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Abstract. Given a planar graph G, we consider drawings of G in the plane
where edges are represented by straight line segments (which possibly intersect).
Such a drawing is specified by an injective embedding π of the vertex set of G
into the plane. Let fix(G, π) be the maximum integer k such that there exists
a crossing-free redrawing π′ of G which keeps k vertices fixed, i.e., there exist k

vertices v1, . . . , vk of G such that π(vi) = π′(vi) for i = 1, . . . , k. Given a set of

points X , let fixX(G) denote the value of fix(G, π) minimized over π locating the
vertices of G on X . The absolute minimum of fix(G, π) is denoted by fix(G).

For the wheel graph Wn, we prove that fixX(Wn) ≤ (2 + o(1))
√
n for every X .

With a somewhat worse constant factor this is as well true for the fan graph Fn.
We inspect also other graphs for which it is known that fix (G) = O(

√
n).

We also show that the minimum value fix(G) of the parameter fixX(G) is always
attainable by a collinear X .

1. Introduction

1.1. The problem of untangling a planar graph. In a plane graph, each vertex
v is a point in R2 and each edge uv is represented as a continuous plane curve
with endpoints u and v. All such curves are supposed to be non-self-crossing and
any two of them either have no common point or share a common endvertex. An
underlying abstract graph of a plane graph is called planar. A planar graph can be
drawn as a plane graph in many ways, and the Wagner-Fáry-Stein theorem (see,
e.g., [11]) states that there always exists a straight line drawing in which every edge
is represented by a straight line segment.
Let V (G) denote the vertex set of a planar graph G. In this paper, by a drawing

of G we mean an arbitrary injective map π : V (G) → R2. We suppose that each
edge uv of G is drawn as the straight line segment with endpoints π(u) and π(v).
Due to possible edge crossings and even overlaps, π may not be a plane drawing
of G. Hence it is natural to ask:

How many vertices have to be moved to obtain from π
a plane (i.e., crossing-free) straight line drawing of G?

Alternatively, we could allow in π curved edges without their exact specification;
such a drawing could be always assumed to be a plane graph. Then our task would
be to straighten π rather than eliminate edge crossings.
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More formally, for a planar graph G and a drawing π, let

fix (G, π) = max
π′

| {v ∈ V (G) : π′(v) = π(v)} |

where the maximum is taken over all plane straight line drawings π′ of G. Further-
more, let

fix (G) = min
π

fix(G, π). (1)

In other words, fix (G) is the maximum number of vertices which can be fixed in any
drawing of G while untangling it.
No efficient algorithm determining the parameter fix (G) is known. Moreover,

computing fix (G, π) is known to be NP-hard [8, 18].
Improving a result of Goaoc et al. [8], Bose et al. [5] showed that

fix (G) ≥ (n/3)1/4

for every planar graph G, where here and in the rest of this paper n denotes the
number of vertices in the graph under consideration. Better bounds on fix (G) are
known for cycles [12], trees [8, 5] and, more generally, outerplanar graphs [8, 14]. In
all these cases it was shown that fix(G) = Ω(n1/2). For cycles Cibulka [6] proves a
better lower bound of Ω(n2/3).
Here we are interested in upper bounds on fix (G), that is, in examples of graphs

with small fix (G). Moreover, let X be an arbitrary set of n points in the plane and
define

fixX(G) = min
π

{fix (G, π) : π(V (G)) = X} .

Note that fix (G) = minX fixX(G). This notation allows us to formalize another
natural question. Can untangling of a graph become easier if the set X of vertex
positions has some special properties (say, if it is known that X is collinear, i.e., lies
on a line, or is in convex position, i.e., no x ∈ X lies in the convex hull of X \ {x})?
This question admits several variations:

• For which X can one attain equality fixX(G) = fix(G)?
• Are there graphs with fixX(G) small for all X?
• Are there graphs such that fixX(G) is for some X considerably larger than
fix (G)?

1.2. Prior results. The cycle (resp. path; empty graph) on n vertices will be de-
noted by Cn (resp. Pn; En). Recall that the join of vertex-disjoint graphs G and H
is the graph G ∗H consisting of the union of G and H and all edges between V (G)
and V (H). The graphs Wn = Cn−1 ∗E1 (resp. Fn = Pn−1 ∗E1; Sn = En−1 ∗E1) are
known as wheels (resp. fans ; stars). By kG we denote the disjoint union of k copies
of a graph G.
Pach and Tardos [12] were first who established a principal fact: Some graphs

can be drawn so that, in order to untangle them, one has to shift almost all their
vertices. In fact, this is already true for cycles. More precisely, Pach and Tardos [12]
proved that

fixX(Cn) = O((n logn)2/3) for any X in convex position. (2)
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The best known upper bounds are of the form fix(G) = O(
√
n). Goaoc et al. [9]1

showed it for certain triangulations. More specifically, they proved that

fixX(Pn−2 ∗ P2) <
√
n+ 2 for any collinear X. (3)

Shortly after [9] and independently of it, there appeared our manuscript [10],
which was actually a starting point of the current paper. For infinitely many
n, we constructed a family Hn of 3-connected planar graphs on n vertices with
maxH∈Hn

fix(H) = o(n). Though no explicit bound was specified in [10], a simple
analysis of our construction reveals that

fixX(Hn) ≤ 2
√
n + 1 for any X in convex position, (4)

where Hn denotes an arbitrary member of Hn. While the graphs in Hn are not as
simple as Pn−2∗P2 and the subsequent examples in the literature, the construction of
Hn has the advantage that this class contains graphs with certain special properties,
such as bounded vertex degrees. By a later result of Cibulka [6], we have fix(G) =
O(

√
n(log n)3/2) for every G with maximum degree and diameter bounded by a

logarithmic function. Note in this respect that Hn contains graphs with bounded
maximum degree that have diameter Ω(

√
n).

In subsequent papers [16, 5] examples of graphs with small fix (G) were found
in special classes of planar graphs, such as outerplanar and even acyclic graphs.
Spillner and Wolff [16] showed for the fan graph that

fixX(Fn) < 2
√
n+ 1 for any collinear X (5)

and Bose et al. [5] established for the star forest with n = k2 vertices that

fixX(kSk) ≤ 3
√
n− 3 for any collinear X. (6)

Finally, Cibulka [6] proved that

fixX(G) = O((n logn)2/3) for any X in convex position

for all 3-connected planar graphs.

1.3. Our present contribution. In Section 2 we notice that the choice of a
collinear vertex position in (3), (5), and (6) is actually optimal for proving upper
bounds on fix (G). Specifically, we show that for any G the equality fixX(G) = fix(G)
is attained by some collinear X (see Theorem 2.1).
In Section 3 we extend the bound fix (G) = O(

√
n) in the strongest way with

respect to specification of vertex positions. We prove that

fixX(Wn) ≤ (2 + o(1))
√
n for every X, (7)

fixX(Fn) ≤ (2
√
2 + o(1))

√
n for every X (8)

(see Theorem 3.5). Let us define

FIX (G) = max
X

fixX(G)

1The papers [9] and [16] from conference proceedings were subsequently combined into the
journal paper [8].
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Figure 1. Example of a graph in H16.

(while fix (G) = minX fixX(G)). With this notation, (7) and (8) read

FIX (Wn) ≤ (2 + o(1))
√
n and FIX (Fn) ≤ (2

√
2 + o(1))

√
n.

In Section 4 we discuss an approach attempting to give an analog of (7) for
the aforementioned family of graphs Hn. A member of this family is defined as a
plane graph of the following kind. Let k ≥ 3 and n = k2. Draw k triangulations,
each having k vertices, so that none of them lies inside an inner face of any other
triangulation. Connect these triangulations by some more edges making the whole
graph 3-connected. Hn is the set of all 3-connected planar graphs obtainable in
this way. This set is not empty. Indeed, we can allocate the k triangulations in
a cyclic order and connect each neighboring pair by two vertex-disjoint edges as
shown in Fig. 1. Note that k new edges form a cycle Ck and the other k new
edges participate in a cycle C2k. If we remove any two vertices from the obtained
graph, each triangulation as well as the whole “cycle” stay connected (since the
aforementioned cycles Ck and C2k are vertex-disjoint, at most one of them can get
disconnected).
Note that, if we start with triangulations with bounded vertex degrees, the above

construction gives us a graph with bounded maximum degree. In this situation our
argument for (7) does not work. We hence undertake a different approach.
Given a set of colored points in the plane, we call it clustered if its monochromatic

parts have pairwise disjoint convex hulls. Given a set X of n = k2 points, let C(X)
denote the maximum cardinality of a clustered subset existing in X under any
balanced coloring of X in k colors (see Definition 4.1). It is not hard to show (see
Lemma 4.2) that

fixX(Hn) ≤ C(X) + k, (9)

where Hn denotes an arbitrary graph in Hn. We prove that C(X) = O(n/ logn) for
every X , which implies that FIX (Hn) = O(n/ logn) (Theorem 4.4).
Better upper bounds for C(X) would give us better upper bounds for FIX (Hn).

Note that C(X) has relevance also to the star forest kSk, namely

fixX(kSk) ≥ C(X)− k (10)
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(see part 2 of Lemma 4.2). Thus, if there were a set X with C(X) ≫ k, the
parameter FIX (kSk) would be far apart from fix (kSk).
As we do not know how close or far away the parameters fix(G) and FIX (G) are

for G = Hn and G = kSk, the two graph families deserve further attention. Section
5 is devoted to estimation of fixX(G) for X in weakly convex position, which means
that the points in X lie on the boundary of a convex body (including the cases
that X is in convex position and that X is a collinear set). Since C(X) < 2k for
any X in weakly convex position, by (9) we obtain fixX(Hn) < 3

√
n for such X

(Theorem 5.2).
This result for Hn together with the stronger results obtained for Wn and Fn in

Section 3 might suggest that fixX(G) = O(fix(G)) should hold for any G whenever
X is in weakly convex position. The simplest case where we are not able to confirm
this conjecture is G = kSk. By (9) and (10) we have fixX(Hn) ≤ fixX(kSk) + 2k
for any k and n = k2, and bounding fixX(kSk) from above seems harder. Never-
theless, even here we have a rather tight bound: If X is in weakly convex position,
then fixX(kSk) = O(

√
n 2α(

√
n)), where α(·) denotes the inverse Ackermann function

(Theorem 5.4).
We conclude with a list of open questions in Section 6.

2. Hardness of untangling from a collinear position

Theorem 2.1. For every planar graph G we have fix(G) = fixX(G) for some

collinear X.

Theorem 2.1 can be deduced from [5, Lemma 1]. For the reader’s convenience,
we give a self-contained proof.

Proof. Let fix−(G) denote the minimum value of fixX(G) over collinear X . We have
fix(G) ≤ fix−(G) by definition. The theorem actually states the converse inequality
fix(G) ≥ fix−(G). That is, given an arbitrary drawing π : V (G) → R2, we have to
show that it can be untangled while keeping at least fix−(G) vertices fixed.
Choose Cartesian coordinates in the plane so that π(V (G)) is located between the

lines y = 0 and y = 1. Let px, py : R2 → R denote the projections onto the x-axis
and the y-axis, respectively. We also suppose that the axes are chosen so that the
map λ = pxπ is injective. Let us view λ as a drawing of G, aligning all the vertices
on the line y = 0. By definition, there is a plane drawing λ′ of G such that the set
of fixed vertices F = {v ∈ V (G) : λ′(v) = λ(v)} has cardinality at least fix−(G).
Given a set A ⊂ R2 and a real ε > 0, let Nε(A) denote the ε-neighborhood of A

in the Euclidean metric. For each pair of disjoint edges e, e′ in λ′, there is an ε such
that Nε(e)∩Nε(e

′) = ∅. Since G is finite, we can assume that the latter is true with
the same ε for all disjoint pairs e, e′.
We now define a drawing π′ : V (G) → R2 by setting

π′(v) =

{

(pxπ(v), εpyπ(v)) if v ∈ F,

λ′(v) otherwise.

Note that π′(v) ∈ Nε(λ
′(v)) for every v ∈ V (G). Since λ′ is crossing-free, so is π′.
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Finally, define a linear transformation of the plane by a(x, y) = (x, ε−1y) and
consider π′′ = aπ′. Clearly, π′′ is a plane drawing of G and all vertices in F stay
fixed under the transition from π to π′′. �

3. Hardness of untangling from every vertex position

In Section 3.1 we state known results on the longest monotone subsequences in a
random permutation. These results are used in Section 3.2 for proving upper bounds
on FIX (Wn) and FIX (Fn).

3.1. Monotone subsequences in a random permutation. By a permutation

of [N ] = {1, 2, . . . , N} we will mean a sequence S = s1s2 . . . sN where each positive
integer i ≤ N occurs once (that is, S determines a one-to-one map S : [N ] → [N ]
by S(i) = si). A subsequence si1si2 . . . sik , where i1 < i2 < . . . < ik, is increasing if
si1 < si2 < · · · < sik . The length of a longest increasing subsequence of S will be
denoted by ℓ(S).

Lemma 3.1. Let SN be a uniformly random permutation of {1, 2, . . . , N}.
1. (Pilpel [13]) E [ℓ(SN)] ≤

∑N
i=1 1/

√
i ≤ 2

√
N − 1.

2. (Frieze [7], Bollobás-Brightwell [4]) For any real ǫ > 0 there is a β =
β(ǫ) > 0 such that for all N ≥ N(ǫ) we have

P
[

ℓ(SN) ≥ E [ℓ(SN)] +N1/4+ǫ
]

≤ exp
(

−Nβ
)

.

Further concentration results for ℓ(SN) are obtained in [17, 3].
Lemma 3.1 shows that ℓ(SN ) ≤ 2N1/2(1 + N−1/4+ǫ) with probability at least

1 − exp
(

−Nβ
)

. We will also need a bound for another parameter of SN , roughly
speaking, for the maximum total length of two non-interweaving monotone sub-
sequences of SN . Let us define this parameter more precisely. A subsequence of
a permutation S will be called monotone if it can be made increasing by shifting
and/or reversing (as, for example, 21543). This notion is rather natural if we regard
S as a circular permutation, i.e., S is considered up to shifts. Call two subsequences
S ′ and S ′′ of S non-interweaving if they have no common element and S has no sub-
sequence si1si2si3si4 with si1, si3 occurring in S ′ and si2 , si4 in S ′′. Define ℓ2(S) to
be the sum of the lengths of S ′ and S ′′ maximized over non-interweaving monotone
subsequences of S.

Lemma 3.2. Let SN be a uniformly random permutation of {1, 2, . . . , N}. For any
real ǫ > 0 there is a γ = γ(ǫ) > 0 such that for all N ≥ N(ǫ) we have

P
[

ℓ2(SN) ≥ 2
√
2N1/2 + 2N1/4+ǫ

]

≤ exp (−Nγ) . (11)

Proof. Given a sequence SN = s1s2 . . . sN and a pair of indices 1 ≤ i < j ≤ N ,
consider the splitting of the circular version of SN into two parts P1 = si . . . sj−1

and P2 = sj . . . sNs1 . . . si−1. Let P
′
1 = sj−1 . . . si and P ′

2 = si−1 . . . s1sN . . . sj be the
reverses of P1 and P2. Denote

λij = max{ℓ(P1), ℓ(P
′
1)}+max{ℓ(P2), ℓ(P

′
2)}.
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Note that ℓ2(SN) = λij for some pair i, j. Since there are only polynomially many
such pairs, it suffices to show for each i, j that the inequality

λij ≥ 2
√
2N1/2 + 2N1/4+ǫ (12)

holds with an exponentially small probability. Denote the length of Pk by Nk, so
that N1+N2 = N . For each k = 1, 2, note that both ℓ(Pk) and ℓ(P ′

k) are distributed
identically to ℓ(SNk

).

Suppose first that N1 or N2 is relatively small, say, N1 ≤ 2(
√
2 − 1)

√
N . Then

(12) implies that

ℓ(P2) ≥ 2N
1/2
2 + 2N

1/4+ǫ
2

or this estimate is true for P ′
2. Provided N , and hence N2, is large enough, we

conclude by Lemma 3.1 that (12) happens with probability at most 2 exp(−Nβ
2 ) ≤

2 exp(−1
2
Nβ).

Suppose now that Nk > 2(
√
2 − 1)

√
N for both k = 1, 2 and that N is large

enough. Since N
1/2
1 + N

1/2
2 ≤ 2

(

N1+N2

2

)1/2
=

√
2N1/2, the inequality (12) entails

that for k = 1 or k = 2 we must have

ℓ(Pk) > 2N
1/2
k +N

1/4+ǫ
k

or this estimate must be true for P ′
k. By Lemma 3.1, the event (12) happens with

probability no more than 4 exp
(

−cβNβ/2
)

, where c = 2(
√
2− 1).

We see that, whatever N1 and N2 are, (11) holds for any positive γ < β/2 and
large enough N . �

3.2. Graphs with small FIX (G). Recall that FIX (G) = maxX fixX(G). If FIX (G)
is small, this means that no special properties of the set of vertex locations can make
the untangling problem for G easy.

Lemma 3.3. For any 3-connected planar graph G on n vertices with maximum

vertex degree N = n− o(
√
n) we have

FIX (G) ≤ (2 + o(1))
√
n.

Proof. We have to prove that fixX(G) ≤ (2 + o(1))
√
n for any set X of n points.

Let X = {x1, . . . , xn} and denote XN = {x1, . . . , xN}. We need to fix the north

direction in the plane R2. For definiteness, let it be determined by the vector (0, 1).
Given a point p in the plane, we define a permutation Sp describing the order in
which the points in XN are visible from the standpoint p. If p = xs with s ≤ N ,
we take p as the first visible point, that is, let s be the first index in the sequence
Sp. Now, we look around starting from the north in a clockwise direction and put i
before j in Sp if we see xi earlier than xj . If xi and xj lie in the same direction from
p, we see the nearer point first, that is, i precedes j in Sp whenever xi ∈ [p, xj].
Define an equivalence relation ≡ so that S ≡ S ′ if S and S ′ are obtainable from

one another by a shift. Let us show that the quotient set Q = {Sp : p ∈ R2} /≡
is finite and estimate its cardinality. Suppose first that not all points in XN are
collinear. Let L be the set of lines passing through at least two points in XN . After
removal of all lines in L, the plane is split into connected components that will be
called L-faces. Any intersection point of two lines will be called an L-vertex. The
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L-vertices lying on a line in L split this line into L-edges. Exactly two L-edges for
each line are unbounded. It is easy to see that Sp ≡ Sp′ whenever p and p′ belong
to the same L-face or the same L-edge. It follows that |Q| does not exceed the total
amount of L-faces, L-edges, and L-vertices.
Let us express this bound in terms of l = |L| ≤

(

N
2

)

. If we erase all the unbounded
L-edges, we obtain a crossing-free straight line drawing of a planar graph with at
most

(

l
2

)

vertices. It has less than 3
2
l2 − 3

2
l edges and l2 − l faces. Restoring the

unbounded L-edges, we see that the total number of L-edges is less than 3
2
l2 + 1

2
l

and the number of L-faces is less than l2 + l. Therefore,

|Q| < (l2 + l) +

(

3

2
l2 +

1

2
l

)

+

(

1

2
l2 − 1

2
l

)

<
3

4
N4.

In the much simpler case of a collinear XN , we have |Q| ≤ N .
Let c be a vertex of G with maximum vertex degree. By the Whitney theorem on

embeddability of 3-connected graphs, the neighbors of c appear around c in the same
circular order v1, . . . , vN in any plane drawing of G. Pick up a random permutation
σ of {1, . . . , N} and consider a drawing π : V (G) → X such that π(vi) = xσ(i).
Let π′ be an untanglement of π. Let p = π′(c) and denote the set of all shifts and
reverses of the permutation Sp by Sp.
We have to estimate the number of vertices remaining fixed under the transition

from π to π′, that is, the cardinality of the set F = {π(v) : v ∈ V (G), π(v) = π′(v)}.
Let F ∗ = {π(vi) ∈ F : i ≤ N}, which is the subset of F corresponding to the fixed
neighbors of c. Note that |F \ F ∗| ≤ n −N and recall that n−N = o(

√
n) by our

assumption. It follows that |F | ≤ |F ∗|+ o(
√
n), and we have to estimate |F ∗|.

The points in F ∗ go around p in the canonical Whitney order. This means
that the indices of the corresponding vertices form an increasing subsequence in
σ−1S for some S ∈ Sp. For each S, the composition σ−1S is a random permu-
tation of {1, . . . , N}. Recall that, irrespectively of the choice of p = π′(c), there
are at most 2N |Q| < 3

2
N5 possibilities for S. By Lemma 3.1, every increasing

subsequence of σ−1S has length at most 2N1/2 + N1/4+ǫ with probability at least
1−O(N5 exp

(

−Nβ
)

). Thus, if N is sufficiently large, we have |F ∗| ≤ (2 + o(1))
√
n

for all untanglements π′ of some drawing π (in fact, this is true for almost all π).
This implies the required bound |F | ≤ (2 + o(1))

√
n. �

While Lemma 3.3 immediately gives us a bound on FIX (Wn) for the wheel graph,
this lemma does not apply directly to the fan graph Fn because it is not 3-connected
and has a number of essentially different plane drawings. Nevertheless, all these
drawings are still rather structured, which makes analysis of the fan graph only a
bit more complicated. Indeed, denote the central vertex of Fn by c and let v1 . . . vn−1

be the path of the other vertices. Let α be a plane drawing of Fn. Label each edge
α(c)α(vi) with number i and denote the circular sequence in which the labels follow
each other around α(c) by Rα. Split Rα into two pieces. Let R′

α be the sequence of
labels starting with 1, ending with n − 1, and containing all intermediate labels if
we go around α(c) clockwise. Let R′′

α be the counter-clockwise analog of R′
α. Note

that R′
α and R′′

α overlap in {1, n− 1}.
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Lemma 3.4. Both R′
α and R′′

α are monotone.

Proof. We proceed by induction on n. The base case of n = 3 is obvious. Suppose
that the claim is true for all plane drawings of Fn and consider an arbitrary plane
drawing α of Fn+1. Let β be obtained from α by erasing α(vn) along with the
incident edges. Obviously, β is a plane drawing of Fn.
In the drawing α of Fn+1, we consider the triangle T with vertices α(c), α(vn−1),

and α(vn). Clearly, all points α(vi) for i ≤ n − 2 are inside T or all of them are
outside. In both cases, n−1 and n are neighbors in Rα. Therefore, Rα is obtainable
from Rβ by inserting n on the one or the other side next to n−1. It follows that R′

α

is obtained from R′
β either by appending n after n− 1 or by replacing n− 1 with n

(the same concerns R′′
α and R′′

β). It remains to note that both operations preserve
monotonicity. �

We are now prepared to obtain upper bounds on FIX (G) for the wheel graph
Wn and the fan graph Fn. Note that, up to a small constant factor, these bounds
match the lower bound fix (Fn) ≥ fix (Wn) ≥

√
n− 2 (which follows, e.g., from [14,

Theorem 4.1]).

Theorem 3.5.

1. FIX (Wn) ≤ (2 + o(1))
√
n.

2. FIX (Fn) ≤ (2
√
2 + o(1))

√
n.

Proof. The bound for Wn follows directly from Lemma 3.3 as observed before.
As for Fn, notice that the argument of Lemma 3.3 becomes applicable if, in place

of the Whitney theorem, we use Lemma 3.4. Let π be a random location of V (Fn)
on X , as in the proof of Lemma 3.3. More precisely, let v1 . . . vn−1 denote the path
of non-central vertices in Fn. We pick a random permutation σ of {1, . . . , n−1} and
set π(vi) = xσ(i). As established in the proof of Lemma 3.3, the set X determines a
set of permutations SX with |SX | = O(n4) such that, from any standpoint p in the
plane, the vertices v1, . . . , vn−1 are visible in the circular order τp = σ−1S for some
S ∈ SX .
Let α be any untangling of π and Rα be the associated order on the neighborhood

of the central vertex α(c). By Lemma 3.4, Rα consists of two monotone parts R′
α

and R′′
α. The set F of fixed vertices is correspondingly split into F ′ and F ′′. Since

R′
α and R′′

α overlap in two elements, F ′ and F ′′ can have one or two common vertices.
If this happens, we remove those from F ′′. Notice that the indices of the vertices
in F ′ and in F ′′ form non-interweaving monotone subsequences of τα(c). Therefore,
|F ′|+ |F ′′| ≤ ℓ2(τα(c)) and part 2 of the theorem follows from Lemma 3.2. �

4. Making convex hulls disjoint

In Section 1.2 we listed the few graphs for which an upper bound fix (G) = O(
√
n)

is known, namely Pn−2 ∗ P2, Fn, Hn ∈ Hn, and kSk. By Theorem 3.5 in the former
two cases we have a stronger result FIX (G) = O(

√
n) (note that Pn−2 ∗P2 contains

Wn as a subgraph). We now consider a problem related to estimating the parameters
FIX (Hn) and FIX (kSk).
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Definition 4.1. Let n = k2 and X be an n-point set in the plane. Given a partition
X = X1 ∪ . . . ∪ Xk, we regard X = {X1, . . . , Xk} as a coloring of X in k colors.
We will consider only balanced X with each |Xi| = k. Call a set Y ⊆ X clustered

if the monochromatic classes Yi = Y ∩ Xi have pairwise disjoint convex hulls. Let
C(X,X ) denote the largest size of a clustered subset of X . Finally, define C(X) =
minX C(X,X ).

Lemma 4.2. Let Hn denote an arbitrary graph in Hn, where n = k2 with k ≥ 3.

1. fixX(Hn) ≤ C(X) + k.
2. fixX(kSk) ≥ C(X)− k.

Proof. 1. Recall that Hn is defined as a plane graph whose vertex set V (Hn) = V1∪
. . .∪Vk is partitioned so that each Vi spans a triangulation and these k triangulations
are in the outer faces of each other. Take X such that C(X,X ) = C(X) and
π : V (Hn) → X such that π(Vi) = Xi. Consider an untanglement π′ of π and denote
the set of fixed vertex locations by Y . By the Whitney theorem, π′ is obtainable
from the plane graph Hn by a homeomorphism of the plane, possibly after turning
some inner face of Hn into the outer face. Since Vi spans a triangulation in Hn,
the convex hull of π′(Vi) is a triangle Ti. Since the corresponding triangulations are
pairwise disjoint in Hn, the triangles Ti’s are pairwise disjoint possibly with a single
exception for some Ts containing all the other triangles. Let Yi = Y ∩Xi. It follows
that the convex hulls of the Yi’s do not intersect, perhaps with an exception for a
single set Ys. The exception may occur if π′ is homeomorphic to a version of Hn

with different outer face. Therefore, |Y | ≤ C(X)+ k, where the term k corresponds
to the exceptional Ys.
2. Given an arbitrary drawing π : V (kSk) → X of the star forest, we have to

untangle it while keeping at least C(X)−k vertices fixed. Let V (kSk) = V1∪ . . .∪Vk

where each Vi is the vertex set of a star component. Define a coloring X of X by
Xi = π(Vi). Let Y be a largest clustered subset of X . Choose pairwise disjoint
open convex sets C1, . . . , Ck so that Ci contains Yi = Y ∩Xi for all i. Redraw kSk

so that, for each i, the i-th star component is contained in Ci. It is clear that,
doing so, we can leave all non-central vertices in Y fixed. Thus, we have at least
|Y | − k ≥ C(X)− k fixed vertices. �

Lemma 4.3. For any set X of n = k2 points in the plane, we have C(X) =
O(n/ logn).

Proof. Let B(X) denote the set of all balanced k-colorings of X , i.e., the set of
partitions X = X1 ∪ . . . ∪Xk with each |Xi| = k. We have |B(X)| = n!/(k!)k.
Call a k-tuple of subsets Z1, . . . , Zk ⊂ X a crossing-free coloring of X if the Zi’s

have pairwise disjoint convex hulls. We do not exclude that some Zi’s are empty
and the coloring is partial, i.e.,

⋃k
i=1 Zi ( X . Denote the set of all crossing-free

colorings of X by F(X).
Let X ∈ B(X). An estimate C(X,X ) ≥ a means that

k
∑

i=1

|Xi ∩ Zi| ≥ a (13)
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for some Z ∈ F(X). Regard X and Z as elements of the space {1, . . . , k, k + 1}X
of (k + 1)-colorings of X , where the new color k + 1 is assigned to the points that
are uncolored in Z. Then (13) means that the Hamming distance between X and
Z does not exceed n− a. Note that the (n− a)-neighborhood of Z can contain no
more than

(

n
n−a

)

kn−a elements of B(X). Therefore, an estimate C(X) < a would
follow from inequality

|F(X)|
(

n

a

)

kn−a < |B(X)|. (14)

Given a partition Z = P1 ∪ . . . ∪ Pm of a point set Z, we call it crossing-free

if the convex hulls of the Pi’s are nonempty and pairwise disjoint. According to
Sharir and Welzl [15, Theorem 5.2], the overall number of crossing-free partitions
of any l-point set Z is at most O(12.24l). In order to derive from here a bound for
the number of crossing-free colorings, with each coloring (Z1, . . . , Zk) we associate

a partition (P1, . . . , Pm) of the union Z =
⋃k

i=1 Zi so that (P1, . . . , Pm) is the result
of removing all empty sets from the sequence (Z1, . . . , Zk). Since (P1, . . . , Pm) is
the crossing-free partition of a subset of X , the Sharir-Welzl bound implies that the
number of all possible partitions (P1, . . . , Pm) obtainable in this way does not exceed
O(24.48n). Since (Z1, . . . , Zk) can be restored from (P1, . . . , Pm) in

(

k
m

)

ways, we

obtain |F(X)| < c 2k24.48n for a constant c. Thus, we would have (14) provided

c 2k24.48n
na

a!
kn−a ≤ n!

(k!)k
.

Taking logarithm of both sides, we see that the latter inequality holds for all suffi-
ciently large n if we set a = 6.4n/ lnn. �

Part 1 of Lemma 4.2 and Lemma 4.3 immediately give us the main result of this
section.

Theorem 4.4. FIX (Hn) = O(n/ logn) for an arbitrary Hn ∈ Hn.

Note that the bound of Theorem 4.4 is the best upper bound on FIX (G) that we
know for graphs with bounded vertex degrees.

5. Hardness of untangling from weakly convex position

Despite the observations made in Section 4, we do not know whether or not
fixX(Hn) and fixX(kSk) are close to, respectively, fix(Hn) and fix(kSk) for every
location X of the vertex set. We now restrict our attention to point sets X in
weakly convex position, i.e., on the boundary of a convex plane body.
We will use Davenport-Schinzel sequences defined as follows (see, e.g., [1] for more

details). An integer sequence S = s1 . . . sn is called a (k, p)-Davenport-Schinzel
sequence if the following conditions are met:

• 1 ≤ si ≤ k for each i ≤ n;
• si 6= si+1 for each i < n;
• S contains no subsequence xyxyxy . . . of length p + 2 for any x 6= y.



12 M. KANG, O. PIKHURKO, A. RAVSKY, M. SCHACHT, AND O. VERBITSKY

By a subsequence of S we mean any sequence si1si2 . . . sim with i1 < i2 < . . . < im.
The maximum length of a (k, p)-Davenport-Schinzel sequence will be denoted by
λp(k). We are interested in the particular case of p = 4.
We inductively define a family of functions over positive integers:

A1(n) = 2n n ≥ 1,
Ak(1) = 2 k ≥ 1,
Ak(n) = Ak−1(Ak(n− 1)) n ≥ 2, k ≥ 2.

Ackermann’s function is defined by A(n) = An(n). This function grows faster than
any primitive recursive function. The inverse of Ackermann’s function is defined by
α(n) = min { t ≥ 1 : A(t) ≥ n}.
Agarwal, Sharir, and Shor [2] proved that λ4(k) = O(k2α(k)). Note that α(n)

grows very slowly, e.g., α(n) ≤ 4 for all n up to A(4), which is the exponential tower
of twos of height 65536. Thus, the bound for λ4(k) is nearly linear in k.
Sometimes it will be convenient to identify a sequence S = s1 . . . sn with all

its cyclic shifts. This way sjsns1si, where i < j, is a subsequence of S. In such
circumstances we will call a sequence circular. Subsequences of S will be regarded
also as circular sequences. Note that the set of all circular subsequences is the same
for S and any of its shifts. The length of S will be denoted by |S|.

Lemma 5.1. Let k, s ≥ 1 and Sk,s be the circular sequence consisting of s successive
blocks of the form 12 . . . k.

1. Suppose that S is a subsequence of Sk,s with no 4-subsubsequence of the form

xyxy, where x 6= y. Then |S| < k + s.
2. Suppose that S is a subsequence of Sk,s with no 6-subsubsequence of the form

xyxyxy, where x 6= y. Then |S| < λ4(k) + s ≤ O(k2α(k)) + s.

Proof. 1. We proceed by double induction on k and s. The base case where k = 1 and
s is arbitrary is trivial. Let k ≥ 2 and consider a subsequence S with no forbidden
subsubsequence. If each of the k elements occurs in S at most once, then |S| ≤ k
and the claimed bound is true. Otherwise, without loss of generality we suppose
that S contains ℓ ≥ 2 occurrences of k. Let A1, . . . , Aℓ (resp. B1, . . . , Bℓ) denote the

parts of S (resp. Sk,s) between these ℓ elements. Thus, |S| = ℓ+
∑ℓ

i=1 |Ai|.
Denote the number of elements with at least one occurrence in Ai by ki. Each

element x occurs in at most one of the Ai’s because otherwise S would contain a
subsequence xkxk. It follows that

∑ℓ
i=1 ki ≤ k−1. Note that, if we append Bi with

an element k, it will consist of blocks 12 . . . k. Denote the number of these blocks by
si and notice the equality

∑ℓ
i=1 si = s. Since Ai has no forbidden subsequence, we

have |Ai| ≤ ki+si−1. If ki ≥ 1, this follows from the induction assumption because
Ai can be regarded a subsequence of Ski,si. If ki = 0, this is also true because then
|Ai| = 0. Summarizing, we obtain |S| ≤ ℓ+

∑ℓ
i=1(ki+ si−1) ≤ ℓ+(k−1)+ s− ℓ <

k + s.
2. Let S ′ be obtained from S by shrinking each block z . . . z of the same elements

to z. Since S ′ is a (k, 4)-Davenport-Schinzel sequence, we have |S ′| ≤ λ4(k). Note
now that any two elements neighboring in a shrunken block are at distance at least
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k− 1 in Sk,s. It easily follows that the total number of elements deleted in S is less
than s. �

Theorem 5.2. Let Hn be an arbitrary graph in Hn. For any X in weakly convex

position we have

fixX(Hn) < 3
√
n.

Proof. By part 1 of Lemma 4.2, it suffices to show that C(X) < 2k for any set X
of n = k2 points on the boundary Γ of a convex body. Let X be the interweaving
k-coloring of X where the colors appear along Γ in the circular sequence Sk,k as in
Lemma 5.1. Suppose that Y is a clustered subset of X . Note that there are no two
pairs {y1, y2} ⊂ Y ∩ Xi and {y′1, y′2} ⊂ Y ∩ Xj , i 6= j, with intersecting segments
[y1, y2] and [y′1, y

′
2]. This means that the subsequence of Sk,k induced by Y does not

contain any pattern ijij. By part 1 of Lemma 5.1, we have |Y | < 2k and, hence,
C(X,X ) < 2k as required. �

Remark 5.3. With a little more care, we can improve the constant factor in The-
orem 5.2 by proving that fixX(Hn) ≤ 2

√
n+1 for any X in weakly convex position.

The rest of this section is devoted to the star forest kSk. This sequence of graphs
is of especial interest because this is the only example of graphs for which we know
that fix (G) = O(

√
n) but are currently able to prove neither that FIX (G) = o(n)

nor that fixX(G) = O(
√
n) for X in weakly convex position.

The first part of the forthcoming Theorem 5.4 restates [5, Theorem 5] (see (6)
in Section 1.2) with a worse factor in front of

√
n; we include it for an expository

purpose. The proof of this part is based on part 1 of Lemma 5.1, which we already
used to prove Theorem 5.2. The second part, which is of our primary interest,
requires a more delicate analysis based on part 2 of Lemma 5.1.

Theorem 5.4. Let kSk denote the star forest with n = k2 vertices. For every integer

k ≥ 2 we have

1. fixX(kSk) < 7
√
n for any collinear X;

2. fixX(kSk) = O(
√
n2α(

√
n)) for any X in weakly convex position.

Proof. Denote V = V (kSk). Let V =
⋃k

i=1 Vi∪C, where each Vi consists of all k−1
leaves in the same star component and C consists of all k central vertices.
1. Suppose that X consists of points x1, . . . , xn lying on a line ℓ in this order.

Consider a drawing π : V → X such that

π(Vi) = {xi, xi+k, xi+2k, . . . , xi+(k−2)k} for each i ≤ k,
π(C) = {xn−k+1, xn−k+2, . . . , xn}. (15)

Let π′ be a crossing-free straight line redrawing of kSk. We have to estimate the
number of fixed vertices, i.e., those vertices participating in F = {π(v) : v ∈
V, π(v) = π′(v)}. For this purpose we split F into four parts: F = A ∪ B ∪D ∪ E
where A (resp. B; D) consists of the fixed leaves adjacent to central vertices located
in π′ above ℓ (resp. below ℓ; on ℓ) and E consists of the fixed central vertices.
Trivially, |E| ≤ k and it is easy to see that |D| ≤ 2k. Let us estimate |A| and |B|.

Label each xm by the index i for which xm ∈ π(Vi) and view x1x2 . . . xn−k as the
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Figure 2. Proof of part 1 of Theorem 5.4: an ijij-subsequence in A.

sequence Sk,k−1 defined in Lemma 5.1. Let S be the subsequence induced by the
points in A. Note that S does not contain any subsequence ijij because otherwise
we would have an edge crossing in π′ (see Fig. 2). By part 1 of Lemma 5.1, we have
|A| = |S| < 2k. The same applies to B. It follows that |F | = |A|+ |B|+ |D|+ |E| <
7k, as claimed.
2. Let X be a set of n = k2 points on the boundary Γ of a convex plane body

P . It is known that the boundary of a convex plane body is a rectifiable curve and,
therefore, we can speak of the length of Γ or its arcs. Clearly, the convex body P
plays a nominal role and can be varied once X is fixed. Thus, to avoid unnecessary
technical complications in the forthcoming argument, without loss of generality we
can suppose that the boundary curve Γ contains only a finite number of (maximal)
straight line segments. In particular, we can suppose that Γ contains no straight
line segment at all if X is in “strictly” convex position.
We will use the following terminology. A chord is a straight line segment whose

endpoints lie on Γ. An arrow is a directed chord with one endpoint called head

and the other called tail. Call an arrow a median if its endpoints split Γ into arcs
of equal length. Fix the “clockwise” order of motion along Γ and color each non-
median arrow in one of two colors, red if the shortest way along Γ from the tail to
the head is clockwise and blue if it is counter-clockwise.
Given a point a outside P , we define quiver Qa as follows. For each line going

through a and intersecting Γ in exactly two points, h and t, the Qa contains the
arrow th directed so that the head is closer to a than the tail.
Given a non-median arrow th, we will denote the shorter component of Γ \ {t, h}

by Γ[t, h]. Our argument will be based on the following elementary fact.

Claim A. Let arrows th and t′h′ be in the same quiver Q and have the same color.
Suppose that Γ[t′, h′] is shorter than Γ[t, h]. Then both t′ and h′ lie in Γ[t, h].

Proof of Claim A. Let t∗h∗ be the median in Q. Since th and t′h′ are of the same
color, the four points t, h, t′, h′ are in the same component of Γ \ {t∗, h∗}. The claim
easily follows from the fact that the chords th and t′h′ do not cross (see Fig. 3). ⊳

After these preliminaries, we begin with the proof. Let x1, . . . , xn be a listing of
points in X along Γ. Fix π to be an arbitrary map satisfying (15). Let π′ be a
crossing-free redrawing of kSk. Look at the edges in π′ with one endpoint π′(v) on
Γ and the other endpoint elsewhere. Perturbing π′ a little at the positions not lying
on Γ (and using the regularity assumption made about Γ), we can ensure that

(1) any such edge intersects Γ in at most two points, including π′(v) (this is
automatically true if Γ contains no straight line segment);
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Figure 3. Proof of Claim A.

(2) if an edge intersects Γ in two points, it splits Γ into components having
different lengths.

Assume that π′ meets these conditions. Let v be a leaf adjacent to a central
vertex c. Suppose that π′(v) ∈ Γ, π′(c) /∈ P , and the segment π′(v)π′(c) crosses Γ
at a point h 6= π′(v). By Condition 2, the arrow π′(v)h is not a median and hence
colored in red or blue. We color each such π′(v) in red or blue correspondingly.
Now we split the set of fixed vertices F into five parts. Let E consist of the

fixed central vertices, I (resp. O) consist of those fixed leaves such that the edges
emanating from them are completely inside (resp. outside) P , andR (resp. B) consist
of the red (resp. blue) fixed leaves. By Condition 1, we have F = E ∪ I ∪O∪R∪B.
Trivially, |E| ≤ k. Similarly to the proof of the first part of the theorem, notice

that the subsequences of Sk,k−1 corresponding to I and O do not contain ijij-
subsubsequences. By part 1 of Lemma 5.1, we have |I| < 2k and |O| < 2k.
Finally, consider the subsequence S of Sk,k−1 corresponding to R and show that

it does not contain any ijijij-subsubsequence. Assume, to the contrary, that such a
subsubsequence exists. This means that x1 . . . xn−k contains two interleaving subse-
quences a1a2a3 and b1b2b3 whose elements belong to two different star components
of π′, with central vertices a and b, respectively. Since a1, a2, a3 are red, Claim A
implies that, say, a2 and a3 lie on the shorter arc of Γ cut off by the edge aa1 (see
Fig. 4).
Without loss of generality, let b1 be between a1 and a2 and b2 be between a2

and a3. Since b1 and b2 are red and π′ is crossing-free, it must be the case that
bb1 intersects Γ[a1, a2] and bb2 intersects Γ[a2, a3] (in another point). This makes a
contradiction with Claim A.
Thus, S is ijijij-free and, by part 2 of Lemma 5.1, we have |R| = |S| ≤ O(k2α(k)).

All the same applies to B. Summarizing, we see that |F | = |E|+|I|+|O|+|R|+|B| ≤
O(k2α(k)), as claimed. �
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Figure 4. Proof of part 2 of Theorem 5.4: impossibility of an ijijij-
subsequence in R.

6. Open problems

1. Can the parameters fix (G) and FIX (G) be far apart from each other for some
planar graphs? Say, is it possible that for infinitely many graphs we have FIX (G) ≥
nǫfix(G) with a constant ǫ > 0?
2. Lemma 4.3 states an upper bound C(X) = O(n/ logn) for any set X of n = k2

points in the plane. A trivial lower bound is C(X) ≥ √
n. How to make the gap

closer? By Lemma 4.2, this way we could show either that FIX (Hn) is close to
fix(Hn) or that FIX (kSk) is far from fix (kSk).
3. Find upper bounds on FIX (G), at least FIX (G) = o(n), for the cycle Cn, the

star forest kSk, and the uniform binary tree. Recall that upper bounds on fix(G)
for these graphs are obtained in [12, 5, 6], respectively (the uniform binary tree is
just a particular instance of the class of graphs with logarithmic vertex degrees and
diameter treated in [6]).
4. Let Fix(G) denote the maximum of fixX(G) over X in weakly convex position.

Obviously, fix (G) ≤ Fix(G) ≤ FIX (G). Note that the first inequality can be strict:
for example, fix (K4) = 2 while Fix (K4) = 3 for the tetrahedral graph. Is it true
that Fix(G) = O(fix(G))? Currently we cannot prove this even for graphs G = kSk,
cf. Theorem 5.4.
5. By Theorem 2.1, for every G we have fix(G) = fixX(G) for some collinear

X . Does this equality hold for every collinear X? This question is related to the
discussion in [14, Section 5.1].
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