FLIPS IN GRAPHS

TOM BOHMAN* ${ }^{* \dagger}$, ANDRZEJ DUDEK*, ALAN FRIEZE* ${ }^{* \ddagger}$, AND OLEG PIKHURKO*§

Abstract

We study a problem motivated by a question related to quantum-error-correcting codes. Combinatorially, it involves the following graph parameter: $$
f(G)=\min \left\{|A|+\mid\left\{x \in V \backslash A: d_{A}(x) \text { is odd }\right\} \mid: A \neq \emptyset\right\}
$$ where V is the vertex set of G and $d_{A}(x)$ is the number of neighbors of x in A. We give asymptotically tight estimates of f for the random graph $G_{n, p}$ when p is constant. Also, if

$$
f(n)=\max \{f(G):|V(G)|=n\}
$$

then we show that $f(n) \leq(0.382+o(1)) n$.
Key words. quantum-error-correcting codes, random graphs
AMS subject classifications. 94B25, 05C80

1. Introduction. In this paper we consider a problem which is motivated by a question from quantum-error-correcting codes.

Given a graph G with ± 1 signs on vertices, each vertex can perform at most one of the following three operations: O_{1} (flip all neighbors, i.e., change their signs), O_{2} (flip oneself), and O_{3} (flip oneself and all neighbors). We want to start with all +1 's, execute some non-zero number of operations and return to all +1 's. The diagonal distance $f(G)$ is the minimum number of operations needed (with each vertex doing at most one operation).

Trivially,

$$
\begin{equation*}
f(G) \leq \delta(G)+1 \tag{1.1}
\end{equation*}
$$

holds, where $\delta(G)$ denotes the minimum degree. Indeed, a vertex with the minimum degree applies O_{1} and then its neighbors fix themselves applying O_{2}. Let

$$
f(n)=\max f(G),
$$

where the maximum is taken over all non-empty graphs of order n.
Given a graph G, one can ultimately construct a quantum error correcting code, see $[3,5,6]$. A common metric to measure the code robustness against noise is the quantity called "code distance" which is bounded from above by $f(G)$. Although it is more important to find explicit graphs G with large $f(G)$ (see the case $k=0$ of Section "QECC" in [2] for known constructions), theoretical upper and lower bounds on $f(n)$ are also of interest.

In this paper we asymptotically determine the diagonal distance of the random graph $G_{n, p}$ for any $p \in(0,1)$.

We denote the symmetric difference of two sets A and B by $A \triangle B$ and the logarithmic function with base e as log.

Theorem 1.1. There are absolute constants $\lambda_{0} \approx 0.189$ and $p_{0} \approx 0.894$, see (2.4) and (3.3), such that for $G=G_{n, p}$ asymptotically almost surely:

[^0]

FIG. 1.1. The behavior of $\hat{f}(p)=\lim _{n \rightarrow \infty} f\left(G_{n, p}\right) / n$ as a function of p.
(i) $f(G)=\delta(G)+1$ for $0<p<\lambda_{0}$ or $p=o(1)$,
(ii) $\left|f(G)-\lambda_{0} n\right|=\tilde{O}\left(n^{1 / 2}\right)$ for $\lambda_{0} \leq p \leq p_{0}$,
(iii) $f(G)=2+\min _{x, y \in V(G)}|(N(x) \triangle N(y)) \backslash\{x, y\}|$ for $p_{0}<p<1$ or $p=1-o(1)$.
(Here $\tilde{O}\left(n^{1 / 2}\right)$ hides a polylog factor.)
Figure 1.1 visualizes the behavior of the diagonal distance of $G_{n, p}$. In addition to Theorem 1.1 we find the following upper bound on $f(n)$.

Theorem 1.2. $f(n) \leq(0.382+o(1)) n$.
In the remainder of the paper we will use a more convenient restatement of $f(G)$. Observe that the order of execution of operations does not affect the final outcome. For any $A \subset V=V(G)$, let B consist of those vertices in $V \backslash A$ that have odd number of neighbors in A. Let $a=|A|$ and $b=|B|$. Then $f(G)$ is the minimum of $a+b$ over all non-empty $A \subset V(G)$. The vertices of A do an O_{1} / O_{3} operation, depending on the even/odd parity of their neighborhood in A. The vertices in B then do an O_{2}-operation to change back to +1 .
2. Random Graphs for $p=1 / 2$. Here we prove a special case of Theorem 1.1 when $p=1 / 2$. This case is somewhat easier to handle.

Let $G=G_{n, 1 / 2}$ be a binomial random graph. First we find a lower bound on $f(G)$. If we choose a non-empty $A \subset V$ and then generate G, then the distribution of b is binomial with parameters $n-a$ and $1 / 2$, which we denote here by $\operatorname{Bin}(n-a, 1 / 2)$. Hence, if l is such that

$$
\begin{equation*}
\sum_{a=1}^{l-1}\binom{n}{a} \operatorname{Pr}(\operatorname{Bin}(n-a, 1 / 2) \leq l-1-a)=o(1), \tag{2.1}
\end{equation*}
$$

then asymptotically almost surely the diagonal distance of G is at least l.
Let $\lambda=l / n$ and $\alpha=a / n$. We may assume that $\lambda<\frac{1}{2}$. Consequently, $\lambda-\alpha<\frac{1}{2}(1-\alpha)$, and hence, we can approximate the summand in (2.1) by

$$
2^{n\left(H(\alpha)+(1-\alpha)\left(H\left(\frac{\lambda-\alpha}{1-\alpha}\right)-1\right)+O(\log n / n)\right)},
$$

where H is the binary entropy function defined as $H(p)=-p \log _{2} p-(1-p) \log _{2}(1-p)$. For more information about the entropy function and its properties see, e.g., [1]. Let

$$
\begin{equation*}
g_{\lambda}(\alpha)=H(\alpha)+(1-\alpha)\left(H\left(\frac{\lambda-\alpha}{1-\alpha}\right)-1\right) . \tag{2.2}
\end{equation*}
$$

The maximum of $g_{\lambda}(\alpha)$ is attained exactly for $\alpha=2 \lambda / 3$, since

$$
g_{\lambda}^{\prime}(\alpha)=\log _{2} \frac{2(\lambda-\alpha)}{\alpha} .
$$

Now the function

$$
\begin{equation*}
h(\lambda)=g_{\lambda}(2 \lambda / 3) \tag{2.3}
\end{equation*}
$$

is concave on $\lambda \in[0,1]$ since

$$
h^{\prime \prime}(\lambda)=\frac{1}{(\lambda-1) \lambda \log 2}<0 .
$$

Moreover, observe that $h(0)=-1$ and $h(1)=H(2 / 3)-1 / 3>0$. Thus the equation $h(\lambda)=0$ has a unique solution λ_{0} and one can compute that

$$
\begin{equation*}
\lambda_{0}=0.1892896249152306 \ldots \tag{2.4}
\end{equation*}
$$

Therefore, if $\lambda=\lambda_{0}-K \log n / n$ for large enough $K>0$, then the left hand side of (2.1) goes to zero and similarly for $\lambda=\lambda_{0}+K \log n / n$ it goes to infinity. In particular, $f(G)>\left(\lambda_{0}-o(1)\right) n$ asymptotically almost surely.

Let us show that this constant λ_{0} is best possible, i.e., asymptotically almost surely $f(G) \leq$ $\left(\lambda_{0}+K \log n / n\right) n$. Let $\lambda=\lambda_{0}+K \log n / n, n$ be large, and $l=\lambda n$. Let $\alpha=2 \lambda / 3$ and $a=\lfloor\alpha n\rfloor$. We pick a random a-set $A \subset V$ and compute b. Let X_{A} be an indicator random variable so that $X_{A}=1$ if and only if $b=b(A) \leq l-a$. Let $X=\sum_{|A|=a} X_{A}$. We succeed if $X>0$.

The expectation $E(X)=\binom{n}{a} \operatorname{Pr}(\operatorname{Bin}(n-a, 1 / 2) \leq l-a)$ tends to infinity, by our choice of λ. We now show that $X>0$ asymptotically almost surely by using the Chebyshev inequality. First note that for $A \cap C \neq \emptyset$ we have

$$
\operatorname{Cov}\left(X_{A}, X_{C}\right)=\operatorname{Pr}\left(X_{A}=X_{C}=1\right)-\operatorname{Pr}\left(X_{A}=1\right) \operatorname{Pr}\left(X_{C}=1\right)=0 .
$$

Indeed, if $x \in V \backslash(A \cup C)$, then $\operatorname{Pr}\left(x \in B(A) \mid X_{C}=1\right)=1 / 2$, since $A \backslash C \neq \emptyset$ and no adjacency between x and all vertices in $A \backslash C$ is exposed by the event $X_{C}=1$. Similarly, if $x \in C \backslash A$, then $A \cap C \neq \emptyset$ and an adjacency between x and $A \cap C$ is independent of the occurrence of $X_{C}=1$. This implies that $\operatorname{Pr}\left(x \in B(A) \mid X_{C}=1\right)=1 / 2$ as well. Thus $\operatorname{Pr}\left(X_{A}=1 \mid X_{C}=1\right)=$ $\operatorname{Pr}(\operatorname{Bin}(n-a, 1 / 2) \leq l-a)=\operatorname{Pr}\left(X_{A}=1\right)$, and consequently, $\operatorname{Cov}\left(X_{A}, X_{C}\right)=0$.

Now consider the case when $A \cap C=\emptyset$. Let s be a vertex in A. Define a new indicator random variable Y which takes the value 1 if and only if $|B(C) \backslash\{s\}| \leq l-a$. Observe that

$$
\operatorname{Pr}(Y=1)=\operatorname{Pr}(\operatorname{Bin}(n-a-1,1 / 2) \leq l-a) \leq 2 \operatorname{Pr}(\operatorname{Bin}(n-a, 1 / 2) \leq l-a)=2 \operatorname{Pr}\left(X_{A}=1\right) .
$$

Moreover,

$$
\operatorname{Pr}\left(X_{A}=1 \mid Y=1\right)=\operatorname{Pr}(\operatorname{Bin}(n-a, 1 / 2) \leq l-a)=\operatorname{Pr}\left(X_{A}=1\right),
$$

since for every $x \in V \backslash A$ the adjacency between x and s is not influenced by $Y=1$. Finally note that $X_{C} \leq Y$. Thus,

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{A}, X_{C}\right) \leq \operatorname{Pr}\left(X_{A}=X_{C}=1\right) \\
& \quad \leq \operatorname{Pr}\left(X_{A}=Y=1\right)=\operatorname{Pr}(Y=1) \operatorname{Pr}\left(X_{A}=1 \mid Y=1\right) \leq 2\left(\operatorname{Pr}\left(X_{A}=1\right)\right)^{2} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\operatorname{Var}(X) & =E(X)+\sum_{A \cap C \neq \emptyset, A \neq C} \operatorname{Cov}\left(X_{A}, X_{C}\right)+\sum_{A \cap C=\emptyset} \operatorname{Cov}\left(X_{A}, X_{C}\right) \\
& \leq E(X)+2 \sum_{A \cap C=\emptyset}\left(\operatorname{Pr}\left(X_{A}=1\right)\right)^{2} \\
& =E(X)+2\binom{n}{a}\binom{n-a}{a}\left(\operatorname{Pr}\left(X_{A}=1\right)\right)^{2}=o\left(E(X)^{2}\right),
\end{aligned}
$$

as $E(X)=\binom{n}{a} \operatorname{Pr}\left(X_{A}=1\right)$ tends to infinity and $\binom{n-a}{a}=o\left(\binom{n}{a}\right)$. Hence, Chebyshev's inequality yields that $X>0$ asymptotically almost surely.

Remark 2.1. A version of the well-known Gilbert-Varshamov bound (see, e.g., [4]) states that if

$$
\begin{equation*}
2^{-n} \sum_{i=1}^{l-1}\binom{n}{i} 3^{i}<1 \tag{2.5}
\end{equation*}
$$

then $f(n) \geq l$. Observe that this is consistent with bound (2.1). Let $\lambda=l / n$. We can approximate the left hand side of (2.5) by

$$
2^{n\left(H(\lambda)+\lambda \log _{2} 3-1+o(1)\right)} .
$$

One can check after some computation that

$$
H(\lambda)+\lambda \log _{2} 3-1=g_{\lambda}(2 \lambda / 3) .
$$

Therefore, (2.1) and (2.5) give asymptotically the same lower bound on $f(n)$.
3. Random Graphs for Arbitrary p. Let $G=G_{n, p}$ be a random graph with $p \in(0,1)$.

Observe that for a fixed set $A \subset V,|A|=a$, the probability that a vertex from $V \backslash A$ belongs to $B(A)$ is

$$
p(a)=\sum_{0 \leq i<\frac{a}{2}}\binom{a}{2 i+1} p^{2 i+1}(1-p)^{a-(2 i+1)}=\frac{1-(1-2 p)^{a}}{2} .
$$

(If this is unfamiliar, write $1-(1-2 p)^{a}=((1-p)+p)^{a}-((1-p)-p)^{a}$ and expand.)
3.1. $0<p<\lambda_{0}$. For $p<\lambda_{0}$ we begin with the upper bound $f(G) \leq \delta(G)+1$, see (1.1). For the lower bound it is enough to show that

$$
\begin{equation*}
\sum_{2 \leq a \leq p n}\binom{n}{a} \operatorname{Pr}(\operatorname{Bin}(n-a, p(a)) \leq p n-a)=o(1) \tag{3.1}
\end{equation*}
$$

since $\delta(G)+1 \leq n p$ asymptotically almost surely. (We may assume that $p=\Omega\left(\frac{\log n}{n}\right)$; for otherwise $\delta(G)=0$ with high probability and the theorem is trivially true.) This implies that with high probability if $|A|+|B| \leq p n$, then $|A|=1$.
3.1.1. p Constant. We split this sum into two sums for $2 \leq a \leq \sqrt{n}$ and $\sqrt{n}<a \leq p n$, respectively. Let $X=\operatorname{Bin}(n-a, p(a))$ and

$$
\varepsilon=1-\frac{p n-a}{(n-a) p(a)} \geq 1-\frac{p}{p(2)}=1-\frac{1}{2-2 p}>0
$$

We will use the following version of Chernoff's bound,

$$
\operatorname{Pr}(\operatorname{Bin}(N, \rho) \leq(1-\theta) N \rho) \leq e^{-\theta^{2} N \rho / 2}
$$

Hence, we see that

$$
\operatorname{Pr}(\operatorname{Bin}(n-a, p(a)) \leq p n-a)=\operatorname{Pr}(X \leq(1-\varepsilon) E(X)) \leq \exp \left\{-\varepsilon^{2} E(X) / 2\right\}=\exp \{-\Theta(n)\},
$$

and consequently,

$$
\begin{aligned}
& \sum_{2 \leq a<\sqrt{n}}\binom{n}{a} \operatorname{Pr}(\operatorname{Bin}(n-a, p(a)) \leq p n-a) \\
& \leq \sqrt{n}\binom{n}{\sqrt{n}} \exp \{-\Theta(n)\} \leq \exp \{O(\sqrt{n} \log n)\} \exp \{-\Theta(n)\}=o(1)
\end{aligned}
$$

Now we bound the second sum corresponding to $\sqrt{n}<a \leq p n$. Note that

$$
\begin{aligned}
\sum_{\sqrt{n} \leq a \leq p n} & \binom{n}{a} \operatorname{Pr}(\operatorname{Bin}(n-a, p(a)) \leq p n-a) \\
& =\sum_{\sqrt{n} \leq a \leq p n}\binom{n}{a} \operatorname{Pr}\left(\operatorname{Bin}\left(n-a, \frac{1}{2}+e^{-\Omega\left(n^{1 / 2}\right)}\right) \leq p n-a\right) \leq n 2^{n(h(p)+o(1))}=o(1) .
\end{aligned}
$$

Here h is defined in (2.3) and the right hand limit is zero since $p<\lambda_{0}$.
3.1.2. $p=o(1)$. We follow basically the same strategy as above and show that (3.1) holds for large a and something similar when a is small. Suppose then that $p=1 / \omega$ where $\omega=\omega(n) \rightarrow \infty$. First consider those a for which $a p \geq 1 / \omega^{1 / 2}$. In this case $p(a) \geq\left(1-e^{-2 a p}\right) / 2$. Thus,

$$
\sum_{\substack{a p \geq 1 / \omega^{1 / 2} \\ a \leq n p}}\binom{n}{a} \operatorname{Pr}(\operatorname{Bin}(n-a, p(a)) \leq p n-a)=\sum_{\substack{a p \geq 1 / \omega^{1 / 2} \\ a \leq n p}} e^{O(n \log \omega / \omega)} e^{-\Omega\left(n / \omega^{1 / 2}\right)}=o(1) .
$$

If $a p \leq 1 / \omega^{1 / 2}$ then $p(a)=a p(1+O(a p))$. Then

$$
\begin{equation*}
\sum_{\substack{a p<1 / \omega^{1 / 2} \\ 2 \leq a \leq n p}}\binom{n}{a} \operatorname{Pr}(\operatorname{Bin}(n-a, p(a)) \leq p n-a) \leq \sum_{\substack{a p<1 / \omega^{1 / 2} \\ 2 \leq a \leq n p}}\left(\frac{n e}{a} e^{-n p / 10}\right)^{a}=o(1) \tag{3.2}
\end{equation*}
$$

provided $n p \geq 11 \log n$.
If $n p \leq \log n-\log \log n$ then $G=G_{n, p}$ has isolated vertices asymptotically almost surely and then $f(G)=1$. So we are left with the case where $\log n-\log \log n \leq n p \leq 11 \log n$.

We next observe that if there is a set A for which $2 \leq|A|$ and $|A|+|B(A)| \leq n p$ then there is a minimal size such set. Let $H_{A}=\left(A, E_{A}\right)$ be a graph with vertex set A and an edge $(v, w) \in E_{A}$ if and only if v, w have a common neighbor in $G . H_{A}$ must be connected, else A is not minimal. So we can find $t \leq a-1$ vertices T such that $A \cup T$ spans at least $t+a-1$ edges between A
and T. Thus we can replace the estimate (3.2) by

$$
\begin{aligned}
& \sum_{\substack{a p<1 / \omega^{1 / 2} \\
2 \leq a \leq n p}} \sum_{t=1}^{a-1}\binom{n}{a}\binom{n}{t}\binom{t a}{t+a-1} p^{t+a-1} \operatorname{Pr}(\operatorname{Bin}(n-a-t, p(a)) \leq p n-a) \\
& \quad \leq \sum_{\substack{a p<1 / \omega^{1 / 2} \\
2 \leq a \leq n p}} \sum_{t=1}^{a-1}\left(\frac{n e}{a}\right)^{a}\left(\frac{n e}{t}\right)^{t}\left(\frac{t a e p}{t+a-1}\right)^{t+a-1} e^{-a n p / 10} \\
& \\
& \leq \frac{1}{e^{2} n p} \sum_{\substack{a p<1 / \omega^{1 / 2} \\
2 \leq a \leq n p}} a\left(\left(e^{2} n p\right)^{2} e^{-n p / 10}\right)^{a}=o(1) .
\end{aligned}
$$

3.2. $p_{0}<p<1$. First let us define the constant p_{0}. Let

$$
\begin{equation*}
p_{0} \approx 0.8941512242051071 \ldots \tag{3.3}
\end{equation*}
$$

be a root of $2 p-2 p^{2}=\lambda_{0}$. For the upper bound let $A=\{x, y\}$, where x and y satisfy $\mid N(x) \triangle$ $N(y)\left|\leq\left|N\left(x^{\prime}\right) \triangle N\left(y^{\prime}\right)\right|\right.$ for any $x^{\prime}, y^{\prime} \in V(G)$. Then $B=B(A)=N(x) \triangle N(y)$, and thus, asymptotically almost surely $|B| \leq\left(2 p-2 p^{2}\right) n$ plus a negligible error term $o(n)$. (We may assume that $1-p=\Omega\left(\frac{\log n}{n}\right)$; for otherwise we have two vertices of degree $n-1$ with high probability, and hence, $f(G)=2$.)

To show the lower bound it is enough to prove that

$$
\sum_{3 \leq a \leq\left(2 p-2 p^{2}\right) n}\binom{n}{a} \operatorname{Pr}\left(\operatorname{Bin}(n-a, p(a)) \leq\left(2 p-2 p^{2}\right) n-a\right)=o(1) .
$$

Indeed, this implies that if $|A|+|B| \leq\left(2 p-2 p^{2}\right) n$, then $|A|=1$ or 2 . But if $|A|=1$, then in a typical graph $|B|=(p+o(1)) n>\left(2 p-2 p^{2}\right) n$ since $p>1 / 2$.
3.2.1. p Constant. As in the previous section we split the sum into two sums for $3 \leq a \leq \sqrt{n}$ and $\sqrt{n}<a \leq p n$, respectively. Let

$$
\varepsilon=1-\frac{\left(2 p-2 p^{2}\right) n-a}{(n-a) p(a)} \geq 1-\frac{2 p-2 p^{2}}{p(a)}>0 .
$$

To confirm the second inequality we have to consider two cases. The first one is for a odd and at least 3. Here,

$$
1-\frac{2 p-2 p^{2}}{p(a)}>1-\frac{2 p-2 p^{2}}{1 / 2}=(2 p-1)^{2}>0
$$

The second case, for a even and at least 4, gives

$$
1-\frac{2 p-2 p^{2}}{p(a)}>1-\frac{2 p-2 p^{2}}{p(2)}=0
$$

Now one can apply Chernoff bounds with the given ε to show that

$$
\sum_{3 \leq a<\sqrt{n}}\binom{n}{a} \operatorname{Pr}\left(\operatorname{Bin}(n-a, p(a)) \leq\left(2 p-2 p^{2}\right) n-a\right)=o(1) .
$$

Now we bound the second sum corresponding to $\sqrt{n}<a \leq\left(2 p-2 p^{2}\right) n$. Note that

$$
\begin{aligned}
\sum_{\sqrt{n} \leq a \leq\left(2 p-2 p^{2}\right) n} & \binom{n}{a} \\
& \operatorname{Pr}\left(\operatorname{Bin}(n-a, p(a)) \leq\left(2 p-2 p^{2}\right) n-a\right) \\
& \sum_{\sqrt{n} \leq a \leq\left(2 p-2 p^{2}\right) n}\binom{n}{a} \operatorname{Pr}\left(\operatorname{Bin}\left(n-a, \frac{1}{2}+O\left(e^{-\Omega\left(n^{1 / 2}\right)}\right)\right) \leq\left(2 p-2 p^{2}\right) n-a\right) \\
& \leq n 2^{n h\left(2 p-2 p^{2}\right)+o(1)}=o(1)
\end{aligned}
$$

since $p>p_{0}$ implies that $2 p-2 p^{2}<\lambda_{0}$.
3.2.2. $p=1-o(1)$. One can check it by following the same strategy as above and in Section 3.1.2.
3.3. $\lambda_{0} \leq p \leq p_{0}$. Let $\alpha=2 \lambda_{0} / 3, a=\lfloor\alpha n\rfloor$. Fix an a-set $A \subset V$ and generate our random graph and determine $B=B(A)$ with $b=|B|$. Let $\varepsilon=(\log n)^{4} / \sqrt{n}$ and let X_{A} be the indicator random variable for $a+b \leq\left(\lambda_{0}+\varepsilon\right) n$ and $X=\sum_{A} X_{A}$. Then

$$
p(a)=\frac{1}{2}+e^{-\Omega(n)}
$$

and with $g_{\lambda}(\alpha)$ as defined in (2.2),

$$
\begin{equation*}
E(X)=\exp \left\{\left(g_{\lambda_{0}+\varepsilon}\left(2 \lambda_{0} / 3\right)+o(1)\right) n \log 2\right\} . \tag{3.4}
\end{equation*}
$$

Now
$g_{\lambda+\varepsilon}(\alpha)=g_{\lambda}(\alpha)+(1-\alpha)\left(H\left(\frac{\lambda+\varepsilon-\alpha}{1-\alpha}\right)-H\left(\frac{\lambda-\alpha}{1-\alpha}\right)\right)=g_{\lambda}(\alpha)+\varepsilon \log _{2}\left(\frac{1-\lambda}{\lambda-\alpha}\right)+O\left(\varepsilon^{2}\right)$.
Plugging this into (3.4) with $\lambda=\lambda_{0}$ and $\alpha=2 \lambda_{0} / 3$ we see that

$$
\begin{equation*}
E(X)=\exp \left\{\left(\varepsilon \log _{2}\left(\frac{1-\lambda_{0}}{\lambda_{0} / 3}\right)+O\left(\varepsilon^{2}\right)\right) n \log 2\right\}=e^{\Omega\left((\log n)^{4} n^{1 / 2}\right)} \tag{3.5}
\end{equation*}
$$

Next, we estimate the variance of X. We will argue that for $A, C \in\binom{V}{a}$ either $|A \triangle C|$ is small (but the number of such pairs is small) or $|A \triangle C|$ is large (but then the covariance $\operatorname{Cov}\left(X_{A}, X_{C}\right)$ is very small since if we fix the adjacency of some vertex x to C, then the parity of $|N(x) \cap(A \backslash C)|$ is almost a fair coin flip). Formally,

$$
\begin{aligned}
\operatorname{Var}(X)=E(X) & +\sum_{A \neq C} \operatorname{Cov}\left(X_{A}, X_{C}\right) \\
\leq E(X) & +\sum_{|A \Delta C|<2 \sqrt{n}} \operatorname{Pr}\left(X_{A}=X_{C}=1\right) \\
& +\sum_{|A \triangle C| \geq 2 \sqrt{n},|A \cap C| \geq \sqrt{n}} \operatorname{Cov}\left(X_{A}, X_{C}\right) \\
& +\sum_{|A \cap C|<\sqrt{n}} \operatorname{Pr}\left(X_{A}=X_{C}=1\right) .
\end{aligned}
$$

Since $E(X)$ goes to infinity, clearly $E(X)=o\left(E(X)^{2}\right)$. We show in Claims 3.1, 3.2 and 3.3 that the remaining part is also bounded by $o\left(E(X)^{2}\right)$. Then Chebyshev's inequality will imply that $X>0$ asymptotically almost surely.

Claim 3.1. $\sum_{|A \Delta C|<2 \sqrt{n}} \operatorname{Pr}\left(X_{A}=X_{C}=1\right)=o\left(E(X)^{2}\right)$

Proof. We estimate trivially $\operatorname{Pr}\left(X_{A}=X_{C}=1\right) \leq \operatorname{Pr}\left(X_{A}=1\right)$. Then,

$$
\begin{aligned}
\sum_{|A \triangle C|<2 \sqrt{n}} \operatorname{Pr}\left(X_{A}=1\right)=\binom{n}{a} \sum_{0 \leq i<\sqrt{n}} & \binom{n-a}{i}\binom{a}{a-i} \operatorname{Pr}\left(X_{A}=1\right) \\
& =E(X) \sum_{0 \leq i<\sqrt{n}}\binom{n-a}{i}\binom{a}{a-i} \leq E(X) 2^{O(\sqrt{n} \log n)} .
\end{aligned}
$$

Thus, (3.5) yields that $\sum_{|A \triangle C|<2 \sqrt{n}} \operatorname{Pr}\left(X_{A}=X_{C}=1\right)=o\left(E(X)^{2}\right)$.
Claim 3.2. $\sum_{|A \triangle C| \geq 2 \sqrt{n},|A \cap C| \geq \sqrt{n}} \operatorname{Cov}\left(X_{A}, X_{C}\right)=o\left(E(X)^{2}\right)$
Proof. If $x \in V \backslash(A \cup C)$, then $\operatorname{Pr}\left(x \in B(A) \mid X_{C}=1\right)=2^{-1+o(1 / n)}$, since we can always find at least \sqrt{n} vertices in $A \backslash C$ with no adjacency with x determined by the event $X_{C}=1$. Similarly, if $x \in C \backslash A$, then there are at least $\sqrt{n}-1$ vertices in $A \cap C$ such that their adjacency with x is independent of the occurrence of $X_{C}=1$. This implies that

$$
\operatorname{Pr}\left(X_{A}=1 \mid X_{C}=1\right)=\sum_{0 \leq i \leq l-a}\binom{n-a}{i} 2^{-(n-a)+o(1)}=2^{o(1)} \operatorname{Pr}\left(X_{A}=1\right)
$$

and consequently, $\operatorname{Cov}\left(X_{A}, X_{C}\right)=o\left(\operatorname{Pr}\left(X_{A}=1\right)^{2}\right)$. Hence,

$$
\sum_{|A \triangle C| \geq 2 \sqrt{n},|A \cap C| \geq \sqrt{n}} \operatorname{Cov}\left(X_{A}, X_{C}\right) \leq\binom{ n}{a}^{2} o\left(\operatorname{Pr}\left(X_{A}=1\right)^{2}\right)=o\left(E(X)^{2}\right)
$$

Claim 3.3. $\sum_{|A \cap C|<\sqrt{n}} \operatorname{Pr}\left(X_{A}=X_{C}=1\right)=o\left(E(X)^{2}\right)$
Proof. First let us estimate the number of ordered pairs (A, C) for which $|A \cap C|<\sqrt{n}$. Note,

$$
\begin{align*}
\sum_{|A \cap C|<\sqrt{n}} 1 & =\binom{n}{a} \sum_{0 \leq i<\sqrt{n}}\binom{n-a}{a-i}\binom{a}{i} \leq \sqrt{n}\binom{n}{a}\binom{n-a}{a}\binom{a}{\sqrt{n}} \\
& =2^{n\left(H(\alpha)+H\left(\frac{\alpha}{1-\alpha}\right)(1-\alpha)+o(1)\right)} . \tag{3.6}
\end{align*}
$$

Now we will bound $\operatorname{Pr}\left(X_{A}=X_{C}=1\right)$ for fixed a-sets A and C. Let $S \subset A \backslash C$ be a set of size $s=|S|=\lfloor\sqrt{n}\rfloor$. Define a new indicator random variable Y which takes the value 1 if and only if $|B(C) \backslash S| \leq\left(\lambda_{0}+\varepsilon\right) n-a$. Clearly, $X_{C} \leq Y$ and

$$
\begin{aligned}
\operatorname{Pr}(Y=1)=\operatorname{Pr}\left(\operatorname{Bin}(n-a-s, p(a)) \leq\left(\lambda_{0}+\varepsilon\right) n-a\right) \\
\leq 2^{s+o(1)} \sum_{0 \leq i \leq\left(\lambda_{0}+\varepsilon\right) n-a}\binom{n-a}{i} 2^{-(n-a)}=2^{s+o(1)} \operatorname{Pr}\left(X_{A}=1\right) .
\end{aligned}
$$

Now if we condition on the existence or otherwise of all edges F^{\prime} between C and $V \backslash S$ then if $x \in V \backslash A$

$$
\operatorname{Pr}\left(x \in B(A) \mid F^{\prime} \text { and } F^{\prime \prime}\right) \in\left[\frac{1-(1-2 p)^{s}}{2}, \frac{1+(1-2 p)^{s}}{2}\right],
$$

where $F^{\prime \prime}$ is the set of edges between x and $A \backslash S$. This implies that

$$
\operatorname{Pr}\left(X_{A}=1 \mid Y=1\right)=\sum_{0 \leq i \leq\left(\lambda_{0}+\varepsilon\right) n-a}\binom{n-a}{i} 2^{-(n-a)+O(\sqrt{n})}=2^{O(\sqrt{n})} \operatorname{Pr}\left(X_{A}=1\right)
$$

Consequently,

$$
\operatorname{Pr}\left(X_{A}=X_{C}=1\right) \leq \operatorname{Pr}\left(X_{A}=Y=1\right) \leq 2^{O(\sqrt{n})} \operatorname{Pr}\left(X_{A}=1\right)^{2} .
$$

Hence, (3.6) implies

$$
\sum_{|A \cap C|<\sqrt{n}} \operatorname{Pr}\left(X_{A}=X_{C}=1\right) \leq 2^{n\left(H(\alpha)+H\left(\frac{\alpha}{1-\alpha}\right)(1-\alpha)+o(1)\right)} \operatorname{Pr}\left(X_{A}=1\right)^{2} .
$$

To complete the proof it is enough to note that

$$
E(X)^{2}=2^{n(2 H(\alpha)+o(1))} \operatorname{Pr}\left(X_{A}=1\right)^{2}
$$

and

$$
2 H(\alpha)>H(\alpha)+H\left(\frac{\alpha}{1-\alpha}\right)(1-\alpha) .
$$

Indeed, the last inequality follows from the strict concavity of the entropy function, since then $(1-\alpha) H\left(\frac{\alpha}{1-\alpha}\right)+\alpha H(0) \leq H(\alpha)$ with the equality for $\alpha=0$ only.

Now we show that $f\left(G_{n, p}\right) \geq\left(\lambda_{0}-\varepsilon\right) n$. We show that

$$
\sum_{1 \leq a \leq\left(\lambda_{0}-\varepsilon\right) n}\binom{n}{a} \operatorname{Pr}\left(\operatorname{Bin}(n-a, p(a)) \leq\left(\lambda_{0}-\varepsilon\right) n-a\right)=o(1) .
$$

As in previous sections we split this sum into two sums but this time we make the break into $1 \leq a \leq(\log n)^{2}$ and $(\log n)^{2}<a \leq\left(\lambda_{0}-\varepsilon\right) n$, respectively. In order to estimate the first sum we use the Chernoff bounds with deviation $1-\theta$ from the mean where

$$
\theta=1-\frac{\left(\lambda_{0}-\varepsilon\right) n-a}{(n-a) p(a)} \geq 1-\frac{\lambda_{0}-\varepsilon}{p(a)} \geq 1-\frac{\lambda_{0}-\varepsilon}{\lambda_{0}}=\frac{\varepsilon}{\lambda_{0}} .
$$

Consequently,

$$
\begin{aligned}
& \sum_{2 \leq a<(\log n)^{2}}\binom{n}{a} \operatorname{Pr}(\left.\operatorname{Bin}(n-a, p(a)) \leq\left(\lambda_{0}-\varepsilon\right) n-a\right) \\
& \leq(\log n)^{2}\binom{n}{(\log n)^{2}} \exp \left\{-\Omega\left((\log n)^{4}\right)\right\} \leq \exp \left\{-\Omega\left((\log n)^{4}\right)\right\}=o(1)
\end{aligned}
$$

Now we bound the second sum corresponding to $(\log n)^{2}<a \leq\left(\lambda_{0}-\varepsilon\right) n$.

$$
\sum_{(\log n)^{2} \leq a \leq\left(\lambda_{0}-\varepsilon\right) n}\binom{n}{a} \operatorname{Pr}\left(\operatorname{Bin}(n-a, p(a)) \leq\left(\lambda_{0}-\varepsilon\right) n-a\right)=2^{n\left(h\left(\lambda_{0}-\varepsilon\right)+O(\log n / n)\right)}=o(1) .
$$

4. General Graphs. Here we present the proof of Theorem 1.2. First, we prove a weaker result $f(n) \leq(0.440 \ldots+o(1)) n$.

Suppose we aim at showing that $f(n) \leq \lambda n$. We fix some α and ρ and let $a=\alpha n$ and $r=\rho n$. For each a-set A let $R(A)$ consist of all sets that have Hamming distance at most r from $B(A)$. If

$$
\begin{equation*}
\binom{n}{a} \sum_{i=0}^{r}\binom{n}{i}=2^{n(H(\alpha)+H(\rho)+o(1))}>2^{n}, \tag{4.1}
\end{equation*}
$$

then there are A, A^{\prime} such that $R(A) \cap R\left(A^{\prime}\right) \ni C$ is non-empty. This means that C is within Hamming distance r from both $B=B(A)$ and $B^{\prime}=B\left(A^{\prime}\right)$. Thus $\left|B \triangle B^{\prime}\right| \leq 2 r$.

Let all vertices in $A^{\prime \prime}=A \triangle A^{\prime}$ flip their neighbors, i.e., execute operation O_{1}. The only vertices outside of $A^{\prime \prime}$ that can have an odd number of neighbors in $A^{\prime \prime}$ are restricted to ($B \triangle$ $\left.B^{\prime}\right) \cup\left(A \cap A^{\prime}\right)$. Thus

$$
\begin{equation*}
f(G) \leq\left|A \triangle A^{\prime}\right|+\left|\left(B \triangle B^{\prime}\right) \cup\left(A \cap A^{\prime}\right)\right| \leq 2 a+2 r=2 n(\alpha+\rho) . \tag{4.2}
\end{equation*}
$$

Consequently, we try to minimize $\alpha+\rho$ subject to $H(\alpha)+H(\rho)>1$. Since the entropy function is strictly concave, the optimum satisfies $\alpha=\rho$, otherwise replacing each of α, ρ by $(\alpha+\rho) / 2$ we strictly increase $H(\alpha)+H(\rho)$ without changing the sum. Hence, the optimum choice is

$$
\alpha=\rho \approx 0.11002786443835959 \ldots
$$

the smaller root of $H(x)=1 / 2$, proving that $f(n) \leq(0.440 \ldots+o(1)) n$.
In order to obtain a better constant we modify the approach taken in (4.1). Let us take $\delta=0.275, \alpha=0.0535, a=\lfloor\alpha n\rfloor, d=\lfloor\delta n\rfloor$. Look at the collection of sets $B(A), A \in\binom{[n]}{a}$. This gives $\binom{n}{a}=2^{n(H(\alpha)+o(1))}$ binary n-vectors.

We claim that some two of these vectors are at distance at most d. If not, then inequality (5.4.1) in [4] says that

$$
H(\alpha)+o(1) \leq \min \left\{1+g\left(u^{2}\right)-g\left(u^{2}+2 \delta u+2 \delta\right): 0 \leq u \leq 1-2 \delta\right\},
$$

where $g(x)=H((1-\sqrt{1-x}) / 2)$. In particular, if we take $u=1-2 \delta=0.45$, we get $0.30108+$ $o(1) \leq 0.30103$, a contradiction.

Thus, we can find two different a-sets A and A^{\prime} such that $\left|B(A) \triangle B\left(A^{\prime}\right)\right| \leq d$. As in (4.2), we can conclude that $f(G) \leq 2 a+d \leq(0.382+o(1)) n$.
5. Acknowledgment. The authors would like to thank Shiang Yong Looi for suggesting this problem.

REFERENCES

[1] N. Alon and J. Spencer, The Probabilistic Method, third ed., Wiley, New York, 2008.
[2] Code Tables, http://codetables.de/
[3] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. van den Nest, H. J. Briegel, Entanglement in graph states and its applications, E-print arXiv:quant-ph/0602096, Version 1, 2006.
[4] J. H. van Lint, Introduction to Coding Theory, third ed., Springer-Verlag, 1999.
[5] S. Y. Looi, L. Yu, V. Gheorghiu, and R. B. Griffiths, Quantum error-correcting codes using qudit graph states, E-print arXiv.org:0712.1979, Version 4, 2008.
[6] S. Yu, Q. Chen, C. H. Оh, Graphical quantum error-correcting codes, E-print arXiv:0709.1780v1, Version 1, 2007.

[^0]: ${ }^{*}$ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, \{tbohman, adudek, af 1p, pikhurko\}@andrew.cmu.edu
 ${ }^{\dagger}$ Research partially supported by NSF grant DMS-0401147
 ${ }^{\ddagger}$ Research partially supported by NSF grant DMS-0753472
 ${ }^{\S}$ Research partially supported by NSF grant DMS-0758057

