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Abstract. We study a problem motivated by a question related to quantum-error-correcting codes. Combi-
natorially, it involves the following graph parameter:

f(G) = min {|A| + |{x ∈ V \ A : dA(x) is odd}| : A 6= ∅} ,

where V is the vertex set of G and dA(x) is the number of neighbors of x in A. We give asymptotically tight
estimates of f for the random graph Gn,p when p is constant. Also, if

f(n) = max{f(G) : |V (G)| = n}

then we show that f(n) ≤ (0.382 + o(1))n.
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1. Introduction. In this paper we consider a problem which is motivated by a question
from quantum-error-correcting codes.

Given a graph G with ±1 signs on vertices, each vertex can perform at most one of the
following three operations: O1 (flip all neighbors, i.e., change their signs), O2 (flip oneself),
and O3 (flip oneself and all neighbors). We want to start with all +1’s, execute some non-zero
number of operations and return to all +1’s. The diagonal distance f(G) is the minimum number
of operations needed (with each vertex doing at most one operation).

Trivially,
f(G) ≤ δ(G) + 1 (1.1)

holds, where δ(G) denotes the minimum degree. Indeed, a vertex with the minimum degree
applies O1 and then its neighbors fix themselves applying O2. Let

f(n) = max f(G),

where the maximum is taken over all non-empty graphs of order n.
Given a graph G, one can ultimately construct a quantum error correcting code, see [3, 5, 6].

A common metric to measure the code robustness against noise is the quantity called “code
distance” which is bounded from above by f(G). Although it is more important to find explicit
graphs G with large f(G) (see the case k = 0 of Section “QECC” in [2] for known constructions),
theoretical upper and lower bounds on f(n) are also of interest.

In this paper we asymptotically determine the diagonal distance of the random graph Gn,p

for any p ∈ (0, 1).
We denote the symmetric difference of two sets A and B by A 4 B and the logarithmic

function with base e as log.
Theorem 1.1. There are absolute constants λ0 ≈ 0.189 and p0 ≈ 0.894, see (2.4) and (3.3),

such that for G = Gn,p asymptotically almost surely:
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Fig. 1.1. The behavior of f̂(p) = limn→∞ f(Gn,p)/n as a function of p.

(i) f(G) = δ(G) + 1 for 0 < p < λ0 or p = o(1),
(ii) |f(G)− λ0n| = Õ(n1/2) for λ0 ≤ p ≤ p0,
(iii) f(G) = 2 + minx,y∈V (G) |(N(x)4N(y)) \ {x, y}| for p0 < p < 1 or p = 1− o(1).
(Here Õ(n1/2) hides a polylog factor.)

Figure 1.1 visualizes the behavior of the diagonal distance of Gn,p. In addition to Theorem 1.1
we find the following upper bound on f(n).

Theorem 1.2. f(n) ≤ (0.382 + o(1))n.
In the remainder of the paper we will use a more convenient restatement of f(G). Observe that

the order of execution of operations does not affect the final outcome. For any A ⊂ V = V (G),
let B consist of those vertices in V \A that have odd number of neighbors in A. Let a = |A| and
b = |B|. Then f(G) is the minimum of a + b over all non-empty A ⊂ V (G). The vertices of A do
an O1/O3 operation, depending on the even/odd parity of their neighborhood in A. The vertices
in B then do an O2-operation to change back to +1.

2. Random Graphs for p = 1/2. Here we prove a special case of Theorem 1.1 when
p = 1/2. This case is somewhat easier to handle.

Let G = Gn,1/2 be a binomial random graph. First we find a lower bound on f(G). If we
choose a non-empty A ⊂ V and then generate G, then the distribution of b is binomial with
parameters n− a and 1/2, which we denote here by Bin(n− a, 1/2). Hence, if l is such that

l−1∑
a=1

(
n

a

)
Pr (Bin(n− a, 1/2) ≤ l − 1− a) = o(1), (2.1)

then asymptotically almost surely the diagonal distance of G is at least l.
Let λ = l/n and α = a/n. We may assume that λ < 1

2 . Consequently, λ− α < 1
2(1− α), and

hence, we can approximate the summand in (2.1) by

2n(H(α)+(1−α)(H(λ−α
1−α )−1)+O(log n/n)),

where H is the binary entropy function defined as H(p) = −p log2 p − (1 − p) log2(1 − p). For
more information about the entropy function and its properties see, e.g., [1]. Let

gλ(α) = H(α) + (1− α)
(

H

(
λ− α

1− α

)
− 1

)
. (2.2)

The maximum of gλ(α) is attained exactly for α = 2λ/3, since

g′λ(α) = log2

2(λ− α)
α

.
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Now the function
h(λ) = gλ(2λ/3) (2.3)

is concave on λ ∈ [0, 1] since

h′′(λ) =
1

(λ− 1)λ log 2
< 0.

Moreover, observe that h(0) = −1 and h(1) = H(2/3) − 1/3 > 0. Thus the equation h(λ) = 0
has a unique solution λ0 and one can compute that

λ0 = 0.1892896249152306 . . . (2.4)

Therefore, if λ = λ0−K log n/n for large enough K > 0, then the left hand side of (2.1) goes
to zero and similarly for λ = λ0 +K log n/n it goes to infinity. In particular, f(G) > (λ0−o(1))n
asymptotically almost surely.

Let us show that this constant λ0 is best possible, i.e., asymptotically almost surely f(G) ≤
(λ0 + K log n/n)n. Let λ = λ0 + K log n/n, n be large, and l = λn. Let α = 2λ/3 and a = bαnc.
We pick a random a-set A ⊂ V and compute b. Let XA be an indicator random variable so that
XA = 1 if and only if b = b(A) ≤ l − a. Let X =

∑
|A|=a XA. We succeed if X > 0.

The expectation E(X) =
(
n
a

)
Pr (Bin(n− a, 1/2) ≤ l − a) tends to infinity, by our choice of

λ. We now show that X > 0 asymptotically almost surely by using the Chebyshev inequality.
First note that for A ∩ C 6= ∅ we have

Cov(XA, XC) = Pr(XA = XC = 1)− Pr(XA = 1)Pr(XC = 1) = 0.

Indeed, if x ∈ V \ (A ∪ C), then Pr(x ∈ B(A)|XC = 1) = 1/2, since A \ C 6= ∅ and no adjacency
between x and all vertices in A \ C is exposed by the event XC = 1. Similarly, if x ∈ C \ A,
then A ∩ C 6= ∅ and an adjacency between x and A ∩ C is independent of the occurrence of
XC = 1. This implies that Pr(x ∈ B(A) | XC = 1) = 1/2 as well. Thus Pr(XA = 1|XC = 1) =
Pr (Bin(n− a, 1/2) ≤ l − a) = Pr(XA = 1), and consequently, Cov(XA, XC) = 0.

Now consider the case when A ∩ C = ∅. Let s be a vertex in A. Define a new indicator
random variable Y which takes the value 1 if and only if |B(C) \ {s}| ≤ l − a. Observe that

Pr(Y = 1) = Pr (Bin(n− a− 1, 1/2) ≤ l − a) ≤ 2 Pr (Bin(n− a, 1/2) ≤ l − a) = 2 Pr(XA = 1).

Moreover,
Pr(XA = 1|Y = 1) = Pr (Bin(n− a, 1/2) ≤ l − a) = Pr(XA = 1),

since for every x ∈ V \A the adjacency between x and s is not influenced by Y = 1. Finally note
that XC ≤ Y . Thus,

Cov(XA, XC) ≤ Pr(XA = XC = 1)

≤ Pr(XA = Y = 1) = Pr(Y = 1)Pr(XA = 1|Y = 1) ≤ 2 (Pr(XA = 1))2 .

Consequently,

V ar(X) = E(X) +
∑

A∩C 6=∅,A6=C

Cov(XA, XC) +
∑

A∩C=∅

Cov(XA, XC)

≤ E(X) + 2
∑

A∩C=∅

(Pr(XA = 1))2

= E(X) + 2
(

n

a

)(
n− a

a

)
(Pr(XA = 1))2 = o(E(X)2),
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as E(X) =
(
n
a

)
Pr(XA = 1) tends to infinity and

(
n−a

a

)
= o

((
n
a

))
. Hence, Chebyshev’s inequality

yields that X > 0 asymptotically almost surely.
Remark 2.1. A version of the well-known Gilbert-Varshamov bound (see, e.g., [4]) states

that if

2−n
l−1∑
i=1

(
n

i

)
3i < 1, (2.5)

then f(n) ≥ l. Observe that this is consistent with bound (2.1). Let λ = l/n. We can approximate
the left hand side of (2.5) by

2n(H(λ)+λ log2 3−1+o(1)).

One can check after some computation that

H(λ) + λ log2 3− 1 = gλ(2λ/3).

Therefore, (2.1) and (2.5) give asymptotically the same lower bound on f(n).

3. Random Graphs for Arbitrary p. Let G = Gn,p be a random graph with p ∈ (0, 1).
Observe that for a fixed set A ⊂ V , |A| = a, the probability that a vertex from V \A belongs

to B(A) is

p(a) =
∑

0≤i< a
2

(
a

2i + 1

)
p2i+1(1− p)a−(2i+1) =

1− (1− 2p)a

2
.

(If this is unfamiliar, write 1− (1− 2p)a = ((1− p) + p)a − ((1− p)− p)a and expand.)

3.1. 0 < p < λ0. For p < λ0 we begin with the upper bound f(G) ≤ δ(G) + 1, see (1.1). For
the lower bound it is enough to show that

∑
2≤a≤pn

(
n

a

)
Pr (Bin(n− a, p(a)) ≤ pn− a) = o(1), (3.1)

since δ(G) + 1 ≤ np asymptotically almost surely. (We may assume that p = Ω
(

log n
n

)
; for

otherwise δ(G) = 0 with high probability and the theorem is trivially true.) This implies that
with high probability if |A|+ |B| ≤ pn, then |A| = 1.

3.1.1. p Constant. We split this sum into two sums for 2 ≤ a ≤
√

n and
√

n < a ≤ pn,
respectively. Let X = Bin(n− a, p(a)) and

ε = 1− pn− a

(n− a)p(a)
≥ 1− p

p(2)
= 1− 1

2− 2p
> 0.

We will use the following version of Chernoff’s bound,

Pr(Bin(N, ρ) ≤ (1− θ)Nρ) ≤ e−θ2Nρ/2.

Hence, we see that

Pr (Bin(n− a, p(a)) ≤ pn− a) = Pr (X ≤ (1− ε)E(X)) ≤ exp{−ε2E(X)/2} = exp{−Θ(n)},
4



and consequently,

∑
2≤a<

√
n

(
n

a

)
Pr (Bin(n− a, p(a)) ≤ pn− a)

≤
√

n

(
n√
n

)
exp{−Θ(n)} ≤ exp{O(

√
n log n)} exp{−Θ(n)} = o(1).

Now we bound the second sum corresponding to
√

n < a ≤ pn. Note that

∑
√

n≤a≤pn

(
n

a

)
Pr (Bin(n− a, p(a)) ≤ pn− a)

=
∑

√
n≤a≤pn

(
n

a

)
Pr

(
Bin

(
n− a,

1
2

+ e−Ω(n1/2)

)
≤ pn− a

)
≤ n2n(h(p)+o(1)) = o(1).

Here h is defined in (2.3) and the right hand limit is zero since p < λ0.

3.1.2. p = o(1). We follow basically the same strategy as above and show that (3.1) holds for
large a and something similar when a is small. Suppose then that p = 1/ω where ω = ω(n) →∞.
First consider those a for which ap ≥ 1/ω1/2. In this case p(a) ≥ (1− e−2ap)/2. Thus,

∑
ap≥1/ω1/2

a≤np

(
n

a

)
Pr (Bin(n− a, p(a)) ≤ pn− a) =

∑
ap≥1/ω1/2

a≤np

eO(n log ω/ω)e−Ω(n/ω1/2) = o(1).

If ap ≤ 1/ω1/2 then p(a) = ap(1 + O(ap)). Then

∑
ap<1/ω1/2

2≤a≤np

(
n

a

)
Pr (Bin(n− a, p(a)) ≤ pn− a) ≤

∑
ap<1/ω1/2

2≤a≤np

(ne

a
e−np/10

)a
= o(1) (3.2)

provided np ≥ 11 log n.

If np ≤ log n− log log n then G = Gn,p has isolated vertices asymptotically almost surely and
then f(G) = 1. So we are left with the case where log n− log log n ≤ np ≤ 11 log n.

We next observe that if there is a set A for which 2 ≤ |A| and |A|+ |B(A)| ≤ np then there is
a minimal size such set. Let HA = (A,EA) be a graph with vertex set A and an edge (v, w) ∈ EA

if and only if v, w have a common neighbor in G. HA must be connected, else A is not minimal.
So we can find t ≤ a − 1 vertices T such that A ∪ T spans at least t + a − 1 edges between A
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and T . Thus we can replace the estimate (3.2) by

∑
ap<1/ω1/2

2≤a≤np

a−1∑
t=1

(
n

a

)(
n

t

)(
ta

t + a− 1

)
pt+a−1 Pr (Bin(n− a− t, p(a)) ≤ pn− a)

≤
∑

ap<1/ω1/2

2≤a≤np

a−1∑
t=1

(ne

a

)a (ne

t

)t
(

taep

t + a− 1

)t+a−1

e−anp/10

≤ 1
e2np

∑
ap<1/ω1/2

2≤a≤np

a
(
(e2np)2e−np/10

)a
= o(1).

3.2. p0 < p < 1. First let us define the constant p0. Let

p0 ≈ 0.8941512242051071 . . . (3.3)

be a root of 2p− 2p2 = λ0. For the upper bound let A = {x, y}, where x and y satisfy |N(x)4
N(y)| ≤ |N(x′) 4 N(y′)| for any x′, y′ ∈ V (G). Then B = B(A) = N(x) 4 N(y), and thus,
asymptotically almost surely |B| ≤ (2p − 2p2)n plus a negligible error term o(n). (We may
assume that 1 − p = Ω

(
log n

n

)
; for otherwise we have two vertices of degree n − 1 with high

probability, and hence, f(G)=2.)
To show the lower bound it is enough to prove that∑

3≤a≤(2p−2p2)n

(
n

a

)
Pr

(
Bin(n− a, p(a)) ≤ (2p− 2p2)n− a

)
= o(1).

Indeed, this implies that if |A|+ |B| ≤ (2p− 2p2)n, then |A| = 1 or 2. But if |A| = 1, then in a
typical graph |B| = (p + o(1))n > (2p− 2p2)n since p > 1/2.

3.2.1. p Constant. As in the previous section we split the sum into two sums for 3 ≤ a ≤
√

n
and

√
n < a ≤ pn, respectively. Let

ε = 1− (2p− 2p2)n− a

(n− a)p(a)
≥ 1− 2p− 2p2

p(a)
> 0.

To confirm the second inequality we have to consider two cases. The first one is for a odd and at
least 3. Here,

1− 2p− 2p2

p(a)
> 1− 2p− 2p2

1/2
= (2p− 1)2 > 0.

The second case, for a even and at least 4, gives

1− 2p− 2p2

p(a)
> 1− 2p− 2p2

p(2)
= 0.

Now one can apply Chernoff bounds with the given ε to show that∑
3≤a<

√
n

(
n

a

)
Pr

(
Bin(n− a, p(a)) ≤ (2p− 2p2)n− a

)
= o(1).

6



Now we bound the second sum corresponding to
√

n < a ≤ (2p− 2p2)n. Note that∑
√

n≤a≤(2p−2p2)n

(
n

a

)
Pr

(
Bin(n− a, p(a)) ≤ (2p− 2p2)n− a

)
=

∑
√

n≤a≤(2p−2p2)n

(
n

a

)
Pr

(
Bin

(
n− a,

1
2

+ O(e−Ω(n1/2))
)
≤ (2p− 2p2)n− a

)
≤ n2nh(2p−2p2)+o(1) = o(1)

since p > p0 implies that 2p− 2p2 < λ0.

3.2.2. p = 1 − o(1). One can check it by following the same strategy as above and in
Section 3.1.2.

3.3. λ0 ≤ p ≤ p0. Let α = 2λ0/3, a = bαnc. Fix an a-set A ⊂ V and generate our random
graph and determine B = B(A) with b = |B|. Let ε = (log n)4/

√
n and let XA be the indicator

random variable for a + b ≤ (λ0 + ε)n and X =
∑

A XA. Then

p(a) =
1
2

+ e−Ω(n)

and with gλ(α) as defined in (2.2),

E(X) = exp{(gλ0+ε(2λ0/3) + o(1))n log 2}. (3.4)

Now

gλ+ε(α) = gλ(α) + (1− α)
(

H

(
λ + ε− α

1− α

)
−H

(
λ− α

1− α

))
= gλ(α) + ε log2

(
1− λ

λ− α

)
+ O(ε2).

Plugging this into (3.4) with λ = λ0 and α = 2λ0/3 we see that

E(X) = exp
{(

ε log2

(
1− λ0

λ0/3

)
+ O(ε2)

)
n log 2

}
= eΩ((log n)4n1/2). (3.5)

Next, we estimate the variance of X. We will argue that for A,C ∈
(
V
a

)
either |A4C| is small

(but the number of such pairs is small) or |A4C| is large (but then the covariance Cov(XA, XC)
is very small since if we fix the adjacency of some vertex x to C, then the parity of |N(x)∩(A\C)|
is almost a fair coin flip). Formally,

V ar(X) = E(X) +
∑

A6=C Cov(XA, XC)
≤ E(X) +

∑
|A4C|<2

√
n Pr(XA = XC = 1)

+
∑

|A4C|≥2
√

n,|A∩C|≥
√

n Cov(XA, XC)
+

∑
|A∩C|<

√
n Pr(XA = XC = 1).

Since E(X) goes to infinity, clearly E(X) = o(E(X)2). We show in Claims 3.1, 3.2 and 3.3 that
the remaining part is also bounded by o(E(X)2). Then Chebyshev’s inequality will imply that
X > 0 asymptotically almost surely.

Claim 3.1.
∑

|A4C|<2
√

n Pr(XA = XC = 1) = o(E(X)2)
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Proof. We estimate trivially Pr(XA = XC = 1) ≤ Pr(XA = 1). Then,∑
|A4C|<2

√
n

Pr(XA = 1) =
(

n

a

) ∑
0≤i<

√
n

(
n− a

i

)(
a

a− i

)
Pr(XA = 1)

= E(X)
∑

0≤i<
√

n

(
n− a

i

)(
a

a− i

)
≤ E(X) 2O(

√
n log n).

Thus, (3.5) yields that
∑

|A4C|<2
√

n Pr(XA = XC = 1) = o(E(X)2).
Claim 3.2.

∑
|A4C|≥2

√
n,|A∩C|≥

√
n Cov(XA, XC) = o(E(X)2)

Proof. If x ∈ V \ (A ∪ C), then Pr(x ∈ B(A)|XC = 1) = 2−1+o(1/n), since we can always
find at least

√
n vertices in A \ C with no adjacency with x determined by the event XC = 1.

Similarly, if x ∈ C \A, then there are at least
√

n− 1 vertices in A∩C such that their adjacency
with x is independent of the occurrence of XC = 1. This implies that

Pr(XA = 1|XC = 1) =
∑

0≤i≤l−a

(
n− a

i

)
2−(n−a)+o(1) = 2o(1) Pr(XA = 1),

and consequently, Cov(XA, XC) = o(Pr(XA = 1)2). Hence,∑
|A4C|≥2

√
n,|A∩C|≥

√
n

Cov(XA, XC) ≤
(

n

a

)2

o(Pr(XA = 1)2) = o(E(X)2).

Claim 3.3.
∑

|A∩C|<
√

n Pr(XA = XC = 1) = o(E(X)2)
Proof. First let us estimate the number of ordered pairs (A,C) for which |A∩C| <

√
n. Note,∑

|A∩C|<
√

n

1 =
(

n

a

) ∑
0≤i<

√
n

(
n− a

a− i

)(
a

i

)
≤
√

n

(
n

a

)(
n− a

a

)(
a√
n

)
= 2n(H(α)+H( α

1−α)(1−α)+o(1)). (3.6)

Now we will bound Pr(XA = XC = 1) for fixed a-sets A and C. Let S ⊂ A \ C be a set of size
s = |S| = b

√
nc. Define a new indicator random variable Y which takes the value 1 if and only

if |B(C) \ S| ≤ (λ0 + ε)n− a. Clearly, XC ≤ Y and

Pr(Y = 1) = Pr (Bin(n− a− s, p(a)) ≤ (λ0 + ε)n− a)

≤ 2s+o(1)
∑

0≤i≤(λ0+ε)n−a

(
n− a

i

)
2−(n−a) = 2s+o(1) Pr(XA = 1).

Now if we condition on the existence or otherwise of all edges F ′ between C and V \ S then if
x ∈ V \A

Pr(x ∈ B(A) | F ′ and F ′′) ∈
[
1− (1− 2p)s

2
,
1 + (1− 2p)s

2

]
,

where F ′′ is the set of edges between x and A \ S. This implies that

Pr(XA = 1|Y = 1) =
∑

0≤i≤(λ0+ε)n−a

(
n− a

i

)
2−(n−a)+O(

√
n) = 2O(

√
n) Pr(XA = 1).
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Consequently,

Pr(XA = XC = 1) ≤ Pr(XA = Y = 1) ≤ 2O(
√

n) Pr(XA = 1)2.

Hence, (3.6) implies∑
|A∩C|<

√
n

Pr(XA = XC = 1) ≤ 2n(H(α)+H( α
1−α)(1−α)+o(1)) Pr(XA = 1)2.

To complete the proof it is enough to note that

E(X)2 = 2n(2H(α)+o(1)) Pr(XA = 1)2

and

2H(α) > H(α) + H

(
α

1− α

)
(1− α).

Indeed, the last inequality follows from the strict concavity of the entropy function, since then
(1− α)H

(
α

1−α

)
+ αH(0) ≤ H(α) with the equality for α = 0 only.

Now we show that f(Gn,p) ≥ (λ0 − ε)n. We show that∑
1≤a≤(λ0−ε)n

(
n

a

)
Pr (Bin(n− a, p(a)) ≤ (λ0 − ε)n− a) = o(1).

As in previous sections we split this sum into two sums but this time we make the break into
1 ≤ a ≤ (log n)2 and (log n)2 < a ≤ (λ0 − ε)n, respectively. In order to estimate the first sum we
use the Chernoff bounds with deviation 1− θ from the mean where

θ = 1− (λ0 − ε)n− a

(n− a)p(a)
≥ 1− λ0 − ε

p(a)
≥ 1− λ0 − ε

λ0
=

ε

λ0
.

Consequently,

∑
2≤a<(log n)2

(
n

a

)
Pr (Bin(n− a, p(a)) ≤ (λ0 − ε)n− a)

≤ (log n)2
(

n

(log n)2

)
exp{−Ω((log n)4)} ≤ exp{−Ω((log n)4)} = o(1).

Now we bound the second sum corresponding to (log n)2 < a ≤ (λ0 − ε)n.∑
(log n)2≤a≤(λ0−ε)n

(
n

a

)
Pr (Bin(n− a, p(a)) ≤ (λ0 − ε)n− a) = 2n(h(λ0−ε)+O(log n/n)) = o(1).

4. General Graphs. Here we present the proof of Theorem 1.2. First, we prove a weaker
result f(n) ≤ (0.440 . . . + o(1))n.

Suppose we aim at showing that f(n) ≤ λn. We fix some α and ρ and let a = αn and r = ρn.
For each a-set A let R(A) consist of all sets that have Hamming distance at most r from B(A).
If (

n

a

) r∑
i=0

(
n

i

)
= 2n(H(α)+H(ρ)+o(1)) > 2n, (4.1)
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then there are A,A′ such that R(A) ∩ R(A′) 3 C is non-empty. This means that C is within
Hamming distance r from both B = B(A) and B′ = B(A′). Thus |B 4B′| ≤ 2r.

Let all vertices in A′′ = A 4 A′ flip their neighbors, i.e., execute operation O1. The only
vertices outside of A′′ that can have an odd number of neighbors in A′′ are restricted to (B 4
B′) ∪ (A ∩A′). Thus

f(G) ≤ |A4A′|+ |(B 4B′) ∪ (A ∩A′)| ≤ 2a + 2r = 2n(α + ρ). (4.2)

Consequently, we try to minimize α + ρ subject to H(α) + H(ρ) > 1. Since the entropy function
is strictly concave, the optimum satisfies α = ρ, otherwise replacing each of α, ρ by (α + ρ)/2 we
strictly increase H(α) + H(ρ) without changing the sum. Hence, the optimum choice is

α = ρ ≈ 0.11002786443835959 . . .

the smaller root of H(x) = 1/2, proving that f(n) ≤ (0.440 . . . + o(1))n.
In order to obtain a better constant we modify the approach taken in (4.1). Let us take

δ = 0.275, α = 0.0535, a = bαnc, d = bδnc. Look at the collection of sets B(A), A ∈
(
[n]
a

)
. This

gives
(
n
a

)
= 2n(H(α)+o(1)) binary n-vectors.

We claim that some two of these vectors are at distance at most d. If not, then inequality
(5.4.1) in [4] says that

H(α) + o(1) ≤ min{1 + g(u2)− g(u2 + 2δu + 2δ) : 0 ≤ u ≤ 1− 2δ},

where g(x) = H((1 −
√

1− x)/2). In particular, if we take u = 1 − 2δ = 0.45, we get 0.30108 +
o(1) ≤ 0.30103, a contradiction.

Thus, we can find two different a-sets A and A′ such that |B(A)4 B(A′)| ≤ d. As in (4.2),
we can conclude that f(G) ≤ 2a + d ≤ (0.382 + o(1))n.

5. Acknowledgment. The authors would like to thank Shiang Yong Looi for suggesting
this problem.
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