\{v\}, W_{2}^{\prime}, W_{3}^{\prime}, W_{4}^{\prime}\right)\right|>\left|G \cap K\left(W_{1}, W_{2}, W_{3}, W_{4}\right)\right|-n
$$

it follows again from Lemma 3.5 that, after a relabeling of $W_{1}^{\prime}, \ldots, W_{4}^{\prime}$, we have

$$
\begin{equation*}
\left|W_{i} \triangle W_{i}^{\prime}\right| \leq 4000 c_{3} n+1, \quad \text { for all } i \in[4] \tag{34}
\end{equation*}
$$

Also, let π be the pattern (with respect to $W_{1}^{\prime}, \ldots, W_{4}^{\prime}$) associated with the good coloring χ of $G-v$.

For each extension $\bar{\chi}$ of χ to G, record the vector \mathbf{x} whose i-th component is the number of colors c such that at least $2 c_{1} n$ edges of G between v and W_{i} get color c. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{4}\right)$ be a vector that appears most frequently over all extensions $\bar{\chi}$. Fix some $\bar{\chi}$ that gives this \mathbf{x}. For a color c and a class W_{j}, let

$$
Z_{j, c}=\left\{u \in W_{j}: \bar{\chi}(u v)=c\right\} .
$$

(Thus x_{j} is the number of colors c with $\left|Z_{j, c}\right| \geq 2 c_{1} n$.) Analogously, for a color c, let y_{c} be the number of classes W_{j} for which $\left|Z_{j, c}\right| \geq 2 c_{1} n$. By (34), we have $\left|Z_{j, c} \cap W_{j}^{\prime}\right|>c_{1} n$ whenever $\left|Z_{j, c}\right|>2 c_{1} n$.

Let us show that $y_{c} \leq 2$ for each $c \in[4]$. Indeed, if some $y_{c} \geq 3$, then among the three corresponding indices we can find two, say p and q, such that $c \in \pi(p q)$. Since χ is good, there is an edge $u w \in\left(Z_{p, c} \cap W_{p}^{\prime}\right) \times\left(Z_{q, c} \cap W_{q}^{\prime}\right)$ such that $\chi(u w)=c$, giving a $\bar{\chi}$-monochromatic triangle on $\{u, v, w\}$, a contradiction. In particular, we have

$$
\begin{equation*}
x_{1}+x_{2}+x_{3}+x_{4}=y_{1}+y_{2}+y_{3}+y_{4} \leq 8 . \tag{35}
\end{equation*}
$$

Since there are at most 5^{4} choices of $\left(x_{1}, \ldots, x_{4}\right)$ and we fixed a most frequent vector, the total number of extensions of χ to G is at most

$$
\begin{equation*}
5^{4} \prod_{j \in[4]}\binom{4}{x_{j}}\binom{n_{j}}{\leq 2 c_{1} n}^{4-x_{j}} \max \left(x_{j}, 1\right)^{n_{j}}<2^{c_{0} n} \prod_{\substack{j \in[4] \\ x_{j} \neq 0}} x_{j}^{n_{j}} \tag{36}
\end{equation*}
$$

As $W_{1} \cup W_{2} \cup W_{3} \cup W_{4}$ is a max-cut partition, we have $\left|N(v) \cap W_{j}\right| \geq 8 c_{1} n$ for all $j \in[4]$. By the pigeonhole principle, we have that $x_{j} \geq 1$ for all $j \in[4]$. This and (35) imply that $x_{1} x_{2} x_{3} x_{4} \leq 16$. By (33) and (36), the total number of extensions of χ is at most

$$
2^{c_{0} n} \cdot\left(x_{1} x_{2} x_{3} x_{4}\right)^{n / 4} \cdot 4^{4 c_{2} n}<2^{2 c_{0} n} \cdot 16^{n / 4}<\left(18-c_{2}\right)^{n / 4}
$$

contradicting the choice of χ. I
We will now strengthen Claim 3.8.2 and prove Part 1 of the lemma.
Claim 3.8.3 For all $i \in[4]$ and distinct $v, v^{\prime} \in W_{i}$, we have $v v^{\prime} \notin E(G)$.
Proof of Claim. Suppose on the contrary that the claim fails for some v and v^{\prime}. Assume without loss of generality that $v, v^{\prime} \in W_{1}$.

Let χ be the good coloring of $G-v^{\prime}-v \in \mathcal{G}_{n-2}$ with at least $\left(18-c_{2}\right)^{n / 2}$ extensions to G given by Claim 3.8.1. Let us recycle the definitions of Claim 3.8.2 that formally remain unchanged even though χ is undefined on edges incident to v^{\prime}. On top of them, we define a few more parameters.

Specifically, we look at all extensions $\bar{\chi}$ that give rise to the fixed most frequent vector \mathbf{x}. For each such $\bar{\chi}$, we define $Z_{j, c}^{\prime}=\left\{u \in W_{j}: \bar{\chi}\left(u v^{\prime}\right)=c\right\}$ and let x_{j}^{\prime} be the number of colors c such that $\left|Z_{j, c}^{\prime}\right| \geq 2 c_{1} n$. Then we fix a most popular vector $\mathbf{x}^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{4}^{\prime}\right)$ and take any extension $\bar{\chi}$ that gives both \mathbf{x} and \mathbf{x}^{\prime} and, conditioned on this, such that the color $\bar{\chi}\left(v v^{\prime}\right)$ assumes its most frequent value, which we denote by s. We define y_{c} as before and let y_{c}^{\prime} be the number of $j \in[4]$ such that $\left|Z_{c, j}^{\prime}\right| \geq 2 c_{1} n$. This is consistent with the definitions of Claim 3.8.2 because there we did not have any restriction on $\bar{\chi}$ except that it gives the vector \mathbf{x}.

Claim 3.8.2, the upper bounds on n_{i} and $n_{i}^{\prime}=\left|N\left(v^{\prime}\right) \cap W_{i}\right|$ of Lemma 3.5, and the argument leading to (36) show that the total number of extensions of χ to G is at most

$$
\begin{equation*}
\left(5^{4}\right)^{2} \cdot 4 \cdot 2^{c_{0} n} \cdot\left(4^{8 c_{1} n+3 c_{2} n}\right)^{2} \cdot \prod_{i=2}^{4}\left(\max \left(x_{i}, 1\right) \cdot \max \left(x_{i}^{\prime}, 1\right)\right)^{n / 4} \tag{37}
\end{equation*}
$$

If some $\left|Z_{j, c}\right| \geq 2 c_{1} n$ but $c \notin \pi(\{1, j\})$, say $j=3$, then the 4 -cycle formed by Color c visits indices $1,2,3,4$ in this order and, since χ is good, we have $\left|Z_{2, c}\right|<2 c_{1} n$ and $\left|Z_{4, c}\right|<2 c_{1} n$ (otherwise $\bar{\chi}$ contains a color $-c$ triangle via v). Thus y_{c} contributes at most 1 to $x_{2}+x_{3}+x_{4}$. Since each $y_{i} \leq 2$, we have that $x_{2}+x_{3}+x_{4} \leq 7$. It follows that $\prod_{i=2}^{4} \max \left(x_{i}, 1\right) \leq 12$. Since $x_{2}^{\prime}+x_{3}^{\prime}+x_{4}^{\prime} \leq 8$, we have $\prod_{i=2}^{4} \max \left(x_{i}^{\prime}, 1\right) \leq 18$. Thus the expression in (37) is at most $2^{2 c_{0} n} \cdot(12 \cdot 18)^{n / 4}$, contradicting the choice of χ.

Thus $x_{i} \leq|\pi(\{1, i\})|$ for each $i \in\{2,3,4\}$ and all these inequalities are in fact equalities (otherwise $\prod_{i=2}^{4} \max \left(x_{i}, 1\right) \leq 12$, giving a contradiction as before). We conclude for $j \in\{2,3,4\}$ that $\left|Z_{j, c}\right| \geq 2 c_{1} n$ if and only if $c \in \pi(\{1, j\})$. The same applies to the parameters x_{i}^{\prime} and $Z_{j, c}^{\prime}$.

Let the special color $s=\bar{\chi}\left(v v^{\prime}\right)$ appear in, say $\pi(\{1,2\})$. Then for all $w \in W_{2} \cap N(v) \cap N\left(v^{\prime}\right)$ there are at most $x_{2} x_{2}^{\prime}-1$ choices for the colors of $v w$ and $v w^{\prime}$ when extending χ to G because s cannot occur on both edges. Also, if $w \notin N(v) \cap N\left(v^{\prime}\right)$ then trivially there are at most 4 choices per this vertex w. This allows us to reduce the bound in (37) by factor (8/9) ${ }^{n / 4}$, giving the desired contradiction. I

Thus we have proved Part 1 of the lemma. Next, we prove Part 2. If it is false, then by Lemma 3.7 there are there are at least $(1 / 2) \cdot 2^{-c_{9} n} \cdot F(G, 4,3)$ coloring of G that are good but
not perfect. For each such coloring there is a wrong edge $v v^{\prime}$ whose color does not conform to the pattern. Pick an edge $v v^{\prime}$ that appears most frequently this way, say $v \in W_{1}$ and $v^{\prime} \in W_{4}$, and then a most frequent wrong color s of $v v^{\prime}$.

By a version of (34), it is not hard to show that the number of good colorings χ of $G-v-v^{\prime}$ for which there is an extension $\bar{\chi}$ which a good coloring of G but with a different pattern than that of χ is at most, for example, $2^{-c_{1}^{2} n^{2} / 9} \cdot F(G, 4,3)$, which is also an upper bound on the number of bad colorings of $G-v-v^{\prime}$.

It follows that there is a good coloring χ of $G-v-v^{\prime}$ that has at least $\left(18-c_{2}\right)^{n / 2}$ patternpreserving extensions to G with $v v^{\prime}$ getting the wrong color s. Indeed, if this is false, then by an argument of Claim 3.8.1, we would get a contradiction to (32):

$$
\frac{(1 / 2) \cdot 2^{-c_{9} n} \cdot F(G, 4,3)}{4 \cdot\binom{n}{2}} \leq 2 \cdot 16^{n} \cdot 2^{-c_{1}^{2} n^{2} / 9} \cdot F(G, 4,3)+\left(18-c_{2}\right)^{n / 2} F\left(G-v-v^{\prime}, 4,3\right)
$$

Defining $\pi, x_{i}, x_{i}^{\prime}, Z_{j, c}, Z_{j, c}^{\prime}, y_{i}, y_{i}^{\prime}$ as in Claim 3.8.3, one can argue similarly to (37) that the number of pattern-preserving extensions of χ is at most

$$
\begin{equation*}
2^{c_{0} n}\left(\prod_{j=2}^{4} \max \left(x_{j}, 1\right) \cdot \prod_{j=1}^{3} \max \left(x_{j}^{\prime}, 1\right)\right)^{n / 4} \tag{38}
\end{equation*}
$$

where all smaller terms are swallowed by $2^{c_{0} n}$. Moreover, as before, $\left|Z_{j, c}\right| \geq 2 c_{1} n$ if and only if $c \in \pi(\{1, j\})$ while $\left|Z_{j, c}^{\prime}\right| \geq 2 c_{1} n$ if and only if $c \in \pi(\{4, j\})$.

Since $s \notin \pi(\{1,4\})$, we have $s \in \pi(\{1,3\}) \cap \pi(\{3,4\})$. But then the number of choices per $w \in W_{3} \cap N(v) \cap N\left(v^{\prime}\right)$ is at most $x_{3} x_{3}^{\prime}-1$ (instead of $x_{3} x_{3}^{\prime}$) because we cannot assign color s to both $v w$ and $v w^{\prime}$. Also, if $v w$ or $v w^{\prime}$ is not an edge, then we have at most 4 choices per w. This allows us to improve (38) by factor $(8 / 9)^{n / 4}$. This contradicts the choice of χ and proves Part 2 of Lemma 3.8.

Let $H=K\left(W_{1}, \ldots, W_{4}\right)$. Suppose first that $G \not \approx H$, that is, G is not complete 4-partite. We know that almost every coloring χ of G is perfect. Moreover, if we start with a perfect coloring χ of G and color all remaining edges in $E(H) \backslash E(G)$ according to the pattern of χ then we get at least $2^{|H \backslash G|} \geq 2$ extensions to H none containing a monochromatic K_{3}. Thus $|\mathcal{P}(H)| \geq 2|\mathcal{P}(G)|>F(G, 4,3)$ and we can take $G^{\prime}=H$.

Finally, suppose that $G=H$ but $G \not \equiv T_{4}(n)$. Let $d_{i}=\left|W_{i}\right|$ for $i \in$ [4]. Assume, without loss of generality, that $d_{1} \geq d_{2} \geq d_{3} \geq d_{4}$ with $d_{1} \geq d_{4}+2$. Let G^{\prime} be the complete 4 -partite graph with parts of size $d_{1}-1, d_{2}, d_{3}, d_{4}+1$. We already know that almost every coloring of G is perfect. Thus, in order to finish the proof it is enough to show that, for example, $\left|\mathcal{P}\left(G^{\prime}\right)\right|>1.1|\mathcal{P}(G)|$.

The number of perfect colorings of G is given by the following expression:

$$
\begin{equation*}
|\mathcal{P}(G)|=(12+o(1))\left(S_{1}+S_{2}+S_{3}\right), \tag{39}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{1}=2^{d_{1} d_{2}+d_{3} d_{4}} 3^{d_{1} d_{3}+d_{1} d_{4}+d_{2} d_{3}+d_{2} d_{4}} \\
& S_{2}=2^{d_{1} d_{3}+d_{2} d_{4}} 3^{d_{1} d_{2}+d_{1} d_{4}+d_{2} d_{3}+d_{3} d_{4}} \\
& S_{3}=2^{d_{1} d_{4}+d_{2} d_{3}} 3^{d_{1} d_{2}+d_{1} d_{3}+d_{2} d_{4}+d_{3} d_{4}}
\end{aligned}
$$

Note that we have an error term in (39) because some (degenerate) colorings are overcounted in the right-hand side. Also,

$$
\begin{aligned}
\left|\mathcal{P}\left(G^{\prime}\right)\right| & =(12+o(1))\left(2^{-d_{2}+d_{3}} 3^{d_{1}-d_{4}-1+d_{2}-d_{3}} \cdot S_{1}\right. \\
& \left.+2^{d_{2}-d_{3}} 3^{d_{1}-d_{4}-1-d_{2}+d_{3}} \cdot S_{2}+2^{d_{1}-d_{4}-1} \cdot S_{3}\right)
\end{aligned}
$$

But, as $d_{1}-d_{4} \geq \max \left\{2, d_{2}-d_{3}\right\}$, the coefficient in front of each S_{i} is at least $4 / 3$. Therefore $\left|\mathcal{P}\left(G^{\prime}\right)\right|>1.1|\mathcal{P}(G)|$, finishing the proof of Lemma 3.8.

Routine calculations (omitted) show that

$$
\begin{equation*}
\left|\mathcal{P}\left(T_{4}(n)\right)\right|=(C+o(1)) \cdot 18^{t_{4}(n) / 3} \tag{40}
\end{equation*}
$$

where $C=\left(2^{14} \cdot 3\right)^{1 / 3}$ if $n \equiv 2(\bmod 4)$ and $C=36$ otherwise.
Proof of Theorem 1.1. Let e.g. $N=n_{0}^{2}$. Let G be an extremal graph on $n \geq N$ vertices. Suppose on the contrary that $G \not \equiv T_{4}(n)$. Let $G_{n}=G$.

We iteratively apply the following procedure. Given a current graph G_{m} on $m \geq n_{0}+2$ vertices with $F\left(G_{m}, 4,3\right) \geq 18^{m^{2} / 8} \cdot 2^{-c_{9} m^{2}}$ we apply Lemma 3.8. If (31) fails for some vertex $v \in V\left(G_{m}\right)$, we let $G_{m-1}=G_{m}-v$, decrease m by 1 , and repeat. Note that

$$
F\left(G_{m-1}, 4,3\right) \geq F\left(G_{m}, 4,3\right) /\left(18-c_{3}\right)^{m / 4} \geq 18^{(m-1)^{2} / 8} \cdot 2^{-c_{9}(m-1)^{2}}
$$

Likewise, if (32) fails for some distinct $v, v^{\prime} \in V\left(G_{m}\right)$, we let $G_{m-2}=G-v-v^{\prime}$, decrease m by 2 , and repeat. If both (31) and (32) hold and $G_{m} \not \approx T_{4}(m)$, replace G_{m} by the graph G^{\prime} returned by Lemma 3.8 and repeat the step (without decreasing m).

Note that for every m for which G_{m} is defined we have

$$
\begin{equation*}
F\left(G_{m}, 4,3\right) \geq F(G, 4,3) \cdot\left(18-c_{3}\right)^{-(n+(n-1)+\ldots+(m+1)) / 4} \tag{41}
\end{equation*}
$$

It follows that we never reach $m<n_{0}+2$ for otherwise, when this happens for the first time, we get the contradiction

$$
F\left(G_{m}, 4,3\right) \geq \frac{18^{n^{2} / 8} \cdot 2^{-c_{9} n^{2}}}{\left(18-c_{3}\right)^{\binom{n}{2}-\binom{m}{2}}}>4^{\binom{m}{2}}
$$

Thus we stop for some $m \geq n_{0}+2$, having $G_{m} \cong T_{4}(m)$. We cannot have $m=n$, for otherwise $T_{4}(n)$ strictly beats G. By Lemma 3.8, almost every coloring of $G_{m} \cong T_{4}(m)$ is perfect. Thus, by (41),

$$
\begin{equation*}
2 \cdot\left|\mathcal{P}\left(T_{4}(m)\right)\right|>F\left(T_{4}(m), 4,3\right) \geq F(G, 4,3) \cdot\left(18-c_{3}\right)^{-(n+(n-1)+\cdots+(m+1)) / 4} \tag{42}
\end{equation*}
$$

Also, note that $t_{4}(\ell)-t_{4}(\ell-1)=\lfloor 3 \ell / 4\rfloor$. Thus, (40) implies that, for example, $\left|\mathcal{P}\left(T_{4}(\ell)\right)\right| \geq$ $18^{\ell / 4-1}\left|\mathcal{P}\left(T_{4}(\ell-1)\right)\right|$ for all $\ell \geq n_{0}$. We conclude that

$$
\begin{equation*}
F(G, 4,3) \geq\left|\mathcal{P}\left(T_{4}(n)\right)\right| \geq \frac{18^{(n+\cdots+(m+1)) / 4}}{18^{n-m}}\left|\mathcal{P}\left(T_{4}(m)\right)\right| . \tag{43}
\end{equation*}
$$

But (42) and (43) give a contradiction to $m \geq 1$, proving Theorem 1.1.
Remark. If we set $G=T_{4}(n)$ with $n \geq N$ in the above argument, then we conclude that $m=n$ (otherwise we get a contradiction as before). Thus we do not perform any iterations at all, which implies that (31) and (32) hold for $T_{4}(n)$. By Part 2 of Lemma 3.8 almost every coloring of $T_{4}(n)$ is perfect. Thus the estimate (5) that was claimed in the Introduction follows from (40).

4 Proof of Theorem 1.2

In this section we prove Theorem 1.2. Some parts of the proof closely follow those of Theorem 1.1. We omit many details that have already been presented or are obvious modifications of those in Section 3. We start by fixing positive constants

$$
c_{0} \gg c_{1} \gg \ldots \gg c_{10} .
$$

Let $M=1 / c_{9}$ and $n_{0}=1 / c_{10}$. Define

$$
\mathcal{G}_{n}=\left\{G: v(G)=n, F(G, 4,4) \geq 3^{4 n^{2} / 9} \cdot 2^{-c_{8} n^{2}}\right\}
$$

and let $\mathcal{G}=\bigcup_{n \geq n_{0}} \mathcal{G}_{n}$. The lower bound in (4) shows that \mathcal{G}_{n} is non-empty for every $n \geq n_{0}$.
Using exactly the same definitions as before, we define the parameters ($m, V_{i}, H_{i}, R_{i}, R, r_{i}$) arising from an arbitrary graph G and a K_{4}-free 4-coloring χ of the edges of G and fix one such vector for each pair (G, χ).

By Lemma 2.2, each cluster graph H_{i} is K_{4}-free and, by Turán's theorem (1), has at most $t_{3}(m)$ edges. Thus by (7)

$$
\begin{equation*}
r_{1}+2 r_{2}+3 r_{3}+4 r_{4}=\frac{e\left(H_{1}\right)+e\left(H_{2}\right)+e\left(H_{3}\right)+e\left(H_{4}\right)}{m^{2} / 2} \leq \frac{8}{3} \tag{44}
\end{equation*}
$$

We also have a procedure for generating all K_{4}-free edge 4-colorings of G at least once. This procedure is identical to the Coloring Procedure provided in Section 3 with the only difference being that in Step 3 the parameters r_{i} (where we omit primes for convenience) now satisfy (44) instead of (10) and (11). So, Lemma 3.1 that bounds the number of choices in Steps 1-6 still holds.

The number of options in Step 7 is again bounded by (13), i.e., the expression $2^{L n^{2} / 2+O(n)}$, where $L=r_{2}+\log _{2}(3) r_{3}+2 r_{4}$. Under the constraint (44) and the non-negativity of the r_{i} 's, the maximum of L is $(8 / 9) \log _{2} 3$. We conclude that

$$
F(n, 4,4) \leq 3^{4 n^{2} / 9} \cdot 2^{2 c_{6} n^{2}}
$$

as it was also shown in [1].
We will now obtain structural information about the cluster graphs (and, indirectly, about G). We call a pair (G, χ) (or the coloring χ) unsatisfactory if

$$
\begin{equation*}
r_{3} \leq 8 / 9-c_{4} \tag{45}
\end{equation*}
$$

Otherwise, (G, χ) is satisfactory.
Lemma 4.1 For every graph G with $n \geq n_{0}$ vertices the number of unsatisfactory K_{3}-free edge 4 -colorings is less than $3^{4 n^{2} / 9} \cdot 2^{-c_{6} n^{2}}$.

Proof. The maximum of L under constraints (44) and (45) (and the non-negativity of r_{i} 's) is

$$
L_{\max }=\left(8 / 9-c_{4}\right) \log _{2}(3)+3 c_{4} / 2<(8 / 9) \log _{2}(3)-c_{5}
$$

with the optimal dual variables for (44) and (45) being $y_{1}=1 / 2$ and $y_{2}=\log _{2}(3)-3 / 2>0$ respectively. Therefore, the total number of choices is at most $2^{c_{6} n^{2}} \cdot 2^{L n^{2} / 2+O(n)}$, giving the required upper bound on the number of unsatisfactory colorings.

Call a vector $\left(m, V_{i}, H_{i}\right)$ popular if it appears for at least $3^{4 n^{2} / 9} \cdot 2^{-3 c_{8} n^{2}}$ satisfactory K_{4}-free edge 4-colorings of G. As before, (12) guarantees that the number of colorings for which the associated vector is not popular is at most $3^{4 n^{2} / 9} \cdot 2^{-2 c_{8} n^{2}}$. Let $\operatorname{Pop}(G)$ be the set of all popular vectors and let $\mathcal{S}(G)$ consist of all satisfactory colorings for which the associated vector is popular.

Lemma 4.2 For any $n \geq n_{0}$, a graph $G \in \mathcal{G}_{n}$, and a popular vector $\left(m, V_{i}, H_{i}\right) \in \operatorname{Pop}(G)$, there exists an equitable partition $[m]=U_{1} \cup \ldots \cup U_{9}$ such that

$$
\begin{align*}
\left|R_{3} \triangle K\left(U_{1}, \ldots, U_{9}\right)\right| & <c_{3} m^{2} \tag{46}\\
\left|R \triangle K\left(U_{1}, \ldots, U_{9}\right)\right| & <2 c_{3} m^{2} \tag{47}
\end{align*}
$$

Proof. Suppose that some $Y \subseteq[m]$ induces a clique of order 10. Then $R_{3}[Y]$ contains $\binom{10}{2}=45$ edges, each of which, by definition, belongs to exactly 3 cluster graphs H_{i}. Each H_{i} is K_{4}-free so, by Turán's Theorem (1), $H_{i}[Y]$ has at most $t_{3}(10)=33$ edges. But $4 \cdot 33<3 \cdot 45$, a contradiction.

Thus $K_{10} \nsubseteq R_{3}$. Since $e\left(R_{3}\right) \geq\left(8 / 9-c_{4}\right) m^{2} / 2$, Lemma 2.3 gives an equitable partition $[m]=U_{1} \cup \ldots \cup U_{9}$ satisfying (46). This partition also satisfies (47) because $r_{1}+r_{2}+r_{4} \leq 3 c_{4}$ by (44) and the negation of (45).

For a graph G and a popular vector $\left(m, V_{i}, H_{i}\right) \in \operatorname{Pop}(G)$, fix the equitable 9-partition $[m]=$ $U_{1} \cup \cdots \cup U_{9}$ given by Lemma 4.2. For $i \in[9]$, let $\tilde{U}_{i}=\cup_{j \in U_{i}} V_{j}$ be the blow-up of U_{i}. Let $\tilde{F}=K\left(\tilde{U}_{1}, \ldots, \tilde{U}_{9}\right)$.

Lemma 4.3 For any $n \geq n_{0}, G \in \mathcal{G}_{n}$, and $\left(m, V_{i}, H_{i}\right) \in \operatorname{Pop}(G)$, we have $|G \triangle \tilde{F}|<6 c_{3} n^{2}$.
Proof. First consider $G \backslash \tilde{F}$. Up to $4 c_{7} n^{2}$ edges may be lost by application of the Regularity Lemma. In addition, at most $\left|R \backslash K\left(U_{1}, \ldots, U_{9}\right)\right| \cdot\lceil n / m\rceil^{2}$ edges are missing in \tilde{F}. Overall, $|G \backslash \tilde{F}|<3 c_{3} n^{2}$.

On the other hand, we may estimate $|\tilde{F} \backslash G|$ by bounding the number of colorings of G associated with our vector $\left(m, V_{i}, H_{i}\right)$. We revert to the Coloring Procedure and compute the number of options in Step 7:

$$
\begin{aligned}
\prod_{f=2}^{4} \prod_{i j \in R_{f}} f^{\lceil n / m\rceil^{2}-\left|K\left(V_{i}, V_{j}\right) \backslash G\right|} & \leq\left(3^{4 n^{2} / 9} \cdot 2^{2 c_{6} n^{2}}\right) \prod_{i j \in R_{3}} 2^{-\left|K\left(V_{i}, V_{j}\right) \backslash G\right|} \\
& \leq\left(3^{4 n^{2} / 9} \cdot 2^{2 c_{6} n^{2}}\right) \cdot 2^{-|\tilde{F} \backslash G|+2 c_{3} n^{2}+O(n)}
\end{aligned}
$$

Since the vector $\left(m, V_{i}, H_{i}\right)$ is popular, we have

$$
|\tilde{F} \backslash G| \leq 2 c_{3} n^{2}+2 c_{6} n^{2}+3 c_{8} n^{2}+O(n) \leq 3 c_{3} n^{2}
$$

as required.
For each graph G fix a max-cut partition $V(G)=W_{1} \cup \cdots \cup W_{9}$.
Lemma 4.4 (Stability Property) Let $n \geq n_{0}, G \in \mathcal{G}_{n}$, and $V(G)=W_{1}^{\prime} \cup \ldots \cup W_{9}^{\prime}$ be a partition with

$$
\left|G \cap K\left(W_{1}^{\prime}, \ldots, W_{9}^{\prime}\right)\right| \geq\left|G \cap K\left(W_{1}, \ldots, W_{9}\right)\right|-c_{3} n^{2}
$$

Then $\left|G \triangle K\left(W_{1}^{\prime}, \ldots, W_{9}^{\prime}\right)\right| \leq 9 c_{3} n^{2}$ and, for any $\left(m, V_{i}, H_{i}\right) \in \operatorname{Pop}(G)$, there is a relabeling of $W_{1}^{\prime}, \ldots, W_{9}^{\prime}$ such that

$$
\begin{equation*}
\left|W_{i}^{\prime} \triangle \tilde{U}_{i}\right| \leq 12000 c_{3} n, \quad \text { for each } i \in[9] \tag{48}
\end{equation*}
$$

It follows that $\left|\left|W_{i}\right|-n / 9\right| \leq c_{2} n$ for each $i \in[9]$ and that $\left|G \triangle K\left(W_{1}, \ldots, W_{9}\right)\right| \leq 9 c_{3} n^{2}$.

Proof. Let $F^{\prime}=K\left(W_{1}^{\prime}, \ldots, W_{9}^{\prime}\right)$ and $F=K\left(W_{1}, \ldots, W_{9}\right)$. As $W_{1} \cup \ldots \cup W_{9}$ is a max-cut partition, we have $\left|F^{\prime} \cap G\right|+c_{3} n^{2} \geq|F \cap G| \geq|\tilde{F} \cap G|$. In addition, both $[m]=U_{1} \cup \cdots \cup U_{9}$ and $[n]=V_{1} \cup \cdots \cup V_{m}$ are equitable partitions, so $\left|\left|\tilde{U}_{i}\right|-n / 9\right|<m+n / m$. It follows that $|\tilde{F}| \geq\left|F^{\prime}\right|-c_{8} n^{2}$, and

$$
\begin{equation*}
\left|F^{\prime} \triangle G\right| \leq|\tilde{F} \triangle G|+c_{8} n^{2}+2 c_{3} n^{2} \leq 9 c_{3} n^{2} \tag{49}
\end{equation*}
$$

where we used Lemma 4.3. This proves the first part of the lemma.
To prove the next part, we look for a relabeling of $W_{1}^{\prime}, \ldots, W_{9}^{\prime}$ such that $\left|\tilde{U}_{i} \backslash W_{i}^{\prime}\right|<1250 c_{3} n$ for each $i \in[9]$. If no such relabeling exists, we have some $i \in[9]$ such that $\left|\tilde{U}_{i} \backslash W_{j}^{\prime}\right| \geq 1250 c_{3} n$ for all $j \in[9]$. However, for some $j,\left|\tilde{U}_{i} \cap W_{j}^{\prime}\right| \geq\left|\tilde{U}_{i}\right| / 9$. Let $X=\tilde{U}_{i} \cap W_{j}^{\prime}$ and $Y=\tilde{U}_{i} \backslash W_{j}^{\prime}$. Then, by Lemma 4.3, we have $e(G[X, Y])<6 c_{3} n^{2}$ while $X \subseteq W_{j}^{\prime}, Y \cap W_{j}^{\prime}=\emptyset$ and (49) imply that $e(G[X, Y])>|X||Y|-9 c_{3} n^{2}>6 c_{3} n^{2}$, a contradiction.

The desired estimate (48) follows from the observation that

$$
W_{i}^{\prime} \backslash \tilde{U}_{i} \subseteq \bigcup_{j \in[9] \backslash\{i\}}\left(\tilde{U}_{j} \backslash W_{j}^{\prime}\right)
$$

The last two claims of the lemma follow by taking $W_{i}^{\prime}=W_{i}$.
A pattern is an assignment $\pi:\binom{[9]}{2} \rightarrow\binom{[4]}{3}$ (to every edge of K_{9} we assign a list of 3 colors) such that $\pi^{-1}(i)$ is isomorphic to $T_{3}(9)$ for each $i \in[4]$. It is easy to check that up to isomorphism (of colors and edges) there is only one pattern. It can be explicitly described as follows. Identify the 9 -point vertex set with $\left(\mathbb{F}_{3}\right)^{2}$, the 2 -dimensional vector space over the 3 -element finite field \mathbb{F}_{3}. There are 4 non-parallel directions of 1 -dimensional subsets. Let the color $i \in[4]$ be present in the pattern in those pairs whose difference is not parallel to the i-th direction.

We say that an edge 4-coloring χ of $G \in \mathcal{G}_{n}$ follows the pattern π if for every $i j \in\binom{[9]}{2}$ we have

$$
\left|\chi^{-1}([4] \backslash \pi(i j)) \cap G\left[W_{i}, W_{j}\right]\right| \leq c_{2} n^{2}
$$

Lemma 4.5 Let $n \geq n_{0}$ and $G \in \mathcal{G}_{n}$. Then every coloring $\chi \in \mathcal{S}(G)$ follows a pattern.

Proof. Let $\chi \in \mathcal{S}(G)$ and $\left(m, V_{i}, H_{i}\right)$ be the associated popular vector. Let $[m]=U_{1} \cup \ldots \cup U_{9}$, be the partition given by Lemma 4.2.

Let the label of an edge $u v \in R_{3}$ be $\hat{\chi}(u v)=\left\{i \in[4]: u v \in E\left(H_{i}\right)\right\}$. So, $|\hat{\chi}(u v)|=3$ for all edges $u v \in R_{3}$.

Claim 4.5.1 Let $Y=\left\{v_{1}, \ldots, v_{9}\right\}$ be a subset of $[m]$ such that $R_{3}[Y] \cong K_{9}$ and $v_{i} \in U_{i}$ for each $i \in[9]$. Let $v_{j}^{\prime} \in U_{j}$ be such that $Y^{\prime}=Y \backslash\left\{v_{j}\right\} \cup\left\{v_{j}^{\prime}\right\}$ also spans K_{9} in R_{3}. Then $\hat{\chi}\left(v_{j} v_{i}\right)=\hat{\chi}\left(v_{j}^{\prime} v_{i}\right)$ for all $i \in[9] \backslash\{j\}$.

Proof of Claim. The identity $3 \cdot\binom{9}{2}=4 \cdot t_{3}(9)$ and Turán's theorem imply that each K_{4}-free graph $H_{i}[Y]$ has exactly $t_{3}(9)$ vertices and thus is isomorphic to the Turán graph $T_{3}(9)$. Let $Y_{i, 1}, Y_{i, 2}$, and $Y_{i, 3}$ be the parts of $H_{i}[Y]$. The family of 3 -sets $\left\{Y_{i, j}: i \in[4], j \in[3]\right\}$ forms a Steiner triple system on Y, that is, every pair is covered exactly once. Thus if we delete a vertex from Y, then the four triples that contain it are uniquely reconstructible. It follows that if we know $H_{i}[Y]-v_{j}$
for each $i \in[4]$, then the labels of the eight pairs containing v_{j} are uniquely determined. This and the analogous statement for Y^{\prime} imply the claim. I

We can iteratively build a set $Y=\left\{v_{1}, \ldots, v_{9}\right\}$ such that $R_{3}[Y] \cong K_{9}$ and for all $i \in[9]$ we have $v_{i} \in U_{i}$ and

$$
\begin{equation*}
\left|N_{R_{3}}\left(v_{i}\right) \cap U_{j}\right|>\left|U_{j}\right|-\sqrt{c_{3}} m \quad \text { for all } j \in[9] \backslash\{i\} . \tag{50}
\end{equation*}
$$

Let $A_{i} \subseteq U_{i}$ consist of those vertices that lie in $N_{R_{3}}\left(v_{j}\right)$ for all $j \in[9] \backslash\{i\}$. As all v_{1}, \ldots, v_{9} satisfy (50), we have $\left|A_{i}\right|>\left|U_{j}\right|-8 \sqrt{c_{3}} m$. Now, if $a_{i} a_{j} \in R_{3}\left[A_{i}, A_{j}\right]$ (without loss of generality assume that $(i, j)=(1,2))$, then all three sets $\left\{v_{1}, v_{2}, \ldots, v_{9}\right\},\left\{a_{1}, v_{2}, \ldots, v_{9}\right\}$, and $\left\{a_{1}, a_{2}, v_{3}, \ldots, v_{9}\right\}$ form 9-cliques. By Claim 4.5 .1 we have $\hat{\chi}\left(v_{i} v_{j}\right)=\hat{\chi}\left(a_{i} v_{j}\right)=\hat{\chi}\left(a_{i} a_{j}\right)$. Therefore the labeling on Y determines the labeling on all edges of R_{3} with the possible exception of at most $72 \sqrt{c_{3}} m^{2}$ edges incident to vertices of $\bigcup_{i=1}^{9}\left(U_{i} \backslash A_{i}\right)$. We, therefore, have a pattern π such that $\hat{\chi}\left(u_{i} u_{j}\right)=\pi(i j)$ for all but at most $73 \sqrt{c_{3}} m^{2}$ edges in R.

By applying (48) to $W_{i}^{\prime}=W_{i}$ and arguing as in the proof of Lemma 3.6, one can show that χ follows the pattern π.

A coloring $\chi \in \mathcal{S}(G)$ is called good if for every distinct $i, j, k \in[9]$, every sets $X_{i} \subseteq W_{i}, X_{j} \subseteq$ $W_{j}, X_{k} \subseteq W_{k}$ each of size at least $c_{1} n$, and a color $c \in \pi(i j) \cap \pi(i k) \cap \pi(j k)$, we can find a monochromatic triangle in color c with one vertex in each of X_{i}, X_{j}, X_{k}. Otherwise, call χ bad.

We make use of the following result [1, Lemma 3.1].
Lemma 4.6 Let G be a graph and let V_{1}, \ldots, V_{k} be subsets of vertices of G such that, for every $i \neq j$ and every pair of subsets $X_{i} \subseteq V_{i}$ and $X_{j} \subseteq V_{j}$ with $\left|X_{i}\right| \geq 10^{-k}\left|V_{i}\right|$ and $\left|X_{j}\right| \geq 10^{-k}\left|V_{j}\right|$, there are at least $\frac{1}{10}\left|X_{i} \| X_{j}\right|$ edges between X_{i} and X_{j} in G. Then G contains a copy of K_{k} with one vertex in each set V_{i}.

As a consequence of this lemma, a coloring fails to be good only if there are c, i, j such that $c \in \pi(i j)$ but for some sets $X_{i} \subseteq W_{i}$ and $X_{j} \subseteq W_{j}$ with $\left|X_{i}\right|,\left|X_{j}\right| \geq c_{1} n / 1000, \chi^{-1}(c)$ has at most $\left|X_{i}\right|\left|X_{j}\right| / 10$ edges between X_{i} and X_{j}. The proof of Lemma 3.7 with obvious modifications gives the following.

Lemma 4.7 The number of bad colorings is at most $3^{4 n^{2} / 9} \cdot 2^{-c_{1}^{2} n^{2} / 10^{7}}$.
A good coloring χ of G is perfect if $\chi\left(v_{i} v_{j}\right) \in \pi(i j)$ for every pair $i j \in\binom{[9]}{2}$ and every edge $v_{i} v_{j} \in G\left[W_{i}, W_{j}\right]$. Let $\mathcal{P}(G)$ consist of all perfect colorings of G.

Lemma 4.8 Let $G \in \mathcal{G}_{n}$ be a graph of order $n \geq n_{0}+2$ such that $F(G, 4,4) \geq 3^{4 n^{2} / 9} \cdot 2^{-c_{9} n^{2}}$ and for every distinct $v, v^{\prime} \in V(G)$ we have

$$
\begin{align*}
\frac{F(G, 4,4)}{F(G-v, 4,4)} & \geq\left(3-c_{3}\right)^{8 n / 9}, \tag{51}\\
\frac{F(G, 4,4)}{F\left(G-v-v^{\prime}, 4,4\right)} & \geq\left(3-c_{3}\right)^{(8 / 9)(n+(n-1))} . \tag{52}
\end{align*}
$$

Then the following conclusions hold.

1. G is 9-partite.
2. $|\mathcal{P}(G)| \geq\left(1-2^{-c_{9} n}\right) F(G, 4,4)$.
3. If $G \not \equiv T_{9}(n)$, then there is a graph G^{\prime} with $v\left(G^{\prime}\right)=n$ and $F\left(G^{\prime}, 4,4\right)>F(G, 4,4)$.

Proof. As in the proof of Lemma 3.8, the notion of a good coloring is well-defined for $G-X$ provided $|X| \leq 2$.

Claim 4.8.1 For each $i \in[9]$ and every $v \in W_{i},\left|N(v) \cap W_{i}\right|<8 c_{1} n$.

Proof of Claim. Suppose that a vertex v violates the claim. Let $W_{1}^{\prime} \cup \cdots \cup W_{9}^{\prime}$ be the selected max-cut partition of $G-v$. Similarly to Claim 3.8.1 there is a good coloring χ of $G-v$ with at least $\left(3-c_{2}\right)^{8 n / 9}$ extensions to G. Let π be the pattern of χ (with respect to $W_{1}^{\prime}, \ldots . W_{9}^{\prime}$) and $n_{i}=\left|N(v) \cap W_{i}\right|$ for $i \in[9]$. As in the proof of Lemma 3.8, we take an extension $\bar{\chi}$ of χ that gives a most frequent vector $\mathbf{x}=\left(x_{1}, \ldots, x_{9}\right)$, where x_{i} is the number of colors c such that $Z_{i, c}=\left\{u \in W_{i}: \bar{\chi}(u v)=c\right\}$ has at least $2 c_{1} n$ elements. Also, let y_{c} be the number of $j \in[4]$ such that $\left|Z_{j, c}\right| \geq 2 c_{1} n$. We have

$$
\begin{equation*}
x_{1}+x_{2}+\ldots+x_{9}=y_{1}+y_{2}+y_{3}+y_{4} \tag{53}
\end{equation*}
$$

By the max-cut property, each $x_{i} \geq 1$. The argument of (36) shows that the number of extensions of χ to G is at most $2^{c_{0} n} \prod_{i=1}^{9} x_{i}^{n_{i}}$.

Suppose that $y_{c} \geq 7$ for some color c. Any 7 vertices of the color- c graph that is isomorphic to $T_{3}(9)$ span a triangle. The three c-neighborhoods of v in the corresponding parts W_{i}^{\prime} have at least $\left|Z_{i, c}\right|-24000 c_{3} n>c_{1} n$ vertices each by (48). Since χ is good, this gives a copy of K_{4} of color c in $\bar{\chi}$, a contradiction.

Thus $y_{c} \leq 6$ for every $c \in[4]$ and the sum of x_{i} 's is at most 24 . Since each x_{i} is a positive integer, their product is at most $2^{3} 3^{6}$ (it is clearly maximized when the factors are nearly equal). Also, each $n_{i} \leq n / 9+c_{2} n$ by Lemma 4.4. Thus the number of extensions of χ is at most $2^{2 c_{0} n}\left(2^{3} 3^{6}\right)^{n / 9}<$ $\left(3-c_{2}\right)^{8 n / 9}$, a contradiction that proves the claim.

Claim 4.8.2 If x_{1}, \ldots, x_{8} are positive integers with sum 24 then $\prod_{i=1}^{8} \max \left(x_{i}, 1\right) \leq 3^{8}$ with equality if and only if each x_{i} equals 3.

Proof of Claim. Indeed, if t is the number of non-zero x_{i} 's then for $t=8,7, \ldots, 1$ the maximum of the product is respectively $3^{8}=6561,3^{4} \cdot 4^{3}=5184,4^{6}=4096,4 \cdot 5^{4}=2500,6^{4}=1296,8^{3}=512$, $12^{2}=144$, and 24 . I

Claim 4.8.3 For all $i \in[9]$ and all $v, v^{\prime} \in W_{i}$, we have $v v^{\prime} \notin E(G)$.
Proof of Claim. Assume for a contradiction that $v v^{\prime} \in E(G)$, where without loss of generality $v, v^{\prime} \in W_{9}$. As in Claim 3.8.1, one can find a good coloring χ of $G-v-v^{\prime} \in \mathcal{G}_{n-2}$ with at least $\left(3-c_{2}\right)^{16 n / 9}$ extensions to G. Define the parameters $\pi, n_{i}, Z_{i, c}, x_{i}, y_{i}, n_{i}^{\prime}, Z_{i, c}^{\prime}, x_{i}^{\prime}, y_{i}^{\prime}, \bar{\chi}$ and a most frequent color s of $v v^{\prime}$, as it was done in Claim 3.8.3. Then a version of (37), states that the total number of extensions of χ is at most

$$
\begin{equation*}
\left(5^{9}\right)^{2} \cdot 4 \cdot 2^{c_{0} n} \cdot\left(4^{8 c_{1} n+8 c_{2} n}\right)^{2} \cdot \prod_{i=1}^{8}\left(\max \left(x_{i}, 1\right) \cdot \max \left(x_{i}^{\prime}, 1\right)\right)^{n / 9} \tag{54}
\end{equation*}
$$

Since each $y_{c} \leq 6$, we have $\sum_{i=1}^{8} x_{i} \leq 24$. By Claim 4.8 .2 we have that $x_{i}=x_{i}^{\prime}=3$ for each $i \in[8]$, for otherwise the bound in (54) is strictly less than $\left(3-c_{2}\right)^{16 n / 9}$, a contradiction to the choice of χ.

Assume that the parts of $H_{s} \cong T_{3}(9)$ are $A_{1}=\{1,2,3\}, A_{2}=\{4,5,6\}$, and $A_{3}=\{7,8,9\}$.
Suppose first that there is $j \in[8]$ such that $\left|Z_{j, s}\right| \geq 2 c_{1} n$ but $s \notin \pi(\{j, 9\})$, say $j=8$. By (48), we have $\left|Z_{8, s} \cap W_{8}^{\prime}\right| \geq c_{1} n$. Since χ is good, in order to avoid a color-c K_{4} in $\bar{\chi}$ we must have $\left|Z_{i, s}\right|<2 c_{1} n$ for all $i \in A_{1}$ or for all $i \in A_{2}$. Thus y_{s} contributes at most 5 to $\sum_{i=1}^{8} x_{i}$ and (since any other y_{t} is at most 6) this sum is at most 23 , giving a contradiction by Claim 4.8.2 and (54).

In particular, this implies that $\left|Z_{j, s}\right| \geq 2 c_{1} n$ for all $j \in[6]$. The same claim applies to $\left|Z_{j, s}^{\prime}\right|$. Let $y_{1} z_{1}, \ldots, y_{m} z_{m}$ be a maximal matching formed by color-s edges between W_{1} and W_{4}. Since χ is good, we have that

$$
m \geq \min \left(\left|W_{1}\right|,\left|W_{4}\right|\right)-c_{1} n / 1000 \geq n / 9-2 c_{2} n .
$$

When we extend the coloring χ to G, the number of choices to color the edges of $G\left[v v^{\prime}, y_{i} z_{i}\right]$ is at most $3^{4}-1$ for every $i \in[m]$ because, if all 4 pairs are present in G, then we are not allowed to color all of them with color c while otherwise we have at most $4^{3}<3^{4}$ choices. This allows us to improve the bound in (54) by factor $(80 / 81)^{n / 10}$, giving the desired contradiction. I

Thus we have proved Part 1 of the lemma.
Suppose on the contrary that the conclusion of Part 2 does not hold. As in the proof of Lemma 3.5, we can find an edge $v v^{\prime} \in G$, say with $v \in W_{1}$ and $v^{\prime} \in W_{9}$, a color s, and a good coloring χ of $G-v-v^{\prime}$ such that there are at least $\left(3-c_{2}\right)^{16 n / 9}$ good extensions of χ to G that preserve the pattern π of χ and assign the "wrong" color s to $v v^{\prime}$. Defining $x_{i}, x_{i}^{\prime}, Z_{j, c}, Z_{j, c}^{\prime}, y_{i}, y_{i}^{\prime}$ by the direct analogy with the definitions of Claim 3.8.3, one can argue similarly to (37) that the total number of extensions of χ is at most

$$
\begin{equation*}
2^{c_{0} n} \cdot\left(\prod_{i=2}^{9} \max \left(x_{i}, 1\right) \cdot \prod_{i=1}^{8} \max \left(x_{i}^{\prime}, 1\right)\right)^{n / 9} \tag{55}
\end{equation*}
$$

By Claim 4.8.2, we have $x_{i}=3$ for each $2 \leq i \leq 9$ and $x_{i}^{\prime}=3$ for each $i \in[8]$. Thus each y_{i} and y_{i}^{\prime} is equal to 6 . It follows that, for any $2 \leq j \leq 9$ and $c \in[4]$, we have $\left|Z_{j, c}\right| \geq 2 c_{1} n$ if and only if $c \in \pi(\{1, j\})$. Also, the analogous claim hods for $\left|Z_{j, c}^{\prime}\right|$. Since $s \notin \pi(\{1,9\})$, we can find distinct $i, j \in\{2, \ldots, 8\}$ such that s belongs to the $\pi(i j)$ as well as to the label of each pair in $\{1,9\} \times\{i, j\}$. As before, by considering a maximal color-s matching in $G\left[W_{i}, W_{j}\right]$, we can improve (55) by a factor $(80 / 81)^{n / 10}$, getting a contradiction and proving Part 2 of the lemma.

Let us prove Part 3. If G is not complete 9 -partite, then by Part 2 we can take $G^{\prime}=$ $K\left(W_{1}, \ldots, W_{9}\right)$: indeed, $\left|\mathcal{P}\left(G^{\prime}\right)\right| \geq 3|\mathcal{P}(G)|>F(G, 4,4)$. So suppose that G is complete 9-partite.

Let us determine the number of possible patterns (with distinguishable colors and vertices). For the color-1 graph we have $\binom{8}{2} \cdot\binom{5}{2}$ choices (there are $\binom{8}{2}$ choices for the part $A_{1} \in\binom{[9]}{3}$ containing 1 , then $\binom{5}{2}$ choices for the part A_{2} containing the smallest element of $[9] \backslash A_{1}$.) Then we have $9 \cdot 4$ choices for Color 2 , then 2 choices for Color 3, and one choice for Color 4. Thus the total number of patterns is $20160=9!/ 18$. The same answer can be obtained by noting that, when we permute [9], then we have a transitive action on patterns and every pattern is fixed by 18 permutations.

It follows that G has $(9!/ 18+o(1)) 3^{e(G)}$ perfect colorings in total, since every edge of G has exactly 3 choices for a given pattern. Since $G \not \approx T_{9}(n)$, we have $\left|\mathcal{P}\left(T_{9}(n)\right)\right| \geq(3+o(1))|\mathcal{P}(G)|$ and we can take $G^{\prime}=T_{9}(n)$. This completes the proof of Lemma 4.8.

Now, Theorem 1.2 can be deduced from Lemma 4.8 in the same way (modulo some obvious modifications) as Theorem 1.1 was deduced from Lemma 3.8.

References

[1] Alon, N., Balogh, J., Keevash, P., and Sudakov, B. The number of edge colorings with no monochromatic cliques. J. Lond. Math. Soc. 70 (2004), 273-288.
[2] Alon, N., and Yuster, R. The number of orientations having no fixed tournament. Combinatorica 26 (2006), 1-16.
[3] Balogh, J. A remark on the number of edge colorings of graphs. Europ. J. Combin. 27 (2006), 565-573.
[4] Erdős, P. Some recent results on extremal problems in graph theory. Results. In Theory of Graphs (Internat. Sympos., Rome, 1966). Gordon and Breach, New York, 1967, pp. 117-123 (English); pp. 124-130 (French).
[5] Erdős, P. Some new applications of probability methods to combinatorial analysis and graph theory. Congres. Numer. 10 (1974), 39-51.
[6] Erdős, P. Some of my favorite problems in various branches of combinatorics. Matematiche (Catania) 47 (1992), 231-240.
[7] Erdős, P., And Stone, A. H. On the structure of linear graphs. Bull. Amer. Math. Soc. 52 (1946), 1087-1091.
[8] Hoppen, C., Kohayakawa, Y., and Lefmann, H. Kneser colorings of uniform hypergraphs. Electronic Notes in Disc. Math. 34 (2009), 219-223.
[9] Komlós, J., and Simonovits, M. Szemerédi's regularity lemma and its applications to graph theory. In Combinatorics, Paul Erdős is Eighty, D. Miklós, V. T. Sós, and T. Szőnyi, Eds., vol. 2. Bolyai Math. Soc., 1996, pp. 295-352.
[10] Lefmann, H., and Person, Y. The number of hyperedge colorings for certain classes of hypergraphs. Manuscript, 2010.
[11] Lefmann, H., Person, Y., Rödl, V., and Schacht, M. On colorings of hypergraphs without monochromatic Fano planes. Combin. Prob. Computing 18 (2009), 803-818.
[12] Lefmann, H., Person, Y., and Schacht, M. A structural result for hypergraphs with many restricted edge colorings. Submitted, 2010.
[13] Simonovits, M. A method for solving extremal problems in graph theory, stability problems. In Theory of Graphs (Proc. Colloq., Tihany, 1966). Academic Press, 1968, pp. 279-319.
[14] Szemerédi, E. Regular partitions of graphs. In Proc. Colloq. Int. CNRS. Paris, 1976, pp. 309-401.
[15] Turán, P. On an extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok 48 (1941), 436-452.
[16] Yuster, R. The number of edge colorings with no monochromatic triangle. J. Graph Theory 21 (1996), 441-452.

[^0]: *Partially supported by the National Science Foundation, Grant DMS-0758057, and the Alexander von Humboldt Foundation.

