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Introdution

In this thesis we onsider di�erent extremal problems for set systems. The

extremal (hyper-)graph theory has long been regarded as an important subjet

omprising a large number of various problems and methods.

Of ourse, we do not even try to present here all the features of the theory.

Instead, we onsider a few di�erent faets suh as saturated hypergraphs, weakly

saturated hypergraphs, minimum hain deompositions, enumeration results for

hypertrees, and size Ramsey numbers. We try to demonstrate di�erent proof

tehniques in ation and, indeed, the methods that we use are diverse: they

inlude, for example, exterior algebra and probabilisti arguments.

Let us indiate how this work is organized. It is split into separate parts,

eah being a self-ontained unit dealing with a partiular feature. We tried

as far as possible to ensure that eah part an be read independently of the

others. Please note that eah part omes with its own introdution whih an

be onsulted for further information.

Part I: Saturated Hypergraphs

Here we onsider the notion of saturation. Let F be a family of forbidden k-

graphs, that is, k-uniform set systems. A maximal k-graph G not ontaining any

F 2 F as a subgraph is alled F-saturated. We will be interested in sat(n;F), the

minimal number of edges that an F -saturated graph of order n an have. These

types of questions were onsidered as early as the late 40s by Zykov [Zyk49℄,

and by many other mathematiians heneforth.

However, there has been no good general upper bound on the sat-funtion.

Tuza [Tuz86℄ (also an unpublished onjeture of Bollob�as) onjetured that

sat(n; F ) = O(n

k�1

); for any �xed k-graph F . (1)

While the onjeture was proved for k = 2 by Kaszonyi and Tuza [KT86℄, and

all partiular examples on�rmed its validity, it was not even known whether

generally sat(n; F ) = o(n

k

) for k � 3. In Setion 3 we verify this onjeture by

showing that sat(n;F) = O(n

k�1

) for all �nite and ertain in�nite families F of

k-graphs.
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Di�erent variations of the priniple are presented in Setion 4: we de�ne the

notion of saturation for di�erent graph-like strutures and investigate whether a

form of (1) holds. While the tehnique of Setion 3 extends to direted yle-free

graphs, ordered graphs, and layered graphs, we had to invent a new method in

order to prove (1) for the lass of k-row retangular matries.

In Subsetion 4.4 we onsider problems of the following type. Given a for-

bidden family, we say that a graph G kills an edge E 2 E(G) if the addition of

E to G reates a forbidden subgraph. What is the maximal number of killed

edges if G has a given order and size? We settle these problems for omplete

2-graphs, whih extends a theorem of Erd}os, Hajnal and Moon [EHM64℄ who

omputed sat(n;K

2

m

).

The sat-funtion is hard to handle: it laks many natural regularity proper-

ties. For example, Kaszonyi and Tuza [KT86℄ showed that it is not monotone.

In Setion 5 we amplify their example: we onstrut, for any onstant d, a 2-

graph F = F (d) suh that sat(n; F ) < sat(n � 1; F ) � d for a periodi series

of values of n. Furthermore, we demonstrate a �nite family F of 2-graphs for

whih the ratio sat(n;F)=n does not tend to a limit, whih is rather unexpeted

and ounterintuitive.

Spei� instanes of forbidden graphs are onsidered in Setion 6.

We asymptotially ompute sat(n; S

k

m

), thus extending a result of Erd}os,

F�uredi and Tuza [EFT91℄ who did the task for S

k

k+1

. (The generalized star S

k

m

is the k-graph onm verties onsisting of all k-tuples ontaining a given vertex.)

The triangular family T

k

onsists of all k-graphs of size 3 in whih the sym-

metri di�erene of some two edges is ontained in the third one. We prove that

sat(n;T

k

) = n�O(logn), k � 3, and sat(n;T

3

) = n� 2.

We show that, for any K

m

-saturated graph G, the number of edges spanned

by the set fx 2 V (G) : d(x) � ag is at most a

2(m�2)a+o(ma)

, a funtion not

depending on n = v(G). We dedue that G has at least ln+O(

n log logn

log n

) edges,

if the minimal degree of G is l � m� 1. Another onsequene is a sharper form

of one result by Alon, Erd}os, Holzman and Krivelevih [AEHK96, Theorem 2℄.

The following problem is, in fat, an instane of a sat-type problem. Suppose

that we try to onstrut designs by adding, one by one and as long as possible,

k-edges so that eah t-set is overed by at most � edges. What is the worst

ase, that is, how small the eventual system an be? We solve asymptotially
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this problem for t = 2 and establish some onnetions with Tur�an numbers for

general t.

Part II: Weakly Saturated Hypergraphs

A notion related to that of saturation is weak saturation whih we onsider in

Part II. A k-graph G is weakly F-saturated if we an add one by one all missing

edges to G so that every time at least one new forbidden subgraph appears; we

are interested in w-sat(n;F), the minimal size of a suh graph G on n verties.

These questions were �rst onsidered by Bollob�as [Bol67℄ who made a on-

jeture on omplete graphs. The onjeture was veri�ed by a number of people

who omputed w-sat(n;K

k

m

): Frankl [Fra82℄, Kalai [Kal84, Kal85℄; the result is

impliit in Lov�asz [Lov77℄; f. also Alon [Alo85℄. They all applied some form

of dependene in order to derive the formula. This approah was most learly

formulated by Kalai [Kal85℄: if we have a matroid M on [n℄

(k)

suh that any

F 2 F is a iruit, then w-sat(n;F) � R

M

([n℄

(k)

), the rank of M.

Usually, it is easy to onstrut a right example of minimumG 2 w-SAT(n;F)

for a given F , but it is hard to prove that this G is indeed extremal. So, the

above approah is helpful but it is not lear at all how to searh for a suitable

matroid M.

Here we suggest two deterministi andidates for M to onsider, provided

we have an example of G

n

2 w-SAT(n;F). For this purpose we utilize gross

and ount matroids whih are de�ned in Setion 8. The onstrution of a gross

matroid was exploited by Kalai [Kal90℄, but for other purposes. Our ount

matroids form a new family of matroids, onsiderably and naturally extending

the ount matroid of White and Whiteley [WW84℄.

If one of our approahes works, then G is indeed extremal and we say that we

have a G-proof or a C-proof respetively. Thus, we have two suÆient riteria for

G 2 w-SAT(n;F) to be minimal. Unfortunately, these riteria are not generally

neessary, but using them (and the related g/g

0

-proof tehnique) we an prove

the following results.

Given sequenes of integers s = (s

1

; : : : ; s

t

) and k = (k

1

; : : : ; k

t

), the pyramid

P (s;k) is the k-graph, k = k

1

+ : : :+k

t

, with vertex set being the disjoint union

S

1

[ : : :[S

t

, jS

i

j = s

i

, and with the edge set onsisting of those k-subsets whih,
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for every i 2 [t℄, interset S

1

[ : : : [ S

i

in at least k

1

+ : : : + k

i

verties. This

is a rather general de�nition: as partial ases we obtain omplete graphs and

generalized stars.

In Subsetion 10.1 we ompute w-sat(n; P (s;k)) for all feasible values of

parameters. A partial ase of this result proves the onjeture by Tuza [Tuz88,

Conjeture 7℄ that w-sat(n;H

k

(k + 1; l)) =

�

n�k+l�2

l�2

�

, n � k + 1 � l � 2. (The

uniform family H

k

(m; l) onsists of all k-graphs with m verties and l edges.)

In Subsetion 10.2 we present some further results about weakly H

k

(m; l)-

saturated graphs: we make a general onjeture and verify it for a number of

parameters. In ertain ases we haraterize all extremal graphs, in partiular

answering a question by Erd}os, F�uredi and Tuza [EFT91℄ (who veri�ed Tuza's

onjeture for l = 3).

The one n(F ) of a k-graph F is obtained by adding an extra vertex x plus

all

�

v(F )

k�1

�

edges ontaining x. Our more general results of Setion 11 imply that

ones `preserve' G/g/g

0

-proofs under ertain overing onditions. This means

that if we know the w-sat-funtion for ertain graphs by applying a G/g/g

0

-

proof, then we know it for the graphs obtained by the appliation of the one

operator. For example, for 2-graphs we an ompute w-sat(n;K

l

+ F ), where

for F we an take a star, an odd yle, a path, a mathing, and many other

graphs.

In Setion 12 we de�ne join, another operation on graphs, and prove among

other things that joins always preserve G/g-proofs. As a speial ase, we dedue

the result of Alon [Alo85℄ who omputed the w-sat-funtion for joins of omplete

hypergraphs.

Part III: Chain Deompositions

A hain deomposition of a poset P is a partition of P into disjoint hains

(that is, linearly ordered subsets). Minimum hain deompositions have many

appliations and are extensively studied.

In this part we onsider the minimal size of an edge deomposition whih is a

olletion of skipless hains suh that any pair xl y (x is overed by y) belongs

to exatly one hain. (A hain C is skipless if no element of PnC an be inserted

between some two elements of C.) It is easy to see that edge deompositions
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of P orrespond to skipless hain deompositions of the line poset L(P) whose

vertex set is f(x; y) : x; y 2 P; x l yg, and (x; y) < (x

0

; y

0

) in L(P) if y � x

0

in P.

In Setion 14 we present a few min-max theorems. Our more general theo-

rem implies that the minimal size of a skipless hain deomposition of P equals

the maximal value of jAj � jBj taken over all pairs of disjoint sets A;B � P

suh that any skipless hain ontaining two elements from A intersets B. Sur-

prisingly enough, this fundamental theorem turned out to be a new result. Our

proof utilizes the linear programming method of Dantzig and Ho�man [DH56℄.

It was onsiderably simpli�ed by Graham Brightwell who replaed the linear

programming argument by an easy appliation of Hall's theorem. We present

both these proofs.

The minimal size of an edge deomposition of P an be dedued as a orol-

lary, but we provide a short and diret proof.

Hene, our basi question is generally ompletely answered, but we an ask

whether there is an edge deomposition with some extra properties. Of ourse,

one an onsider these problems for many di�erent posets and impose many

di�erent restritions. But as our theme is extremal set systems, we investigate

B

n

, the poset of subsets of an n-set ordered by inlusion, and ask whether we

an require that all hains are symmetri. (A skipless hain A

1

� : : : � A

k

of

B

n

is symmetri if jA

i

j + jA

k�i+1

j = n, 1 � i � k.) Note that any symmetri

edge deomposition of B

n

has the minimal size.

In fat, the general results of Anderson [And67℄ and Griggs [Gri77℄ imply

the existene of a symmetri edge deomposition of B

n

. However, their proofs

are non-onstrutive, so in Setion 15 we provide an expliit onstrution.

Our deomposition has some extra properties and interesting appliations,

see Setion 16. In brief, we give estimates of the number of antihains in L(B

n

),

onstrut a pair of orthogonal skipless hain deompositions of L(B

n

), present

some appliations to storing and searhing reords in a database, and solve one

numerial problem.

In Setion 17 we haraterize line posets in terms of forbidden on�gurations

and point out whih information determines and an be reonstruted from the

line poset. (This resembles Beineke's [Bei68℄ haraterization of line graphs.)



INTRODUCTION vi

Part IV: Enumeration Results for Trees

Here we onsider and enumerate di�erent tree-like strutures. Stritly speaking,

suh problems belong to enumerative, rather than to extremal, graph theory,

but we inlude these results beause we believe that the proofs are short and

nie.

The notion of a tree and its di�erent extensions to k-graphs, that is, k-

uniform set systems, play an important role in disrete mathematis and om-

puter siene. We will dwell upon the following, rather general, de�nition sug-

gested independently by Dewdney [Dew74℄ and Beineke and Pippert [BP77℄.

A k-graph is alled a (k;m)-tree if it an be obtained from a single edge by

onseutively adding edges so that every new edge ontains k �m new verties

while its remaining m verties are overed by an already existing edge.

The problem of ounting (m+1;m)-trees whih are known in the literature

as m-trees, reeived great attention and was ompletely settled by Beineke and

Pippert [BP69℄ and Moon [Moo69℄. Later, di�erent bijetive proofs for m-trees

appeared as well, see [RR70, Foa71, GI75, ES88, Che93℄.

Here we enumerate vertex labelled (k;m)-trees. We present two di�erent

proofs. The proof of Setion 19 is indutive, that is, we write a reurrene

relation for the number of trees and prove our formula by indution.

In Subsetion 20.2 we exhibit an expliit bijetion between the set of rooted

vertex labelled trees of given size and a trivially simple set; it is based on the

ideas of Foata [Foa71℄. This method an be applied to enumerate other tree-like

strutures. For example, we enumerate vertex labelled k-gon trees. A k-gon

tree is obtain from a k-gon (that is, a k-yle) by onseutively adding k-gons

along an existing edge, see e.g. [CL85, Whi88, Pen93, KT96℄. In order not to

repeat the same portions of proof twie, we present a more general result whih

inludes both (k;m)-trees and k-gon trees as partial ases.

In Subsetion 20.3 we present a bijetion for edge labelled (2; 1)-trees, an-

swering a question posed by Cameron [Cam95℄. Unfortunately, we do not know

any diret bijetion enumerating edge labelled (k;m)-trees for general k;m.
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Part V: Large Degrees in Subgraphs

Erd}os [Erd81℄, see also [Chu97, Erd99℄, onjetured that for n � 3 any graph

with fewer than

�

2n+1

2

�

�

�

n

2

�

=

3n(n+1)

2

edges is a union of a bipartite graph and

a graph with maximum degree less than n. All researh arried in this part is

motivated by this onjeture whih is disproved here.

The onjetured value arises from the onsideration of P

n+1;n

= K

n+1

+E

n

whih does not admit the above representation. In fat, this graph has a stronger

property, namely P

n+1;n

! (K

1;n

;K

3

): for any blue-red olouring of the edge

set of P

n+1;n

we neessarily have either a blue star K

1;n

or a red triangle. Thus,

if Erd}os' onjeture were true, it would give the same value for the size Ramsey

number r̂(K

1;n

;K

3

) = minfe(G) : G ! (K

1;n

;K

3

)g. Apparently, the omputa-

tion of r̂(K

1;n

;K

3

) was the original motivation for the onjeture.

In Setion 22 we show, however, that

r̂(K

1;n

;K

3

) < n

2

+

p

2n

3=2

+ n; n � 1;

by demonstrating an expliit onstrution. This disproves Erd}os' onjeture

whih, in fat, fails for all n � 5. On the other hand, we prove that any graph

with n

2

+ (0:577 + o(1))n

3=2

edges is a union of a bipartite graph and a graph

with maximum degree less than n, whih of ourse implies that this number is

a lower bound for r̂(K

1;n

;K

3

).

There were di�erent attempts to prove the onjeture, by di�erent mathe-

matiians, whih resulted in new interesting diretions of researh.

For example, as reported in [Erd99℄, Erd}os and Faudree [EF99℄ onsider the

minimal size of a graph G suh that if G is a union of two graphs, one having

maximal degree less than n, then the other ontains all odd yles C

m

with

3 � m � n� 3. In Subsetion 22.3 we demonstrate a graph G of size (1 + ")n

2

,

for any given onstant " > 0, suh that, for any blue-red olouring of G without

a blue K

1;n

, we have red yles of all lengths (odd and even) between 3 and n,

where  = (") > 0 does not depend on n.

The following problem, whih was introdued by Erd}os, Reid, Shelp and

Staton [ERSS96℄, is also motivated by Erd}os' onjeture.

For positive integers n; k; j with k � j, let M(n; k; j) onsist of all graphs

G of order n + k suh that every (n + j)-subset of V (G) spans a graph with
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maximum degree at least n. The question is to ompute

m(n; k; j) = minfe(G) : G 2M(n; k; j)g:

Erd}os et al [ERSS96, Conjeture 1℄ onjetured that, for n � k � j � 1 and

n � 3, we have

m(n; k; j) = (k � j + 1)n+

�

k � j + 1

2

�

: (2)

This value arises from the onsideration of P

k�j+1;n

tE

j�1

. Erd}os et al [ERSS96,

Theorem 3℄ proved that (2) is true if j = 1 or if j � 2 and

n � max

�

j(k � j);

�

k�j+2

2

�

�

: (3)

In Setion 23 we demonstrate a onstrutive ounterexample to (2) for n �

(j � 2)(k � j). On the other hand, we show that (2) is true if

n � max

�

�

j +

1

2

�

(k � j) +

j+k

4j�2

; 14

�

;

whih improves (3) for j / k=3. This shows that j(k�j) is roughly the threshold

on n when the obvious onstrution leading to (2) fails to be extremal. Some

other onstrutions are presented.

In Setion 24 we onsider the following related problem. Let B(n;m) onsist

of all graphs suh that for any partition V (G) = A [ B either �(G[A℄) � n or

�(G[B℄) � m (or both). We are interested in the bisplit funtion

b(n;m) = minfe(G) : G 2 B(n;m)g:

Clearly, b(n; n) is preisely the funtion investigated in Erd}os' onjeture, whih

was the original motivation for introduing the `o�-diagonal' numbers b(n;m).

We ompute this funtion asymptotially when m = min(n;m) is large:

b(n;m) = 2nm�m

2

+ o(m)n:

In the extreme ase, when m � 1 is �xed, we an prove only that the numbers

b(n;m), n 2 N, lie between two funtions linear in n with slopes 2m + 1 and

2m+

p

2m+

5

2

.

We prove that b(n; 1) = 4n � 2 for n � 8 (and haraterize all extremal

graphs) and that b(n; 2) = 6n + O(1). As the reader will see, the proofs are

rather lengthy and require onsideration of many ases. This indiates that the

omputation of lim

n!1

b(n;m)=n for any �xed m (if the limit exists) is perhaps

a hard task.



Notation

Let us indiate some notation that we use. The relation A � B does not

exlude A = B; the strit inlusion is denoted as A  B. Any unfamiliar term

(e.g. pyramid) should be identi�able via the index.

[m;n℄ = fm;m+ 1; : : : ; ng; [n℄ = f1; 2; : : : ; ng

A

(r)

= fB � A : jBj = rg

R=Q =Z=N the sets of reals/rationals/integers/positive integers

f = �(g) , 9

1

; 

2

> 0 9n

0

8n � n

0



1

g(n) � jf(n)j � 

2

g(n)

f = O(g) , 9 > 0 9n

0

8n � n

0

jf(n)j � g(n)

f = o(g) , 8 > 0 9n

0

8n � n

0

jf(n)j � g(n)

s

A

=

P

i2A

s

i

; given reals s

1

; : : : ; s

n

and A � [n℄

B

A

= [

i2A

B

i

; given sets B

1

; : : : ; B

n

and A � [n℄

V (G) the vertex set of G

v(G) = jV (G)j the order of G

E(G) the edge set of G

e(G) = jE(G)j the size of G

G the omplement of G

G[A℄ the subgraph indued by A � V (G)

�(G) the independene number of G

d(x) = jfE 2 E(G) : E 3 xgj; x 2 V (G)

�(G)=Æ(G) the maximal/minimal degree of G

�

A

(x) = fy 2 A : fx; yg 2 E(G)g ; 2-graph G; �(x) = �

V (G)

(x)

d

A

(x) = j�

A

(x)j; x 2 V (G); A � V (G); 2-graph G

mG m disjoint opies of G

C

m

the m-yle

E

m

the empty graph of order m

K

k

(A) the omplete k-graph on a set A

K

k

m

the omplete k-graph of order m; K

m

= K

2

m

K

m;n

the omplete bipartite graph

P

m;n

= K

m

+E

n

P (s;k) the pyramid

S

k

m

the k-star of order m
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Part I

Saturated Hypergraphs

1 Introdution

1.1 Disussion

Many ombinatorial strutures (espeially graphs) have proved to be very use-

ful in other branhes of human knowledge where disrete models play more and

more important role with the advane of omputers. A fairly typial problem is,

given a lass C of allowed graphs (for example, those whose struture is ompat-

ible with the requirements of the used disrete model), to minimize/maximize

a ertain parameter.

In many natural ases, C an be desribed by naming a family F of forbidden

subgraphs so that a graph belongs to C if and only if it is F-free, that is, if it

does not ontain any F 2 F as a subgraph. In this ase, C an be also spei�ed

by listing the family SAT(F) of all F-saturated graphs, that is, maximal F -free

graphs; learly,

C = fH : H � G for some G 2 SAT(F)g

and, instead of onsidering the whole of C, we an restrit ourselves only to

SAT(F), espeially that many extremal parameters of C an be more quikly

determined from SAT(F).

Two related families are m-SAT(F) and w-SAT(F): G 2 m-SAT(n;F) if

the addition any new edge to G reates at least one new forbidden subgraph

(then we all G monotonially F-saturated); G 2 w-SAT(n;F) if we an add

all missing edges, one by one in some order, so that every edge reates a new

forbidden subgraph (then we all G weakly F-saturated). Note that we do not

require here that G is F -free.

For example, the Tur�an-type problem studies the maximal size of an F -

free graph of a given order. This is learly equal to the maximal size of an

F -saturated graph of a given order.

In Parts I and II we onsider the sat-type problems whih ask about the

minimal size of a (weakly/monotonially) F -saturated graph of a given order.
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The Tur�an-problem and the sat-problem happen to be rather di�erent in

nature. The former is perhaps more important in appliations although many

real life situations lead to sat-type questions.

For example, monotonially K

3

-saturated graphs are preisely diameter-2

graphs. This problem has the following interpretation: there are n airports; we

an onnet some pairs by a ight and we want to assure the possibility to y

from eah airport to any other one by hanging the plane at most one. Clearly,

the minimal number of onnetions is n�1 and this is ahieved if and only if one

airport is onneted to every other. (This may be not a perfet solution and we

may impose some extra onditions: e.g. some restrition on the maximal degree,

et.) If we weaken the requirement by allowing any number of ight hanges,

then we obtain weakly K

3

-saturated (i.e. onneted) graphs and the minimal

size is again n� 1 but we have many extremal graphs.

In this part (and Part II) we try to present a uni�ed treatment of these,

sat-type, questions. The above de�nitions are applied to k-graphs (k-uniform

set systems) whih are the main objet of our onsideration. Also, we present

di�erent variations of the priniple and make a few exursions into some related

areas (for example, the forbidden submatrix problem). Setion 2 briey surveys

known results on the topi inluding those proved here. But before we proeed,

let us give all neessary de�nitions.

1.2 De�nitions

Let F be a family k-graphs (that is, k-uniform set systems) whih are usually

referred to as forbidden. A k-graph G is alled F-admissible (or F-free) if it

does not ontain any F 2 F as a subgraph.

We say that G is F-saturated, denoted G 2 SAT(n;F), if it is a maximal

F -free k-graph with n verties. We are mainly interested in

sat(n;F) = minfe(G) : G 2 SAT(n;F)g; (4)

the minimal number of edges in an F -saturated graph of order n.

The following auxiliary notion is helpful: G is alled monotonially (or

strongly) F -saturated, denoted G 2 m-SAT(n;F), n = v(G), if the addition

of any new edge to G reates at least one extra F -subgraph, some F 2 F . Note

that we do not require that G is F -admissible.
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Clearly, SAT(n;F) = fG 2 m-SAT(n;F) : G is F -freeg, so sat(n;F) �

m-sat(n;F), where

m-sat(n;F) = minfe(G) : G 2 m-SAT(n;F)g:

For a graph F , we denote SAT(n; F ) = SAT(n; fFg), et.

2 Survey

Here is a brief but omprehensive (to the best of the author's knowledge) survey

of known results related to (strong) saturation. Also, we indiate all interesting

results proved in this part.

2.1 General Families

Not muh is known about sat(n;F) for a general F . K�aszonyi and Tuza [KT86℄

showed that, for any family F of 2-graphs, inluding all in�nite families, we

have sat(n;F) = O(n). Tuza [Tuz92℄ showed that, for any �xed k-graph F ,

m-sat(n; F ) = �(n

d(F )

): (5)

Here d(F ) 2 [0; k � 1℄ is what Tuza alls the loal density of F :

d(F ) = minfd(E) : E 2 E(F )g; (6)

where the density d(E) of an F -edge E is max fjE \E

0

j : E

0

2 E(F ) E

0

6= Eg.

Clearly, in terms of onstrutive upper bounds, SAT is more restritive than

m-SAT. Thus, it is not surprising that, up to now, there were no good upper

bounds on sat(n; F ) for a general k-graph F . Tuza [Tuz86, Tuz88℄ (also an

unpublished onjeture of Bollob�as) onjetured that, for any �xed k-graph F ,

sat(n; F ) = O(n

k�1

).

In Setion 3 we show that

sat(n;F) = O(n

k�1

) (7)

for all �nite and ertain in�nite families F , whih, of ourse, proves this onje-

ture. Our proof is onstrutive.
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In Setion 4 we try to extend the notion of saturation to di�erent strutures

onneted to hypergraphs and every time we ask whether the analogue of esti-

mate (7) is valid. Although the estimate is not true for simple direted graphs,

we show that (7) is valid for all �nite families of yle-free direted k-graphs

and for ordered k-graphs. Furthermore, the estimate sat(n;F) = O(n) is true

for any family F of yle-free or ordered 2-graphs.

In Subsetion 4.2 we onsider similar question for strutures that we all

layered graphs and show that a form of (7) holds here. Also, we show that,

for the lass of layered (1; 1)-graphs (that is, bipartite graphs), the size of any

minimum F -saturated graph is bounded by a linear funtion of its order for any

forbidden family F .

In Subsetion 4.3 we onsider the sat-type problems for the lass of retan-

gular matries, for whih the dual (Tur�an-type) problems are well studied. We

show that for any family F of forbidden k-row matries sat(n;F) = O(n

k�1

).

Although the notion of saturation was onsidered as early as the late 40s

by Zykov [Zyk49℄, the theory does not seem to be well developed. This might

be the ase beause minimum saturated graphs are hard to handle. For example,

as demonstrated by K�aszonyi and Tuza [KT86℄, the sat-funtion laks many

natural regularity properties; in Setion 5 we provide further examples.

Answering a question by Tuza [Tuz92℄ we exhibit an example of onneted

2-graphs H � F of the same order suh that sat(n;H) > sat(n; F ) for all large

n. (Of ourse, it is `natural' to expet the onverse inequality.)

Among other things, we demonstrate, for any �xed d > 0, a 2-graph F =

F (d) suh that

sat(n; F ) < sat(n� 1; F ) � d;

for a periodi series of values of n.

Tuza [Tuz88℄ onjetured that, for any 2-graph F , the limit lim sat(n; F )=n

exists. Of ourse, a number of similar questions arise for k-graphs as well.

Unfortunately, there is not muh progress in this diretion.

Truszzynski and Tuza [TT91℄, haraterized those 2-graphs F for whih

 = limsat(n; F )=n exists and is smaller than 1; then, in fat,  = 1 � 1=p,

p 2 N.

In Setion 5 we demonstrate a �nite family F of 2-graphs for whih the limit
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lim sat(n;F)=n does not exist.

In the literature, there are many di�erent variations on the topi; one possi-

bility is to onsider minimum saturated graphs (most frequently K

2

m

-saturated)

with some extra restritions, for example, on degrees (Hajnal [Haj65℄, Hanson

and Sey�arth [HS84℄, Du�us and Hanson [DH86℄, Erd}os and Holzman [EH94℄,

F�uredi and Seress [FS94℄, Alon et al [AEHK96℄), hromati number (Hanson

and Toft [HT91℄), et. Hanson and Toft [HT87℄ onsider edge-oloured satu-

rated graphs.

2.2 Partiular Cases

Erd}os, Hajnal and Moon [EHM64℄ via an indutive argument and ontrations

omputed the sat-funtion for all omplete 2-graphs. Bollob�as [Bol65℄ intro-

dued the powerful weight method and proved that

sat(n;K

k

m

) =

�

n

k

�

�

�

n�m+ k

k

�

; n � m > k: (8)

The ases of equality were haraterized in both papers.

We show that, for any K

m

-saturated graph G, the number of edges spanned

by the set fx 2 V (G) : d(x) � ag is bounded by a

2(m�2)a+o(ma)

, a funtion of a

and m only. We dedue that G has at least ln+ O(

n log log n

log n

) edges, n = v(G),

if the minimal degree of G is l � m� 1. Another onsequene is a sharper form

of one result by Alon, Erd}os, Holzman and Krivelevih [AEHK96, Theorem 2℄.

Please refer to Subsetion 6.4 for details.

The star S

k

m

has m verties and onsists of k-tuples ontaining a �xed ver-

tex. The uniform family H

k

(m; l) onsists of all k-graphs of order m and size l.

Erd}os, F�uredi and Tuza [EFT91℄ determined the exat sat-values for H

3

(6; 3)

and H

3

(4; 3) = S

3

4

and desribed the ases of equality. Also, they found asymp-

toti values for H

k

(k+1; k) = S

k

k+1

. In Subsetion 6.1 we extend the last result

by omputing asymptotially sat(n; S

r

m

) for all possible r and m.

In Subsetion 6.2 we de�ne a t-(v; k; �)-sub-design G as a maximal k-graph

of order n suh that no t-set is overed by more than � edges. (Sub-designs

naturally arise when we try to onstrut designs by onseutively adding edges

as long as possible.) If we let D = D(�; k; t) be the family of all k-graphs with

�+ 1 edges sharing at least t ommon verties then SAT(n;D) is the family of
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all sub-designs of order n. We ompute exatly sat(n;D(�; k; t)) for t = 1 and

any �; k; n (exept for a few small values of n) and (asymptotially) for t = 2

and any �xed �; k. In the general ase t � 3 we dedue some lower bounds and

establish onnetions with the Tur�an problem for omplete hypergraphs.

In Subsetion 6.3 we forbid 3 edges suh that the symmetri di�erene of

some two edges is ontained in the third one and ompute asymptotially the

orresponding sat-funtion. (For 3-graphs, we �nd the exat value.)

Erd}os and Gallai [EG61℄ showed that mK

2

3

is the (unique) minimum graph

in SAT(n;mK

2

2

) for n � 3m. (By mF we denote the union m disjoint opies of

F .) The ase of mK

k

k

, k � 3, is harder. Many authors present di�erent lower

and upper bounds on sat(n; 2K

k

k

) for spei� k. The best known general bounds

seem to be sat(n; 2K

k

k

) � k

5

, k � 1, by Blokhuis [Blo87℄, and sat(n; 2K

k

k

) � 3k,

k � 4, by Dow et al [DDFL85℄.

Wessel [Wes66, Wes67℄ and Bollob�as [Bol67b, Bol67a℄ omputed indepen-

dently the sat-funtion and haraterized extremal graphs for all omplete bi-

partite graphs in the lass of bipartite, that is, (1; 1)-layered, graphs.

Conerning 2-graphs, K�aszonyi and Tuza [KT86℄ found the omplete answer

for all paths and stars. The situation for yles looks rather ompliated. Of

ourse, the ase C

3

= K

2

3

is known. Ollman [Oll72℄ proved that sat(n;C

4

) =

b(3n�5)=2 and all extremal graphs were desribed by Tuza [Tuz89℄. Aording

to a reent paper by Barefoot et al [BCE

+

96℄, for every k � 5, we know the

exat values of sat(n;C

k

) only for �nitely many values of n although some

general bounds are available.

A result of Bondy [Bon72b℄ implies that

sat(n;C

n

) � d3n=2e: (9)

There was a great amount of work invested in omputing this funtion exatly

(Isaas [Isa75℄, Clark et al [CE83, CCES86, CES92℄) until the omputation was

ompletely �nished by Xiaohui et al [XWCY97℄ (with �nal touhes made by

omputer searh). In fat, estimate (9) is sharp for all even n � 20 and all odd

n � 17.

F�uredi et al [FHPZ98℄ onsidered digraphs and showed that sat(n;

�!

C

3

) =

(1 + o(1))n log

2

n. (Here

�!

C

3

denotes the direted 3-yle.)

In Subsetion 4.4 we investigate the maximal number of edges whih annot
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be F -freely added to G, given v(G) and e(G). We settle this problem (with

a desription of all extremal graphs) for omplete 2-graphs, whih extends the

already mentioned result of Erd}os, Hajnal and Moon [EHM64℄ who omputed

sat(n;K

2

m

).

3 Constrution

Here we demonstrate some onstrutive upper bounds on sat(n;F) for a gen-

eral family F whih, in partiular, imply the onjeture of Tuza [Tuz86℄ (also

onjetured by Bollob�as, unpublished) that, for any k-graph F ,

sat(n; F ) = O(n

k�1

): (10)

Note that we annot replae k � 1 by a smaller exponent in (10) if we want

the estimate to be valid for every k-graph F ; this follows, for example, from

formula (8).

K�aszonyi and Tuza [KT86℄ proved that sat(n;F) = O(n), for any family

F of forbidden 2-graphs, inluding in�nite families; this veri�es (10) for k =

2. However, there has been no progress in proving (10) for k � 3 and the

onjeture is mentioned in a few di�erent papers, e.g. in [Tuz88, EFT91, Tuz92,

Fra95℄. Also, the importane of estimate (10) might be indiated by the fat

that Bollob�as [Bol95℄, in his authoritative survey of the whole of extremal graph

theory, gives two di�erent proofs of sat(n;F) = O(n) for 2-graphs.

Let us present some general onstrution ofH 2 sat(n;F) whih implies (10);

this result appears in [Pik99d℄.

For a k-graph H, we say that A � V (H) is independent if it does not span

an edge in H, that is, A

(k)

\E(H) = ;.

Theorem 1 Let F be a family of k-graphs. Suppose that there is s 2 N suh

that no F 2 F ontains an independent set A � V (F ) of order s+ 1 whih an

be overed by a union of F -edges sharing a ommon vertex outside A. Then, for

any n,

sat(n;F) <

�

s

0

� s+ 2

k�1

(s� 1)

�

�

n

k � 1

�

; (11)

where s

0

= minfv(F ) : F 2 Fg.
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Proof. It is enough to onstrut a graph H 2 SAT(n;F) whose size does not

exeed the stated bound. Our onstrution will be by means of an algorithm.

Our algorithm works in the following way. Let us agree that the vertex set

is X = [n℄ with the usual ordering. Given x 2 X and B � X, we write B < x

if every vertex in B is smaller than x. By U

x

= fy 2 X : y > xg we denote the

upper shadow of x and in the obvious way we de�ne the lower shadow L

x

. If

jBj � k, say B onsists of elements b

1

< : : : < b

i

, i � k, then we de�ne its tail

T

B

= ffb

1

; : : : ; b

i

; x

i+1

; : : : ; x

k

g : b

i

< x

i+1

< : : : < x

k

g � X

(k)

: (12)

We onstrut an F -saturated graph H by starting with the empty hyper-

graph H on X and adding to H one by one ertain families of edges until we

obtain H 2 SAT(n;F).

The algorithm is rather simple. We take, one by one in order, the verties

of X. For every vertex x, we onsider all of the i-subsets of L

x

, beginning with

i = 0 and inreasing i until i = k� 1. For every suh subset A < x, we onsider

T

B

, B = A [ fxg, whih is, by the de�nition, the family of k-subsets having B

as an initial segment. If at this moment T

B

6� E(H) and the addition of T

B

to the edge set of H does not reate any forbidden subgraph, we add T

B

to H.

This is a ruial feature of the algorithm: for every x and A we either add all

of T

B

or we add nothing.

Another important detail is the order of the steps. The outermost yle has

x inreasing from 1 to n. The next yle runs for i inreasing from 0 to k � 1.

In the innermost yle we onsider all i-subsets of L

x

and here we are free to

hoose them in any order, but for uniformity let us agree that we use here the

olex order.

In the ourse of the algorithm we de�ne, on the vertex set X, auxiliary

hypergraphs H

1

; : : : ;H

n

and G

1

; : : : ; G

k

whih we need for an estimation of

e(H) = jE(H)j. The k-hypergraph H

x

ontains preisely those edges whih

were added whilst onsidering verties from 1 to x inlusive. The i-hypergraph

G

i

ontains as edges those i-subsets B for whih the set T

B

was added to H.

We laim that the resulting graph H = H

n

is an F -saturated graph. Indeed,

H is F -admissible, as we were adding edges only if they did not produe any

forbidden subgraphs. On the other hand, take any k-subset E not in E(H). We

did not use the opportunity to add E to E(H) when x = maxE, i = k � 1 and
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A = E n fxg (when T

B

= fEg). The only reason for our not doing so is that

the addition of E would have reated a forbidden subgraph F . Then ertainly,

H +E ontains F , whih shows H 2 SAT(n;F).

We laim that e(G

1

) � s

0

� 1 and

e(G

i

) � (s� 1)

�

n

i� 1

�

; i = 2; : : : ; k: (13)

Assume that for some i 2 [2; k℄ the estimate (13) is not true. Then there is

some (i�1)-set V = fv

1

; : : : ; v

i�1

g, v

1

< : : : < v

i�1

, whih is the initial segment

of at least s edges of G

i

. Let E

1

; : : : ; E

s

2 E(G

i

) be s distint edges ontaining

V as an initial segment, say E

j

= V [ fz

j

g, j 2 [s℄, V < z

1

< : : : < z

s

.

Sine E

1

2 E(G

i

), all edges whose initial segment is E

1

were added to H at

the moment when x = z

1

and A = V . It follows that V 62 E(G

i�1

) for otherwise

these edges would have already been present in H. The only reason that we did

not add V to E(G

i�1

) earlier when x = v

i�1

and A = fv

1

; : : : ; v

i�2

g must have

been that the hypergraph H

0

= H

v

i�1

+ T

V

ontains some forbidden subgraph

F . Let

Y = fu 2 U

v

i�1

: u 2 E for some E 2 E(F ) \ T

V

g:

As U

v

i�1

is an independent set in H

0

and eah edge in T

V

ontains v

i�1

the

assumptions of the theorem imply that jY j � s.

By the way algorithm works, any permutation � ofX a�eting only the upper

shadow U

z

of a vertex z 2 X (that is, �(y) = y for all y � z) is an automorphism

of H

z

beause any T

B

� X

(k)

with z � maxB is �-invariant. Applying this

remark to z = v

i�1

we see that we may assume Y � Z = fz

1

; : : : ; z

s

g.

Let E 2 E(F ) nE(H) � T

V

whih exists as F 6� H. Clearly, E \ U

v

i�1

� Y

and E 2 T

E

j

, where z

j

= minE \ fz

1

; : : : ; z

s

g. Sine E

j

2 E(G

i

) we obtain the

ontradition E 2 E(H), so (13) is proved for any i 2 [2; k℄.

The ase i = 1 does not fall into general sheme of the proof. But it is

rather trivial, for if we have at least s

0

edges (one-element subsets) in G

1

, say

fv

1

g; : : : ; fv

s

0

g 2 E(G

1

), then these verties span a omplete k-graph in H,

beause if E 2 fv

1

; : : : ; v

s

0

g

(k)

then E 2 T

fminEg

� E(H). Therefore H ontains

every k-graph of order s

0

whih is ertainly a ontradition.

Clearly, every edge of G

i

orresponds to less than

�

n�i+1

k�i

�

edges of H so
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by (13) we obtain

e(H) � (s

0

� s)

�

n

k � 1

�

< (s� 1)

k

X

i=1

�

n� i+ 1

k � i

��

n

i� 1

�

= 2

k�1

(s� 1)

�

n

k � 1

�

;

whih establishes the theorem.

Remark. Our onstrution is not generally best possible. For example, for

2K

2

2

, the sat-funtion equals 3 while our algorithm gives n� 1.

Corollary 2 For any �nite family F of k-graphs, sat(n;F) = O(n

k�1

).

An interesting question whih still remains open is the following.

Problem 3 Is the estimate sat(n;F) = O(n

k�1

) valid for any in�nite family

F of k-graphs, k � 3? (True for k = 2, see K�aszonyi and Tuza [KT86℄.)

Tuza [Tuz92℄ made the following (still open) onjeture whih is stronger

than (10).

Conjeture 4 (Tuza) For any k-graph F we have sat(n; F ) = �(n

d(F )

), where

d(F ) is de�ned by (6). Probably, the stronger assertion sat(n; F ) = n

d(F )

+

O(n

d(F )�1

), for some onstant , is also true.

4 Variations

Here we onsider sat-type questions for a variety of strutures. Note that the

notion of a saturated struture an be de�ned in quite general settings, f.

Tuza [Tuz86℄.

Suppose that we have a lass C of objets with a binary relation `�' whih

is a partial order and a rank funtion r : C ! N suh that G � H implies

r(G) � r(H). Given a family F of elements of C, we say that H 2 C is F-

admissible if H does not ontain an F 2 F as a subobjet. Now, let SAT(n;F)

be the family of all maximal F -admissible objets of rank n. An objet H is

alled F-saturated if H 2 SAT(r(H);F).
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In some ases, C will be the lass of hypergraphs with some additional stru-

ture: for G;H 2 C, r(H) = v(H) and G � H holds if G is a subgraph of H

in a struture-ompatible way. Thus, H is F -saturated if it does not ontain

any forbidden substruture and this fails to be true for any H

0

2 C stritly

ontaining H and having the same order.

Usually, we will ask whether the estimate

sat(n;F) = O(n

k�1

) (14)

is true for a general `k-graph' family F and for the appropriately de�ned sat-

funtion.

4.1 Graphs with Oriented Edges

Here we shall onsider, roughly speaking, k-hypergraphs with the additional

struture of direted edges.

4.1.1 Direted Hypergraphs

To obtain a direted hypergraph we take a usual hypergraph and on every one

of its edges introdue some orientation, that is, a linear order.

In fat, estimate (14) is not generally true in these settings. For example,

improving previous results of Katona and Szemer�edi [KS67℄, F�uredi, Horak,

Pareek and Zhu [FHPZ98℄ showed that sat(n;C

3

) � n log

2

n, where

�!

C

3

denotes

the direted 3-yle: E(

�!

C

3

) = f(1; 2); (2; 3); (3; 1)g.

But the situation is di�erent if we onsider yle-free (or ayli) hyper-

graphs, that is, those not ontaining a yle whih is, by de�nition, an alternat-

ing sequene of verties and edges

(x

1

; E

1

; x

2

; E

2

; : : : ; x

l

; E

l

; x

l+1

= x

1

)

suh that x

i

preedes x

i+1

in E

i

. Equivalently, a graph H is yle-free if we an

order its verties in a way ompatible with the ordering of its edges.

By de�nition, H is F-saturated if no F 2 F is a subgraph of H but the

addition of any new (ordered) edge to G reates either a forbidden subgraph or

an oriented yle. We say that A � V (F ) is independent if no edge of F lies

within A.
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Theorem 5 In the lass of the yle-free k-graphs, let F be a forbidden family

suh that the size of any independent set A � F 2 F overed by a union of

F -edges sharing a vertex outside A, is bounded. Then sat(n;F) = O(n

k�1

).

Proof. We proeed essentially in the same way as in the proof of Theorem 1,

but there are new tehnialities.

Consider one by one x 2 X = [n℄, i = 0; : : : ; k�1, A 2 L

(i)

x

. Let B = A[fxg

and let T

B

be de�ned by (12). An orientation of the edges in T

B

is alled

symmetri if any order preserving injetions f; g : [k℄! [n℄ with f([k℄); g([k℄) 2

T

B

indue idential orientations of [k℄.

If T

B

6� E(H) (as unoriented k-tuples) and there exists a symmetri orien-

tation of T

B

suh that H+T

B

does not ontain a forbidden subgraph or a yle,

then we add T

B

(with this orientation) to the edge set of H.

That is the algorithm. The obtained hypergraph H does not ontain a

forbidden on�guration. As every k-subset E � X was tested (for B = E

we had T

B

= fEg and every orientation was symmetri), we onlude that

H 2 SAT(n;F).

As in Theorem 1 we de�ne the auxiliary hypergraphs H

x

(direted) and G

i

(undireted). We have to show that e(G

i

) = O(n

i�1

).

First, suppose that E(G

1

) = ffx

1

g; : : : ; fx

l

gg, x

1

< : : : < x

l

. One an easily

hek that, as H is yle-free, there is no hoie for the orientation of the edges

of T

fx

i

g

, 2 � i � l and H ontains the omplete yle-free k-graph on l verties,

whih implies l = O(1), as required.

Suppose that e(G

i

) 6= O(n

i�1

), for some 1 < i � k. Then, for some (i� 1)-

tuple V � X, we an �nd an arbitrarily large set Z = fz

1

; : : : ; z

s

g � U

x

, x =

max V , suh that V [fz

i

g 2 E(G

i

), i 2 [s℄, and the orientation of [

i2[s℄

F

V [fz

i

g

�

E(H) extends to a symmetri orientation `�' of T

V

. As V 62 E(G

i�1

) we

onlude that H

0

= H

x

+ (T

V

;�) ontains a forbidden subgraph F or a yle.

If a opy of F is present we follow the proof of Theorem 1. Otherwise let

C = (y

1

; E

1

; : : : ; y

l

; E

l

; y

l+1

= y

1

) be a shortest yle in H

0

.

We laim that C an be hosen so that jW j � 3k�5, whereW = ([

i2[l℄

E

i

)\

U

x

. Then for s � 3k � 5 we may assume that W � Z, and the argument of

Theorem 1 shows that C � H, whih is a ontradition proving the theorem.

If Y = fy

1

; : : : ; y

l

g � U

x

then l � 2 and the laim is true. Indeed, there is
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an i 2 [l℄ suh that y

i+1

is larger than y

i

and y

i+2

in [n℄ but it follows y

i

in E

i

and preedes y

i+2

in E

i+1

, whih by the symmetry of U

x

� H

0

implies that any

two y; y

0

2 U

x

form a 2-yle.

Next, jY \U

x

j � 1; otherwise pik y

h

; y

i

2 U

x

\Y , h < i, with y

i+1

2 Y nU

x

and obtain a stritly shorter yle through (y

1

; : : : ; y

h

; y

i+1

; : : : ; y

l+1

= y

1

) as

U

x

� H

0

is `symmetri'. The two edges ontaining the point (if it exists) in

Y \U

x

ontribute at most 2k�3 to jW j. By the symmetry of U

x

, we an assume

that for the remaining edges E

i

\U

x

lies within some �xed (k� 2)-subset of U

x

,

whih shows that jW j � 3k � 5.

For k = 2, we an prove a stronger result whih inludes all in�nite families.

We exploit the ideas of K�aszonyi and Tuza [KT86℄.

Theorem 6 In the lass of yle-free 2-graphs, we have sat(n;F) = O(n) for

any family F .

Proof. It is enough to provide a onstrution. Repeat the following as long as

no forbidden subgraph appears: take the next vertex x of X = [n℄ and add all

of T

x

. Here, T

x

is the set of the (oriented) edges of the form xy, y 2 U

x

.

Suppose that we have repeated the iteration m = m(n) times. Let G

0

=

G

0

(n) be the graph reeived after these m steps. As [m℄ � V (G

0

) spans the

omplete yle-free digraph, the number of iterations is bounded by a onstant

not depending on n; namely, m < u, where u = minfv(F ) : F 2 Fg.

Obviously, m(n) is non-inreasing as a funtion of n for n � u, so it is

onstant for n suÆiently large. Then, the reason for terminating the proedure

is that the addition of T

m+1

would reate a forbidden subgraph F and it will

be the ase for any subsequent n, that is, G

0

(n) + T

m+1

ontains the same

subgraph F .

Now we add edges to G

0

in any order as long as we reate neither a yle

nor a forbidden subgraph. In the resulting graph G, no d = jV (F ) \ U

m+1

j

edges an start at the same vertex y 2 U

m

, as otherwise we have a subgraph

isomorphi to F . So, the number of edges in G is at most

m(n� 1)�

�

m

2

�

+ (n�m)(d� 1) = O(n):

Atually, one an argue that, for suÆiently large n,

m = minfv(F ) � �

0

(F ) : F 2 Fg � 1;
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where �

0

(F ) is the maximum size of A � V (F ) suh that no edge starts in A.

Equivalently, m is the minimum number of verties one needs to remove from

some F 2 F to obtain a direted star (a digraph whose edges start at a ommon

vertex). We an take for d the size of any suh star. This observation allows us

to write more expliitly the bound of Theorem 6.

4.1.2 Ordered Hypergraphs

We an introdue yet another interesting lass: ordered k-graphs. Every ordered

k-graph is a usual (unoriented) k-graph with an extra struture: we have a �xed

ordering on the vertex set and the verties of a subgraph inherit their order

from the original graph. To avoid a onfusion note that an ordered graph omes

equipped with a �xed vertex ordering while a yle-free graph is one that admits

at least one ompatible vertex ordering.

Without any diÆulties we an restate word by word the proof of Theorem 1

(exept that now we have already been given an order on the vertex set and in

the onstrution we take the verties in this order).

Theorem 7 Let F be a family of ordered k-graphs. Suppose that there is s 2 N

suh that the following holds for any x 2 F 2 F : if U

x

� V (F ) is an independent

set overed by a union of F -edges sharing some vertex y � x, then jU

x

j � s.

Then we have sat(n;F) = O(n

k�1

).

Using the ideas of Theorem 6 one an see that, for k = 2, our result an be

extended to all in�nite families.

Theorem 8 For any family F of ordered 2-graphs, sat(n;F) = O(n).

Trivial examples show that if we enlarge any of the above lasses by admitting

multiple and/or non-uniform edges, then the estimate (14) fails to be true.

4.2 Layered Hypergraphs

Let t 2 N be �xed. A layered set X of signature n = (n

1

; : : : ; n

t

) (or an n-

set) is a sequene of t disjoint sets, X = (X

1

; : : : ;X

t

) suh that jX

i

j = n

i

,

i 2 [t℄. (Usually we typeset symbols in bold when we want to emphasize that

the objet has some layered struture.) The omponents of X are alled layers.
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Given k = (k

1

; : : : ; k

t

), a layered k-graphG is a pair (V (G); E(G)), where V (G)

is a layered set and E(G) � (V (G))

(k)

, that is, E(G) is a family of k-subsets

of V (G). In other words, every k-graph G is a k-graph (usually, given k, we

denote k = k

[t℄

=

P

i2[t℄

k

i

, et.) whih omes with a �xed partition of the

vertex set into t layers suh that every edge intersets the ith layer in exatly

k

i

verties. The sequene k is alled the signature of G; the ith layer of G is

denoted by V

i

(G). For example, a bipartite graph is a layered graph of signature

(1; 1) and, for t = 1, we obtain the usual notion of a k-graph. All morphisms

between k-graphs preserve layers.

In the obvious way we de�ne the notion of a subgraph, a saturated graph,

et. For example, SAT(n;F) onsists of all maximal F -admissible k-graphs on

a set of signature n.

It is not very hard to extend Theorem 1 to layered graphs. But, to make

this work self-ontained, we present a omplete proof.

For a k-graph F on X = (X

1

; : : : ;X

t

), a set A � X

j

is alled independent if

for every E 2 E(F), E

j

6� A.

Theorem 9 If, for a given family F of k-graphs, there exists s suh that

1. for every F 2 F , any independent A � V

1

(F) overed by a union of

F-edges sharing a vertex in V

1

(F) nA, has at most s elements;

2. for every j 2 [2; t℄ and F 2 F , no (s+1)-set A � V

j

(F) an be overed

by a set of F-edges oiniding on the �rst j � 1 layers;

then there exists  = (F) suh that, for any n,

sat(n;F) � 

n

k

1

1

� : : : n

k

t

t

min(n

1

; : : : ; n

t

)

:

Proof. As in Theorem 1, we provide a onstrution of H 2 SAT(n;F).

Order linearly the vertex set X = (X

1

; : : : ;X

t

) so that any vertex of X

i

omes before any vertex X

j

for i < j. As usual by U

x

= fy 2 X : y > xg we

denote the upper shadow of x.

We onstrut an F -saturated graph H by starting with the empty k-graph

H on X and applying the following proedure.

Let j run from 1 to t. Take x 2 X

j

in order. For every suh x let i vary from

0 to k

j

�1. Choose one by one C � X

j

nU

x

of size i and let B = C[fxg. Given
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B onsider in any order sets A suh that A intersets every X

l

in k

l

verties,

l 2 [j� 1℄, A\X

j

= B and A\U

x

= ;. For every suh A we onsider T

A

whih

is by the de�nition the family of k-subsets having A as an initial segment. If

T

A

6� E(H) and the addition of the elements of T

A

to the edge set of H does

not reate any forbidden subgraph, we add T

A

to H.

We argue that H exhibits the laimed upper bound in a similar way as in

Theorem 1. It is not hard to do, although there are a few new tehnialities to

overome.

We de�ne auxiliary k-graphs H

1

; : : : ;H

n

on X and auxiliary layered graphs

G

ji

of signature (k

1

; : : : ; k

j�1

; i) on the set X

1

[ : : : [X

j

, j 2 [t℄, i 2 [k

j

℄.

We need these graphs for estimates of e(H) = jE(H)j. H

x

is the k-graph on-

taining preisely those edges whih were added while onsidering verties from

1 to x inlusive. The hypergraph G

ji

ontains as edges those A = (A

1

; : : : ; A

j

)

for whih jA

j

j = i and the set T

A

was added to H.

We laim that the resulting graph H is F -saturated. Indeed, H is F -admis-

sible, as we were adding edges only if it did not produe any forbidden subgraph.

On the other hand, take any edge E in the omplement of E(H). We did not

add E to E(H) when x = maxE, j = t, i = k

t

� 1, A

l

= E

l

for l 2 [t � 1℄ and

A

t

= E

t

n fxg (then T

A

= fEg). The only reason for this is that it would have

reated a forbidden subgraph F. Then H + E ontains F, whih shows that

H 2 SAT(n;F).

We want to show that

e(G

ji

) � (s� 1)

�

n

j

i� 1

�

j�1

Y

l=1

�

n

l

k

l

�

; j 2 [t℄; i 2 [k

j

℄: (15)

(In fat, e(G

11

) is bounded by some other onstant s

0

= s

0

(F) but nothing

prevents us from assuming s � s

0

.) This would establish the theorem as then

we would obtain the required

e(H) �

t

X

j=1

k

j

X

i=1

e(G

ji

)

�

n

j

k

j

� i

�

t

Y

l=j+1

�

n

l

k

l

�

�

t

X

j=1

k

j

X

i=1

 

(s� 1)

�

n

j

i� 1

�

j�1

Y

l=1

�

n

l

k

l

�

!

�

n

j

k

j

� i

�

t

Y

l=j+1

�

n

l

k

l

�

=

t

X

j=1

O

 

n

k

1

1

� : : :� n

k

t

t

n

j

!

:
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Assume that, for some j and i, estimate (15) is not true. Assume �rst that

i 6= 1.

For every edge E in G

ji

onsider the set V of its �rst k

1

+ : : :+ k

j�1

+ i� 1

verties. When E varies over all edges of G

ji

, by the pigeon-hole priniple some

set V appears at least

2

6

6

6

e(G

ji

)

 

�

n

j

i� 1

�

j�1

Y

l=1

�

n

l

k

l

�

!

�1

3

7

7

7

� s

times. Let V onsist of lasses V

1

; : : : ; V

j

of sizes k

1

; : : : ; k

j�1

; i� 1 respetively.

Let E

1

; : : : ;E

s

2 E(G

ji

) be s distint edges ofG

ji

ontaining V as an initial

segment, say E

l

= V [ fz

l

g, l = 1; : : : ; s, V < z

1

< : : : < z

s

. Let z = maxV.

Sine E

1

2 E(G

ji

), all edges whose initial segment is E

1

were added to H

at the moment when x = z

1

, A = V [ fz

1

g. It follows that V 62 E(G

j;i�1

),

for otherwise these edges would have already been present in H. The only

reason that we did not add V to E(G

ji

) earlier, when x = z, C = V

j

n fxg

and A = V, must have been that the k-graph H

0

= H

x

+ T

V

ontains some

forbidden subgraph F 2 F . Let

A = fu 2 X

j

\ U

z

: u 2 E for some E 2 T

V

\E(F)g: (16)

By Assumption 1 (for j = 1) or by Assumption 2 (for j � 2) of the theorem,

jAj � s. One an argue that any layer-preserving permutation � of X a�eting

only U

z

is an automorphism of H

z

, beause any T

B

with z � maxB is �-

invariant. Therefore, we may assume that A � Z = fz

1

; : : : ; z

s

g.

Now let E 2 E(F) n E(H) � T

V

. Clearly, E 2 T

E

l

� E(H), where z

l

=

min(E \ fz

1

; : : : ; z

s

g), sine E

l

2 E(G

ji

); the obtained ontradition F � H

proves (15) for j 2 [t℄, i 2 [2; k

j

℄.

Suppose that (15) is not true for i = 1. Then as before we argue that there

are at least s edges inG

j1

, say V

1

; : : : ;V

s

2 E(G

j1

), suh that their restritions

to X

1

[ : : : [ X

j�1

are the same whih we denote by V. Let V

l

\ X

j

= fv

l

g,

l 2 [s℄.

First, if j > 1 then as above we argue that V is not in G

j�1;k

j�1

beause

T

V

1

� T

V

was added later. The only reason for omitting V is that the addition

of T

V

would have reated a forbidden F. The set A de�ned by (16) has at most
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s elements by Assumption 2; we an assume that A � fv

1

; : : : ; v

s

g and dedue

a ontradition.

Finally, if j = 1 then H ontains all k-edges E interseting fv

1

; : : : ; v

s

g and

s = O(1) follows.

A version for bipartite graphs (that is, (1; 1)-graphs) overs all (inluding

in�nite) families and uses slightly di�erent ideas.

Theorem 10 For any family F of bipartite graphs, there is  = (F) suh that,

for any n

1

; n

2

> 0,

sat(n

1

; n

2

;F) � 

n

1

n

2

min(n

1

; n

2

)

:

Proof. Suppose �rst that n

1

� n

2

. Choose a large s = s(F) (to be spei�ed

later). If n

2

< s then any (n

1

; n

2

)-bipartite graph ontains O(n

1

) verties and

we are home. Otherwise, as long as no forbidden subgraph appears, take one

by one verties in the �rst layer and for every suh vertex x 2 X

1

= [n

1

℄ add

all edges onneting it to X

2

to obtain a graph H

0

. Suppose we do it m times.

Note that as n

2

!1 then m = m(n

2

) does not inrease so we an assume that

m is onstant for every n

2

� s, some s = s(F). Then, the only thing preventing

us from adding the edges ffm + 1; yg : y 2 X

2

g is the reation of a forbidden

subgraph F . Let jV (F ) \ X

2

j = l. We see that if we draw through any point

x 2 X

1

n [m℄ any l edges, we would obtain a opy of F . Therefore, in whatever

way we omplete H

0

to H 2 SAT(n

1

; n

2

;F), we would have

e(H) � mn

2

+ ln

1

� (l +m)n

1

= O(n

1

):

We settle the ase n

1

� n

2

in the same manner.

4.3 Forbidden Matries

Here we investigate sat-type problems for 01-matries. We show that sat(n;F) =

O(n

k�1

) for any family F of k-row matries and indiate other results.

The expression `n�m-matrix' means a matrix with n rows (whih we view

as horizontal arrays) and m vertial olumns. We restrit entries to only two

values, 0 and 1. For an n �m-matrix M , its order v(M) = n is the number

of rows and its size e(M) = m is the number of olumns. Please distinguish
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expressions like `an n-row matrix' and `an n-row' standing respetively for a

matrix with n rows and for a row ontaining n elements.

A matrix F is a submatrix of a matrix A (denoted F � A) if deleting some

set of rows and olumns of A we an obtain a matrix whih is a row/olumn

permutation of F . Given a family F of matries (referred to as forbidden), we

say that a matrix M is F-admissible (or F-free) if M ontains no F 2 F as a

submatrix. A simple matrix M (that is, a matrix without repeated olumns)

is alled F-saturated if M is F -admissible but the addition of any olumn not

present in M violates this property; this is denoted by M 2 SAT(n;F), n =

v(M). Please note that, although the de�nition requires that M is simple, we

allow multiple olumns in matries belonging to F .

A popular extremal problem is to onsider forb(n;F), the maximum size of

a simple F -admissible matrix with n rows or, equivalently, the maximal size

of M 2 SAT(n;F). For example, the fundamental formula (17) falls into this

lass. The interested reader may start with a reent paper by Anstee, Griggs

and Sali [AGS97℄ ontaining many referenes.

On the other hand, the `dual' of the forb-type problem has reeived little

attention so far. Namely, one an ask what is the value of sat(n;F), the minimal

size of an F -saturated matrix with n rows:

sat(n;F) = minfe(M) :M 2 SAT(n;F)g:

We will be mainly interested in this funtion. Obviously, sat(n;F) � forb(n;F).

If F = fFg onsists of a single forbidden matrix F then we write SAT(n; F ) =

SAT(n; fFg), et.

For an n�m-matrixM and sets A � [n℄ and B � [m℄, M(A;B) denotes the

orresponding jAj�jBj-submatrix ofM . We use the following self-obvious short-

hands: M(A; ) = M(A; [m℄), M(A; i) = M(A; fig), et. For example, the rows

and the olumns ofM are denoted byM(1; ); : : : ;M(n; ) andM(; 1); : : : ;M(;m)

respetively while individual entries|by M(i; j), i 2 [n℄, j 2 [m℄.

The n� (m

1

+m

2

)-matrix [M

1

;M

2

℄ is obtained by onatenating an n�m

1

-

matrix M

1

and an n�m

2

-matrix M

2

. Let mM = [M; : : : ;M ℄ denote m opies

of M . We write N

�

=

M to say that N is a olumn/row permutation of M .

Thus, N �M if N

�

=

M(A;B) for some index sets A and B.

By T

l

k

we denote the simple k �

�

k

l

�

-matrix onsisting of all k-olumns with
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exatly l ones and by K

k

|the k � 2

k

matrix of all possible olumns of size k.

Naturally, T

�l

k

denotes the k �

�

k

�l

�

-matrix onsisting of all distint olumns

with at most l ones, et. (We use the shortut

�

k

�l

�

=

�

k

0

�

+

�

k

1

�

+ : : :+

�

k

l

�

.)

We will need the following result proved independently by Vapnik and Cher-

vonenkis [VC71℄, Perles and Shelah (see [She72℄) and Sauer [Sau73℄.

forb(n;K

k

) =

�

n

� k � 1

�

=

k�1

X

i=0

�

n

i

�

: (17)

Suppose that F onsists of k-row matries. Is there any good general upper

bound on forb(n;F) or sat(n;F)? There were di�erent papers dealing with gen-

eral upper bounds on forb(n;F), e.g. by Anstee and F�uredi [AF86℄, by Frankl,

F�uredi and Pah [FFP87℄ and by Anstee [Ans95℄, until the onjeture of Anstee

and F�uredi [AF86℄ that forb(m;F) = O(n

k

) for any �xed F was elegantly proved

by F�uredi (see [AGS97℄ for a proof).

On the other hand, we an show that sat(n;F) = O(n

k�1

) for any family

F of k-row matries (inluding in�nite families). Note that we annot derease

the exponent of k� 1 with the estimate remaining true for any F ; for example,

sat(n; T

k

k

) =

�

n

�k�1

�

as T

<k

n

is the only matrix in SAT(n; T

k

k

).

Theorem 11 For any family F of k-row matries, sat(n;F) = O(n

k�1

).

Proof. We may assume that K

k

is F -admissible for otherwise we are home

by (17) as then sat(n;F) � forb(n;K

k

) = O(n

k�1

).

Let l 2 [0; k℄ be the smallest number suh that there exists m for whih

[mT

�l

k

; T

>l

k

℄ is not F -admissible. Clearly, l is well-de�ned as, for l = k, we

obtain the matrix mK

k

whih, of ourse, is not F -admissible for large m.

Let d � 1 be the maximal integer suh that [mT

<l

k

; dT

l

k

; T

>l

k

℄ is F -admissible

for any m. Observe that letting d equal 1 we obtain the matrix [mT

<l

k

; T

�l

k

℄

whih is F -admissible. Indeed, for l > 0 this is true by the hoie of l; for l = 0

we have K

k

whih is F -admissible by our assumption. By the hoie of l, d is

bounded, that is, d is well-de�ned.

Choose any m suh that [mT

<l

k

; (d+ 1)T

l

k

; T

>l

k

℄ is not F -admissible.

Suppose �rst that l < k. Given n, let N � T

l+1

n

be the n-row matrix

orresponding to the following set system:

H =

[

j2[d℄

fY 2 [n℄

(l+1)

:

P

y2Y

y � j (mod n)g:
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Note that any A 2 [n℄

(l)

is overed by at most d edges of H as there are

at most d possibilities to hoose i 2 [n℄ n A so that A [ fig 2 H: i � j �

P

a2A

a (mod n), j 2 [d℄.

On the other hand, the set H

1

of all l-subsets of [n℄ overed by fewer than

d edges of H has size at most 2d

�

n

l�1

�

. Indeed, if A 2 H

1

then, for some j 2 [d℄

and x 2 A, 2x = j�

P

a2A�x

a (mod n) so, one Anfxg and j have been hosen,

there are at most 2 hoies for x.

Call X 2 [n℄

(k)

bad if, for some A 2 X

(l)

,

jfY 2 H : Y � A; Y \ (X n A) = ;gj � d� 1: (18)

To obtain a bad k-set X, we either omplete some A 2 H

1

to any k-set or take

any l-set A and let X � A interset some H-edge overing A. Therefore, the

number of bad sets is at most

2d

�

n

l � 1

��

n

k � l

�

+

�

n

l

�

d

�

n

k � l � 1

�

= O(n

k�1

):

Assume that n is so large that N(X; ) � mT

<l

k

for any X 2 [n℄

(k)

. This is

possible as d � 1. Of ourse, e(N) = O(n

k�1

).

Clearly, N(X; ) � [d

�

n

l

�

T

<l

k

; dT

l

k

; T

l+1

k

℄, for any X 2 [n℄

(k)

. Hene, N annot

ontain a forbidden submatrix by the hoie of l and d. Now omplete it to an

arbitrary M = [N;N

1

℄ 2 SAT(n;F).

Suppose that e(N

1

) 6= O(n

k�1

). Then, by (17), K

k

�

=

N

1

(X;Y ) for some

X;Y . Now, remove the olumns orresponding to Y from N

1

and repeat the

proedure as long as possible to obtain more than O(n

k�1

) olumn-disjoint

opies ofK

k

inN

1

. If someX 2 [n℄

(k)

appears more than d times, thenM(X; ) �

[mT

<l

k

; (d+ 1)K

k

℄ is not F -admissible. Otherwise, K

k

� N

1

(X; ) for some good

(ie. not bad) X 2 [n℄

(k)

; but then N(X; ) � dT

l

k

and

M(X; ) � [mT

<l

k

; dT

l

k

;K

k

℄

ontains a forbidden matrix. This ontradition proves the required bound for

l < k.

Let us onsider the ase when l = l(F) equals k; the above argument does

not work in this ase beause N has size �(n

k

), whih is too large.

Consider the family H obtained by interhanging zeros and ones in eah

F 2 F . Clearly, sat(n;H) = sat(n;F). If l(H) < k, then we are home by the

above argument applied to H. So, we assume that l(H) = k.
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Consider �rst the ase k = 1. Let F 2 F be a matrix of the smallest size f .

Let the only row of F onsist of f

0

zeros and f

1

ones; f

0

+ f

1

= f . Note that

f

1

� 2 and f

0

� 2, beause l(F) = l(H) = 1. Trivially, for any n there exists

a simple n � (f � 1)-matrix M suh eah row of M ontains exatly f

0

zeros.

By the minimality of f , M is F -admissible. When we try to omplete M to

any F -saturated matrix, any added olumn annot ontain an entry equal to 1;

hene, all we an add is at most one all-zero olumn. Hene, sat(n;F) � f for

any n, whih implies the required.

So assume that k � 2. Now we repeat a part of the above proof with some

modi�ations. Probably, it would be possible to write a general single argument

overing all the ases, but we are afraid that the proof would be very hard to

follow then.

Let l

0

2 [0; k� 1℄ be the smallest number suh that there exists m for whih

[mT

�l

0

k

; T

>l

0

k

; T

k�1

k

;mT

k

k

℄ is not F -admissible. Observe that l

0

is well-de�ned as

this matrix ontains mK

k

as a submatrix if we let l

0

= k � 1.

De�ne d to be the maximal integer suh that [mT

<l

0

k

; dT

l

0

k

; T

>l

0

k

; T

k�1

k

;mT

k

k

℄

is F -admissible for any m. Note that letting d = 1 we obtain the matrix

[mT

<l

0

k

; T

�l

0

k

; T

k�1

k

;mT

k

k

℄ whih does not ontain a forbidden submatrix. Indeed,

if l

0

> 0, this is true by the hoie of l

0

; if l

0

= 0, then our matrix [K

k

; T

k�1

k

;mT

k

k

℄

is neessarily F -admissible as l(H) = k > 1 by our assumption.

Choose any m suh that [mT

<l

0

k

; (d+ 1)T

l

0

k

; T

>l

0

k

; T

k�1

k

;mT

k

k

℄ is not F -free.

Let N be the n-row matrix orresponding to the following set system:

H =

[

j2[d℄

fY 2 [n℄

(l

0

+1)

:

P

y2Y

y � j (mod n)g:

As above we observe that every A 2 [n℄

(l

0

)

is overed by at most d edges of

H and the number of bad sets (that is, suh X 2 [n℄

(k)

that (18) holds for some

A 2 X

(l

0

)

) is O(n

k�1

). Assume that n is so large that N(X; ) � mT

<l

0

k

for any

X 2 [n℄

(k)

, whih is possible as d � 1.

Let M

1

= [N;T

�n�1

n

℄. Clearly,

M

1

(X; ) � [d

�

n

l

0

�

T

<l

0

k

; dT

l

0

k

; T

l

0

+1

k

; T

k�1

k

; nT

k

k

℄; for any X 2 [n℄

(k)

.

Hene, M

1

annot ontain a forbidden submatrix by the hoie of l

0

and d. Now

omplete it to an arbitrary M = [M

1

;M

2

℄ 2 SAT(n;F).
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Clearly, e(M

1

) = O(n

k�1

). Suppose that e(M

2

) 6= O(n

k�1

). Then, by (17),

K

k

�

=

M

2

(X;Y ) for some X;Y . Now, remove the olumns orresponding to

Y from M

2

and repeat the proedure as long as possible to obtain more than

O(n

k�1

) olumn-disjoint opies of K

k

in M

2

. If some X 2 [n℄

(k)

appears more

than d times then M(X; ) � [mT

<l

0

k

; (d+1)K

k

; T

k�1

k

;mT

k

k

℄ is not F -admissible.

(We assume n � m+ k.) Otherwise, K

k

�M

2

(X; ) for some good (ie. not bad)

X 2 [n℄

(k)

; but then N(X; ) � dT

l

0

k

and M(X; ) � [mT

<l

0

k

; dT

l

0

k

; T

k�1

k

;mT

k

k

;K

k

℄

ontains a forbidden matrix. This ontradition proves the theorem.

Let us present some other results.

The following simple observation is useful in takling sat-type problems.

Suppose that no forbidden matrix has two equal rows. LetM

0

be obtained from

M 2 SAT(n;F) by dupliating the nth row of M , that is, we let M

0

([n℄; ) =

M and M

0

(n + 1; ) = M(n; ). Complete M

0

, in an arbitrary way, to an F -

saturated matrix. Let C be any added (n + 1)-olumn. As both M

0

([n℄; ) and

M

0

([n � 1℄ [ fn + 1g; ) are equal to M 2 SAT(n;F), we onlude that both

C([n℄) and C([n � 1℄ [ fn + 1g) must be olumns of M . As C is not an M

0

-

olumn, C = (C

0

; b; 1� b) for some (n�1)-olumn C

0

suh that both (C

0

; 0) and

(C

0

; 1) are olumns of M . This implies that sat(n + 1;F) � e(M) + 2l, where

l is the number of pairs of equal olumns in M after we delete the nth row. In

partiular, the following theorem follows.

Theorem 12 Suppose that no matrix in F has two equal rows. Then either

sat(n;F) is onstant for large n or sat(n;F) � n+ 1 for every n.

Proof. If we have some M 2 SAT(n;F) with at most n olumns then a well-

known theorem of Bondy [Bon72a℄ (see e.g. [Bol86, Theorem 2.1℄) implies that

there is i 2 [n℄ suh that the removal of the ith row does not produe multiple

olumns. Now the dupliation of the ith row gives an F -saturated matrix, whih

implies sat(n+ 1;F) � sat(n;F), and the theorem follows.

There are many open problems onerning partiular forbidden matries; for

example, the omputation of sat(n; T

k

m

) or sat(n;K

k

). Of ourse, Theorem 12 is

appliable here. While it is easy to see that sat(n; T

k

m

) � n+1 for any m 2 [0; k℄

and k � 2, we do not know for whih k we have sat(n;K

k

) = O(1). We ould

only show that sat(n;K

2

) = n+1, whih is an easy (and perhaps known) result,
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and (surprisingly) sat(n;K

3

) = 10 for n � 4. We do not provide any proofs

here, exept we exhibit an example of an n-row K

3

-saturated matrix of size 10

for any n � 6. For n = 6 we an take

M =

2

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0 1 1 0 1 1 1

0 0 1 1 0 0 0 1 1 1

0 1 0 1 0 0 1 0 1 1

1 0 0 0 0 1 1 0 1 1

1 0 1 0 0 0 1 1 0 1

0 1 0 0 1 0 1 1 0 1

3

7

7

7

7

7

7

7

7

7

7

5

:

It is possible (but rather boring) to hek by hand thatM is indeedK

3

-saturated

as is, in fat, any n� 10-matrix M

0

obtained from M by dupliating any row,

f. Theorem 12. (The symmetries of M shorten the veri�ation.)

The author would like to thank Rihard Anstee for drawing the author's

attention to the Tur�an-type problem for matries and Andrew Thomason for

his omputer programme used for omputing sat(n;F) for small n and F .

4.4 Edge Killers

Here we introdue ertain extremal problems whih are losely related to the

sat-type questions. We settle the problem for omplete 2-graphs, whih extends

a theorem of Erd}os, Hajnal and Moon [EHM64℄ who omputed sat(n;K

2

m

).

Given a forbidden family F , we say that a k-graph G F-kills (or simply kills

when F is understood) an edge E 2 E(G) if the addition of E to G reates a

new forbidden subgraph. For example, G 2 m-SAT(n;F) if and only if it kills

all edges in its omplement. The F-losure Cl

�

F

(G) of G is the k-graph on V (G)

onsisting of all edges of G plus all F -killed edges. Let l

�

F

(G) = jCl

�

F

(G)j.

Let us de�ne k-m-sat(e;F ;n) to be the maximum size of Cl

�

F

(G) where

G is a k-graph of order n and size e, e � m-sat(n; F ). In the same way we

de�ne k-sat(e;F ;n) exept we onsider only F -free graphs of order n and size e,

e � sat(n;F). We agree that k-sat = k-m-sat =

�

n

k

�

for other (larger) values of e.

Clearly, k-m-sat(e;F ;n) � k-sat(e;F ;n); both k-m-sat and k-sat are monotone

inreasing in e.

Here we ompute k-m-sat and k-sat (and desribe all extremal graphs) for

omplete 2-graphs. This extends a result of Erd}os, Hajnal and Moon [EHM64℄
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who omputed sat(n;K

2

m

), as sat(n;F) = minfe : k-sat(e;F ;n) =

�

n

k

�

g.

Let us provide a onstrution. Given n � m � 3 and e,

�

m

2

�

� 1 � e �

�

n

2

�

�

�

n�m+ 2

2

�

= m-sat(n;K

2

m

) = sat(n;K

2

m

);

write e �

�

m�2

2

�

= l(m � 2) + r with r 2 [0;m � 3℄. Choose an (m � 2)-set A

and a disjoint l-set B. Let G be P

A;B

(whih onsists of all edges lying within

A [ B and interseting A) plus any r extra edges, none within B. (So B is an

independent set inG.) It is routine to hek that G an be aommodated within

[n℄. Clearly, G kills all

�

l

2

�

edges of K

2

(B). We show that this is best possible

by applying the ontration tehnique of Erd}os, Hajnal and Moon [EHM64℄.

Theorem 13 In the above notation,

k-sat(e;K

2

m

;n) = k-m-sat(e;K

2

m

;n) =

�

l

2

�

+ e; (19)

and all extremal graphs are given by the onstrution preeding the theorem.

Proof. To prove the upper bound, we use indution on l with the ase l = 2

being trivially true. Let l � 3. Given a graph G of order n and size e (not

neessarily K

2

m

-free), �x any killed edge fx

1

; x

2

g and let G

0

be obtained from G

by ontrating the verties x

1

and x

2

into one vertex x. Fix an (m � 2)-set Y

suh that G[Y [ fx

1

; x

2

g℄ is the omplete graph but for fx

1

; x

2

g; olour these

�

m

2

�

� 1 edges red. Clearly, during the ontration at least m � 2 red edges

disappear, so e(G

0

) � e(G)�m+ 2.

Obviously, an edge killed by G is also killed by G

0

(exept fx

1

; x

2

g) but two

G-killed edges, say fa; x

1

g; fa; x

2

g 2 E(G), may produe only one edge in G

0

(whih is also killed). When this happens then, for i = 1; 2, hoose an arbitrary

(m � 2)-set X

i

with G[X

i

[ fa; x

i

g℄ = P

m�2;2

and olour all edges onneting

a to X

i

blue. Let D be a blue edge. Some a 2 D is inident neither to x

1

nor

to x

2

, so D is not oloured red. As the other endvertex of D sends at least one

edge to fx

1

; x

2

g, D annot be oloured blue more than twie.

We have e�

�

m

2

�

+ 1 non-red edges eah being oloured blue at most twie,

while eah time two killed edges ontrat together exatly 2(m � 2) edges are

oloured blue. This yields

l

�

K

2

m

(G)� e(G) � l

�

K

2

m

(G

0

)� e(G

0

) +

$

e�

�

m

2

�

+ 1

m� 2

%

+ 1: (20)
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(the last term 1 ounts the edge fx

1

; x

2

g) and the indution assumption applied

to the graph G

0

of order n � 1 and size at most e �m + 2 proves the desired

upper bound.

Let us follow our argument to haraterize the ases of equality. Clearly, for

l = 2, when e =

�

m

2

�

� 1+ r, we must have an indued P

m�2;2

-subgraph present

while the remaining r edges an be plaed arbitrarily, whih is preisely what

our onstrution says.

Let l � 3 and let G be an extremal graph. Apply the above ontration to

G, preserving the above notation. By indution, G

0

= P

A;B

+ E

1

+ : : : + E

r

,

where B is an independent (l�1)-set disjoint from an (m�2)-set A. The vertex

x, whih has degree at least m� 2 in G

0

, must belong to A [B as r � m� 3.

Suppose that x 2 A. Then the (m�1)-set Y [fxg, whih spans the omplete

graph in G

0

, must equal A[fyg, for some y 2 B. Eah blue edge of G lies within

a P

m�2;2

-subgraph in G

0

and, as r � m� 3, none of E

1

; : : : ; E

r

an be blue (nor

red, of ourse). But then, for z 2 Bnfyg, E(G) ontains either fx

1

; zg or fx

2

; zg

(beause fx; zg 2 E(G

0

)) whih is also unoloured. So, we have at least r + 1

unoloured edges and we annot have equality in (20), whih is a ontradition.

Hene, x 2 B; then Y must equal A, and G is given by our onstrution.

5 Irregularities

Here we demonstrate many irregularities of the sat-funtion in the omparison

to the Tur�an funtion ex(n;F) = maxfe(G) : G 2 SAT(n;F)g.

Clearly, ex(n; F

1

) � ex(n; F

2

) whenever F

1

is a subgraph of F

2

. K�aszonyi and

Tuza [KT86℄ demonstrated an example of F

1

� F

2

with sat(n; F

1

) > sat(n; F

2

)

for all large n. Tuza [Tuz92, p. 401℄ asks if there exists a onneted irregular pair

F

1

� F

2

; this is answered in the aÆrmative by the following simple example.

Example 14 There is a pair of onneted graphs F

1

� F

2

on the same vertex

set suh that sat(n; F

1

) > sat(n; F

2

) for all n � v(F

1

).

Proof. Let m � 5 and F

1

= S

2

m

, that is, V (F

1

) = [m℄ and E(F

1

) = ff1; ig :

i 2 [2;m℄g and let F

2

be obtained from F

1

by adding the edge f2; 3g. Clearly,

sat(n; F

2

) � n� 1, n � m, as S

2

n

is an example of an F

2

-saturated graph.
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On the other hand, in any monotonially F

1

-saturated graph G, any two

verties of degree at most m� 3 must be onneted. (Otherwise the addition of

this edge annot reate a forbidden subgraph.) If we have v 2 [0;m � 2℄ suh

verties, then e(G) �

�

v

2

�

+(m�2)(n�v)=2, whih is easily seen to exeed n�1

for all n � m.

Remark. Curiously enough, the w-sat-funtion (studied later) exhibits the

analogous irregularity on the very same pair: it is not hard to hek that

w-sat(n; F

2

) = e(F

2

)� 1 = m� 2 while w-sat(n; F

1

) =

�

m�1

2

�

, n � m.

Clearly, for every n � v(F ), we have ex(n; F ) � ex(n+ 1; F ). On the other

hand, K�aszonyi and Tuza [KT86℄ observe that, for any n = 2k� 1, sat(n; P

3

) =

k+1 > sat(n+1; P

3

) = k, where P

3

is the path with 3 edges. Our next example

ampli�es this irregularity.

Example 15 For every onstant d, there is a 2-graph F = F (d) suh that

sat(n; F ) < sat(n� 1; F ) � d;

for a periodi series of values of n.

Proof. Let m = 2d+ 3 and let F = B

mm

be the dumb-bell

E(B

mm

) = [m℄

(2)

[ [m+ 1; 2m℄

(2)

[ ff1;m+ 1gg;

that is, B

mm

is the disjoint union of two opies of K

m

plus one edge onneting

them.

Let us show that the laim is true for any n = lm if l 2 N is large. Clearly,

sat(lm; F ) � lm(m � 1)=2 (in fat, this is sharp) as lK

2

m

2 SAT(lm; F ). On

the other hand, let n = lm � 1 and suppose that G 2 sat(n; F ) has at most

g = lm(m� 1)=2 + d edges.

Clearly, Æ(G), the minimal degree of G, is at least Æ(B

mm

) � 1 = m � 2.

Suppose that for some x 2 V (G) d(x) = m� 2. Then for every y non-inident

to x the edge E = fx; yg 2 E(G) annot be the bridge in a reated B

mm

-

subgraph as the degree of x is too small; that is, x and y fall in the same

K

2

m

-half. Therefore, y must be onneted to all m � 2 neighbours of x and

e(G) � (m� 2)n+O(1) whih is a ontradition.
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Hene Æ(G) � m� 1. The inequality �(G) + (m � 1)(n� 1) � 2e(G) � 2g

implies that �(G) � 2(d +m � 1). If some x 2 V (G) does not belong to an

m-lique then any missing edge fx; yg must reate a K

2

m

-subgraph and we arrive

at a ontradition again, as d(x) � �(G) is bounded. Thus the whole of V (G)

is overed by m-liques.

We want to �nd a set X � V (G) with the surplus s(X) = e(G[X℄)�

m�1

2

jXj

at least m� 1 as then the laim would follow:

e(G) � e(G[X℄) +

m� 1

2

(n� jXj) �

m� 1

2

n+m� 1 > g:

As m does not divide n, there are two distint liques A;B 2 V (G)

(m)

with

i = jA \Bj > 0. It is straightforward to verify that

s(A [B) = 2

�

m

2

�

�

�

i

2

�

�

m� 1

2

(2m� i) �

m� 1

2

:

No m-lique C 6� A[B an interset some other lique or A[B. (Otherwise

we gain another suplus of (m � 1)=2.) By the divisibility argument, i = 1. As

a (2m � 1)-lique has suplus at least m � 1, there exists some E 2 E(G) lying

within A[B. It is easy to see that G+E must ontain a K

2

m

-subgraph on some

m-set C 6� A [ B interseting A [ B, whih implies s(A [ B [ C) � m � 1 as

required.

Clearly, for n = ml + 1, sat(n;B

mm

) �

m�1

2

n > g, whih ompletes the

proof.

The elegant averaging argument of Katona, Nemetz and Simonovits [KNS64℄

shows that the limit ex(n;F)=n

k

exists for any family F of k-graphs. Conerning

the sat-funtion, Tuza [Tuz88℄ made the following (still open) onjeture.

Conjeture 16 (Tuza) For any 2-graph F , the limit lim

n!1

sat(n; F )=n ex-

ists.

We an show that this assertion is not true for families of forbidden graphs.

Example 17 There exists a �nite family F of 2-graphs suh that, for some

 > 0 and for in�nitely many n, sat(n;F) < sat(n� 1;F) � n. In partiular,

the ratio sat(n;F)=n does not neessarily tend to a limit for a �nite family F

of 2-graphs.
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Proof. Fix m � 4 and onsider the family F onsisting of the dumb-bell B

mm

and F

m1

; : : : ; F

m;m�1

, where

E(F

mi

) = [m℄

(2)

[ [m� i+ 1; 2m � i℄

(2)

; i 2 [m� 1℄;

that is, F

mi

is the union of two K

2

m

-graphs sharing i ommon verties.

Clearly, the disjoint union of K

2

m

-graphs is F -saturated as any missing edge

onnets two di�erent opies and thus reates a B

mm

-subgraph. Hene, if m

divides n then sat(n;F) �

n

m

�

m

2

�

.

On the other hand, suppose that m does not divide n and let G be any

F -saturated graph on [n℄. By the de�nition of F , no vertex an belong to two

di�erent K

2

m

-subgraphs of G; suppose that the sets A

i

= [m(i � 1) + 1;mi℄,

i 2 [s℄, are all m-sets spanning omplete subgraphs in G.

Note the following two properties ofG. Property A:G[A

[s℄

℄

�

=

sK

2

m

. (Beause

B

mm

is forbidden.) Property B: any missing edge E interseting B = [n℄ n A

[s℄

reates a K

2

m

-subgraph. (Beause it is impossible that B

mm

� G + E with E

being the bridge.)

We laim that these two properties and the fat that B 6= ; (as m is not a

divisor of n) imply that

e(G) �

n

m

��

m

2

�

+m� 2

�

�m

2

: (21)

We use indution on n. If some E 2 B

(2)

is not a G-edge then it is easy to hek

that the graph G

0

obtained from G by ontrating the edge E has the properties

in question. The endverties of E have at least m� 2 ommon neighbours in G

(beause E reates a K

2

m

-subgraph) so e(G) � e(G

0

) +m � 2 and (21) follows

by indution.

Suppose that B spans the omplete graph in G. If some E 2 E(G) intersets

both A

i

and B then a K

2

m

-subgraph reated by E lies within A

i

[B and so at

least m� 2 G-edges interset both A

i

and B. Therefore,

e(G) � f(b) = (n� b)

m� 1

2

+

�

b

2

�

+

n� b

m

(m� 2);

where b = jBj. (We orrespondingly ount the edges withinA

[s℄

, withinB and in

between.) The minimum of f is ahieved for b =

m

2

+

m�2

m

and our estimate (21)

follows rather rudely.
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Hene, if we inrease/derease n = ml by one, then sat(n;F) inreases at

least by n

m�2

m

+O(1).

6 Spei� Classes

Our aim in this setion is to give preise information about sat(n;F) for speial

lasses F .

6.1 Stars

The star S

k

m

= P (1;m � 1; 1; k � 1), m > k � 2, has [m℄ as the vertex set and

fE 2 [m℄

(k)

: E 3 mg as the edge set. In other words, S

k

m

has m verties and its

�

m�1

k�1

�

edges are the k-tuples ontaining some �xed vertex, whih is alled the

entre.

The exat values of sat(n; S

k

m

) are known only for S

2

m

, any m, (see [KT86℄)

and for S

3

4

(see [EFT91℄).

The asymptoti behaviour of sat(n; S

k

k+1

) was found by Erd}os, F�uredi and

Tuza [EFT91, Theorem 2℄. Exploiting their ideas we extend their result to all

stars; this theorem appears in [Pik99b℄.

Theorem 18 Let m > k � 2 and S = S

k

m

. Then

m� k

2

�

n

k � 1

�

� sat(n; S) � m-sat(n; S) �

m� k

2

�

n

k � 1

�

�O(n

k�4=3

): (22)

Proof. Let us provide a onstrution of an S-saturated graphG = G

k

m;n

of order

n proving the upper bound. Partition the vertex set [n℄ into n

0

= dn=(m�k+1)e

bloks B

1

; : : : ; B

n

0

of size m� k+1 eah exept possibly the last one. The edge

set is

E(G) =

n

F 2 [n℄

(k)

: jF \B

j

j � 2; j = minfi 2 [n

0

℄ : F \B

i

6= ;g

o

:

Thus every edge of G has at least two ommon points with some B

j

and inter-

sets no B

i

with i < j.

Let us show that S 6� G. Suppose not and we have an S-subgraph S

0

� G

entered at x. Let

j = minfi 2 [n

0

℄ : V (S

0

) \B

i

6= ;g: (23)
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Choose a k-set F 3 x so that it ontains one vertex from B

j

and some k � 1

verties in V (S

0

) n B

j

whih is possible sine jV (S

0

) n B

j

j � k � 1. We obtain

a ontradition as on one hand F ontains the entre x and must belong to S

while on the other hand F 62 E(G) by de�nition.

If we add any extra edge F to G then the set Y = F [ B

j

spans a opy of

S entered at x where B

j

is the �rst blok interseting F and fxg = F \ B

j

.

Indeed, every F

0

2 Y

(k)

ontaining x either equals F or intersets B

j

in at least

two points and so belongs to E(G).

Therefore we onlude that G is S-saturated. To prove the desired upper

bound jG

k

m;n

j �

m�k

2

�

n

k�1

�

we observe, for k = 2, that eah vertex of the 2-

graph G

2

m;n

has degree at most m � k while, for k � 3, we use indution and

the equality jG

k

m;n+1

j = jG

k

m;n

j+ jG

k�1

m�1;n

j.

Of ourse, sat(n; S) � m-sat(n; S).

Finally, let G be a minimum monotonially S-saturated graph on V = [n℄.

By the de�nition, the addition to G of any edge F 2 E(G) reates at least one

S-subgraph S

0

� G + F . Let S(F ) be the set of all suh subgraphs S

0

reated

by F .

Let F(F ) denote the set of edges in G whih interset F 2 E(G) in k � 1

points and reate a opy of S ontaining F as an edge. Formally,

F(F ) =

�

F

0

2 E(G) : jF \ F

0

j = k � 1; 9S

0

2 S(F

0

) F 2 E(S

0

)

	

; F 2 E(G):

Also we de�ne

F(G

0

) =

S

F2E(G

0

)

F(F ); G

0

� G;

�F = F

(k�1)

; F 2 [n℄

(k)

;

�G

0

=

S

F2E(G

0

)

�F; a k-graph G

0

.

As G is monotonially S-saturated we onlude that

F(G) = V

(k)

nE(G): (24)

Choose an integer t = t(n), to be spei�ed later, suh that t ! 1 and

t=n ! 0. On the vertex set V we de�ne two subgraphs G

0

; G

1

� G; G

0

is

a maximal subgraph of G with jF(G

0

)j � tjG

0

j and G

1

onsists of the edges

of G not in G

0

: E(G

1

) = E(G) n E(G

0

). By the maximality of G

0

for every

F 2 E(G

1

) we have

jF(F ) n F(G

0

)j > t: (25)
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From (24) and the proved upper bound in (22) we onlude that jF(G)j =

�

n

k

�

�jGj =

�

n

k

�

�O(n

k�1

). Taking into the aount that F(G) = F(G

0

)[F(G

1

)

and jF(G

0

)j � tjG

0

j = O(tn

k�1

) we obtain

jXj =

�

n

k

�

�O(tn

k�1

); (26)

where X = F(G

1

) n F(G

0

).

Let Z = V

(k�1)

n �G

1

. We laim that

jZj = O(t

1=2

n

k�3=2

): (27)

Suppose not. Then the average value of z(D) = jfE 2 Z : E � Dgj over all

D 2 V

(k�2)

is greater than O(t

1=2

n

1=2

). For any E;E

0

2 Z with jE\E

0

j = k�2

we have F = E [ E

0

62 X, beause otherwise at least one of E;E

0

2 �F is

overed by an edge of S

0

2 S(F ) whih then is neessarily an edge of G

1

(as

it intersets F 2 F(G

1

) n F(G

0

) in k � 1 verties). Therefore, we have at

least

�

k

2

�

�1

P

D2V

(k�2)

�

z(D)

2

�

k-sets not in X, whih exeeds

�

n

k�2

�

O(tn) by the

onvexity of

�

x

2

�

. This ontradits (26) and proves the laim.

Let

g

1

(E) = jfF 2 E(G

1

) : F � Egj; E 2 �G

1

:

Take any F 2 E(G

1

). Let �F = fE

1

; : : : ; E

k

g. We laim that all but at most

two of g

1

(E

i

)'s are larger than t=6. Suppose not, say g

1

(E

i

) � t=6, i = 1; 2; 3.

Take F

0

2 F(F ) n F(G

0

) and any S

0

2 S(F

0

) ontaining F as an edge. Let

F

0

= E

i

[ fxg, some i 2 [k℄, x 2 V n F . The star S

0

ontains k � 2 edges of the

form E

j

[ fxg, j 6= i. These edges annot be in G

0

and so ontribute at least 1

to g

1

(E

1

)+ g

1

(E

2

)+ g

1

(E

3

). In total, eah fxg[E

j

2 E(G

1

) is ounted at most

twie. (One it ours then at most 2 edges of the form fxg [E

i

an belong to

E(G).) But this ontradits (25). The laim is proved.

De�ne

W = fE 2 �G

1

: g

1

(E) � m� k � 1g;

T = fF 2 E(G

1

) :W \ �F 6= ;g:

We laim that jW j = O(t

1=2

n

k�3=2

). Suppose not. Note that for E;E

0

2W

with jE \ E

0

j = k � 2 we neessarily have F = E [E

0

62 X for otherwise in an

S

0

2 S(F ) entered at x, say x 2 E, there arem�k edges (neessarily in E(G

1

))
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di�erent from F and overing E. Thus there are at least

�

k

2

�

�1

P

D2V

(k�2)

�

w(D)

2

�

edges not in X, where w(D) = jfE 2 W : E � Dgj, D 2 V

(k�2)

. Using

the onvexity of the

�

x

2

�

-funtion as before we an argue that there more than

O(tn

k�1

) edges not in X, ontraditing (26). The laim is established.

Every E 2 W is ontained in at most m � k � 1 edges of G

1

, so jT j =

O(t

1=2

n

k�3=2

). For every F 2 E(G

1

)nT we have

P

E2�F

1

g

1

(E)

�

2

m�k

+(k�2)

6

t

.

Note the following easy identity

j�G

1

j =

X

F2E(G

1

)nT

 

X

E2�F

1

g

1

(E)

!

+

X

F2T

 

X

E2�F

1

g

1

(E)

!

�

�

2

m� k

+O(1=t)

�

jG

1

j+ kjT j:

We know, see (27), that j�G

1

j =

�

n

k�1

�

�O(t

1=2

n

k�3=2

). Hene

m� k

2

�

n

k � 1

�

� jGj = O(t

1=2

n

k�3=2

+ jGj=t) = O(t

1=2

n

k�3=2

+ n

k�1

=t):

Taking t = bn

1=3

 we obtain the required result.

6.2 Sub-Designs

A t-(v; k; �)-design (or an S

�

(t; k; v)) is a k-graph G of order v in whih every

t-set is overed by exatly � edges. As the question whether a design exists for

a given set of parameters is generally notoriously hard, one diretion of researh

is to onsider what we all here sub-designs. A t-(v; k; �)-sub-design G is a

maximal k-graph of order v suh that no t-set is overed by more than � edges.

Clearly, in the latter ase, G an ontain at most �

�

v

t

��

k

t

�

�1

edges so we take

e(G) as the measure of the `goodness' of G.

It is easy to onstrut sub-designs. This an be done, for example, by starting

with the empty graph and onseutively adding missing k-subsets as long as

possible. If we are luky, we obtain an S

�

(t; k; v); in this ase e(G) is maximal

possible. On the other hand, one an ask how unluky we an be, that is, how

small G an be. Let D = D(�; t; k) be the family of all k-graphs with � + 1

edges suh that some t verties belong to every edge. Then SAT(n;D) is the

family of all sub-designs of order n. Thus we are interested in sat(n;D(�; t; k)),

the minimal size of a t-(n; k; �)-sub-design.
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Note that D(�; 1; 2) onsists of one graph, namely the star S

2

�+2

= K

1;�+1

.

K�aszonyi and Tuza [KT86℄ omputed sat(n; S

2

�+2

). In fat, their method extends

to any D(�; 1; k).

We need the following simple lemma, whose proof we inlude for the sake of

ompleteness.

Lemma 19 Given integers n

0

, � and k with � �

�

n

0

�1

k�1

�

, there is a k-graph G

0

on [n

0

℄ suh that every vertex has degree � exept a set D of at most k�1 verties

of degree �� 1.

Proof. Plae the elements of [n

0

℄ lokwise on a irle to form a regular n

0

-gon.

De�ne the equivalene relation � on [n

0

℄

(k)

so that two k-sets are equivalent if

some rotation maps one onto the other. (Note that we do not allow mirror re-

etions.) Let H

1

; : : : ;H

p

� [n

0

℄

(k)

be the obtained equivalene lasses. Clearly,

eah H

i

is a regular overing of [n

0

℄ of degree whih is a divisor of k. Let H

p

be the equivalene lass of the set [k℄ whih onsists of k onseutive verties.

Starting with the empty hypergraph G

0

on [n

0

℄, for i 2 [p � 1℄, add H

i

to G

0

if

the maximal degree does not exeed �. At the end, we will be left with some

d-regular k-graph. Clearly, �� d is at most k beause otherwise we had to add

every H

i

, i 2 [p�1℄, so adding H

p

we obtain the omplete k-graph on [n

0

℄, whih

implies the ontradition

�

n

0

�1

k�1

�

< �.

Finally, we try to add some subset of H

p

to make G

0

nearly �-regular. Take

some edge E 2 H

p

whih has not been added to G

0

, say E = [i + 1; i + k℄. We

add, one by one, the following shifts of E:

[i+ 1; i + k℄; [i+ k + 1; i+ 2k℄; [i+ 2k + 1; i+ 3k℄; : : :

and so on in this order until either we ome aross E again or we annot add the

urrent edge (beause then the maximal degree of G beomes larger than �). In

the former ase, we take any other unused edge and repeat the proedure. In

the latter ase, we have the required graph built beause every time the added

portion of H

p

is nearly regular, that is, the di�erene between the maximal and

minimal degrees is always at most 1.

The following theorem gives the exat answer in almost every ase, exept

for some small n when we have only a lower bound.
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Theorem 20 Given � � 1 and k � 2, let D = D(�; 1; k) and de�ne v by

�=k 2 [

�

v�1

k�1

�

;

�

v

k�1

�

℄. Then m-sat(n;D) �

�

v

k

�

+ d

�(n�v)

k

e. If, furthermore,

� �

�

n�v�1

k�1

�

then

m-sat(n;D) = sat(n;D) =

�

v

k

�

+

�

�(n� v)

k

�

: (28)

Proof. Given G 2 m-SAT(n;D), let V � V (G) onsist of all verties whose

degree (that is, the number of ontaining it edges) is at most �� 1. Clearly, V

must span the omplete k-graph, for otherwise the addition of a missing edge E 2

V

(k)

to G annot reate any forbidden subgraph. Thus e(G) � min

v2[n℄

f(v),

where f(v) =

�

v

k

�

+

�(n�v)

k

, whih implies the lower bound on m-sat.

Conversely, let n

0

= n � v and let G be the nearly �-regular k-graph G

0

on [n

0

℄ built in Lemma 19, plus the omplete k-graph on V = [n

0

+ 1; n℄ and

(if D = fx 2 [n

0

℄ : d(x) < �g 6= ;) plus an edge E interseting [n

0

℄ in the set

D. (Note that v � k � jDj if D 6= ;: otherwise G

0

+ K

k

(V ) 2 m-SAT(n;D)

ontradits our lower bound.)

All verties in [n

0

℄ have degree � and any missing edge (whih must interset

[n

0

℄) reates a forbidden subgraph. Also, G is D-free: if

�

v�1

k�1

�

� �, then we

obtain the ontradition f(v) � �n=k > f(k� 1). The required G 2 SAT(n;D)

is built.

Next, let t = 2 and D = D(�; 2; k), that is, we forbid � + 1 edges having 2

ommon verties. The Tur�an number t(n; t; k) = ex(n;K

t

k

) is the maximum size

of a K

t

k

-free t-graph of order n. De�ne �(n; t; k) =

�

n

t

�

� t(n; t; k). We are able

to ompute asymptotially sat(n;D).

Theorem 21 Given � � 2 and k � 3, let  = �=

�

k

2

�

. Then, for any n �

max(k + � 1; k

1=(k�2)

),

m-sat(n;D(�; 2; k)) � �(n; 2; k): (29)

On the other hand, for any �xed � and k,

sat(n;D(�; 2; k)) � �(n; 2; k) +O

 

n

2

(log n)

1=

((

k

2

)

�1

)

!

: (30)

Proof. Given a monotonially D-saturated k-graph H, we build, on the same

vertex set, the 2-graph G so that fi; jg 2 E(G) i� there are at least � H-edges
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ontaining both i; j 2 V (H). Clearly, any k-set E independent in G must be

an edge of H, for otherwise the addition of E to H does not reate a forbidden

subgraph. This implies that

e(H) � L(G) = k

2

k

(G) + e(G); (31)

where k

2

k

(G) denotes the number of K

2

k

-subgraphs of G, the omplement of G.

We want to �nd, for whih 2-graphs G, the right-hand side of (31) is minimized.

By a theorem of Bollob�as [Bol76℄ (for some extensions see Shelp and Thoma-

son [ST98℄), this happens if G is a omplete multipartite 2-graph (that is, if G is

a disjoint union of omplete graphs). If the parts are of sizes n

1

� n

2

� : : : � n

l

,

then we have to minimize

L(G) = k

2

k

(G) + e(G) =

X

A2[l℄

(k)

Y

i2A

n

i

+ 

l

X

i=1

�

n

i

2

�

; (32)

given the ondition

P

l

i=1

n

i

= n.

Suppose that l � k. Let G

0

be obtained from G by merging the smallest

two parts together. This adds n

l�1

n

l

extra edges to G, but this eliminates all

K

2

k

-subgraphs of G interseting both of the a�eted parts, that is,

k

2

k

(G)� k

2

k

(G

0

) = n

l�1

n

l

X

A2[l�2℄

(k�2)

Y

i2A

n

i

: (33)

We laim that

P

A2[l�2℄

(k�2)

Q

i2A

n

i

� . As n

l

and n

l�1

are two smallest

parts, it is enough to verify the inequality for n

2

= : : : = n

l�2

= n

l�1

= n

l

= x

in whih ase it redues to to

g(x) =

�

l � 3

k � 2

�

x

k�2

+

�

l � 3

k � 3

�

(n� (l � 1)x)x

k�3

� : (34)

Taking the derivative, one an see that the minimum of g over x 2 [1; n=l℄ is

ahieved either for x = 1 or for x = n=l. For x = 1, the right-hand side of (34)

is h(l) =

�

l�3

k�2

�

+

�

l�3

k�3

�

(n� l+ 1) and, for any l 2 [k; n℄, the inequality h(l) � 

is true as h(k) �  and

h(l + 1)� h(l) =

�

l�3

k�3

�

+ (n� l + 1)

�

l�3

k�4

�

�

�

l�2

k�3

�

= (n� l)

�

l�3

k�4

�

� 0:

For x = n=l,

g(n=l) =

�

l � 2

k � 2

�

�

n

l

�

k�2

=

n

k�2

(k � 2)!

k�2

Y

i=1

�

1�

i+ 1

l

�
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whih is learly minimized for l = k. But g(n=k) �  by our assumptions.

Thus we may assume that l � k�1. But then k

2

k

(G) = 0 and e(G) is minimal

if we have exatly k� 1 parts of nearly equal sizes (i.e. if G is the Tur�an graph)

and (29) follows.

To demonstrate the upper bound we have to use as briks almost optimal

sub-designs. R�odl [R�od85℄ was �rst to show that for �xed �; k; t there exists a

t-(v; k; �)-sub-design with �

�

v

t

�

=

�

k

t

�

+o(v

t

) edges, v !1, that is, asymptotially

approahing the absolute upper bound. The error term was made more spei�

by Gordon, Kuperberg, Patashnik and Spener [GPKS96℄ who showed it to be

O(F (v)), where F (v) = v

t

=(log v)

1=D

and D =

�

k

t

�

� 1. Gordon, Kuperberg

and Patashnik [GKP95℄ present a few di�erent methods suitable for pratial

onstrution of nearly optimal sub-designs.

Let us onstrut G 2 SAT(n;D) showing that (29) is asymptotially orret.

Partition [n℄ = V

1

[ : : : [ V

k�1

into k � 1 nearly equal parts. On eah part V

i

onstrut a maximum 2-(jV

i

j; k; �)-sub-design H

i

. The union of H

1

; : : : ;H

k�1

is obviously D-free and has the size within O(F (n)) of (29). Completing it in

an arbitrary way to G 2 SAT(n;D), we add O(F (v)) extra edges as eah extra

edge interset some part in at least 2 verties while eah H

i

has O(F (v)) 2-sets

overed by stritly less than � edges. The theorem is proved.

Finally, let us onsider the general ase t � 3. It seems that sat(n;D(�; t; k))

is generally related to �(n; t; k).

Theorem 22 For any �xed �, t and k,

m-sat(n;D(�; t; k)) � (1� o(1))��(n; t; k)

�

k

t

�

�1

; (35)

as n tends to in�nity.

Proof. Let H 2 m-SAT(n;D(�; t; k)). Let the t-graph G onsist of all t-sets

overed by at least � edges of H. Similarly to the above, we note that any

k-subset of [n℄ not spanning an edge in G, must belong to E(H) and therefore,

e(H) � �e(G)

�

k

t

�

�1

+ k

t

k

(G): (36)

If e(G) � (1 + o(1))t(n; t; k) then the �rst summand in the right-hand side

of (36) itself gives the desired lower bound. Otherwise, the result of Erd}os and
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Simonovits [ES83℄ implies that the seond summand is �(n

k

) whih is far more

than required.

We do not have many strutural results related to the Tur�an problem for

omplete hypergraphs. Sidorenko [Sid95℄ mentions the following onjetures.

�(n; 3; k) =

�

2

k � 1

�

2

�

n

3

�

+ o(n

3

); (37)

�(n; 4; 5) =

5

16

�

n

4

�

+ o(n

4

): (38)

Reall that �(n; t; k) =

�

n

t

�

� t(n; t; k) is the minimum size of an �(n; t; k)-graph,

that is, a t-graph on n verties in whih any k-set spans at least one edge.

Example 23 Let D = D(�; 3; k), where either k = 4 or k � 5 is odd. Then

there is a D-saturated k-graph H with �(

2

k�1

)

2

�

n

3

�

=

�

k

3

�

+ o(n

3

) edges. In parti-

ular, if (37) is true, then H is asymptotially extremal.

Proof. Let k = 4. Let m = bn=3. De�ne A

i

= [(i � 1)m+ 1; im℄, i 2 [3℄. The

graphG on [3m℄ onsisting of all triples fx; y; zg with x; y 2 A

i

and z 2 A

i

[A

i+1

,

where A

4

= A

1

, is an �(3m; 3; 4)-graph with approximately

4

9

�

n

3

�

edges.

Consider the graph H

0

onsisting of edges E = fw; x; y; zg with fx; y; zg 2

A

(3)

i

and w 2 A

i+1

(then E

(3)

� E(G)), i 2 [3℄, suh that u + x + y + z is

ongruent modulom to an element in [�℄. Let D 2 E(G). For example, suppose

that D onsists of x; y 2 A

1

and w 2 A

2

. To �nd z with fw; x; y; zg 2 E(H

0

)

we have to satisfy w + x + y + z � j (mod m) for some j 2 [�℄; there are �

solutions, but we may have to disard possible degenerate ases when z = x or

z = y. A similar laim is true if D � A

i

. Hene, eah G-edge, exept O(n

2

)

edges, is overed by exatly � edges of H

0

.

It is therefore lear that if we omplete the D-free graph H

0

to any D-

saturated graph H on [n℄, then we add only O(n

2

) edges; therefore, H has the

required size.

For k = 2l + 1, l � 2, an example of an �(n; 3; k)-graph G attaining (37) is

obtained by partitioning [n℄ = A

1

[ : : : [A

l

into nearly equal parts and letting

G = [

i2[l℄

K

3

(A

i

). The result of R�odl [R�od85℄ implies that we an �nd a D-free

k-graph on eah A

i

whih is a nearly optimal 3-(jA

i

j; k; �)-sub-design; let H

0

be

the union of these. Completing it arbitrarily to a D(�; 3; k)-saturated graph, we

add only o(n

3

)-extra edges, whih proves the laim.
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However, we do not know any mathing onstrution for t = 3 and even

k � 6. In this ase, a onjetured extremal �(n; t; k)-graph G is the disjoint

union of omplete 3-graphs plus at least one �(m; 3; 4)-extremal graph. The

last graph auses us the problem: the onstrutions by Kostohka [Kos82℄ do

not admit an almost perfet overing by k-edges, k � 6.

Here is a short explanation why. In all Kostohka's graphs we have three

equisized sets A

1

[ A

2

[ A

3

= [n℄ and let G = ([

3

i=1

K

3

(A

i

)) [ G

0

, where G

0

onsists of

1

3

�

n

3

�

+ o(n

3

) other edges. Also, any k-set E with E

(3)

� E(G)

has the property that jK \ A

i

j � k � 2 for some i, so it an over at most

l =

�

k

3

�

�

�

k�2

3

�

edges of G

0

. Hene, we need at least e(G

0

)=l overing edges,

whih exeeds (

2

k�1

)

2

�

n

3

�

=

�

k

3

�

+ o(n

3

) for k � 8. (For k = 6 we need a slightly

more re�ned argument.)

For similar reasons, there is no almost perfet overing of the onstrution by

de Caen, Kreher and Wiseman [dCKW88℄ whih gives the upper bound in (38).

Unfortunately, we do not know any other, essentially di�erent, onstrutions

attaining (37) or (38) and we do not have any likely guess what sat(n;D) ould

be then.

6.3 Triangular Families

The notion of a triangle-free 2-graph an be extended to hypergraphs in the

following way: a k-graph is triangle-free if the symmetri di�erene of any two

distint edges is not ontained in a third edge. Clearly, this is the same as

forbidding the triangular family T

k

whih onsists of all k-graphs with three

edges E

1

; E

2

; E

3

suh that E

1

4E

2

� E

3

.

Katona [Kat74℄ raised the problem of omputing ex(n;T

3

) whih was solved

by Bollob�as [Bol74℄ who showed that the omplete 3-partite 3-graph with parts

of nearly equal sizes is a maximum triangle-free 3-graph. Bollob�as [Bol74℄ stated

the general onjeture that the analogous onstrution gives ex(n;T

k

) for any

k � 4; Sidorenko [Sid87℄ proved that this is the ase for k = 4.

Conerning the sat-funtion, we have the following obvious example of a T

k

-

saturated graph: the pyramid P = P (k� 1; n� k+1; k� 1; 1) whih onsists of

all k-subsets of [n℄ ontaining the set [k � 1℄ alled basi. Indeed, any missing

edge E intersets [k; n℄ in at least 2 points and reates a forbidden subgraph on
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the set E [ [k � 1℄. Thus

sat(n;T

k

) � n� k + 1; n � k + 1

and this might be sharp. It is remarkable that P an be viewed as the omplete

k-partite k-graph with k � 1 parts onsisting of only one vertex.

In the general ase we are able to prove only the following.

Theorem 24 Let k � 3 be �xed. Then

n�O(log n) � sat(n;T

k

) � n� k + 1:

Proof. We have to prove the lower bound. Let G be a minimum T

k

-saturated

graph on [n℄; e(G) � n�k+1. Conseutively hoose G

1

; G

2

; : : : � G as follows:

let e

j+1

be the largest integer suh that the k-graph H

j

, E(H

j

) = E(G) n

(E(G

1

)[ : : :[E(G

j

)), ontains a P (k� 1; e

j+1

; k� 1; 1)-subgraph and let G

j+1

be any suh subgraph. We terminate the proedure when b

j

= n�e

[j℄

� j(k�1)

is less than max(j; k). (We denote e

[j℄

=

P

i2[j℄

e

i

, et.)

Let j � 0 and suppose we have hosen G

1

; : : : ; G

j

. Let B

j

onsist of some

b

j

verties not overed by an edge of G

i

, i 2 [j℄; B

j

exists as v(G

i

) = e

i

+ k� 1.

(We let b

0

= n.) Label all (k� 1)-subsets of [n℄ by A

1

; : : : ; A

l

, l =

�

n

k�1

�

. Let d

i

be the number of edges of H

j

ontaining A

i

, i 2 [l℄. Clearly,

d

[l℄

= ke(H

j

) � k(n� k + 1� e

[j℄

) = k(b

j

+ (j � 1)(k � 1)) < k

2

b

j

: (39)

The number of ways to add an element of B

(k)

j

reating a forbidden subgraph

with any given E

1

; E

2

2 [n℄

(k)

is at most

�

b

j

�2

k�2

�

+O(1) if jE

1

\E

2

j = k � 1 and

it is O(b

k�4

j

) otherwise. As the addition of any E 2 B

(k)

j

nE(H

j

) to H

j

reates

a forbidden subgraph (beause E is disjoint from any edge of G

i

, i 2 [j℄), we

onlude that

O(b

k�4

j

)

�

e(H

j

)

2

�

+

�

b

j

� 2

k � 2

�

X

i2[l℄

�

d

i

2

�

�

�

b

j

k

�

� e(H

j

); (40)

and, by (39),

X

i2[l℄

�

d

i

2

�

�

b

2

j

k(k � 1)

�O(b

j

): (41)
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We have e

j+1

= max

i2[l℄

d

i

. The onvexity of the

�

x

2

�

-funtion implies that

the left-hand side of (41) does not exeed

d

[l℄

e

j+1

�

e

j+1

2

�

<

1

2

k

2

b

j

e

j+1

. Therefore,

we obtain that

e

j+1

�

2b

j

k

3

(k � 1)

�O(1):

From this inequality (and from the fat that e

j+1

� 1 if b

j

� k) we dedue the

following inequality

b

j+1

� min

��

1�

2

k

3

(k�1)

�

b

j

+O(1); b

j

� k

�

: (42)

It is lear that, starting with b

0

= n, we stop after j = O(log n) steps. Now,

e(G) � e

[j℄

= n� b

j

� j(k � 1) = n�O(log n):

The theorem is proved.

Let us onsider the ase k = 3; note that T

3

ontains only 2 non-isomorphi

graphs, S

3

4

and T

3

:

E(S

3

4

) = f f1; 2; 3g; f1; 2; 4g; f1; 3; 4g g;

E(T

3

) = f f1; 2; 3g; f1; 2; 4g; f3; 4; 5g g:

Theorem 25 For any n � 4, sat(n;T

3

) = n� 2.

Proof. Let G be any T

3

-saturated graph on [n℄. Make a list of all edges of G

and, onseutively and as long as possible, merge together any two sets in the

list sharing at least 2 verties (that is, replae then by their union.) Call the

resulting sets C

1

; : : : ; C

l

� [n℄ omponents. Let v

i

= jC

i

j. De�ne the 2-graph H

on [n℄ by

E(H) = ffx; yg 2 [n℄

(2)

: fx; yg = E

1

4E

2

for some E

1

; E

2

2 E(G)g:

Consider any omponent C. It is easy to see by indution on jCj that C is

omposed of at least jCj � 2 edges of G.

Note that if E 2 E(H[C℄) then any E

1

; E

2

2 E(G) with E

1

4E

2

= E share 2

verties and so belong to the same omponent C

0

; but E � C

0

\C so neessarily

C

0

= C.

Claim 1 For every omponent C, �(H[C℄) � e(G[C℄) � 1.
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Let x 2 C be arbitrary. For eah fx; yg 2 E(H[C℄), hoose D

y

; E

y

2 E(G)

with D

y

4E

y

= fx; yg and E

y

3 y. If fx; zg is another edge of H[C℄ then

E

y

6= E

z

: indeed, otherwise D

z

4E

z

= fx; zg � D

y

and G ontains a forbidden

subgraph. Hene, d(x) � e(G[C℄) � 1 (we must have at one G-edge inident to

x) and the laim is proved.

Claim 2 If e(G[C℄) � jCj � 1 then for any x 2 [n℄ n C there is a omponent

C

0

3 x interseting C.

By Claim 1, there exists fa; bg 2 E(H [C℄). As x 62 C, E = fa; b; xg 62 E(G).

Consider a forbidden subgraph F reated by E. We are home if fa; xg or fb; xg is

overed by E

1

or E

2

, where E(F ) = fE;E

1

; E

2

g. If fa; b; yg 2 E(F ) then y 2 C

and the remaining edge of F ontains both x and y. Finally, if E

1

4E

2

� E

then, as fa; bg 62 E(H), x belongs to the omponent ontaining E

1

and E

2

whih

is the required one.

The laim is proved. In partiular, C

[l℄

= V (G).

Now, if every omponent C spans at least jCj � 1 edges then we are home:

by Claim 2 relabel omponents C

1

; : : : ; C

l

so that C

i

\C

[i�1℄

6= ;, i 2 [2; l℄, and

it is easy to show by indution on i that C

[i℄

is made of at least jC

[i℄

j � 1 edges,

whih gives e(G) � n� 1.

So, suppose that, for example, e(G[C

1

℄) = jC

1

j�2. If for every x 2 V (G)nC

1

,

there are two distint omponents ontaining x and interseting C

1

then are

home:

e(G) �

X

i2[l℄

(v

i

� 2) = v

1

� l � 1 +

X

i2[2;l℄

(v

i

� 1)

� v

1

� l � 1 +max(2l � 2; 2(n� v

1

)) � n� 2: (43)

So let C

2

be the only omponent ontaining some vertex x 62 C

1

and inter-

seting C

1

. Let fyg = C

1

\ C

2

. Let z 2 V (G) n C

[2℄

be arbitrary. (The below

argument works without any hanges if C

1

[ C

2

= V (G).)

If fx; zg � C

i

, for some i 2 [3; l℄, then, by the hoie of x, C

i

\ C

1

= ; and,

by Claim 2, there exists another omponent through z interseting C

1

.

If no omponent ontains both x and z then, for every y

0

2 C

1

n fyg,

E = fx; y

0

; zg 62 E(G) and onsidering a forbidden subgraph reated by E

we onlude that, for some i 2 [3; l℄, fy

0

; zg � C

i

(as fx; y

0

g annot lie within



6 SPECIFIC CLASSES 43

a omponent by the de�nition of x). As jC

1

j � 3, we have at least 2 distint

omponents ontaining z and interseting C

1

.

Now the argument similar to (43) shows that C

[3;l℄

is made of at least n �

jC

1

[ C

2

j edges, whih gives e(G) � n� 3.

Can we have e(G) = n� 3? If we have the equality then every C

i

, i 2 [3; l℄,

must interset C

1

[ C

2

in exatly one vertex and e(G[C

j

℄) = jC

j

j � 2, j 2 [l℄.

By Claim 1, there exists y

i

2 C

i

suh that fy; y

i

g 62 E(H), i = 1; 2. But

then fy; y

1

; y

2

g 62 E(G) (e.g. beause it intersets C

1

in two verties) and the

onsideration of a reated forbidden graph yields a omponent ontaining both

y

1

and y

2

. Hene, e(G) > n� 3 as required.

Remark. Our further analysis has not yet yielded any haraterization of the

ases of equality: we have got stuk onsidering di�erent ases and, even if we

had sueeded, the proof would have been rather long. Therefore, we present

only some other onstrutions whih we have disovered in our searh. First,

there is another minimum T

3

-saturated graph of order 7: let V (G) = [7℄ and

E(G) = f f1; 2; 5g; f1; 3; 6g; f1; 4; 7g; f2; 3; 4g; f5; 6; 7g g:

Also, onerning the m-sat-funtion, we have yet another onstrution with n�2

edges for any n � 6: add, to the pyramid P (2; n � 4; 2; 1) with basi verties

a; b, new verties x; y and new edges fx; y; ag and fx; y; bg.

6.4 K

m

-Saturated Graphs

Du�us and Hanson [DH86℄ onsider sat(n;K

m

; l) whih is the minimum size of

G 2 SAT(n;K

m

; l) = fG 2 SAT(n;K

m

) : Æ(G) � lg:

Of ourse, any K

m

-saturated graph G has minimal degree at least m� 2, so we

assume l � m� 1.

Du�us and Hanson [DH86℄ proved that, for n � 5, sat(n;K

3

; 2) = 2n�5 and,

for n � 10, sat(n;K

3

; 3) = 3n� 15. However, their general lower bound [DH86,

Theorem 2℄, whih states that sat(n;K

m

; l) �

l+m�2

2

n + O(1), is far from the

atual value. Trying to improve this bound, we showed that sat(n;K

m

; l) = ln+

O(

n log log n

log n

) for any �xed l � m�1. Later, we learned that Alon, Erd}os, Holzman

and Krivelevih [AEHK96, Theorem 2℄ showed that any G 2 SAT(n;K

m

) with
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O(n) edges has an independent set of size n � O(

n

log log n

), whih implies that

sat(n;K

m

; l) = ln + O(

n

log log n

). However, we deided to present our proof

beause it improves all these bounds and we think that our general Theorem 26

is of independent interest.

However, the question of Bollob�as [Bol95, p. 1271℄ whether sat(n;K

3

; l) =

ln+O(1) for any �xed l � 4, remains open.

Let us give a onstrution of G 2 SAT(n;K

m

; l) with ln+O(1) edges: take

G = K

m�3

+ K

l�m+3;n�l

whih has minimal degree l for n � 2l � m + 3.

The omplete bipartite graph K

l�m+3;n�l

does not ontain a triangle but the

addition of any new edge violates this; hene, G is K

m

-saturated.

To prove our lower bound we need some preliminaries. Given any d, de�ne

a

d�m+2

= 2 and, onseutively for j = d�m+ 1; d �m; : : : ; 1; 0,



j+1

= (m� 2)(a

j+1

� 1) + 1

b

j+1

= (m� 2)(

j+1

� 1) + 1

b

0

j+1

=

�

d�j�1

m�2

�

(b

j+1

� 1) + 1;

a

j

=

�

d�j�1

m�2

�

(b

0

j+1

� 1) + 2:

Finally, let a = (1 + 2(d� 1) + 2(d� 1)

2

)a

0

.

Given a K

m

-saturated graph G, let A denote the set of G-edges onneting

two verties of degree at most d in G:

A = ffx; yg 2 E(G) : d(x) � d; d(y) � dg:

The following theorem states that the size of A is bounded by a = a(d;m)

whih does not depend on n. Note that we do not impose any restrition on the

minimal degree of G.

Theorem 26 For any G 2 SAT(n;K

m

), m � 3, we have jAj < a.

Proof. Suppose, on the ontrary, that jAj � a.

We prove, by indution on j = 0; 1; : : : ; d � m + 2, that we an �nd the

following on�guration inG: a

j

-sets X

j

and Y

j

and j-sets U

j

and V

j

(all disjoint)

suh that (i)X

j

[Y

j

indues inG exatly a

j

edges whih form a perfet mathing

between X and Y and belong to A; (ii) �

U

j

[V

j

(x) = U

j

for any x 2 X

j

and

�

U

j

[V

j

(y) = V

j

for any y 2 Y

j

.
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For j = 0 (when U

0

and V

0

are empty), we take, one by one, edges from

A. One we have seleted an edge E 2 A, ross out all inident to E edges (at

most 2(d � 1) edges) and their neighbouring edges (of whih at most 2(d � 1)

2

an belong to A). Hene, we an build an indued mathing of size at least

jAj=(1 + 2(d � 1) + 2(d � 1)

2

) � a

0

as required.

Suppose that j 2 [0; d �m+ 1℄ and we have X

j

, et., onstruted. Choose

x 2 X

j

; it has already got j+1 neighbours in G: the neighbour y 2 Y

j

plus all j

verties of U

j

. LetN

x

denote the remaining neighbours of x; thus jN

x

j � d�j�1.

For any z 2 Y

j

distint from y, the addition of the edge fx; zg must reate a

opy of K

m

, say on a set D

z

[ fx; zg. Now, D

z

� �(x) \ �(z) � N

x

.

Thus some set D

z

, z 2 Y

j

n fyg, appears at least b

0

j+1

= d(a

j

� 1)=

�

d�j�1

m�2

�

e

times; suppose it is D 2 N

(m�2)

x

whih equals D

z

for z 2 B

0

� Y

j

n fyg, jB

0

j =

b

0

j+1

. In a similar manner, we try to onnet y to the X

j

-mathes of B

0

-verties

and �nd a set E 2 N

(m�2)

y

spanning the omplete graph and onneted to every

z from a set B � X

j

mathed into B

0

of ardinality b

j+1

= db

0

j+1

=

�

d�j�1

m�2

�

e.

Clearly, no z 2 B an be onneted to every vertex of D; otherwise D, z

and the math of z in B

0

span K

m

. Therefore, some v 2 D is not onneted

to at least 

j+1

= d

b

j+1

m�2

e verties of B; let C � B onsist of all suh verties.

Similarly, we an �nd u 2 E, not onneted to an a

j+1

-set Y

j+1

mathed into C.

Of ourse, u 6= v. Now, let U

j+1

= U

j

[fug, V

j+1

= V

j

[fvg, and let X

j+1

� X

j

onsist of the mathes of Y

j+1

, whih ompletes our indution.

At the end, we try to apply our argument again, for j = d � m + 2. We

obtain that x 2 X

j

has at least 1+j+(m�2) > d neighbours, whih ontradits

the fat that fx; yg 2 A, where y is the Y

j

-math of x.

Now we are ready to improve the result of Alon et al [AEHK96, Theorem 2℄

mentioned above. Let �(G) denote the maximal size of independent Y � V (G).

Lemma 27 For any G 2 SAT(n;K

m

) with O(n) edges, we have

�(G) = n�O

�

n log logn

logn

�

:

Proof. Suppose e(G) � Cn. Let d =

" log n

log log n

for some �xed " > 0 and let

X = fx 2 V (G) : d(x) > dg. Now, djXj=2 � e(G) � Cn implies that

jXj �

2Cn log logn

" log n

:
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By Theorem 26, Y = V (G)nX spans at most a � n

2"(m�2)+o(1)

edges. Removing

at most a verties we an make Y independent; it has the required size if " <

1

2(m�2)

.

Clearly, e(G) � �(G)Æ(G). Therefore, Lemma 27 implies the following re-

sult.

Theorem 28 For any �xed l � m� 1, sat(n;K

m

; l) = ln+O(

n log log n

log n

).



Part II

Weakly Saturated Hypergraphs

7 Introdution

In this part we move to studying weakly-saturated graphs. They are briey

mentioned in Setion 1 whih also ontains an example how suh a notion an

naturally appear in real-life problems.

Let us give some basi de�nitions, desribe what is known about the w-sat-

funtion, and indiate whih new results are obtained in this part.

7.1 De�nitions

Let F be a family of forbidden r-graphs. An r-graph G of order n is alled

weakly F-saturated, denoted G 2 w-SAT(n;F), if we an onseutively add all

missing edges to G so that eah time we add an edge at least one new forbidden

subgraph appears. Suh an ordering of E(G) is alled F-proper. Equivalently,

G 2 w-SAT(n;F) if the weak losure Cl

F

(G) is the omplete r-graph on V (G).

(The weak losure is obtained by taking the iterated (strong) F -losure (de�ned

in Subsetion 4.4) until it stabilizes: Cl

F

(G) = Cl

�

F

(:::(Cl

�

F

(G)):::).) We are

generally interested in

w-sat(n;F) = minfe(G) : G 2 w-SAT(n;F)g:

Note that we do not require that G is F -admissible as this does not a�et

w-sat(n;F): ifG 2 w-SAT(n;F) ontains a forbidden subgraph F � G, then the

graph obtained from G by the removal of any F -edge is still weakly F -saturated,

so G annot be minimal. Clearly, w-sat(n;F) � m-sat(n;F) � sat(n;F).

If the forbidden family onsists of only one member, F = fFg, then we use

the shortuts w-SAT(n; F ) = w-SAT(n;F), et.

7.2 Survey

Let us give a short survey of w-sat-type results. Unfortunately, not muh is

known about the w-sat-funtion.
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Tuza [Tuz92℄ showed that, for any �xed r-graph F ,

w-sat(n; F ) = �(n

s(F )

): (44)

Here s(F ) 2 [0; r � 1℄ is what he alls the loal sparseness of F :

s(F ) = minfs(E) : E 2 E(F )g; (45)

where the sparseness of an edge E 2 E(F ) is the smallest natural number s for

whih there is an A � E with jAj = s + 1 suh that A � E

0

2 E(F ) implies

E

0

= E.

Alon [Alo85℄ proved that, for any �xed 2-graph F , the ratio w-sat(n; F )=n

tends to a limit as n!1.

Apparently, w-sat-type problems were �rst onsidered by Bollob�as [Bol67℄

who made a onjeture about the value of w-sat(n;K

2

m

). This onjeture was

proved by Frankl [Fra82℄ and by Kalai [Kal84, Kal85℄; the result is impliit in

Lov�asz [Lov77℄; see also Alon [Alo85℄. They proved that

w-sat(n;K

r

m

) =

�

n

r

�

�

�

n�m+ k

r

�

; n � m > k: (46)

In fat, Alon [Alo85℄ proved a more general result: he omputed the w-sat-

funtion for K

r

1

m

1


 : : : 
 K

r

t

m

t

, where 
 denotes the join operator de�ned in

Setion 12. (A di�erent proof of Alon's result is presented by Yu [Yu93℄.)

Kalai [Kal85℄ showed that, for the omplete bipartite graph K

st

,

w-sat(n;K

st

) � (s� 1)n�

�

s� 1

2

�

; 2 � s � t; (47)

whih is sharp for s = t and n � 3s� 2.

Kalai [Kal85℄ also proved that, for the wheel W

m

= v + C

m

, we have

w-sat(n;W

m

) � 2n� 3; (48)

while it is easy to show that sat(n;W

m

) � 2n�3+", where " = 0 if m � n�2 is

odd and " = 1 if m is even or if m = n� 1, f. Theorems 49{51 and Lemma 59.

Tuza [Tuz88, Conjeture 7℄ onjetured that

w-sat (n;H

r

(r + 1; l)) =

�

n� r + l � 2

l � 2

�

n � r + 1 � l � 3; (49)
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where the uniform family H

r

(m; l) onsists of all r-graphs of order m and size

l. Clearly, H

r

(r + 1; r + 1) = fK

r

r+1

g, so (46) implies (49) for l = r + 1. The

ase l = 3 of Tuza's onjeture was settled by Erd}os, F�uredi and Tuza [EFT91℄.

These were perhaps all known results on w-sat(n;F) for non-trivial spei�

instanes of F .

7.3 Our Approah

The harateristi feature of w-sat-type problems is that, given a partiular

forbidden family F , it is usually fairly easy to ome up with a orret example

of G

n

2 w-SAT(n;F), whih gives us an upper bound on w-sat(n;F). (And,

as a rule, we have many di�erent extremal graphs.) However, it is usually very

hard to prove the mathing lower bound. So, tehniques for establishing lower

bounds are of importane.

The notion of dependene turned out to be useful; for example, all proofs

of (46) exploit some form of it. This approah was most learly formulated by

Kalai [Kal85℄: if we have a matroid M on [n℄

(r)

suh that any F 2 F is an

M-hain, then

w-sat(n;F) � R

M

([n℄

(r)

); (50)

the rank ofM. (An r-graph F is anM-hain if, for any embedding V (F ) � [n℄,

any edge E 2 E(F ) lies in the M-span of E(F ) n fEg.) See Lemma 33 for a

proof of (50).

We base our approah (whih is desribed in detail in Setion 9) on this idea;

we exploit what we all gross and ount matroids.

Gross matroids are onstruted by means of exterior algebra. They were

onsidered by Kalai [Kal90℄ (but for other purposes); we de�ne them in Sub-

setion 8.1. In brief, the gross matroid G

G

of an r-graph G is a matroid on

r-uniform set systems with G being a base; thus its rank is e(G). Now, if every

F 2 F is a G

G

-hain, then

w-sat(n;F) � R

G

G

([n℄

(r)

): (51)

The lower bound (51) is said to be g-proved. If this method gives the atual

value of w-sat(n;F), then we say that F admits a g-proof for n. A related

method (g

0

-proof) is also introdued.
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The prinipal diÆulty of the matroid approah (50) is that it is not lear

at all how to searh for a suitable matroid M. However, if we have G 2

w-SAT(n;F) onjetured to be minimal, then G

G

is a good andidate forM. If

eah forbidden graph is a G

G

-hain, then, by (51), we know w-sat(n;F) exatly.

In this ase we say that the pair (F ; G) admits a G-proof.

Our ount matroid is a general and natural extension of the onstrution

by White and Whiteley [WW84℄, see Subsetion 8.2. For example, our ount

matroids admit many polynomials in n as the rank funtion while the original

de�nition yielded linear funtions only. If M in (50) is a ount matroid, then

the lower bound (50) is said to be -proved. If the bound is sharp, then F admits

a -proof for n. Here as well, if we have a onjeture on w-sat(n;F), then there

is one partiular ount matroid whih is worth looking at; if this method works,

then we have a C-proof.

Unfortunately, our approahes do not always sueed: we an indiate many

onrete pairs (F ; G) not admitting a C/G-proof with G 2 w-SAT(n;F) being

minimal. However, using these tehniques we have managed to prove many new

results whih we are going to desribe now.

Given sequenes of integers s = (s

1

; : : : ; s

t

) and r = (r

1

; : : : ; r

t

), the pyramid

P (s; r) is the r-graph, r = r

1

+ : : :+ r

t

, with vertex set being the disjoint union

S

1

[ : : :[S

t

, jS

i

j = s

i

, and with the edge set onsisting of those r-subsets whih,

for every i 2 [t℄, interset S

1

[ : : : [ S

i

in at least r

1

+ : : : + r

i

verties. The

notion of a pyramid is rather general: we obtain, as partial ases,

K

r

m

= P (m; r);

S

r

m

= P (1;m� 1; 1; r);

K

l

+E

m

= P (l;m; 1; 1);

H

r

(r + 1; l) = P (r � l + 1; l; r � l + 1; l � 1);

and more. Instanes of pyramids appear expliitly quite often in the literature.

Applying gross matroids, we ompute w-sat(n; P (s; r)) for all feasible sets of

parameters n, s and r, see Subsetion 10.1. Among other things, this implies (46)

and omputes w-sat(n;H

r

(r+1; l)), on�rming the formula (49) onjetured by

Tuza [Tuz88, Conjeture 7℄.

Erd}os, F�uredi and Tuza [EFT91℄ asked for a desription of all minimum

weakly H

r

(r+ 1; 3)-saturated graphs. In general, G/g/g

0

-proofs do not provide
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any good haraterization of the ases of equality, but our Theorem 44 does

this for H

r

(r + 1; 3) by providing a di�erent (ombinatorial) proof whih em-

ploys some ideas from [EFT91℄. (In fat, H

r

(r + 1; 3) admits a C-proof.) In

Setion 10.2 we provide a onstrution of G 2 w-SAT(n;H

r

(m; l)), for all n,

k, l and m, whih we onjeture to be minimal. Applying ount matroids, we

determine more values of w-sat(n;H

r

(m; l)). Applying the g

0

-proof tehnique,

we ompute exatly w-sat(n;H

2

(m; l)) for all possible n, m and l and obtain

some asymptoti results. Also, we observe that we have inidentally omputed

(with a g

0

-proof) the w-sat-funtion for any initial segment of [n℄

(2)

in the olex

order.

Our more general results of Setion 11 imply in partiular that if (F;G)

admits a G/g/g

0

-proof and every r � 1 verties of F are overed by an edge,

then the pair (n(F ); n(G)) admits a G/g/g

0

-proof. (The one n(F ) of an k-

graph F is obtained by adding to F a new vertex v and all r-edges ontaining v.)

In the lass of 2-graphs, for example, we have n

l

(F ) = K

l

+F . The following

2-graphs are shown to admit a G/g/g

0

-proof: omplete graphs, stars, odd yles,

initial olex-segments of [n℄

(2)

, disjoint edges, paths (more generally, almost

every forest or tree), and some others; please refer to Subsetion 10.3 for details.

Therefore, we are able to ompute the w-sat-funtion for K

l

+ F , where F is

any of these graphs.

Note that n(K

r

m

) = K

r

m+1

and K

r

r

, the single edge, trivially admits a G-

proof as w-sat(n;K

r

r

) = 0. This shows that omplete graphs admit a G-proof

and gives another proof of (46).

In Setion 12 we de�ne the 
-operator, whih we all join, and prove among

other things that if every pair (F

i

; G

i

), i 2 [t℄, admits a G/g-proof, then so does

the pair (F

1


 : : :
F

t

;G), where G = G

1


 : : :
G

t

. As omplete graphs admit

a G-proof, the omputation of the w-sat-funtion for joins of omplete graphs

by Alon [Alo85℄ (another proof is presented by Yu [Yu93℄) is a speial instane

of our result. By applying the join operator, we an indiate many new graphs

for whih we an ompute the w-sat-funtion exatly.



8 MATROIDS 52

8 Matroids

Here we de�ne gross and ount matroids and establish their basi properties.

(For an introdution to matroid theory, we refer the reader to the texts by

Welsh [Wel76℄ or Oxley [Oxl92℄.) Our approah to w-sat-type problems, whih

exploits these notions, is desribed in Setion 9.

8.1 Gross Matroids

Here we de�ne the notion of a gross matroid by means of exterior algebra. Some

bakground in multilinear algebra is inluded; for a more omprehensive treat-

ment of the topi, the reader may onsult Bourbaki [Bou74℄ or Marus [Mar75℄.

8.1.1 Exterior Algebra

Let V be an n-dimensional real vetor spae with a basis e = fe

1

; : : : ; e

n

g. Its

exterior algebra

V

V is the 2

n

-dimensional vetor spae with the formal basis

(e

A

)

A�[n℄

. (We identify e

i

with e

fig

and e

;

with the salar 1 2 R.) It omes

equipped with an assoiative bilinear ^-produt whih is ompletely determined

by

e

i

^ e

j

= �e

j

^ e

i

; i; j 2 [n℄;

e

v

1

^ : : : ^ e

v

k

= e

fv

1

;:::;v

k

g

; 1 � v

1

< : : : < v

k

� n:

Let (e

�

A

)

A�[n℄

be the dual basis of (e

A

)

A�[n℄

. We naturally identify

V

(V

�

) and

(

V

V )

�

so that e

�

v

1

^ : : : ^ e

�

v

k

orresponds to e

�

fv

1

;:::;v

k

g

, 1 � v

1

< : : : < v

k

� n.

Let f = (f

1

; : : : ; f

n

) be another basis of V ; in the obvious way we de�ne f

A

,

f

�

A

for A � [n℄, et. By M = (�

ij

)

i;j2[n℄

we denote the n� n-matrix satisfying

f

�

=Me

�

, that is,

f

�

i

= �

i1

e

�

1

+ : : :+ �

in

e

�

n

; i 2 [n℄:

Assume that f is in the generi position with respet to e, that is, the entries

of M are n

2

transendentals algebraially independent over the rationals. An

alternative de�nition is to assume that the entries are n

2

independent variables;

any equation we will onsider an be redued to the form P = 0 for some

polynomial P in the �'s with integer oeÆients and we agree that the statement

is true if and only if P is the zero polynomial.
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Let

V

i

V be the subspae of

V

V spanned by (e

A

)

A2[n℄

(i)

. We denote

hg

�

; hi = g

�

(h); g

�

2

V

V

�

; h 2

V

V:

For g

�

2

V

V

�

, h 2

V

V , the left interior produt g

�

xh 2

V

V is de�ned by

hu

�

; g

�

xhi = hu

�

^ g

�

; hi; for all u

�

2

V

V

�

.

Thus, if g

�

2

V

d

V

�

and h 2

V

d+l

V then g

�

xh 2

V

l

V , d; l � 0. One an easily

hek that x is a bilinear funtion, suh that u

�

x (g

�

xh) = (u

�

^ g

�

)xh and,

for the basis vetors, we have:

e

�

A

x e

B

=

(

�e

BnA

; if A � B,

0; if A 6� B.

(The atual signs of �1-oeÆients do not interest us at all.) Note that by the

generality of f we have hf

�

F

; e

E

i 6= 0 for any E;F 2 [n℄

(r)

. Moreover, for any

jEj = r, f 2

V

i

V and g 2

V

r�i

V , we have

he

�

E

; f ^ gi =

X

A2E

(i)

�

A;E

he

�

A

; fi � he

�

E�A

; gi; (52)

where �

A;E

= �1 depending on A and E.

For h 2

V

V , its support is de�ned by

supp(h) = fA � [n℄ : e

�

A

(h) 6= 0g: (53)

That is, to �nd supp(h), write h =

P

A�[n℄



A

e

A

and take those A � [n℄ for

whih the orresponding oeÆient is non-zero. If we take the support in the

basis f we emphasize this by adding a subsript:

supp

f

(h) = fA � [n℄ : f

�

A

(h) 6= 0g;

while the supp alone always means the support relative to e as de�ned by (53).

Note that the anellation (g

�

^e

�

A

)x (h^e

A

) = g

�

xh (whih is not generally

orret) an be applied if, for example, eah B 2 supp(h) is disjoint from A.

We will use identities like this a few times without detailed explanations. (The

best way to verify them is to hek them for the basis vetors.)
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8.1.2 De�nitions

Let us desribe how to onstrut the gross matroid G

G

of an r-graphG of order n.

Identify the verties of G with the basis e = fe

1

; : : : ; e

n

g of V . Let Z �

V

r

V

be de�ned by the following linear relations:

Z = fh 2

V

r

V : f

�

E

xh = 0 for all E 2 E(G)g: (54)

As (f

�

E

)

E2[n℄

(r)

forms a basis for

V

r

V

�

, we onlude that the e(G) relations

de�ning Z are linearly independent so dimZ =

�

n

r

�

� e(G) and, in fat, Z is

spanned by ff

E

: E 2 E(G)g.

We de�ne the gross matroid G

G

on [n℄

(r)

so that an r-graph F on [n℄ is

dependent if, for some oeÆients 

E

(not all zero), we have

P

E2E(F )



E

e

E

2 Z.

To verify this ondition we have to �nd a non-zero solution (

E

)

E2E(F )

of the

following system of e(G) linear equations:

X

E2E(F )



E

f

�

D

x e

E

= 0; D 2 E(G): (55)

By M(G;F ) we denote the e(G) � e(F )-matrix orresponding to (55). The

olumns of M(G; [n℄

(r)

) provide a representation of G

G

. Note that the matroid

G

G

does not depend on the hoie of generi f . Also, G

G

is a symmetri matroid,

that is, for any permutation � : [n℄ ! [n℄, A � [n℄

(r)

is G

G

-independent if and

only if �

0

(A) is, where �

0

is the indued ation on [n℄

(r)

. Therefore, we an

apply the notion of G

G

-dependene to an r-graph F with any vertex set. (If

v(F ) > v(G), we add isolated verties to G.)

This onstrution is not new; Kalai [Kal90℄ used it to onstrut symmetri

matroids with a given growth polynomial. Also, in the partial ase G = P

k;n�k

,

the matroid G

G

is exatly Kalai's [Kal85℄ k-hyperonnetivity matroid on [n℄

(2)

whih was used to ompute the w-sat-funtion for omplete graphs. These two

papers by Kalai were the starting points of our researh on gross matroids.

Clearly, the rank of G

G

is odim(Z) = e(G). It is easy to show that G is a

base of G

G

. Indeed, the determinant ofM(G;G) is a polynomial in the �'s whih

assumes value 1 whenM (and thenM(G;G)) is the identity matrix. Therefore,

the determinant is non-zero for a generi M and the olumns of M(G;G) are

independent, whih proves the laim.
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An r-graph F is a G

G

-hain if every E 2 E(F ) is dependent on E(F ) n fEg

in G

G

, that is, for some h 2 Z and real 's, we have

e

E

= h+

X

D2E(F )nfEg



D

e

D

: (56)

This is easily seen to be equivalent to the existene of h 2 Z with supp(h) =

E(F ). To verify the last ondition we have to �nd a solution (

E

)

E2E(F )

with

all entries non-zero of the system (55).

8.2 Count Matroids

Here we present the de�nition of a ount matroid and establish some its prop-

erties. We generalize naturally the original de�nition of White and White-

ley [WW84℄ to obtain a onsiderably wider family of matroids for whih we

preserve the same name. For example, our ount matroids admit many poly-

nomials in n as the rank funtion while the original de�nition is on�ned to

linear funtions only. An advantage of ount matroids is that they are de�ned

in purely ombinatorial terms and it is usually easy to identify their independent

sets and iruits.

Count matroids are helpful in omputing the w-sat-funtion, as is desribed

in Setion 9. We hope that they will have many other interesting appliations;

one is presented by Whiteley [Whi89℄.

8.2.1 De�nitions

A funtion � : X

(<1)

! R (from �nite subsets of X to the reals) is alled

integral if it is integer-valued, inreasing if �(A) � �(B) whenever A � B and

submodular if

�(A [B) + �(A \B) � �(A) + �(B); A;B 2 X

(<1)

: (57)

Given � : X

(<1)

! R, we say that non-empty A � X is �-balaned (or just

balaned if � is understood) if jAj � �(A) + 1 but, for every proper B � A (that

is B 6= ; and B 6= A), we have jBj � �(B).

Edmonds and Rota [ER66℄ observed the following result. (The proof is easy

and an be found, for example, in Oxley [Oxl92, Proposition 12.1.1℄.)
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Lemma 29 For any integral inreasing submodular funtion � : X

(<1)

! R,

the family of �-balaned sets satis�es the iruit axioms and therefore de�nes a

matroid on X.

We are interested in de�ning a matroid on X = [n℄

(r)

. (Then 2

X

is identi�ed

with the set of r-graphs on [n℄.) White and Whiteley [WW84℄, see also [Whi96℄,

introdued a family of ount matroids on [n℄

(r)

by de�ning

�(H) = a

1

j [

E2H

Ej+ a

0

; H � [n℄

(r)

;

for some �xed a

1

and a

0

.

We have found it possible to generalize this onstrution in the following

way. For H � [n℄

(r)

, we denote p

i

(H) = j�

i

Hj, where

�

i

H = fD 2 [n℄

(i)

: D � E for some E 2 Hg; i 2 [0; r℄:

For example, p

r

(H) = e(H) and p

1

(H) = j [

E2H

Ej.

We onsider linear funtions, that is, funtions de�ned by

L(H) = a

0

+

r�1

X

i=1

a

i

p

i

(H); H � [n℄

(r)

; (58)

for some onstants a

i

2 R, i 2 [0; r � 1℄.

Let us see when the funtion L satis�es the above properties for X = N

(r)

.

It is easy to see that L is integral if and only if all oeÆients are integers.

Submodular and inreasing linear funtions are haraterized by the following

two lemmas whih are of independent interest.

Lemma 30 A linear funtion L : X

(<1)

! R is inreasing if and only if

r�1

X

j=i

a

j

�

r

j

�

� 0; i 2 [r � 1℄: (59)

Proof. Suppose that L is inreasing. Given i 2 [r � 1℄, onsider the r-graph

H = fE 2 [n℄

(r)

: jE \ [r℄j < ig, n � 2r � i+ 1. We must have

L(H [ f[r℄g) � L(H) =

r�1

X

j=i

a

j

�

r

j

�

� 0;

whih is exatly inequality (59).
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On the other hand, suppose that L satis�es (59). Clearly, it is enough to

show that, for any �nite H � X and E 2 X nH, we have L(H) � L(H [ fEg).

Let C

i

= �

i

(H) \ E

(i)

, 

i

= jC

i

j=

�

r

i

�

, D

i

= E

(i)

n �

i

(H) and d

i

= jD

i

j=

�

r

i

�

,

i 2 [r� 1℄. Clearly, for any i and j, 1 � i < j � r� 1, the set system D

i

[C

j

is

an antihain in 2

E

. By the LYM inequality, d

i

� 1� 

j

= d

j

, that is,

0 � d

1

� : : : � d

r�1

� 1: (60)

It is easy to hek that

L(H [ fEg) � L(H) =

r�1

X

i=1

a

i

d

i

�

r

i

�

: (61)

Consider the problem of minimizing (61) given only the onstraints (60). A

moment's thought reveals that there exists i 2 [0; r�1℄ suh that the extremum

is ahieved when d

1

= : : : = d

i

= 0 and d

i+1

= : : : = d

r�1

= 1. But then (61) is

non-negative by (59), so L is inreasing.

Lemma 31 A linear funtion L : X

(<1)

! R is submodular if and only if

a

i

� 0, i 2 [r � 1℄.

Proof. The trivial onsideration shows that, for any i 2 [r℄ and H;G � [n℄

(r)

,

we have p

i

(H) + p

i

(G) � p

i

(H [ G) + p

i

(H \ G). This implies (57) if every

oeÆient of L (exept perhaps a

0

) is non-negative.

On the other hand, suppose that L is submodular. Given any i 2 [r � 1℄

onsider the following set systems. Choose a `large' m-set Z � N and (r�i)-sets

D

Y

and E

Y

, indexed by Y 2 Z

(i)

, so that all 2

�

m

i

�

+1 seleted sets are disjoint.

Let

H = fD

Y

[ Y : Y 2 Z

(i)

g

G = fE

Y

[ Y : Y 2 Z

(i)

g:

Clearly, we have p

j

(H \G) = 0, j 2 [r � 1℄, as H \G = ;, and

p

j

(H) = p

j

(G) =

8

<

:

�

m

i

��

r

j

�

; i < j � r � 1;

�

m

i

�

�

�

r

j

�

�

�

i

j

�

�

+

�

m

j

�

; 1 � j � i;

p

j

(H [G) =

8

<

:

2

�

m

i

��

r

j

�

; i < j � r � 1;

2

�

m

i

�

�

�

r

j

�

�

�

i

j

�

�

+

�

m

j

�

; 1 � j � i:
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Routine alulations show that

L(H) + L(G)� L(H [G)� L(H \G) = a

i

�

m

i

�

+O(m

i�1

);

whih, by the submodularity of L, implies a

i

� 0.

Thus we restrit our attention to integer oeÆients satisfying

a

i

� 0; i 2 [r � 1℄; and

r�1

X

j=0

a

j

�

r

j

�

� 1; (62)

in whih ase, by Lemma 29, L de�nes a matroid N

n

L

on [n℄

(r)

, n � r, whih we

still all a ount matroid. The seond ondition in (62) exludes the degenerate

ase when already a single edge is dependent. Obviously, N

n

L

is a symmetri

matroid, that is, for any permutation � of the vertex set [n℄, H � [n℄

(r)

is

independent if and only if �

0

(H) is, where �

0

denotes the indued ation on

[n℄

(r)

. Clearly, the nested sequene (N

n

L

)

n�r

is ompatible so we do not usually

speify n.

Atually, N

L

admits an alternative de�nition if a

0

� 0. Let X = [n℄

(r)

and

let Y be the disjoint union of a

i

opies of [n℄

(i)

, i 2 [0; r�1℄. De�ne the bipartite

graph G on X [ Y by onneting E 2 X to all elements of Y orresponding to

subsets of E 2 [n℄

(r)

. (For example, every vertex inX has degree

P

r�1

i=0

a

i

�

r

i

�

.) It

is easy to see that the transversal matroid of G, in whih H � X is independent

if and only if H an be mathed into Y , equals N

n

L

.

Any transversal matroid is representable over �elds of every harateristis,

see Pi� and Welsh [PW70℄; this applies to all ount matroids with a

0

� 0. We

do not know if N

L

is representable for a

0

< 0.

8.2.2 Rank

Let us determine the rank of N

n

L

.

Theorem 32 Let L satisfy (62). Then R(N

n

L

) = min

��

n

r

�

; L([n℄

(r)

)

�

.

Proof. We may assume thatN = N

n

L

ontains a non-trivial iruit for otherwise

R(N ) =

�

n

r

�

� L([n℄

(r)

) and our laim is true.

Let an r-graph G form a base for N .
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Claim 1 There exists an ordering of G = fE

1

; : : : ; E

s

g suh that

F

[j�1℄

\ F

j

6= ;; j 2 [2; s℄; (63)

where F

i

denotes the (unique and, by (62), non-empty) subgraph of G suh that

F

i

+E

i

is a iruit. (Also we denote F

I

= [

i2I

F

i

, F +E = F [ fEg, et.)

To show the laim hoose arbitrary E

1

2 G and, indutively, take for E

j

any

available edge satisfying (63). Suppose, on the ontrary, that we are stuk after

having hosen E

1

; : : : ; E

j�1

, some j 2 [2; s℄. Let G

1

= F

[j�1℄

and G

2

= G nG

1

.

Both G

1

and G

2

are non-empty. Clearly, for any E 2 G we must have either

F � G

1

or F � G

2

where F + E is the iruit with F � G. Thus, if H

i

is the

losure of G

i

, i = 1; 2, then H

1

= G

1

+E

[j�1℄

and H

2

= [n℄

(r)

nH

1

.

Let C be any N -iruit. We laim that C annot interset both H

1

and H

2

.

Suppose not. Let E 2 C \ H

1

. As G

2

spans H

2

, the rank of (C \ H

1

) [ G

2

wo not derease if we remove E. Therefore, there is a iruit C

0

3 E suh that

C

0

\ H

1

� C and C

0

\ H

2

� G

2

. Likewise, �xing some D 2 C

0

\ G

2

6= ;, we

obtain a iruit C

00

� G whih ontradits the independene of G.

Note that if we replae C by the r-graph C

0

omposed of the �rst e(C)

elements of [n℄

(r)

in the olex order, then p

i

(C) will not inrease by the Kruskal-

Katona Theorem [Kru63, Kat66℄, so e(C

0

) > L(C

0

). If C

0

is not a iruit, take

any proper subiruit and repeat. The �rst two edges, [r℄ and [2; r + 1℄, of the

eventual iruit C

0

(whih by (62) has size at least 2) share r�1 verties and fall

into the same half of [n℄

(r)

= H

1

[H

2

. But every two edges an be onneted

by a sequene of edges suh that any two neighbours share r � 1 verties. By

the symmetry of N , one of the halves must be empty, whih is a ontradition

proving Claim 1.

Choose an ordering guaranteed by Claim 1. Let us prove, by indution on

j, the following.

Claim 2 L(F

[j℄

+E

[j℄

) = L(F

[j℄

) = e(F

[j℄

), j 2 [s℄.

First we note that, for every i 2 [s℄,

e(F

i

) � L(F

i

) � L(F

i

+E

i

) � e(F

i

+E

i

)� 1 = e(F

i

);

whih implies L(F

i

+ E

i

) = L(F

i

) = e(F

i

); in partiular, our laim is true for

j = 1. Now we argue as follows:

L(F

[j℄

+E

[j℄

) � L(F

[j�1℄

+E

[j�1℄

) + L(F

j

+E

j

)� L(F

[j�1℄

\ F

j

)
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� e(F

[j�1℄

) + e(F

j

)� e(F

[j�1℄

\ F

j

) = e(F

[j℄

):

In the above transformations, we use the submodularity of L, indution and the

inequality L(F

[j�1℄

\ F

j

) � e(F

[j�1℄

\ F

j

); the last inequality is valid beause

F

[j�1℄

\ F

j

is independent and non-empty. (Atually, Claim 1 ould be skipped

if a

0

� 0.) Now, Claim 2 follows.

Clearly, F

[s℄

= G. Therefore, L([n℄

(r)

) = L(G) = e(G) = R(N

n

L

).

Remark. Kalai [Kal90℄ showed that, for any symmetri matroid M on N

(r)

,

R

M

([n℄

(r)

) is a polynomial in n for all suÆiently large n and haraterized all

possible polynomials. Unfortunately, these are not on�ned to L([n℄

(r)

) with

some L satisfying (62). For example, the k-hyperonnetivity matroid on N

(2)

introdued by Kalai [Kal85℄ gives the polynomial kn �

�

k+1

2

�

. It would be of

interest to have a purely ombinatorial onstrution (like that of a ount ma-

troid) produing every possible growth polynomial. (Matroids in [Kal90℄ are

onstruted by means of multilinear algebra.)

9 Proof Tehniques

Here we present a few di�erent methods for proving lower bounds on w-sat(n;F).

Of these, C-proofs and G-proofs an be viewed as suÆient riteria for G

n

2

w-SAT(n; F ) to be of the minimal size. Our approah is based on gross and

ount matroids whih are de�ned in Setion 8.

The links with matroid theory are not surprising insofar as the de�nition

of weak saturation suggests some kind of dependene; loosely speaking, an F -

proper addition of edges orresponds to losure and the notion of a minimum

weakly saturated graph resembles that of a base.

The following observation, due to Kalai [Kal85℄, is ruial to our work. Sup-

pose that we have a matroidM on [n℄

(r)

and an r-graph F whih is anM-hain,

that is, for every embedding V (F ) � [n℄, every edge E 2 E(F ) � [n℄

(r)

is de-

pendent on E(F )nfEg. Then we laim that the size of any weakly F -saturated

graph G on [n℄ is at least R

M

([n℄

(r)

), the rank of M. Indeed, let E

1

; : : : ; E

k

be an F -proper ordering of E(G). By the de�nition, for every i 2 [k℄, there

is an F -subgraph of G

i

= G + E

1

: : : + E

i

ontaining E

i

. Thus, E

i

lies in the
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M-losure of G

i�1

, whih indutively implies that G spans [n℄

(r)

inM, and the

laim follows.

Clearly, the above argument an be applied to a family F of forbidden r-

graphs.

Lemma 33 (Kalai) We have

w-sat(n;F) � l; (64)

if we an �nd a matroid M on [n℄

(r)

suh that every F 2 F is an M-hain and

R

M

([n℄

(r)

) � l.

In this ase we say that we an m-prove the inequality (64). If, furthermore,

M is a ount matroid, a gross matroid, or a representable matroid, then (64)

is said to be -proved, g-proved, or r-proved orrespondingly. Of ourse, if there

exists G 2 w-SAT(n;F) with e(G) = l, then G is extremal. In this ase we

say that F admits an m-proof for n. In the obvious way we de�ne a -proof, a

g-proof, and an r-proof.

Given a matroid M on [n℄

(r)

and an r-graph F , let

D

M

(F ) = min

F�[n℄

(e(F )�R

M

(E(F ))) ;

that is, for every embedding F � [n℄, we ompute how many F -edges an be

removed without dereasing the M-rank of E(F ) and take the minimum over

all embeddings F � [n℄. For a family F of r-graphs, we de�ne

D

M

(F) = minfD

M

(F ) : F 2 Fg: (65)

The following re�nement of Lemma 33 is also useful.

Lemma 34 Suppose that, for some family F of r-graphs and a matroid M on

[n℄

(r)

, every F 2 F is an M-hain. Then,

w-sat(n;F) � R

M

([n℄

(r)

) +D

M

(F)� 1: (66)

Proof. As in Lemma 33, we onlude that E(G) spans [n℄

(r)

in M for any

weakly F -saturated graph G on [n℄. Consider the �rst edge E added to G. It

reates some forbidden F � [n℄; learly, E(F ) n fEg � E(G). Therefore, there
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are D

M

(F )�1 edges in G whih are dependent on the remaining edges and the

lemma follows.

We say that (66) is m

0

-proved. If M is a ount, gross, or representable

matroid, then we respetively 

0

-prove, g

0

-prove, or r

0

-prove (66). If the lower

bound in (66) is sharp, then we obtain an m

0

-proof. In the obvious way we

de�ne a 

0

-proof, a g

0

-proof, and an r

0

-proof.

The harateristi feature of w-sat-type problems is that, given F , it is usu-

ally fairly easy to ome up with a orret example of a weakly F -saturated graph

G (as a rule, there are many di�erent extremal graphs) and the harder part is

to prove that G is minimal. So, a typial problem is, given G 2 w-SAT(n;F),

to verify whether e(G) = w-sat(n;F), that is, we want to have some suÆient

and/or neessary onditions that a weakly F -saturated graph G has the mini-

mal number of edges. Even if there exists an m-proof, it is not obvious at all

how to searh for a suitable matroid.

However, the gross matroid of G seems a good andidate for M. If eah

element of F is a G

G

-hain, then we immediately onlude that G is extremal.

In this ase say that the pair (F ; G) admits a G-proof. Hene, the G-proof an

be viewed as a suÆient riterion for G 2 w-SAT(n; F ) to be of the minimal

size.

As gross matroids are representable, we have the following `hierarhy' of

proofs (and other impliations):

G-proof ) g-proof ) r-proof ) m-proof:

Unfortunately, gross matroids are not, in general, very easy to handle; it

takes some e�orts to identify their hains. Also, there are many examples of

eligible pairs whih do not aept a G-proof. For example, minimum weakly

K

2

3

-saturated graphs are trees, of whih only stars produe a G-proof. Besides,

G/g/g

0

-proofs do not provide an immediate haraterization of minimum weakly

saturated graphs, as usually there seems to be no easy ombinatorial desription

of the set of bases of a gross matroid.

However, many new results are proved here using gross matroids. Let us

prove one trivial lemma whih, when ombined with the results of Setions 11

and 12, has non-trivial onsequenes.
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Lemma 35 Let K = lK

r

r

be the union of l disjoint r-edges. Then G

K

is the

uniform matroid of rank l, that is, an r-graph F is independent in G

K

if and

only if e(F ) � l.

In partiular, for any family F of r-graphs and for any n with

�

n

r

�

� l, we

an g-prove that w-sat(n;F) � l, where l = minfe(F ) : F 2 Fg � 1.

Proof. Let us show, by indution on l, that any r-graph H of size l is G

K

-

independent. We may assume that E = [r℄ is an edge in both these graphs.

One an see that

det(M(K;H)) = ��

11

: : : �

rr

det(M(K

0

;H

0

)) + (other terms);

where H

0

and K

0

are obtained respetively from H and K by removing E and

none of the `other terms' ontains �

11

: : : �

rr

as a fator. By indution, we

onlude that det(M(K;H)) 6= 0, and the laim follows as the rank of G

K

is

e(K) = l.

Count matroids an be applied to w-sat-type problems in the following,

slightly di�erent, way. Suppose that, for a range of values of n, we have G

n

2

w-SAT(n;F) (onjetured to be extremal) suh that e(G

n

) is a polynomial in

n. Then we try to write expliitly the (unique, if it exists) ount matroid N

suh that R

N

([n℄

(r)

) = e(G

n

) and hek whether eah F 2 F is an N -hain. If

we sueed, then G

n

is indeed extremal and we have a C-proof.

This approah is usually less suessful than the one via gross matroids. Its

weaknesses are that we must have a guess for a number of values of n and that

not many polynomials are the growth polynomials of a ount matroid. But still

there are a few natural problems for whih, of the above approahes, only ount

matroids produe results, e.g. for some uniform families, see Subsetion 10.2.

10 Spei� Classes

Here we obtain various results for ertain partiular forbidden families.

10.1 Pyramids

Here we ompute the w-sat-funtion for pyramids, whih inludes a few inter-

esting results as partial ases: for example, this proves formula (49) onjetured
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by Tuza [Tuz88, Conjeture 7℄.

Let t be �xed. Suppose we are given a sequene r = (r

1

; : : : ; r

t

) of non-

negative integers and a sequene of disjoint sets S

1

; : : : ; S

t

of sizes s = (s

1

; : : : ; s

t

)

suh that r

[i℄

� s

[i℄

, i 2 [t℄. (Dealing with sequenes, we use suh shortuts as

r

I

=

P

i2I

r

i

and S

I

= [

i2I

S

i

, I � [t℄; we also assume r

0

= 0, S

0

= ;.)

The pyramid P = P (s; r) is the r-graph, r = r

[t℄

, on S = S

[t℄

suh that

E 2 S

(r)

is an edge of P if and only if, for every i 2 [t℄, we have jE \ S

[i℄

j � r

[i℄

.

Of ourse, this ondition is vauously true for i = t.

For example, for t = 1 we have omplete graphs; P (s

1

; s

2

; r

1

; r

2

) onsists of

those (r

1

+ r

2

)-subsets of S

1

[ S

2

whih interset S

1

in at least r

1

verties. As

a warning, we emphasize that pyramids are usual (not layered) r-graphs.

Without loss of generality we may assume that s

i

� r

i

, i 2 [t℄. If some r

i

exeeds s

i

then, letting r

0

= r exept r

0

i

= s

i

and r

0

i�1

= r

i�1

+ r

i

� s

i

(note that

i � 2 as r

1

� s

1

), we obtain the same pyramid P

0

= P . Indeed, r

[j℄

's do not

hange exept r

0

[i�1℄

= r

[i�1℄

+ r

i

� s

i

, so, trivially, P

0

� P . On the other hand,

E 2 E(P ) implies that

jE \ S

[i�1℄

j � jE \ S

[i℄

j � s

i

� r

[i℄

� s

i

= r

0

[i�1℄

;

and E 2 E(P

0

). Iterating the step as long as possible, we prove the laim.

Likewise we an get rid of r

i

= 0 by merging S

i

and S

i+1

together (or

removing S

t

if i = t).

Here we alulate w-sat(n; P ) by showing that pyramids admit a G-proof.

Note that we obtain the exat answer for all feasible values of the parameters

n, r and s. This result appears in [Pik99a℄.

Let us, for any n � s = s

[t℄

, provide a onstrution of G 2 w-SAT(n; P ).

Partition [n℄ = A

1

[ : : : [A

t+1

so that a

i

= jA

i

j = s

i

+ r

i�1

� r

i

, i 2 [t℄; thus

a

t+1

= jA

t+1

j = n�

t

X

i=1

(s

i

+ r

i�1

� r

i

) = n� s+ r

t

:

We also assume that our partition is onseutive, that is, in [n℄, any element of

A

i

omes before any element of A

j

whenever i < j.

Let E 2 [n℄

(r)

be an edge of G if and only if, for some i 2 [t℄, we have

jE \A

[i℄

j > r

[i�1℄

. Equivalently, the omplement of G is isomorphi to

P (a

t+1

; : : : ; a

1

; r

t

; : : : ; r

1

; 0);
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so, for example, any r-tuple interseting A

1

is in E(G).

Lemma 36 G 2 w-SAT(n; P ).

Proof. Order the missing edges in any way so that the sequenes

�

jA

[1℄

\Ej; : : : ; jA

[t+1℄

\Ej

�

; E 2 E(G);

are non-inreasing in the lexiographi order. (Thus, we start with (0; r

1

; : : : ; r

t

)

and end with (0; : : : ; 0; r).) Let us show that this ordering is P -proper. Consider

the moment when we add some edge E 2 E(G). Let E

i

= E \ A

i+1

, i 2 [t℄.

Also, let E = R

1

[ : : : [ R

t

and [n℄ n E = T

1

[ : : : [ T

t+1

be the onseutive

partitions with jR

i

j = r

i

and jT

i

j = s

i

� r

i

, i 2 [t℄.

Let us show that E

[i℄

� R

[i℄

and T

[i℄

� A

[i℄

n E

[i�1℄

, i 2 [t℄. As all partitions

in question are onseutive, it is enough to verify the sizes. By the de�nition of

G, we have jE

[i℄

j = jE \A

[i+1℄

j � r

[i℄

. Also,

jA

[i℄

n E

[i�1℄

j � jA

[i℄

j � r

[i�1℄

=

i

X

j=1

(s

j

+ r

j�1

� r

j

)� r

[i�1℄

= jT

[i℄

j;

and the laim follows.

Let S

i

= T

i

[ R

i

, i 2 [t℄. We laim that E reates a forbidden subgraph P

on the set S = S

[t℄

. For every i 2 [t℄, we have jE \S

i

j = jR

i

j = r

i

, so E 2 E(P ).

Suppose, on the ontrary, that there exists D 2 E(P ) oming after E. Let

us show by indution on i that, for every i 2 [0; t℄, we have

D \ S

[i℄

= E \ S

[i℄

and D \A

[i+1℄

= E \A

[i+1℄

; (67)

whih would be a ontradition to the assumption D 6= E. As D;E 2 E(G)

are disjoint from A

1

, the laim is true for i = 0. Let i 2 [t℄. As T

[i℄

� A

[i℄

,

we onlude, by the indutive assumption, that D \ T

[i℄

= E \ T

[i℄

= ;. As

S

[i℄

= T

[i℄

[ R

[i℄

, we have D \ S

[i℄

� R

[i℄

. On the other hand, D 2 E(P ) so

jD \ S

[i℄

j � r

[i℄

, whih implies

D \ S

[i℄

= R

[i℄

= E \ S

[i℄

;

and the �rst part of (67) is proved. Now,

D \A

[i+1℄

� R

[i℄

\A

[i+1℄

� E

[i℄

\A

[i+1℄

:
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By indution, D \ A

[i℄

= E \ A

[i℄

and, as D was added later than E, we must

have jD \A

[i+1℄

j � jE \A

[i+1℄

j, whih proves (67) ompletely.

Theorem 37 The pair (P;G) admits a G-proof.

Proof. We have to show that P is a G

G

-hain. Let us onsider

h = h

1

^ : : : ^ h

t

; where h

i

= f

�

A

[i℄

x e

S

[i℄

2

V

r

i

V; i 2 [t℄;

where, as usual, f

�

is a generi V

�

-basis relative a V -basis e. Eah E 2 supp(h)

is of the form E

1

[ : : : [ E

t

, for some E

i

2 supp(h

i

), i 2 [t℄. Clearly, jE

i

j = r

i

and E

i

� S

[i℄

. Therefore, jE \ S

[i℄

j � jE

[i℄

j = r

[i℄

, so supp(h) � E(P ). Similarly,

supp

f

(h

i

) lives within A

[i+1;t+1℄

, i 2 [t℄, whih implies that supp

f

(h) � E(G).

So, to prove the theorem, it is enough to show that for any E 2 E(P ) we

have P

E

= he

�

E

; hi 6= 0. To do so, we an assume that S is an initial segment

in [n℄ and every element of S

i

omes before every element of S

j

whenever i < j.

Furthermore, we may assume that E

i

= E \ S

i

is a �nal segment of S

i

. Note

that A

[i℄

� S

[i℄

� A

[i+1℄

and R

i

= S

[i℄

n A

[i℄

onsists of the last r

i

elements of

S

i

, i 2 [t℄. Clearly, jEj = jRj, where R = R

[t℄

, so let g : E n R ! R n E be the

order-preserving bijetion.

As P

E

is a polynomial in the �'s, to show that P

E

6= 0, it is enough to

demonstrate a partiular example of the �'s (or f

�

) suh that P

E

6= 0. De�ne

f

�

x

=

(

e

�

x

+ e

�

g(x)

; x 2 E n R;

e

�

x

; otherwise.

(68)

Let i 2 [t℄. To ompute h

i

, we expand f

�

A

[i℄

in the e

�

-basis by (68). Denote

W

i

= A

[i℄

n (E nR) and

X

i

= fx 2 A

[i℄

nW

i

: g(x) 2 A

[i℄

g;

Y

i

= fx 2 A

[i℄

nW

i

: g(x) 62 S

[i℄

g;

Z

i

= fx 2 A

[i℄

nW

i

: g(x) 2 S

[i℄

n A

[i℄

g:

As A

[i℄

� S

[i℄

we have a partition A

[i℄

=W

i

[X

i

[Y

i

[Z

i

. As f

�

x

= e

�

x

for x 2W

i

,

f

�

A

[i℄

= �f

�

W

i

^ f

�

X

i

^ f

�

Y

i

^ f

�

Z

i

= �e

�

W

i

^ f

�

X

i

^ f

�

Y

i

^ f

�

Z

i

:
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Take some x 2 X

i

; then g(x) 2 W

i

. Now, for some u

�

2

V

V

�

, we have the

following representation

f

�

A

[i℄

= f

�

x

^ f

�

g(x)

^ u

�

= (e

�

x

+ e

�

g(x)

) ^ e

�

g(x)

^ u

�

= e

�

x

^ e

�

g(x)

^ u

�

;

whih implies that f

�

A

[i℄

= �e

�

W

i

^ e

�

X

i

^ f

�

Y

i

^ f

�

Z

i

.

Next, onsider some x 2 Y

i

; then g(x) 62 S

[i℄

. For some u

�

2

V

V

�

, we have

f

�

A

[i℄

x e

S

[i℄

= (u

�

^ f

�

x

)x e

S

[i℄

=

�

u

�

^ (e

�

x

+ e

�

g(x)

)

�

x e

S

[i℄

= (u

�

^ e

�

x

)x e

S

[i℄

;

that is, we an replae f

�

x

by e

�

x

without a�eting h

i

. Also g(Z

i

) \A

[i℄

= ; and

S

[i℄

nA

[i℄

= R

i

, so

h

i

= �(e

�

W

i

^ e

�

X

i

^ e

�

Y

i

^ f

�

Z

i

)x e

S

[i℄

= �f

�

Z

i

x e

Z

i

[R

i

:

For i 2 [t℄, we have jE

[i�1℄

j � jR

[i�1℄

j and one of E

i

and R

i

is a subset of the

other, so, for eah x 2 E

i

n R, g(x) lies in R

j

= S

[j℄

n A

[j℄

and x 2 Z

j

, for some

j 2 [i+ 1; t℄. Therefore, Z

[t℄

= E n R.

When we ompute P

E

= �he

�

E

;^

i2[t℄

(f

�

Z

i

x e

Z

i

[R

i

)i by expanding further

eah h

i

in the e-basis, we obtain h as a sum of terms eah of the form e

D

, for

some D 2 [n℄

(r)

. By de�nition, he

�

E

; e

D

i = 0 unless E = D. Consider some

x 2 Z

i

� E. As x 62 R and Z

1

; : : : ; Z

t

are disjoint, no element of supp(h

j

) an

ontain x unless j = i. Computing h

i

, we have for some u

�

h

i

= (u

�

^ f

�

x

)x e

Z

i

[R

i

= (u

�

^ e

�

g(x)

)x e

Z

i

[R

i

+ (u

�

^ e

�

x

)x e

Z

i

[R

i

;

and no element in the e-support of the seond summand an ontain x. Thus

we an harmlessly replae f

�

x

by e

�

g(x)

. (Clearly, this does not a�et h

j

for j 6= i.)

Now, sine g(Z

i

) � S

[i℄

n A

[i℄

= R

i

,

P

E

= �he

�

E

;^

i2[t℄

(e

�

g(Z

i

)

x e

Z

i

[R

i

)i

= �he

�

E

; e

Z

[t℄

[R

[t℄

ng(Z

[t℄

)

i = �he

�

E

; e

E

i = �1:

Thus P

E

is non-zero and the theorem follows.

Corollary 38 Suppose that we are given two sequenes s = (s

1

; : : : ; s

t

) and

r = (r

1

; : : : ; r

t

) of integers suh that s

i

� r

i

� 1, i 2 [t℄. Then, for n � s

[t℄

,

w-sat(n; P (s; r)) =

�

n

r

[t℄

�

�

X

r

0

�

n� s

[t℄

+ r

t

r

0

t

�

Y

i2[t�1℄

�

s

i+1

+ r

i

� r

i+1

r

0

i

�

;
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where the summation is taken over all sequenes of non-negative integers r

0

=

(r

0

1

; : : : ; r

0

t

) suh that r

0

[t℄

= r

[t℄

and, for any i 2 [t� 1℄, r

0

[i℄

� r

[i℄

.

Remark. To ahieve equality in Corollary 38, the edges of a weakly P -saturated

graph H must form a base in G

G

. As it is the ase with G/g-proofs, there is no

easy ombinatorial interpretation of this ondition.

Pyramids over many interesting graphs as partial ases and Corollary 38

implies new results even for r = 2: we are able to ompute the w-sat-funtion

for P

s;t

= P (s; t; 1; 1), the disjoint union of K

2

s

and E

2

t

plus all edges between

them. Namely, for n � s+ t, s � 1, t � 1, we have

w-sat(n; P

s;t

) = (s� 1)n�

�

s

2

�

+

�

t

2

�

:

As P (m; r) = K

r

m

, we an ompute w-sat(n;K

r

m

), formula (46) here.

Observe that P (r� l+1; l; r� l+1; l�1) is the only member of H

r

(r+1; l),

whih proves the formula (49) onjetured by Tuza [Tuz88, Conjeture 7℄.

Also, S

r

m

= P (1;m � 1; 1; r � 1). Therefore, Corollary 38 diretly implies

that

w-sat(n; S

r

m

) =

�

n

r

�

�

�

n� k

r

�

� k

�

n� k

r � 1

�

; n �m > r � 2;

where k = m�r+1. A omplete desription of all minimumweakly S

r

m

-saturated

graphs is available only for S

2

m

when we an �nd a simple ombinatorial proof

whih, fortunately, works for the following, wider, lass of graphs.

A delta system D

r

ml

ontains l r-tuples so that the intersetion of every two

is equal to a �xed m-set alled the entre. Thus, v(D

r

ml

) = m+ l(r �m).

Theorem 39 For any r > m � 1 and n > m+ l(r �m), w-sat(n;D

r

ml

) =

�

l

2

�

.

Proof. To onstrut G 2 w-SAT(n;D

r

ml

), hoose A 2 [n℄

(m�1)

and distint

verties y

1

; : : : ; y

l�1

2 [n℄nA. For eah i 2 [l�1℄, plae into E(G) any l�i edges

forming a D

r

m;l�i

-graph entred at A [ fy

i

g and disjoint from fy

1

; : : : ; y

i�1

g.

Let us show that G 2 w-SAT(n;D

r

ml

). Repeat the following step for i =

1; : : : ; l � 1. Suppose, we have already added to G all edges ontaining A and

interseting fy

1

; : : : ; y

i�1

g. Observe that by now we have a D

r

m;l�1

-subgraph

entred at A [ fy

i

g. It is not hard to hek that we an properly add to G all

edges ontaining A [ fy

i

g, f. Theorem 52.
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Finally, add, in any order, the remaining edges so that jE \ Aj is non-

inreasing. Easy details are omitted.

Conversely, given G 2 w-SAT(n;D

r

ml

), de�ne indutively A

1

; : : : ; A

l�1

�

V (G) as follows. For i = 1; : : : ; l�1, onsider the �rst edge added to G ontaining

none of A

1

; : : : ; A

i�1

as a subset. Let A

i

be the entre of a reated D

r

ml

-subgraph

F . For any j 2 [i � 1℄, at most one edge of F an ontain A

j

beause any two

suh edges overlap in A

i

[A

j

whih has size at least m+ 1. Therefore, at least

l � i edges of F belonged to the initial G. These edges ontain A

i

but none of

A

1

; : : : ; A

i�1

. So, e(G) � (l � 1) + (l � 2) + : : :+ 1 =

�

l

2

�

.

Remark. It is easy to read o� the proof the haraterization of all extremal

graphs for S

2

m

= D

2

1;m�1

(and for some other ases): all minimum weakly S

2

m

-

saturated graphs an be obtained in the following way. Choose fx

1

; : : : ; x

m�2

g 2

[n℄

(m�2)

. For every i 2 [m� 2℄, add any m� i� 1 edges through the vertex x

i

not inident to x

1

; : : : ; x

i�1

.

10.2 Uniform Families

Fix l;m; r 2 N with 1 � l �

�

m

r

�

. The uniform family H = H

r

(m; l) is the

family of all r-graphs of order m and size l. By de�nition, G 2 w-SAT(n;H),

n � m, if we an onseutively add the missing edges so that eah reates a new

subgraph with at most m verties and at least l edges.

There are quite a few papers dealing with the Tur�an ex-funtion for uniform

families; we refer the reader to Griggs, Simonovits and Thomas [GST98℄ for

referenes and for new reent results.

The sat-type problems for uniform families were onsidered by Tuza [Tuz88℄,

who made a onjeture about the value of w-sat(n;H

r

(r + 1; l)) (formula (49)

here), and by Erd}os, F�uredi and Tuza [EFT91℄ who settled the ase l = 3 of

Tuza's onjeture. Observe that we have essentially only one graph inH

r

(r+1; l)

whih onsists of all edges ontaining some �xed (r�l+1)-set. In our notation it

is denoted by P (r� l+1; l; r� l+1; l�1), and Corollary 38 implies formula (49).

However, the general ase is still open.

Here we present, for all sets of parameters, a onstrution of a weakly

H

r

(m; l)-saturated graph whih we onjeture to be extremal. Our onjeture

is in perfet aordane with the above results.



10 SPECIFIC CLASSES 70

Clearly, our onstrution gives an upper bound. To establish some lower

bounds, we use use gross and ount matroids. This way we verify our on-

jeture for more sets of parameters. In ertain ases, we haraterize the sets

of minimum weakly H-saturated graphs. In partiular, we answer a question

by Erd}os, F�uredi and Tuza [EFT91℄ who asked for a haraterization of the

extremal graphs for H

r

(r + 1; 3). These results appear in [Pik98℄.

10.2.1 Constrution

Let n � m, 1 � l �

�

m

r

�

and H = H

r

(m; l). We build, indutively on n, an

example of a weakly H-saturated graph G

n

= G(n; r;m; l) on [n℄. If n = m,

then we an take for G

n

any member of H

r

(m; l � 1). If n > m, then hoose

indutively any G

n�1

= G(n � 1; r;m; l) and G

0

= G(n � 1; r � 1;m � 1; l

0

),

where l

0

= l �

�

m�1

r

�

. (If l �

�

m�1

r

�

+ 1 then we take the empty graph for G

0

.)

Let G

n

be the r-graph on [n℄ de�ned by

E(G

n

) = E(G

n�1

) [ fE [ fng : E 2 G

0

g:

Let us show that G

n

is indeed weakly H-saturated. By the de�nition of

G

n�1

, we an add edges so that [n� 1℄ spans the omplete r-graph. Then add

edges E

1

[ fng; : : : ; E

s

[ fng, where (E

1

; : : : ; E

s

) is any H

r�1

(m� 1; l

0

)-proper

ordering of the omplement of G

0

. As eah E

i

reates a subgraph of size l

0

on

some (m� 1)-set M � E

i

, M [ fng � V (G) spans at least l

0

+

�

m�1

r

�

= l edges

after E

i

[ fng has been added, whih shows that G

n

2 w-SAT(n;H).

Conjeture 40 For any n; r;m; l 2 N satisfying m � n and 1 � l �

�

m

r

�

,

G(n; r;m; l) is a minimum weakly H

r

(m; l)-saturated graph.

Remark. Generally, not all extremal graphs are given by our onstrution, f.

Theorem 44.

Let us ompute the size of G

n

. Given l � 2, de�ne (uniquely)  and d so

that

l = + 1 +

d�1

X

j=0

�

m� j � 1

r � j

�

;  2 [

�

m�d�1

r�d

�

℄; d 2 [0; r � 1℄:
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The de�nition of G

n

implies, after some thought, the following formula for e(G

n

)

whih, alternatively, an be routinely heked by indution on n.

e(G

n

) =

d

X

i=0

0

�

+

d�1

X

j=i

�

m� j � 1

r � j

�

1

A

�

n�m+ i� 1

i

�

; n � m:

(We agree that

�

i

0

�

= 1, for any i.) For our purposes, we have to �nd a rep-

resentation of the form e(G

n

) =

P

d

k=0

a

k

�

n

k

�

. The substitution

�

n�m+i�1

i

�

=

P

i

k=0

(�1)

i�k

�

n

k

��

m�k

i�k

�

whih is an instane of Vandermonde's onvolution (see

e.g. [GKP89, p. 174℄), implies

a

k

=

d

X

i=k

(�1)

i�k

�

m� k

i� k

�

0

�

+

d�1

X

j=i

�

m� j � 1

r � j

�

1

A

:

Now, oasionally applying the identity

P

t

i=0

(�1)

i

�

j

i

�

= (�1)

t

�

j�1

t

�

, t � 0, we

an �nd that a

k

= (�1)

d�k



�

m�k�1

d�k

�

+ (�1)

k

s

k

, where

s

k

=

d�1

X

j=k

�

m� j � 1

r � j

�

j

X

i=k

(�1)

i

�

m� k

i� k

�

= (�1)

d�1

�

m� k � 1

r � k

��

r � k � 1

d� k � 1

�

:

Therefore, in summary,

e(G

n

) =

d

X

k=0

(�1)

d�k

�



�

m� k � 1

d� k

�

�

�

m� k � 1

r � k

��

r � k � 1

d� k � 1

���

n

k

�

:

One an hek that Conjeture 40 is ompatible with (44), whih is one more

point supporting Conjeture 40.

10.2.2 Appliations of Count Matroids

Reall that the size of G

n

= G(n; r;m; l) is

P

d

k=0

a

k

�

n

k

�

, where

a

k

= (�1)

d�k

�



�

m� k � 1

d� k

�

�

�

m� k � 1

r � k

��

r � k � 1

d� k � 1

��

: (69)

We de�ne L =

P

d

i=0

a

k

p

k

, so that L([n℄

(r)

) = e(G

n

), the onjetured value.

If L de�nes a matroid and every F 2 H

r

(m; l) is an N

L

-iruit then we an

onlude that w-sat(n;H

r

(m; l)) = e(G

n

), whih establishes the validity of our

onjeture in this ase.
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The ondition a

k

� 0, k 2 [d℄, an be rewritten as

(�1)

d�k

 � (�1)

d�k

�

m�k�1

r�k

��

r�k�1

d�k�1

�

�

m�k�1

d�k

�

= (�1)

d�k

d� k

r � k

�

m� d� 1

r � d

�

:

The modulus of the latter expression is stritly dereasing with k, so, unfortu-

nately, no suitable  would satisfy the onditions unless d � 2 and we have to

on�ne ourselves to the three ases below.

Case 1: d = 0. In this ase the problem is trivial: it is easy to prove diretly

the following result (also observed by Erd}os, F�uredi and Tuza [EFT91℄).

Lemma 41 For n � m � r � 1 and 1 � l �

�

m�1

r

�

+ 1,

w-sat(n;H

r

(m; l)) = l � 1:

All extremal graphs are an be obtained by adding n�m isolated verties to an

F 2 H

r

(m; l � 1). (Whih is exatly what our onstrution says.)

Case 2: d = 1. Let l =

�

m�1

r

�

+ 1 + , 1 �  �

�

m�2

r�1

�

. By (69), we let a

1

= 

and a

0

=

�

m�1

r

�

� (m� 1), that is,

L(H) = p

1

(H) +

�

m� 1

r

�

� (m� 1); H � [n℄

(r)

:

The ondition 1 � a

1

r+ a

0

implies that either m = r+1 (then  �

�

m�2

r�1

�

must

equal 1) or m � r + 2 and

 � min

 

�

m�1

r

�

� 1

m� r � 1

;

�

m� 2

r � 1

�

!

=

�

m�1

r

�

� 1

m� r � 1

;

whih we assume.

Let us show that every F 2 H

r

(m; l) is a iruit in N

L

. Obviously, p

1

(F ) =

m, so e(F ) = L(F ) + 1 and F is not independent. Take any proper F

0

� F .

If p

1

(F

0

) = m then L(F

0

) = L(F ) � e(F

0

). If p

1

(F

0

) � m � 1 then F

0

is

independent by Theorem 32 as L([m� 1℄

(r)

) =

�

m�1

r

�

. Hene F is a iruit and

our onjeture is true.

Lemma 42 Given r, m, l and n with n � m > r � 2, let  = l�

�

m�1

r

�

� 1. If

m > r + 1 and 1 �  <

1

m�r�1

�

m�1

r

�

or if m = r + 1 and  = 1 (when l = 3),

then w-sat(n;H

r

(m; l)) = (l � 1) + (n�m).
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In some ases, we an haraterize extremal graphs by providing a ombina-

torial proof.

Lemma 43 In addition to the assumptions of Lemma 42, assume that m > r+1

and  <

1

m�1

�

m�1

r

�

. Then any minimum G 2 w-SAT(n;H

r

(m; l)) is given by

our onstrution.

Proof. Let G = fE

1

; : : : ; E

s

g be a proper ordering; suppose that eah E

i

reates

a forbidden subgraph on an m-set M

i

� [n℄ and let L = a

1

p

1

+ a

0

be as above.

We know that any A � [n℄ spans at most a

1

jAj + a

0

edges in G. (In fat, this

is easy to see diretly for otherwise we ould replae these edges by a opy of

G(jAj; r;m; l), whih would produe a smaller weakly saturated graph.)

We prove by indution on i that, for any i 2 [s℄, H

i

� G, the subgraph

spanned by M

[i℄

� [n℄, is given by our onstrution.

Clearly, this is the ase for i = 1.

Let i > 1. We have to onsider only the ase when k = jM

i

nM

[i�1℄

j � 1.

Of l edges of a forbidden subgraph F reated by E

i

, at most

�

m�k

r

�

an belong

to H

i�1

, whih shows that

e(H

i

)� e(H

i�1

) � l �

�

m�k

r

�

� 1 = +

�

m�1

r

�

�

�

m�k

r

�

:

It is routine to hek that the last expression is stritly greater than k for

k 2 [2;m℄. To prevent the ontradition jH

i

j > a

1

jM

[i℄

j + a

0

, we must have

k = 1 and E

i

nM

[i�1℄

= fxg for some vertex x ontained in exatly  edges of

F \G. These edges (minus x) must lie within the (m�1)-setM

[i�1℄

\M

i

, whih

is exatly what our onstrution says.

As we mentioned, the value of w-sat(n;H

r

(r+1; 3)) was omputed by Erd}os,

F�uredi and Tuza [EFT91℄. They asked if there is a haraterization of the

extremal graphs. Our Lemma 43 does not over this ase but we an provide a

di�erent proof of the lower bound whih gives us the desired haraterization.

Some ideas from [EFT91℄ are used here but, of ourse, we have to be more

deliate if we want to extrat the ases of equality.

Theorem 44 For H = H

r

(r + 1; 3) we have

w-sat(n;H) = n� r + 1; n � r: (70)
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Every extremal graph G an be obtained in the following way. Start with the set

system G ontaining only one edge [n℄. As long as possible, remove from G any

edge E of size at least r + 1, hoose A 2 E

(r�1)

, partition E n A = X

1

[ X

2

,

X

1

;X

2

6= ;, and add to G the edges A [X

1

and A [X

2

.

Proof. Although we have already established (70), we have to provide a om-

binatorial proof of the lower bound. Let G 2 w-SAT(n;H). Note that every

vertex in G is overed by at least one edge beause otherwise the �rst edge

added to G and ontaining this vertex annot reate a forbidden subgraph.

Let E

1

; : : : ; E

j

be the edges of G. With this sequene we do, step by step

and as long as possible, the following operation. If some 2 sets have at least

r � 1 ommon points we merge them together, that is, replae them by their

union (so the resulting system is no longer r-uniform).

We laim that we end up with a sequene ontaining a single member (whih

then must be equal to V (G)). Suppose not. Let Y

1

; : : : ; Y

t

, t � 2, be the eventual

family. Every two di�erent resulting sets an have at most r�2 ommon points.

Obviously, every edge of G lies within some Y

i

. Let E 2 G be the �rst edge

added to G whih does not lie entirely within some Y

i

. (If for every E 2 [n℄

(r)

there is Y

i

� E, then, onsidering hains of r-sets with overlaps of size r� 1, we

onlude that Y

i

= [n℄, some i.) The addition of E must have reated F 2 H.

The two other edges E

1

; E

2

2 E(F ) either belong to G or were added before E

and share r � 1 verties, so they lie eah within some set Y

i

. But then Y

i

must

ontain E � E

1

[E

2

whih is a ontradition. The laim is proved.

Now it is easy to prove by indution that in the above proess every set of

size m was a merger of at least m� r + 1 edges of G. Trivially, it was the ase

for all initial sets whih were preisely the edges of G. If we merge together

2 sets of sizes m

1

and m

2

made of e

1

� m

1

� r + 1 and e

2

� m

2

� r + 1 G-

edges respetively, the resulting set has at most m

1

+m

2

� r + 1 verties and

e

1

+ e

2

� m

1

+m

2

� 2r+2 edges produed it, so the laim follows by indution.

If we have equality in (70), then, in eah step of the merging proedure,

every two sets merged together have exatly r � 1 ommon verties, so every

extremal graph an be obtained by reversing the merging proess desribed in

the statement of the theorem (of ourse in many di�erent ways, generally).

We have to show that any anti-merging produes an extremal graph. Clear-
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ly, at the end we are left with r-subsets and we have exatly n� r+ 1 of these.

To omplete the theorem, it is enough to show that a union of two omplete r-

graphs H

1

and H

2

of order at least r eah with intersetion A = V (H

1

)\V (H

2

)

of size r � 1, is weakly S-saturated. But this is easy: for i = r � 2; r � 1; : : :,

add the missing edges whih interset A in exatly i points.

Remark. The onstrution of G(n; r; r + 1; 3) before Conjeture 40 does not

over all ases as is demonstrated, for example, by r = 3, n = 6 and

G = ff1; 2; 3g; f2; 3; 4g; f4; 5; 6g; f5; 6; 1gg:

Case 3: d = 2. Assume r � 3 and l =

�

m�1

r

�

+

�

m�2

r�1

�

++1 with  2 [

�

m�3

r�2

�

℄.

By (69), we let a

2

= , a

1

= �(m�2)+

�

m�2

r�1

�

and a

0

= 

�

m�1

2

�

� (r�1)

�

m�1

r

�

.

Let us hek when L satis�es (62). Of ourse, a

2

� 1. Next, the ondition

a

1

� 0 is, in our ase,  �

�

m�2

r�1

�

(m� 2)

�1

. It is false for m = r + 1, so assume

m � r + 2. The inequality 0 < a

2

�

r

2

�

+ a

1

r + a

0

redues to

0 < 

�

m� r � 1

2

�

+

�

r �

(m� 1)(r � 1)

r

��

m� 2

r � 1

�

: (71)

Note that (71) is automatially true if m = r + 2 (when the oeÆient at  is

zero), but then the ondition a

1

� 0 implies  = 1. So, we onlude that L

satis�es (62) if and only if either m = r + 2 and  = 1 or m � r + 3 and

((m� 1)(r � 1)� r

2

)

�

m�2

r�1

�

r

�

m�r�1

2

�
<  � min

 

�

m�2

r�1

�

m� 2

;

�

m� 3

r � 2

�

!

=

�

m�2

r�1

�

m� 2

: (72)

Let us hek that any F 2 H

r

(m; l) is a iruit in N

L

. Clearly, every two

verties in F are overed by an edge for otherwise we would have at most

�

m

r

�

�

�

m�2

r�2

�

< l edges in F . Therefore, L(F ) = L([m℄

(2)

) = l � 1 = e(F ) � 1

and we onlude that F is not N

L

-independent. On the ontrary suppose that

L(H) < e(H) for some r-graph H on [m℄ with at most l � 1 edges. Clearly, we

may assume that H is an initial segment of [m℄

(r)

in the olex order.

Note that L([m� 1℄

(r)

) =

�

m�1

r

�

and, by Theorem 32, [m� 1℄

(r)

is indepen-

dent. Therefore, H must have m verties. Also the 2-set fm � 1;mg annot

be overed by an H-edge, as then e(H) � L([m℄

(r)

) + 1 � l. Let H

0

be the

(r � 1)-graph on [m� 2℄ satisfying

E(H) = [m� 1℄

(r)

[ fD [ fmg : D 2 E(H

0

)g:
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If we let L

0

= a

2

p

1

+ a

1

then L

0

([m � 2℄

(r�1)

) =

�

m�2

r�1

�

and, by Theorem 32,

H

0

� [m� 2℄

(r�1)

is independent in N

L

0

and L

0

(H

0

) � e(H

0

).

Obviously, p

2

(H) = p

1

(H

0

) +

�

m�1

2

�

. Therefore,

L(H) = L([m� 1℄

(r)

) + L

0

(H

0

) �

�

m� 1

r

�

+ e(H

0

) = e(H);

whih is the desired ontradition.

Theorem 45 Assume that r � 3 and l =

�

m�1

r

�

+

�

m�2

r�1

�

+ + 1 are suh that

either m = r+2 and  = 1 or m � r+3 and  satis�es (72). Then Conjeture 40

is true.

Remark. Unfortunately, we do not have any haraterization of the extremal

graphs in this ase.

10.2.3 Appliations of Gross Matroids

We establish some further results by applying gross matroids. Namely, we prove

that our onjeture is asymptotially true for d = r� 1. Moreover, by applying

the g

0

-method we settle ompletely the ase r = 2.

First, we need one simple preliminary result.

Lemma 46 Let G be an r-graph of order n and size at least

�

n

r

�

�n+m, where

n > m > r � 2. Then any E 2 E(G) is ontained in a omplete subgraph of

order m.

Proof. Given E 2 E(G), remove from eah missing edge one (arbitrary) vertex

not belonging to E. We are left with at least m verties spanning a omplete

subgraph whih ontains E.

Remark. The above bound on e(G) is sharp: if the omplement of G onsists

of n�m+ 1 edges ontaining some �xed (r � 1)-set A then this set is overed

only by m� r G-edges of whih none lies within K

r

m

.

Theorem 47 Let l =

�

m

r

�

� k and H = H

r

(m; l). If m > k + r, then

w-sat(n;H) = (m� k � r)

�

n

r � 1

�

+O(n

r�2

): (73)
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Furthermore, if r = 2, then we have a g

0

-proof that

w-sat(n;H

2

(m; l)) = (m� k � 2)(n�m) + l � 1; n � m: (74)

Proof. Implementing our onstrution, from the identity

P

r

i=0

�

m�i�1

r�i

�

=

�

m

r

�

,

we obtain that d = r � 1 and  = m � r � k, whih implies the upper bounds

in (73) and (74).

On the other hand, in any F 2 H, any edge lies within a K

r

m�k

-subgraph

by Lemma 46. But by Theorem 37, K

r

m�k

is a hain in G

P

, the gross matroid

of P = P (; n � ; 1; r � 1), so eah F 2 H is a G

P

-hain. By Lemma 33,

w-sat(n;H) � R

G

P

([n℄

(r)

) = e(P ), whih g-proves the required lower bound

in (73).

Finally, let us g

0

-prove the lower bound in (74) for r = 2. Let F 2 H. As F

has m verties,

R

G

P

(F ) � R

G

P

(K

m

) � e(P (;m � ; 1; 1)) = m�

�

+1

2

�

:

(The seond inequality is true beause P (;m� ; 1; 1) 2 w-SAT(m;K

2

m�k

) and

K

2

m�k

is a G

P

-hain.) Therefore some set of at least p = l�m+

�

+1

2

�

edges of F

lies in the G

P

-span of the remaining edges, that is, D

G

P

(F ) � p. By Lemma 34,

w-sat(n;H) � R

G

P

(K

n

) +D

G

P

(F) � 1

� n�

�

+ 1

2

�

+ p� 1 = (n�m) + l � 1:

The theorem is proved.

Note that for r = 2 we know w-sat(n;H

2

(m; l)) for any any feasible m and l:

for l �

�

m�1

2

�

we have a g-proof that it is l � 1 (onstant) by Lemma 35, while

all other ases are overed by the g

0

-proof of Theorem 47.

Also note that, under the assumptions of Theorem 47 on l, the graph

G(n; r;m; l) onstruted before Conjeture 40 is weakly F -saturated, where

E(F ) onsists of the �rst l elements of [m℄

(r)

in the olex order. So, Theo-

rem 47 remains valid if F is the only member of H; this overs all possible ases

for r = 2 exept the trivial ase l =

�

m�1

2

�

+ 1.

10.3 Misellaneous Graphs

Here we indiate a few easy results for some simple forbidden graphs suh as

yles, disjoint edges, trees, et. The proofs are easy but they often require a
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lengthy and boring veri�ation that the spei�ed graph is weakly saturated. We

inlude them for the sake of ompleteness.

Cyles

Let C

l

denote the yle of length l. We know (see Setion 2) that the determi-

nation of the exat value of sat(n;C

l

) is a hard task. For the w-sat-funtion, on

the ontrary, the omplete answer is available in all ases.

The following trivial observation will be used a few times, so we state it as

a lemma.

Lemma 48 Let l � 4 be even. Then any weakly C

l

-saturated graph G ontains

an odd yle.

Proof. Indeed, otherwise G is a bipartite graph. Let E be the �rst added edge

lying within one part. By the parity argument, any l-yle through E must

ontain another edge lying within a part, whih is a ontradition to the hoie

of E.

Let us �rst onsider the ase when the forbidden yle is Hamiltonian.

Theorem 49 For any n � 4, w-sat(n;C

n

) = n and all extremal graphs are

obtained from a Hamiltonian yle by adding an edge whih reates an odd yle

and then removing some other edge.

Proof. Let G be a Hamiltonian yle visiting the verties 1; 2; : : : ; n 2 [n℄ in this

order, minus the edge f1; ng but plus the edge fi; ng, for some even i. To prove

that G 2 w-SAT(n;C

n

) we have to show how to properly add the missing edges

to G. First we add f1; ng thus reating a Hamiltonian yle through 1; 2; : : : ; n.

We �x this yle and de�ne a t-hord as an edge onneting 2 verties at

a distane t if we go along the yle. Thus, after the �rst step, G is made of

all 1-hords and one i-hord. Next, we add all i-hords in the following order

fm; i +mg, m = 1; 2; : : : ; n � 1. (Of ourse, we do all arithmeti modulo n.)

Every time we reeive an extra yle: for example, the hord f1; i + 1g reates

the yle via

n; i; i� 1; i� 2; : : : ; 2; 1; i + 1; i+ 2; : : : ; n� 2; n� 1:
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Having all hords of length 1 and i � 4, it is possible to add any (i�2)-hord.

For example, the hord f2; ig reates the following Hamiltonian yle

1; i+ 1; i+ 2; 2; i; i � 1; : : : ; 4; 3; i + 3; i+ 4; : : : ; n� 1; n:

Therefore, we an eventually have all 2-hords.

Finally, onsequently for m = 3; 4; 5; : : :, we add all missing m-hords in any

order. This is legitimate; when we add, for example, the hord f1;m + 1g we

have a Hamiltonian yle via

1; 2; : : : ;m� 1; n; n� 1; : : : ;m+ 2;m;m + 1

whih uses only already present hords (of length 1, 2 and m � 1). Therefore,

G 2 w-sat(n;C

n

).

On the other hand, suppose that G 2 w-SAT(n;C

n

). The �rst edge added

to G reates a C

n

-subgraph F (that is, a Hamiltonian yle), so there is a

Hamiltonian path P

n�1

in G. It is easy to see that P

n�1

62 w-SAT(n;C

n

) so

there is at least one more edge E and w-sat(n;C

n

) � n. Moreover, F + E

must ontain at least one odd yle by Lemma 48, whih is preisely what our

onstrution says.

Let us onsider odd and even yles separately.

Theorem 50 Let l � 3 be odd and let n > l. Then w-sat(n;C

l

) = n � 1, all

extremal graphs are trees of order n and diameter at least l � 1, and C

l

admits

a g-proof for n.

Proof. Let G be any suh tree. First we add any edge onneting two verties

at distane l�1; suppose the reated l-yle goes through the verties 1; : : : ; l 2

V (G) in this order. As v(G) > l and G is onneted, we may assume that

the vertex l + 1 2 V (G) is onneted to l. Obviously, we an add the edge

f2; l + 1g whih reates the l-yle through 2; 3; : : : ; l; l + 1. Next, we an add

the edge f1; 4g whih reates the l-yle through 4; 5; : : : ; l; l + 1; 2; 1. Now the

set [l℄ � V (G) spans an l-yle plus the edge f1; 4g reating an odd (l � 2)-

yle|the situation in whih we an apply Theorem 49 to add all edges within

[l℄.

But it is trivial to show that a onneted graph with an l-lique is weakly

C

l

-saturated, whih implies G 2 w-SAT(n;C

l

).
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Now it is easy to dedue that w-SAT(n;C

l

) onsists exatly of all onneted

graphs ontaining a path of length l � 1 as a subgraph and the desired hara-

terization of the minimum ones follows.

Let us show that C

l

admit a g-proof for n > l. Indeed, onsider G = G

S

2

n

.

Any edge of C

l

is G-dependent on the remaining ones beause the path with l

edges is weakly K

2

3

-saturated and K

2

3

is a G-iruit. Clearly, R

G

([n℄

(2)

) = n� 1.

(In fat, if restrited to [n℄

(2)

, G is the usual yle matroid.) The laim learly

follows.

Theorem 51 Let l � 4 be even and let n � l. Then w-sat(n;C

l

) = n, all

extremal graphs are trees of order n and diameter at least l � 1 plus an extra

edge reating an odd yle, and C

l

admits an r-proof for n.

Proof. Similarly to the proof of Theorem 50, to show that any indiated graph

G is weakly C

l

-saturated, we �rst argue that adding a few edges we an obtain

an l-yle ontaining a 3-hord. Unfortunately, this on�guration is not weakly

C

l

-saturated but, like in Theorem 49, we an add all 3-hords, 5-hords, and so

on to obtain the omplete bipartite graph K

l=2;l=2

.

Observe that having an edge fx; yg with y belonging be K

s;t

-subgraph with

s; t � l=2, we an onnet x to any vertex lying in the same part as y. Hene,

we an add edges so that G ontains a K

s;n�s

-subgraph with s; n � s � l=2;

moreover, as we have an odd yle present in the original G, one part spans an

edge and G 2 w-SAT(n;C

l

).

The required haraterization of extremal graphs easily follows.

Finally, let M be Doob's [Doo73℄ even-yle matroid on [n℄

(2)

whih an

be represented by f : [n℄

(2)

! V whih maps fi; jg to e

i

+ e

j

for some basis

fe

1

; : : : ; e

n

g of a real vetor spae V . The yle C

l

is anM-hain: if C

l

goes via

the verties 1; 2; : : : ; l; 1, then we have the linear relation

(e

1

+ e

2

)� (e

2

+ e

3

) + : : :� (e

l

+ e

1

) = 0

with all oeÆients non-zero.

For n � 3, the rank of M is n as any basis vetor e

i

admits a representation

e

i

=

1

2

((e

i

+ e

j

) + (e

i

+ e

k

)� (e

j

+ e

k

)), whih implies our laim.

Remark. Probably, even yles do not admit a g-proof. But if we onsider

(1; 1)-layered (i.e. bipartite) graphs, then C

4

as the omplete (1; 1)-graph admits
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a G-proof by the results of Setion 12. A little more work shows that any even

yle admits a g-proof in the lass of bipartite graphs, beause any onneted

(1; 1)-graph is weakly C

4

-saturated.

Disjoint Edges

Suppose that we forbid lK

r

r

, l > 1, that is, l disjoint r-edges.

Theorem 52 Let F = lK

r

r

, let n > lr, and let G onsist of l � 1 disjoint r-

edges plus n� r(l� 1) isolated verties. Then w-sat(n; F ) = l� 1, G is the only

extremal graph, and the pair (F;G) admits a G-proof.

Proof. Let us show that G is weakly F -saturated. As v(G) > kl, we an add

an edge disjoint from the edges of G whih reates a opy of F and leaves at

least one vertex of G isolated.

Fix any D 2 [n℄

(r)

. We have to show that D 2 Cl

F

(G). We prove that the

existene of E 2 Cl

F

(G) with jE\Dj = k < r implies that there is E

0

2 Cl

F

(G)

with jE

0

\Dj = k + 1. Given E, there are E

2

; : : : ; E

l

2 Cl

F

(G) whih together

with E form an F -subgraph. If there is x 2 D n V , V = E [ E

[2;l℄

, then we

an take E

0

= E + x � y 2 Cl

F

(G), for some y 2 E n D. Otherwise take any

x 2 DnE, say x 2 E

2

, replae E

2

by E

0

2

= E

2

�x+y 2 Cl

F

(G), where y 62 V , and

onsider E

0

= E� z+x, z 2 E nD whih (together with E

0

2

; E

3

; : : : ; E

l

) reates

a forbidden subgraph. The required E

0

is found. Hene, w-sat(n; F ) � l � 1.

Any weakly F -saturated graph ontains l � 1 disjoint edges; hene G is the

only extremal graph.

The pair (F;G) admits a G-proof by Lemma 35.

However, if the forbidden graph is a perfet mathing, then the exat answer

is known generally for r = 2 only.

Theorem 53 For n = 2l � 4, w-sat(n; lK

2

2

) = n � 1 and all extremal graphs

an be obtained in the following way: omplete lK

2

2

to a tree T , add an edge

E reating an odd yle and remove any edge E

0

ontained in some perfet

mathing of T +E.

Proof. Let us show that any above onstruted graph G is weakly F -saturated,

F = lK

2

2

. First we add the edge E

0

. Let C be the odd yle (at this stage
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it is unique) of the obtained graph T

0

= G + E

0

= T + E and let M be some

mathing of T

0

. Let fx

1

; y

1

g; : : : ; fx

2k+1

; y

2k+1

g be all edges of M with x

i

2 C

and y

i

62 C.

Claim 1 A disjoint union of an odd yle C

2p�1

an a even path P

2q

is weakly

(p+ q)K

2

2

-saturated, p � 2, q � 0.

We prove the laim by indution on q. If q = 0 then we an �rst onnet

the isolated vertex to any other vertex of the yle to obtain a wheel and then

we an add the remaining edges in any order. If q > 0 then we an onnet the

endpoints of the path to all verties on a yle and the obtained graph is easily

seen to ontain C

2p+1

t P

2q�2

and the laim follows.

A moment's thought reveals that, by Claim 1, T

0

2 w-SAT(n; F ) if k = 0.

So, to prove that G 2 w-SAT(n; F ), we show that, for k > 0, we an F -properly

add some extra edges to T

0

and �nd other, stritly larger, odd yle C.

Assume that x

1

; : : : ; x

2k+1

lie on the yle C in this order lokwise. Note

that we an add to T

0

all edges of the form fy

i

; y

i+1

g, i 2 [2k+1℄, whih reates

the mathingM

0

=M4C

i

, where C

i

the yle via y

i+1

; y

i

; x

i

Cx

i+1

; y

i+1

reated

just now. (By aCb we denote the part of the yle C going lokwise from a to b

inlusive.) If there are no verties (along C) between some x

i

and x

i+1

then we

have a stritly longer yle C4C

i

as desired. Otherwise, we may assume that a

part of the yle C looks like x

1

; : : : ; a; x

2

; b; : : : ; ; x

3

; : : :. It is routine to hek

that the addition of the edge fa; g reates a mathing whih uses edges fx

2

; bg,

fy

1

; y

2

g, fx

i

; y

i

g, i 2 [3; 2k + 1℄, et. But then we an �nd a stritly longer odd

yle: x

3

Ca; C

�1

x

2

; y

2

; y

3

; x

3

, whih proves that G 2 w-SAT(n; F ) as laimed.

On the other hand, onsider any weakly F -saturated graph G and let G

0

=

G + E be a graph with a perfet mathing. If G

0

is not onneted, then all

its omponents have even order, but then the �rst F -properly added edge not

lying within a omponent annot reate a mathing (by the parity argument),

whih is a ontradition. If G

0

is a bipartite graph, then its parts must be of the

same size, but then the �rst F -properly added edge lying within a part reates

no perfet mathing, whih a ontradition. Hene, G

0

is a tree plus an edge

reating an odd yle and all laims of the theorem easily follow.
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Dumb-Bells

Reall that the 2-graph B

kk

, alled a dumb-bell, onsists of two disjoint opies

of K

2

k

plus one edge onneting them, k � 3.

Theorem 54 Let k � 3, n = lk + q, q 2 [0; k � 1℄, l � 2; let "

q

= 1 exept

"

0

= 0. Then w-sat(n;B

kk

) = (l + 1)

�

k

2

�

�

�

k�q

2

�

� "

q

.

Proof. To prove the upper bound onsider the 2-graph G on [n℄ de�ned (for

any q) by

E(G) =

�

[

i2[l℄

A

(2)

i

�

[

�

[n� k + 1; n℄

(2)

n fn� 1; ng

�

;

where A

i

= [ki � k + 1; ki℄, i 2 [l℄. As G[kl℄

�

=

lK

2

k

, we an add all missing

edges within [kl℄ eah onneting some two of the A's. If q = 0, then we are

done; otherwise we add the edge fn; n�1g making G[n�k+1; n℄ omplete and

then add the remaining edges in any order. Hene, G 2 w-SAT(n;B

kk

) and the

upper bound follows.

On the other hand, let G 2 w-SAT(n;B

kk

) be arbitrary. Similarly to

Lemma 43, we take a B

kk

-proper ordering G = fE

1

; : : : ; E

e

g; assume that E

i

reates a B

kk

-subgraph F

i

on a 2k-set M

i

� [n℄. De�ne the surplus s(X) =

e(G[X℄) �

k�1

2

jXj, X � [n℄, and s

i

= s(M

[i℄

).

Let q

i

2 [0; k � 1℄ be equal to jM

i

nM

[i�1℄

j (mod k). Given q

i

, it is routine

to see that if q

i

= 0 then s

i

� s

i�1

and if q

i

> 0 then

s

i

� s

i�1

� f(q

i

) =

�

k

2

�

�

�

k�q

i

2

�

�

k�1

2

q

i

� 1 � 0:

Furthermore, for p; q � 1, f(p + q) � f(p) + f(q). Hene, s(M

[e℄

) � f(q) for

q > 0 and s(M

[e℄

) � 0 for q = 0. Now, the identity e(G) =

k�1

2

n + s(V (G))

implies the required lower bound.

Remark. In fat, we -prove that w-sat(n;B

kk

) �

k�1

2

n for odd k, whih is

sharp for n = kl. (For even k, the funtion L =

k�1

2

p

1

is not integral.)

Forests

Let us onsider 2-graphs. Let T be a forest of order m. Clearly, K

2

m�1

plus

n�m+1 isolated verties is weakly T -saturated, so w-sat(n; T ) �

�

m�1

2

�

. This
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is sharp for T = S

2

m

by Corollary 38. The opposite extreme inequality is

w-sat(n; T ) � e(T )� 1; n � m: (75)

By Lemma 35, if we have equality in (75), then T admits a g-proof for n. In

fat, we an show that we have a G-proof.

Lemma 55 Let F and H be any forests with e(F ) � e(H). Then F independent

in G

H

.

Proof. We use indution on l = e(H). It is enough to prove the laim for

e(F ) = e(H). Assume that 1 is an endvertex inident to the edge E = f1; 2g in

both F and H. Clearly,

det(M(H;F )) = ��

1;1

�

2;2

det(M(H �E;F �E)) + (�

1;1

-free polynomial):

By indution we onlude that det(M(H;F )) 6= 0, whih proves the lemma.

Corollary 56 If G 2 w-SAT(n; T ), for some forest T , and e(G) = e(T ) � 1

then the pair (T;G) admits a G-proof.

Proof. Indeed, G is a forest. Also, T is dependent in G

G

but, by Lemma 55,

any proper subgraph of T is not; hene T is a G

G

-iruit.

If T ontains, for example, verties a; b;  of degrees 1; 1; 2 respetively suh

that fa; g; f; dg; fb; dg 2 E(T ), for some vertex d, then adding the edges fd; xg

and fx; yg to T , any x; y 62 V (G), we reate eah time a new graph isomorphi

to T ; this implies equality in (75) with possible exeptions for some n � 2m.

Generating a random tree by, for example, taking allm

m�2

vertex-labelled trees

equiprobable, one an show that almost every tree ontains the above `ab-

on�guration' and therefore admits a G-proof.

The above results an be extended to hypertrees, for the de�nitions see

Part IV, but we do not want to lutter the text with details.

11 Cones

In this setion we prove that ones `preserve' G/g/g

0

-proofs. These results ap-

pear in [Pik99a℄.
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To de�ne the one n(G) of an r-graph G, add to G a new vertex and

all edges ontaining this vertex. In other words, pik v 62 V (G) and de�ne

V (n(G)) = V (G) [ fvg and

E(n(G)) = E(G) [

n

fvg [E : E 2 V (G)

(r�1)

o

:

For a family F of r-graphs, de�ne n(F) = fn(F ) : F 2 Fg.

For 2-graphs, n

l

(F ) = K

l

+ F ; so, for example, the ones of empty graphs,

yles, omplete graphs are stars, wheels and omplete graphs respetively.

Lemma 57 Suppose that every r � 1 verties of an r-graph F are overed by

at least one edge. If F is a G

G

-hain, for some r-graph G, then n(F ) is a

G

n(G)

-hain.

Proof. Suppose �rst that v(G) � v(F ). Let G

0

= n(G), V (G) = [n � 1℄ and

V (G

0

) = [n℄. Identify the verties of G

0

with the basis fe

1

; : : : ; e

n

g of a vetor

spae V

0

. Let Z

0

be the subspae of

V

r

V

0

and let G

G

0

be the gross matroid on

[n℄

(r)

orresponding to G

0

.

We may assume that F

0

= n(F ) is embedded into [n℄ so that V (F

0

)nV (F ) =

fng. We have to show that E(F

0

) is a hain in G

G

0

, that is, we have to �nd

h

0

2 Z

0

suh that supp(h

0

) = E(F

0

). De�ne g

�

n

= f

�

n

and

g

�

i

= f

�

i

�

�

in

�

nn

f

�

n

; i = 1; : : : ; n� 1: (76)

Reall that f

�

is a generi basis of (V

0

)

�

and �

ij

= f

�

i

(e

j

), so g

�

i

(e

n

) = 0,

i 2 [n� 1℄, and this is the main point of our de�nition.

The matrix N = (g

�

i

(e

j

))

i;j2[n�1℄

is a generi matrix for a generi hoie

of the �'s. Indeed, if its entries, 

ij

= �

ij

� �

in

�

nj

=�

nn

, i; j 2 [n � 1℄, are

algebraially dependent, then learly the �'s are.

As F is a G

G

-hain, the system of linear equations

g

�

D

x

0

�

X

E2E(F )



E

e

E

1

A

= 0; D 2 E(G); (77)

with respet to the undeterminants (

E

)

E2E(F )

, has a solution with all 's being

non-zero for generi g (whih is the ase for generi f). Apply elementary matrix

transforms to write the system (77) in a diagonal form. For the free variables
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hoose �

1

; : : : ; �

k

whih (together with the �'s) are algebraially independent

over the rationals and ompute the other variables eah being a rational funtion

of the �'s and �'s.

Let h =

P

E2E(F )



E

e

E

and h

0

= f

�

n

x (h ^ e

n

). To omplete the theorem it

is enough to show that h

0

2 Z

0

and supp(h

0

) = E(F

0

).

Let D 2 E(G

0

). We want to show that f

�

D

xh

0

= 0. If D 3 n, then

hf

�

D

; h

0

i = hf

�

Dnfng

^ f

�

n

; f

�

n

x (h ^ e

n

)i = 0:

If n 62 D, that is, D = fd

1

; : : : ; d

r

g 2 E(G), then, by (76),

f

�

D

=

V

r

i=1

f

�

d

i

=

V

r

i=1

�

g

�

d

i

+

�

d

i

n

�

nn

f

�

n

�

= g

�

D

+ f

�

n

^ x

�

;

some x

�

2

V

r�1

V

�

. Now,

hf

�

D

; h

0

i = hg

�

D

+ f

�

n

^ x

�

; f

�

n

x (h ^ e

n

)i = hg

�

D

^ f

�

n

; h ^ e

n

i:

But for every i 2 [n� 1℄ we have g

�

i

(e

n

) = 0, so the above expression is equal to

f

�

n

(e

n

)hg

�

D

; hi whih is zero by the de�nition of h. Therefore h

0

2 Z

0

.

Let us show that supp(h

0

) = E(F

0

). Clearly, every E 2 supp(h

0

) either

ontains n or belongs to E(F ) whih shows that supp(h

0

) � E(F

0

). On the

other hand, take any E 2 E(F

0

). If E 2 E(F ), then

he

�

E

; h

0

i = he

�

E

^ f

�

n

; h ^ e

n

i = he

�

E

; hi � hf

�

n

; e

n

i = 

E

f

�

n

(e

n

) 6= 0;

beause n 62 E. If E 3 n, then let D

1

; : : : ;D

l

be the edges of F ontaining

E

0

= E n fng. By our assumption, l > 0. Let D

i

nE = fd

i

g. Then

P

E

= he

�

E

; h

0

i = he

�

E

0

^ e

�

n

^ f

�

n

; h ^ e

n

i = �he

�

E

0

^ f

�

n

; hi

= �

D

e

�

E

0

^ f

�

n

;

X

E2E(F )



E

e

E

E

=

l

X

i=1

�

D

i

hf

�

n

; e

d

i

i =

l

X

i=1

�

D

i

�

n;d

i

:

(The third equality is true as supp(h) = E(F ) � [n� 1℄

(r)

.)

As every 

D

i

is a rational funtion in the �'s and �'s, so is P

E

. To show

that P

E

6= 0 for a generi f , it is enough to demonstrate an example of f when

P

E

6= 0. Let �

in

= 0, i 2 [n� 1℄. Then system (77) redues to

f

�

D

x

0

�

X

E2E(F )



E

e

E

1

A

= 0; D 2 E(G): (78)
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By the algebrai independene of (f

�

i

(e

j

))

i;j2[n�1℄

, if we perform the diagonal-

isation for (78) in the same order as for (77), we will obtain the same set of

free variables. Therefore, (

E

)

E2E(F )

provides every solution for (78) when the

�'s range over the reals. Thus eah 

E

is non-zero (as F is a G

G

-hain) and it

an depend only on f

�

i

(e

j

) = �

ij

, i; j 2 [n� 1℄, and the �'s. Now it is obvious

that P

E

=

P

l

i=1



D

i

�

n;d

i

annot be identially zero. This proves the lemma if

v(G) � v(F ).

Otherwise, we an add v(F ) � v(G) isolated verties to G to obtain H. By

above, n(F ) is a hain in G

n(H)

, that is, eah edge of n(F ) is dependent on

the other edges. The latter laim is ertainly true in G

n(G)

whih has more

dependenes than G

n(H)

as n(G) � n(H).

Lemma 58 If an r-graph F is independent in G

G

and v(F ) � v(G), then n(F )

is independent in G

n(G)

.

Proof. We assume the same onventions as those appearing in the proof of

Lemma 57 before (77).

It is enough to prove our laim in the ase e(G) = e(F ): if e(G) > e(F ) we

an remove a G-edge with F being still G

G

-independent.

Let us show that the rank ofM

0

(G

0

; F

0

) is e(F

0

), whereM

0

(D;E) = hg

�

D

; e

E

i,

D 2 E(G

0

), E 2 E(F

0

), whih would imply the lemma.

By our assumption, the square submatrix M

0

(G;F ) � M

0

(G

0

; F

0

) is non-

singular beause the matrix N is generi. As g

�

i

(e

n

) = 0 for i 2 [n � 1℄, we

onlude that all entries of the submatrix M

0

(G;F

00

) are zeros, where E(F

00

) =

E(F

0

)nE(F ). Therefore, to prove the laim we have to show that the submatrix

M

0

(G

00

; F

00

) has the maximal possible rank

�

v(F )

r�1

�

, where E(G

00

) = E(G

0

)nE(G).

For any D

0

= D [ fng 2 E(G

00

), E

0

= E [ fng 2 E(F

00

), we have

hg

�

D

0

; e

E

0

i = g

�

n

(e

n

) � hg

�

D

; e

E

i;

beause g

�

i

(e

n

) = 0, i 2 [n� 1℄. (As n is the last element in D

0

and E

0

, we do

not have �1 in the formula.) Now,

M

0

(G

00

; F

00

) = g

�

n

(e

n

) �M

0

�

K

r�1

([n� 1℄);K

r�1

(V (F ))

�

has rank

�

v(F )

r�1

�

beause N is generi.
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Remark. Is is not hard to show that if F is not independent in G

G

, then n(F )

is not independent in G

n(G)

, for any r-graphs F and G. But we do not need

this result.

Lemma 59 If G 2 w-SAT(n � 1;F), then n(G) 2 w-SAT(n; n(F)). In par-

tiular,

w-sat(n; n(F)) � w-sat(n� 1;F) +

�

n� 1

r � 1

�

:

Proof. Let E

1

; : : : ; E

m

be an F -proper ordering of E(G). To show that G

0

=

n(G) is weakly n(F)-saturated, add these edges in the same order to G

0

.

(Note that E(G

0

) = E(G).) Every E

i

reates an F -subgraph in G, F 2 F ,

whih, together with the extra vertex, reates a opy of n(F ) in G

0

, so G

0

2

w-SAT(n; n(F)).

Theorem 60 Let F be a family of r-graphs suh that in eah F 2 F every r�1

verties are overed by at least one edge.

If a pair (F ; G) admits a G-proof, then the pair (n(F); n(G)) admits a

G-proof.

If we an g-prove w-sat(n� 1;F) � l, then we an g-prove

w-sat(n; n(F)) � l +

�

n� 1

r � 1

�

: (79)

In partiular, if F admits a g-proof for n� 1, then n(F) admits a g-proof for

n. The analogous laim is true for the g

0

-tehnique.

Proof. Let us onsider G-proofs �rst. By Lemma 59, n(G) is weakly n(F)-

saturated. By Lemma 57, n(F ) is a G

n(G)

-hain for every F 2 F . Hene, the

pair (n(F); n(G)) admits a G-proof.

Next, onsider the g-tehnique. Take any G suh that eah F 2 F is a

G

G

-hain and R

G

G

(K

r

n�1

) � l. Adding extra verties to G, we may assume

v(G) � n� 1. By Lemma 57, eah graph in n(F) is a hain in G

n(G)

.

By de�nition, R

G

G

(K

r

n�1

) � l, so hoose a G

G

-independent subgraph H �

K

r

n�1

of rank l. Assume v(H) = n� 1. By Lemma 58, n(H) is independent in

G

n(G)

. Hene, the rank of K

r

n

in G

n(G)

is at least e(n(H)) = l +

�

n�1

r�1

�

, that

is, we an g-prove (79), as required.
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In the g

0

-ase, hoose G suh that eah F 2 F is a G

G

-hain and

R

G

G

(K

r

n�1

) +D

G

G

(F)� 1 � l:

Now we proeed in the same way as in the g-ase, exept we have to show

additionally that, for any F 2 F , we have D

G

G

(F ) � D

G

n(G)

(n(F )).

Note that if we have F -edges E

1

; : : : ; E

d

whose removal does not derease

the G

G

-rank of E(F ), then the system of equations (77) has a solution in whih



E

1

; : : : ; 

E

d

an be hosen to be the free variables �

1

; : : : ; �

d

. Following the

proof of Lemma 57 (note that F is a G

G

-hain), one an let (

E

) be suh a

solution of (77) and observe that

he

�

E

i

; h

0

i = he

�

E

i

^ f

�

n

; h ^ e

n

i = he

�

E

i

; hi � hf

�

n

; e

n

i = �

i

�

nn

; i 2 [d℄;

sine E

i

� [n� 1℄. This means that, hoosing generi �'s, we an obtain h

0

2 Z

0

whose support is E(n(F )) with e

�

E

i

(h

0

) being generi, whih is preisely to

say that E

1

; : : : ; E

d

are G

n(G)

-dependent on the other edges of n(F ). Hene,

D

G

n(G)

(n(F )) � d and the laim follows.

Remark. We annot generally disard the overing ondition in Lemma 57

or Theorem 60. (But note that we do not have any overing ondition on G.)

Consider, for example, r = 2 when the ondition rules out isolated verties.

Let F be a triangle plus an isolated vertex and let G be a star K

1;n�2

, n � 5.

Then (F;G) admits a G-proof (see Subsetion 10.1). But it is easy to see that

w-sat(n; n(F )) = 6 < e(n(G)) = 2n � 3, and so n(F ) annot be a G

n(G)

-

hain.

We noted already in Setion 7 that many new results an be proved by

applying Theorem 60, so we do not repeat these examples here.

12 Joins

Here we indiate how to extend the idea of G/g/et.-proof to layered graphs

(whih were de�ned in Subsetion 4.2) and prove that joins `preserve' G/g/r-

proofs. These results appear in [Pik99a℄.

The notion of weak saturation extends to layered graphs in the obvious way.

For example, given an r-graph F, w-SAT(n;F) onsists of all r-graphs G on an
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n-set suh that we an onseutively add all missing r-edges to G reating every

time an F-subgraph.

It is lear how to extend the notion of an m/r-proof to layered graphs. It is

possible also to introdue the gross matroid of an r-graph G de�ned on an n-set

X. Indeed, identify eah X

i

with a basis e

i

= (e

i;j

)

j2[n

i

℄

of an n

i

-dimensional

vetor spae V

i

and onsider

V

V whih, by the de�nition, is the tensor produt

of the exterior algebras over V

i

, i 2 [t℄:

V

V =

N

i2[t℄

V

V

i

:

Let

V

r

V be the linear subspae of

V

V spanned by the elements

h = h

1


 : : :
 h

t

; h

i

2

V

r

i

V

i

; i 2 [t℄:

Let f

i

= (f

i;j

)

j2[n

i

℄

be another basis of V

i

lying in generi position with respet

to e

i

, i 2 [t℄.

In the obvious way we de�ne supports, et. For any r-subset E � X, let

f

E

=

N

i2[t℄

f

i;E

i

and e

E

=

N

i2[t℄

e

i;E

i

;

or, in other words, in every

V

V

i

, we take the element orresponding to E

i

in the

basis f

i

or e

i

and then ompute the tensor produt. Let the linear subspae Z �

V

r

V orresponding toG be spanned by the elements ff

E

: E 2 E(G)g and let r-

sets E

1

; : : : ;E

k

be independent if no linear ombination of e

E

1

; : : : ; e

E

k

(exept

0) belongs to Z. The required matroid G

G

of rank odim(Z) = e(G) is built.

Clearly, it is symmetri, that is, invariant under layer-preserving permutations.

Given t (usual) r

i

-graphs F

i

, i 2 [t℄, with disjoint vertex sets, their join

(or tensor produt) F = F

1


 : : : 
 F

t

is the layered r-graph on the layered set

V (F) = (V (F

1

); : : : ; V (F

t

)) suh that an r-subset E = (E

1

; : : : ; E

t

) is an edge

of F if and only if E

i

2 E(F

i

) for every i 2 [t℄. Thus e(F) =

Q

i2[t℄

e(F

i

). For

example, the join of two 1-graphs is a omplete bipartite graph (possibly plus

isolated verties).

Suppose that we are given t families F

i

of r

i

-graphs, i 2 [t℄. We de�ne their

join by

F = F

1


 : : :
F

t

= fF

1


 : : : 
 F

t

: F

i

2 F

i

; i 2 [t℄g :

Let these onventions apply to the following results.
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Lemma 61 If G

i

2 w-SAT(n

i

;F

i

), i 2 [t℄, then G 2 w-SAT(n;F), where

G = G

1


 : : :
G

t

. In partiular,

w-sat(n;F) �

Y

i2[t℄

�

n

i

r

i

�

�

Y

i2[t℄

��

n

i

r

i

�

� w-sat(n;F

i

)

�

:

Proof. Denote b

i

= e(G

i

). Let E

i;j

2 G

i

, j = 1; : : : ; b

i

, be an F

i

-proper

ordering, i 2 [t℄. There is the obvious bijetive orrespondene between the

elements in B = [b

1

℄ � : : : � [b

t

℄ and the edges of G whih maps (j

1

; : : : ; j

t

) to

[

i2[t℄

E

i;j

i

.

Now we add the missing edges to G so that the orresponding elements of B

are taken in the lexiographi order. Consider any added edge E. Let H

i

� X

i

be an F

i

-subgraph reated by E

i

. (Note that E

i

62 E(G

i

) by the de�nition ofG.)

We laim that H = H

1


 : : :
H

t

is a forbidden subgraph reated by E. Indeed,

let D 6= E, be an edge of H. Clearly, for eah i 2 [t℄, the edge D

i

2 E(H

i

) must

be present in G

i

or be added before E

i

or equal to E

i

. If D

i

2 E(G

i

) for at least

one index i then D 2 E(G). If not, then learly the edge D omes before E, as

required.

Finally, e(G) =

Q

i2[t℄

e(G

i

), whih ompletes the proof.

Lemma 62 If F

i

is a hain in G

G

i

, i 2 [t℄, then F = F

1


 : : : 
 F

t

is a hain

in G

G

, where G = G

1


 : : : 
G

t

.

Proof. By the assumption, there is h

i

2 Z

G

i

�

V

r

i

V

i

suh that supp

e

i

(h

i

) =

E(F

i

), i 2 [t℄. Consider

h = h

1


 : : :
 h

t

2

V

r

V:

Obviously, supp

e

(h) = E(F) and supp

f

(h) � E(G). Therefore, h 2 Z

G

and

every edge in F is dependent on the rest, as required.

Theorem 63 Suppose that, for every i 2 [t℄, the pair (F

i

, G

i

) admit a G-proof.

Then so does the pair (F ;G), where G = G

1


 : : : 
G

t

.

Suppose that, for eah i 2 [t℄, we an g-prove that w-sat(n

i

;F

i

) � l

i

. Then

we an g-prove that

w-sat(n;F) �

Y

i2[t℄

�

n

i

r

i

�

�

Y

i2[t℄

��

n

i

r

i

�

� l

i

�

: (80)
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In partiular, if eah F

i

admits a g-proof for n

i

, then F admits a g-proof for n.

The analogous statement is true for the r-tehnique.

Proof. Let us onsider G-proofs �rst. By Lemma 61, G 2 w-SAT(n;F), and

by Lemma 62, every F

1


 : : :
 F

k

2 F is a G

G

-hain, and the laim follows.

Now, onsider the g-ase. For i 2 [t℄, hoose G

i

suh that eah graph in

F

i

is a G

G

i

-hain and the G

G

i

-rank of K

r

i

n

i

is at least l

i

; let H

i

� K

r

i

n

i

be a

G

G

i

-independent subgraph of size l

i

and order n

i

. Let

G = G

1


 : : : 
G

t

;

H = H

1


 : : : 
H

t

:

By Lemma 62, eah F

1


 : : :
 F

k

2 F is a G

G

-hain.

Let us show that H is independent in G

G

. As eah H

i

is G

G

i

-independent,

we an �nd a linear map p

i

:

V

r

i

V

i

! Z

G

i

whih is the identity map on Z

G

i

while p

i

(e

E

) = 0 if E 2 E(H

i

), i 2 [t℄. De�ne

p = p

1


 : : :
 p

t

:

V

r

V! Z

G

1


 : : : 
 Z

G

t

;

that is p(u

1


 : : : 
 u

t

) = p

1

(u

1

) 
 : : : 
 p

t

(u

t

). Now, p is the identity map on

Z

G

1


 : : :
Z

G

t

= Z

G

, while p is zero on e

E

for eah E = E

1

[ : : :[E

t

2 E(H):

E

i

2 E(H

i

) for some i 2 [t℄ and then p

i

(e

E

i

) = 0. Hene, no non-zero linear

ombination of e

E

, E 2 E(H) an lie in Z

G

, that is, H is independent in G

G

.

The size of H equals the right-hand side of (80), as required.

The laim about g-proofs follows from Lemma 61.

In the r-ase, our task is to onstrut a matroid M on the set of r-subsets

of X suh that every graph in F is anM-hain, should we be given appropriate

matroids M

i

on Y

i

= X

(r

i

)

i

, i 2 [t℄.

Let k

i

: Y

i

! V

i

, for some vetor spae V

i

, be a representation of the matroid

M

i

, i 2 [t℄. Identify Y

i

with a basis of some vetor spae W

i

via g

i

: Y

i

,! W

i

.

Let h

i

: W

i

! V

i

be the linear map extending k

i

. Denote Z

i

= ker(h

i

) � W

i

.

Clearly, odimZ

i

= R

M

i

(Y

i

) = e(G

i

) � l

i

, where G

i

is a base of M

i

.

Let G = G

1


 : : : 
 G

t

. Identify the r-subsets of V (G) with a basis of

W =

N

i2[t℄

W

i

by mapping E = (E

1

; : : : ; E

t

) into g(E) =

N

i2[t℄

g

i

(E

i

). Let

Z =

N

i2[t℄

Z

i

�W and p :W!W=Z be the projetion.
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Let M be the matroid represented by p Æ g : V (G)

(r)

!W=Z. Let us show

that M r-proves (80).

As g(V (G)

(r)

) is a basis for W, we onlude that the rank of M is

dimW� dimZ =

Y

i2[t℄

�

n

i

r

i

�

�

Y

i2[t℄

e(G

i

);

whih is at least the right-hand side of (80).

Thus, all we have to do is to hek that any F = F

1


 : : : 
 F

t

2 F is an

M-hain. Fix an edge E = (E

1

; : : : ; E

t

) 2 E(F). As F

i

is an M

i

-hain, we

onlude that there are 

i;E

2 R, E 2 E(F

i

) n fE

i

g, and z

i

2 Z

i

suh that

g

i

(E

i

) = z

i

+

X

D2E(F

i

)nfE

i

g



i;D

g

i

(D); i 2 [t℄: (81)

If we take the tensor produt of (81) over i 2 [t℄, we obtain on the left-hand

side the element g(E) while on the right-hand side we will have z

1


 : : : 
 z

t

2

Z plus some other tensor produts. Next, in the remaining tensor produts

replae eah z

i

by the linear ombination of (g

i

(D))

D2E(F

i

)

by (81). Eah term

then beomes 


i2[t℄

g

i

(D

i

) for some D

i

2 E(F

i

), i.e., it is of the form g(D),

D = (D

1

; : : : ;D

t

) 2 E(F) and, moreover, we never have D = E. So we have a

representation of g(E) as a linear ombination of an element of Z and of g(D),

D 2 E(F) n fEg whih is preisely the required. The theorem is proved.

Unfortunately, there does not seem to be a natural tensor produt operation

for matroids, f. Lov�asz [Lov77℄, so we do not know if joins preserve m-proofs.

Alon [Alo85℄ (a di�erent proof is presented by Yu [Yu93℄) solved one extremal

problem for set systems, whih an be easily seen equivalent to omputing the

w-sat-funtion for joins of omplete graphs. As omplete graphs admit a G-

proof (e.g. by Theorem 60), the result of Alon an be dedued as a speial ase

of Theorem 63.



Part III

Chain Deompositions

13 Introdution

13.1 Disussion

There are many important results about hain deompositions of posets, that is,

olletions of hains suh that every element in the poset belongs to exatly one

hain. (We will also refer to these as vertex deompositions.) Typial questions

are the following. What is the minimal number of hains of suh a partition? Do

there exist partitions with some extra properties (e.g. into symmetri hains)?

Are there any appliations of these deompositions?

In this part we investigate the notion of an edge deomposition whih is a

olletion of hains suh that every pair of adjaent elements (one overs the

other) belongs to exatly one hain and we try to answer the above questions.

Suh onsiderations may arise, for example, when in a omputer programme

we want to operate with posets, and so we wish to represent them eÆiently

in the memory. If keeping the relational binary n � n-table is impossible or

undesirable, we an try to maintain a list of hains ompletely determining the

poset, and a natural question to ask is, for example, how small suh a list an

be. The related notion of line poset also arises naturally.

In Setion 14 we ompute the minimal size of a skipless hain deomposition

of a poset in terms of other parameters, whih an be viewed as an analogue

of Dilworth's theorem [Dil50℄. Surprisingly, this fundamental theorem is a new

result. We prove it using the linear programming method of Dantzig and Ho�-

man [DH56℄. Graham Brightwell simpli�ed our proof by replaing the linear

programming argument by an easy appliation of Hall's theorem. We present

both these proofs.

The minimal size of an edge deomposition of P an be dedued as a orollary

but we present a short and diret proof.

In Setion 15 we provide an expliit edge deomposition of the lattie of sub-

sets of a �nite set into symmetri hains. Although the existene of suh a par-

tition an be dedued from the results of Anderson [And67℄ and Griggs [Gri77℄,
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a onstrutive proof seems to be unknown. The disovered partition has some

extra properties and interesting appliations. For the latter we refer the reader

to Setion 16.

In Setion 17 we haraterize line posets in terms of forbidden on�gurations

and point out whih information determines and an be reonstruted from its

line poset.

13.2 De�nitions

Let P = (X;>) be a poset (a partially ordered set). We say that y overs x

(denoted by y m x or x l y) if y > x and no z 2 X satis�es x < z < y (suh

x, y will be also alled adjaent elements). With every poset P we assoiate its

Hasse diagram D = D(P) whih is the digraph with X as the vertex set and

(x; y) 2 E(D) i� y overs x. Given a yle-free digraph D, we an build a poset

on the same vertex set by letting x < y if there is a direted xy-path. Note

that a yle-free digraph D is the Hasse diagram of some P if and only if for

every (x; y) 2 E(D) there is no direted xy-path of length greater than 1. The

orrespondene `posets-digraphs' is very useful, so we often swith between the

poset and digraph terminology without any warning.

A hain in P is alled skipless if every element overs its predeessor; skipless

hains orrespond to oriented paths in the Hasse diagram. The width w(P) is

the maximal size of an antihain in P.

The line poset L(P) of a poset P has as the vertex set the pairs (x; y) of

elements in P with y overing x and we agree that (xl y) is less than (x

0

l y

0

)

in L(P) if and only if y � x

0

. (This operation somewhat resembles taking the

line graph, hene the name.)

Every skipless hain in P orresponds to a skipless hain in L(P) of size

smaller by 1. We usually identify these hains.

One an ask whih important poset properties are preserved by the operator

L. In fat, L preserves very few properties (e.g. self-duality, regularity). As in

almost every ase it is trivial to �nd a ounterexample/proof, we do not dwell

on this topi.

A vertex partition (deomposition) of P is a olletion of hains suh that

every x 2 X belongs to exatly one hain. An edge partition (deomposition) is
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a family of skipless hains suh that every pair x; y 2 X with x being overed by

y belongs to exatly one hain. Note that the hains in an edge deomposition

are required to be skipless. One an see that edge partitions of P orrespond to

vertex partitions of L(P) into skipless hains.

The subsets of [n℄ partially ordered via the inlusion relation, form the ranked

poset B

n

= (2

[n℄

;�). The orresponding Hasse diagram is the oriented n-ube

Q

n

. For B

n

, the relation `B overs A' is denoted by A � B.

We �nd it useful to identify A 2 B

n

with its ()-representation whih is

the n-sequene of left and right parentheses orresponding to the elements of

A = [n℄ n A and A respetively. Likewise, the (�)-representation of an element

(A � B) 2 L(B

n

) ontains `(' for the elements in B, `)' for the elements in A

and `�' for the element in B nA.

Generally, let F be a sequene ontaining left and right parentheses. Con-

seutively and as long as possible remove mathed pairs of adjaent brakets, ie.

substrings `( )'. (Clearly, the order of operations does not matter.) The elements

whih would be removed by the above mathing are alled �xed or paired ele-

ments and the remaining ones are alled free. In partiular, the free parentheses

always form the following (possibly empty) sequene: ) ) : : : ) ) ( ( : : : ( (.

14 Skipless Chain Deompositions

Here we present a theorem omputing the minimal number of skipless hains

partitioning a given poset P . In fat, we prove a more general result about

direted graphs.

Let D be any digraph. We may have loops and may have edges (i; j) and

(j; i) simultaneously. Consider partitions of V (D) into vertex-disjoint direted

yles and direted paths. (We onsider any isolated vertex as a path of length

zero; loops and pairs of opposite edges are onsidered as yles.) Let m(D) be

the minimal number of direted paths in a suh partition.

On the other hand, let M(D) be the maximal value of jAj � jBj taken over

all pairs of disjoint sets A;B � V (D) suh that any direted path onneting

two distint verties from A, ontains a vertex of B and any yle interseting

A intersets B. (In partiular, if (i; i) 2 E(D) then i 62 A.) Clearly, for any

suh pair (A;B) we have jP \ Aj � jP \ Bj+ ", where " = 1 if P is a direted
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path and " = 0 if P is a direted yle. This implies that m(D) �M(D).

We will show that we have in fat equality for any D. Our proof is a mod-

i�ation of the proof by Dantzig and Ho�man [DH56℄ of Dilworth's theorem,

whih exploits methods of linear programming. (A simpler argument by Graham

Brightwell is outlined after our proof.)

Theorem 64 For any direted graph D we have m(D) =M(D).

Proof. As we have already observedm(D) �M(D), so let us prove the onverse

inequality. Assume that V (D) = [n℄. For i; j 2 [n℄ de�ne 

00

= 1, 

0j

= 

i0

= 0,

and



ij

=

(

0; if (i; j) 2 E(D),

�1; if (i; j) 62 E(D).

Consider the linear programming problem of �nding k, where

k = max

X

i;j2[0;n℄



ij

x

ij

; (82)

given the following restritions:

n

X

j=0

x

0j

=

n

X

i=0

x

i0

= n; (83)

n

X

j=0

x

ij

=

n

X

j=0

x

ji

= 1; i 2 [n℄; (84)

x

ij

� 0; i; j 2 [0; n℄: (85)

Restritions (83), (84) and (85) de�ne a non-empty set; for example, we an

satisfy them by letting x

ij

be 0 for i; j 2 [n℄ and 1 otherwise, exept x

00

= 0.

As for any feasible solution we have x

00

� n while the oeÆients 

ij

at other

variables are non-positive, we onlude that the right-hand side of (82) is at

most n and thus k is well-de�ned.

We laim that we an hoose an integral solution to (82), that is, we an

ensure that eah x

ij

is an integer. To do so, take a solution in whih as many

as possible variables are integers. Suppose there is x

i

1

i

2

62 Z. By (83) or (84),

the i

2

th olumn ontains another non-integer, x

i

3

i

2

. Next, we onsider the i

3

th

row and �nd x

i

3

i

4

62 Z, and so on, until onsidering a urrent variable x

i

s

i

t

we

have a hane to selet a previously hosen variable x

i

u

i

v

. In fat, we may have
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two hoies at this step, but we will always be able to hose one with s+ v and

t + u being odd. Then the subsequene S of elements between x

i

s

i

t

and x

i

u

i

v

(inlusive) is of even length. If we add any " to eah x

i

k

i

k+1

2 S and subtrat "

from eah x

i

k+1

i

k

2 S, then we do not a�et (83) and (84). (Beause eah row

or olumn ontains either two variables, whih reeive di�erent signs, or none.)

The funtion

P



ij

x

ij

is linear in ", suppose it is non-dereasing. Let " be the

minimum of the frational part of x

i

k+1

i

k

2 S; then our transformation makes

at least one more variable integral, while (85) still holds. This ontradition

proves the laim.

Any x

ij

, exept perhaps x

00

, is either 0 or 1. A moment's thought reveals

that by (84) the set f(i; j) 2 [n℄

2

: x

ij

= 1g � E(D) is a union of vertex-disjoint

direted paths (this is to inlude isolated verties) and yles partitioning V (D).

The number of paths equals the number of ourrenes of 1 among x

0j

, j 2 [n℄,

whih by (83) is n� x

00

= n� k. Hene,

m(D) � n� k: (86)

Now, the Duality Theorem asserts that

k = min

0

�

n(u

0

+ v

0

) +

n

X

i=1

u

i

+

n

X

j=1

v

j

1

A

; (87)

given the following restritions on variables u

i

; v

i

, i 2 [0; n℄:

u

0

+ v

0

� 1; (88)

u

i

+ v

0

� 0; i 2 [n℄; (89)

u

0

+ v

j

� 0; j 2 [n℄; (90)

u

i

+ v

j

� 0; (i; j) 2 E(D): (91)

We laim that we an hoose an integral solution to (87). To do so, take

a solution with as many as possible variables among u

i

; v

i

, i 2 [0; n℄, being

integers. Let I = fi 2 [0; n℄ : u

i

62 Zg and J = fj 2 [0; n℄ : v

j

62 Zg. Suppose

I 6= ;. If we derease eah u

i

, i 2 I, by " and inrease eah v

j

, j 2 J , by ",

then the right-hand side of (87) is linear in "; suppose it non-inreases with ".

Let " = min

i2I

(u

i

� bu

i

). We obtain at least one more integer among the u's,

so to obtain a ontradition it is enough to hek that (88){(91) still hold. The
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restrition (88), for example, may ause us a problem only if 0 2 I n J . Then

v

0

2 Z and, by de�nition, " is at most the frational part of u

0

+v

0

whih would

su�er the derement by " without rossing the integer 1. The laim is proved.

We may assume that v

0

= 0, beause we an add some integer " to eah u

i

and subtrat " from eah v

i

, i 2 [0; n℄, without a�eting (87){(91). Also, we

an make u

0

= 1, beause we an subtrat " > 0 from u

0

and add " to eah

v

i

, i 2 [n℄. Hene, k = n + min(

P

n

i=1

u

i

+

P

n

j=1

v

j

), given onditions u

i

� 0,

v

i

� �1, i 2 [n℄, and (91). It is easy to see that in our (integral) solution, eah

u

i

is either 0 or 1 and eah v

i

is either �1 or 0. Let X = fj 2 [n℄ : v

j

= �1g

and let X

0

= fi 2 [n℄ : 9j 2 X (i; j) 2 E(D)g, that is, X

0

onsists of verties

sending at least one edge to X.

To satisfy (91) we must have u

i

= 1 for eah i 2 X

0

. Also, if we set u

i

= 0

for i 2 [n℄ nX

0

, then (88){(91) are still satis�ed while the linear funtion in (87)

does not inrease. Hene, we may assume that X

0

= fi 2 [n℄ : u

i

= 1g; then

n� k = jXj � jX

0

j.

Let A = X nX

0

and B = X

0

nX. Let P = fx

1

; : : : ; x

l

g be a direted path

in D with x

1

; x

l

2 A, l � 2. As x

1

62 X

0

, we onlude x

2

62 X. As x

l

2 X, there

must be i 2 [2; l � 1℄ suh that x

i

62 X but x

i+1

2 X. By de�nition, x

i

2 B.

Similarly, any yle interseting A intersets B. By (86) we obtain,

m(D) � n� k = jXj � jX

0

j = jAj � jBj �M(D);

whih was required.

Remark. Graham Brightwell onsiderably simpli�ed our proof shortly after it

had been announed. Let us outline his argument whih exploits Hall's theorem.

Given a digraph D, onsider the bipartite graph G on two opies of V (D),

say X = fv

_

: v 2 V (D)g and Y = fv

^

: v 2 V (D)g, where we onnet u

_

to v

^

if and only if (u; v) 2 E(D). It is easy to hek that the number of edges missing

in a maximum mathing in G equals m(D). By a version of Hall's theorem, this

number equals the maximum of jZj � j�(Z)j over Z � X. Choose any extremal

set Z. Now, it is routine to hek that

A = fv 2 V (D) : v

_

2 Z; v

^

62 �(Z)g;

B = fv 2 V (D) : v

_

62 Z; v

^

2 �(Z)g;

are two sets exhibiting m(D) = jAj � jBj �M(D).



14 SKIPLESS CHAIN DECOMPOSITIONS 100

The following orollary is obtained by applying Theorem 64 to the Hasse

diagram of P.

Corollary 65 For any poset P, the minimal number m of skipless hains par-

titioning it equals the maximal value of jAj � jBj over all disjoint sets A;B � P

suh that any skipless hain ontaining two elements from A intersets B.

Of ourse, the minimal size m of an edge deomposition of P an be om-

puted by applying Corollary 65 to L(P). However, we present a diret proof

whih is short and gives a diret algorithm for onstruting suh a partition. It

turns out that to ompute M(L(P)) it is enough to onsider only pairs A;B �

L(P) of the following rather speial form: take a partition X [ Y = P and let

A = f(xl y) 2 L(P) : x 2 X; y 2 Y g and B = f(ylx) 2 L(P) : x 2 X; y 2 Y g.

We state the result in terms of digraphs. Let e(X;Y ), X;Y � V (D), denote

the number of the edges in D starting in X and ending in Y and M(X;Y ) =

e(X;Y )� e(Y;X).

Theorem 66 The minimal number m of direted paths partitioning the edge

set of a yle-free digraph D is equal to

M(D) = maxfM(X;Y ) : X [ Y = V (D); X \ Y = ;g:

Proof. It is immediate that m � M beause for any partition X [ Y = V (D)

and any path P the removal of the edges on P an derease M(X;Y ) by at

most one. To prove the reverse inequality by indution on jE(D)j it is enough

to show that, for the graph D

0

obtained from D by the removal of the edges of

a maximal path P = (x

1

; : : : ; x

k

), we have M(D

0

) < M(D).

To show this take a partition X [ Y = V (D

0

) with

M(D

0

) =M(X;Y ) = e(X;Y )� e(Y;X):

Sine P is maximal and D is ayli there is no y 2 V (D) with (y; x

1

) 2

E(D). Therefore if x

1

2 Y we an move x

1

to X without dereasing M(X;Y ).

Likewise we may assume x

k

2 Y . But if we add bak the edges of P we will

inrease M(X;Y ) by 1: if moving along P we hange side from Y to X i times,

then we go from X to Y i + 1 times. This shows that M(D

0

) < M(D) as

required.
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Remark. Inidentally, we disovered an algorithm produing an optimal edge

deomposition: selet and remove maximal paths one by one.

15 Symmetri Edge Partitions of Cubes

The result of de Brujin, Tengbergen and Kruyswijk [BTK51℄ (see [Bol86, The-

orem 4.1℄ or [And87, Setion 3.1℄ for a proof) asserts that B

n

= (2

[n℄

;�) is a

symmetri hain order, that is, admits a deomposition into symmetri hains.

(A hain x

1

< : : : < x

k

in a ranked poset (P; r) is alled symmetri if it is skip-

less and r(x

1

) = r(P)�r(x

k

).) This was strengthened by Anderson [And67℄ and

Griggs [Gri77℄, who showed that a LYM poset P with a unimodal symmetri

rank-sequene is a symmetri hain order. (Note that the number of hains is

w(P)|minimal possible.)

The latter result is appliable to L(B

n

) whih, as a regular poset, has the

LYM property, see e.g. [Eng97, Corollary 4.5.2℄. However, this way we obtain a

purely existential result while one would wish to have an expliit deomposition.

Here we provide an expliit onstrution, whih like that of Leeb (unpublished)

and Greene and Kleitman [GK76℄ on B

n

, utilizes braket representations.

Theorem 67 L(B

n

) is a symmetri hain order. In other words, B

n

admits an

edge deomposition into symmetri hains.

Proof. Assume that the numbers 1; : : : ; n are plaed on a irle lokwise in this

order. Let � denotes the shift whih maps every element to the next position

lokwise: �(k) = k + 1 (mod n) and let �

(i)

be its ith iterate. (These are also

referred to as rotations.) For the larity of language we use the same symbol �

for the orresponding ation on the vertex set and the edge set of Q

n

. We will

produe a �-invariant edge partition.

We build, indutively on n, a family F

n

of n-element sequenes, starting for

the ase n = 1 with the family F

1

= f ( g. To build F

n+1

apply Operations A

and B to every sequene F 2 F

n

and let F

n+1

omprise the resulting sequenes.

Operation A: add `(' to the right of F . Operation B: add `)' to the right of F

and throw away the resulting sequene if it does not ontain free elements (i.e. if

all its parentheses an be paired).
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Proeeding in this way we obtain, for example,

F

2

= f ( ( g;

F

3

= f ( ( (; ( ( ) g

F

4

= f ( ( ( (; ( ( ( ); ( ( ) ( g:

It is easy to see that F

n

is the set of all n-sequenes beginning with `(' whih

is a free element. (In partiular, all right parentheses are paired.)

For any sequene F 2 F

n

we build the orresponding hain C

F

in L(B

n

)

whih has length t, where t is the number of free members of F . To obtain

the (�)-desription of the ith element of C

F

, i 2 [t℄, we reverse in F the last

i� 1 free parentheses and replae the ith free element (when ounted from the

right) by star �. Thus, for example, `( ( ) ( ( )' gives ( ( ) � ( ) and � ( ) ) ( ) whih

orrespond to the following hain in L(B

6

):

(f3; 6g � f3; 4; 6g) l (f3; 4; 6g � f1; 3; 4; 6g):

It is easy to see that every C

F

is a symmetri hain. We laim that

D

n

= f�

(j)

(C

F

) : F 2 F

n

; j = 0; : : : ; n� 1g

is the required edge partition.

We have to prove that for every element x = (A � B) in L(B

n

) there are

unique F 2 F

n

and j 2 [0; n� 1℄ suh that x 2 �

(j)

(C

F

). First we show how to

�nd at least one suh pair (F; j).

Step 1. Write x in the (�)-representation. Step 2. Rotate the pattern to

bring the star to position 1 and then identify all free parentheses. Clearly, if

disregarding the paired elements, our sequene is `� ) : : : ) ( : : : (.' Step 3. Rotate

again so that the �rst free left parenthesis identi�ed in Step 2 (or the star itself

if no `(' is free) is moved to position 1. Let j be the number of positions that

the star was moved antilokwise by Steps 2 and 3 ombined. Step 4. Replae

the star and all free right parentheses identi�ed in Step 2 by left parentheses.

Let F be the resulting sequene.

Obviously, when we pair brakets in Step 4, we obtain the same sets of

free/paired elements as in Step 2. This implies that F 2 F

n

as it starts

with free `(' and that x 2 C

F

as required. Here is an illustration for x =
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(f1; 6; 7g � f1; 4; 6; 7g) 2 L(B

8

):

Step 1: ) ( ( � ( ) ) (

Step 2: � ( ) ) ( ) ( (

Step 3: ( ( � ( ) ) ( ) (and j = 1)

Step 4: ( ( ( ( ) ( ( ) (this is F )

The uniqueness of (F; j) an be established in di�erent ways. One, whih

atually gives an alternative de�nition of D

n

, is the following. Given the (�)-

representation of x, for 0 � i � n � 1 let g(i) = l

i

� r

i

, where l

i

and r

i

are

respetively the number of left and right parentheses in the i positions preeding

`�' lokwise. If x 2 �

j

(C

F

) then j is the smallest element in [0; n� 1℄ on whih

g ahieves its maximum. Why? Just pair the brakets in the (�)-representation

of �

�j

(x) 2 C

F

, e.g.

( ( ( ) ( ) ) ( ) ( � ) ( ) ) ( ) ;

and notie that any paired blok (boxed regions) ontributes 0 to g while any

right-hand-sided part of it ontributes a stritly negative value. Now, the max-

imum of g is the number of free left parentheses and this is ahieved for �rst

time when onsidering the segment preeding the star, as required.

But now, one that j has been identi�ed, there trivially ould not be two

suitable F 's.

For the remainder of this part let D

n

denote the edge deomposition of B

n

onstruted above. It has the following properties.

Theorem 68 Let C = (A

1

� : : : � A

k

) be one of the hains in D

n

. If A

i+1

=

A

i

[ fa

i

g, then the elements a

1

; : : : ; a

k�1

are situated on the irle in this other

antilokwise and between a

i

and a

i+1

(antilokwise) there is an even number

of plaes. For eah i 2 [k � 3℄, there is an element (B � B

0

) belonging to a

hain of D

n

shorter than C suh that

A

i

� B � B

0

� A

i+3

: (92)

Proof. Take the sequene F 2 F

n

giving rise to C. (We may assume j = 0.)

The fat that in F every pair of onseutive free elements ontains only paired

brakets in between implies the �rt part of the theorem.
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To show the seond laim, let F

0

be the sequene F with the (i + 1)st free

left braket (if ounted from the right) replaed by `)' whih is then paired with

the (i+ 2)nd free element:

F : (

�

(

�

(

�

(

�

(

�

(

�

� . . . . . . . . . . A

i

� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A

i+3

F

0

: (

�

(

�

(

�

)

�

(

�

(

�

� . . . . . . . . . . B

� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B

0

The new sequene orresponds to a hain of length k� 2 and its ith and i+1st

elements obviously satisfy the required property.

We de�ne the omplementary hain C of a hain C by replaing every ele-

ment by its omplement, ie. if C = (A

1

� : : : � A

k

) then C = (A

k

� : : : � A

1

).

Lemma 69 Two elements x

1

= (A

1

� B

1

) and x

2

= (A

2

� B

2

) of L(B

n

) an

belong simultaneously to D

n

and D

n

only if n = 2k is even and fjB

1

j; jB

2

jg =

fk; k + 1g.

Proof. Let i

h

2 [n℄ be the element of B

h

not in A

h

, h = 1; 2, and let pairs

(F; j) and (F

0

; j

0

) give rise to hains C;C

0

2 D

n

suh that C

0

ontains x

1

and

x

2

while C ontains x

1

and x

2

respetively. Assume that j

0

= 0 and x

1

< x

2

,

ie. B

1

� A

2

.

In F

0

i

2

preedes i

1

and we laim that F

0

does not ontain a free element

between them. Indeed, if it be in the position y 2 [n℄ then y 2 B

1

and y 62 A

2

,

that is, �

�j

(y) must be a free element in F . But then �

�j

(y) must lie between

�

�j

(i

1

) < �

�j

(i

2

). (In C the element x

2

omes before x

1

.) This ontradition

(on one hand the elements i

2

; y; i

1

go lokwise, on the other|antilokwise)

proves the laim.

Thus all the elements between i

2

and i

1

are paired in F

0

; therefore B

1

= A

2

and there must be the same number of left and right parentheses in this interval.

Considering x

2

; x

1

2 C we show the analogeous statement about the elements

between i

1

and i

2

(if going lokwise), whih learly implies the laim.
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16 Appliations of the Partition D

n

We would like to inlude here some appliations of the edge partition D

n

built

in Theorem 67. Basially, we are inspired by known results where a symmet-

ri vertex deomposition of B

n

is used. We refer the reader to Setion 3.4 of

Anderson's book [And87℄ for an exposition of a few results of this type. I am

grateful to Ian Anderson for drawing my attention to some other appliations

not surveyed in his book.

16.1 On the Number of Antihains in L(B

n

)

Let us onsider the following question: what is '(L(B

n

)), the number of an-

tihains in L(B

n

)? The omputation of '(B

n

) is an old and diÆult problem; a

ompliated asymptoti formula was established by Korshunov [Kor81℄.

Here we provide some rough estimates of '(L(B

n

)) by applying ideas of

Hansel [Han66℄ who showed that 2

N

� '(B

n

) � 3

N

, where N = w(B

n

) =

�

n

bn=2

�

.

Considering all possible subsets of the largest antihain of L(B

n

) we obtain

trivially '(L(B

n

)) � 2

m

, where m = w(L(B

n

)) = dn=2e

�

n

bn=2

�

.

On the other hand, observe that an antihain A � L(B

n

) is uniquely de-

termined by the ideal �(A) = fx 2 L(B

n

) : 9 a 2 A x � ag. Consider any

C = (x

1

l : : : l x

l

) 2 D

n

. By Theorem 68 for 3 � i � l � 2 we an �nd y

i

in

a shorter hain with x

i�2

< y

i

< x

i+2

. Knowing �(A) \ C

0

for every C

0

2 D

n

shorter than C we know �(A) \ fy

3

; : : : ; y

l�2

g. But then it is easy to hek

that only for at most 4 elements of C we are unable to dedue whether it is in

�(A), and therefore �(A) \ C an assume at most 5 possible values. Consid-

ering onseutively the hains of D

n

in some size-inreasing order we onlude

that '(L(B

n

)) � 5

m

.

16.2 Orthogonal Partitions of L(B

n

)

Two hains in a poset P are alled orthogonal if they have at most one ommon

element. Two vertex hain partitions D and D

0

are orthogonal if any C 2 D is

orthogonal to any C

0

2 D

0

. A result of Shearer and Kleitman [KS79℄ (see [And87,

Setion 3.4℄) asserts that there exist two orthogonal hain deompositions of B

n

into

�

n

bn=2

�

hains eah.
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What an be said about L(B

n

)? If n is odd, then D

n

and D

n

are orthogonal

by Lemma 69, where D

n

is the deomposition built in Theorem 67.

Theorem 70 For odd n there is a pair of orthogonal symmetri hain deom-

positions of L(B

n

).

Remark. Unfortunately, we do not know if the orresponding laim is true for

even n.

The result of Baumert, MEliee, Rodermih and Rumsey [BMRR80℄ (for

a proof, see [And87, Setion 3.4.3℄ or [Bol86, Setion 6℄) states that posets

admitting a pair of orthogonal deompositions satisfy the probabilisti form of

Sperner's theorem, whih in our ase, by Theorem 70, is the following.

Corollary 71 If two elements x and y in L(B

n

), odd n, are hosen inde-

pendently with arbitrary probability distribution (same for both elements) then

Pfx � yg � w(L(B

n

))

�1

.

16.3 A Storage and Retrieval Problem

Suppose we maintain a database with n reords whih we number from 1 to

n and we wish to organize an eÆient searhing. We assume that we have

queries Q

1

; : : : ; Q

M

eah of whih we identify with the set of reords satisfying

it, that is, Q

i

� [n℄ and these subsets are not neessarily distint. One idea,

see Ghosh [Gho75℄, is to �nd a sequene X of elements of [n℄ suh that every

Q

i

ours in X as a subsequene of onseutive terms so that every Q

i

an be

de�ned by a starting position in X and the size of Q

i

.

In onnetion with this Lipski [Lip78℄ onsidered the following problem. Find

the shortest sequene of elements of X = [n℄ suh that X ontains every A � [n℄

as a subsequene of jAj onseutive terms. He showed that s

n

, the length of an

optimal sequene, satis�es

�

2

�n

�

1=2

2

n

� (1 + o(1))s

n

�

�

2

�

�

2

n

: (93)

As far as I know, these might be the best known bounds to date.

Here we onsider a similar problem. Namely, we ask what is the value of

t

n

, the shortest length of a sequene X suh that for every A � B � [n℄ the
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sequene X ontains A as a subsequene of jAj onseutive terms preeded by

x, where fxg = B nA. Suh a situation an happen if every query is a set with

a seleted point. For example, we searh in a ditionary, the allowed queries

are of the form \Find word" and the answer should give the entry where word

is de�ned plus all relevant entries. Applying the ideas of Lipski [Lip78℄ we �nd

the following upper and lower bounds.

Theorem 72

�

n

2�

�

1=2

2

n

� (1 + o(1))t

n

�

�

n

�

�

2

n

: (94)

Proof. As the number of di�erent pairs A � A [ fxg with jAj = bn=2 whih

an lie within a sequene of length m does not exeed m � bn=2 we onlude

that

t

n

� dn=2e

�

n

bn=2

�

+ bn=2

whih implies the lower bound in (94) by Stirling's formula.

On the other hand, assoiate with every hain C = (A

1

� : : : � A

q

) in D

n

a

sequene of elements of [n℄ whih ontains �rst the elements of A

1

in any order

whih then are followed by a

2

; : : : ; a

q

, where fa

i

g = A

i

n A

i�1

, i = 2; : : : ; q.

Let [n℄ = S [ T be a partition of [n℄ into 2 parts of (nearly) equal sizes. Let

�

1

; : : : �

k

be the sequenes orresponding to a symmetri vertex deomposition

of 2

T

. Also, let  

1

; : : : ;  

l

be the sequenes orresponding to a symmetri edge

deomposition of 2

S

, eah sequene being reversed.

Clearly, for every A � S there exists �

i

ontaining A as the �rst onseutive

jAj terms and for every A � A[fxg � T there exists  

j

ontaining, at the end,

A preeded by x.

Now onsider the sequene

X =  

1

�

1

 

1

�

2

: : :  

1

�

k

 

2

�

1

 

2

�

2

: : :  

l

�

k

:

Take any A � [n℄ and x 2 T nA. There is  

i

ontaining x at the end followed by

A\T and �

j

ontaining A\S as an initial subsequene. Therefore, X

1

ontains

x followed by A. Interhanging S and T , we write a sequene X

2

ontaining

every pair A � A [ fxg with x 2 S. The sequene X = X

1

X

2

is the required

(and expliitly onstruted) sequene. It is easy to see that the average size of a
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sequene orresponding to a hain of a symmetri vertex or edge deomposition

of B

n

is (

1

2

+ o(1))n. Therefore,

t

n

� jXj � 2

�

1

2

+ o(1)

�

nkl

whih gives the desired upper bound by Stirling's formula.

16.4 One Numerial Problem

There exists a so alled Audit Expert Mehanism whih an be used to protet

small statistial databases, see Chin and Ozsoyoglu [CO82℄. To �nd an optimal

mehanism the following problem has to be solved. Suppose we operate with

n-tuples of non-zero real numbers a

1

; : : : ; a

n

and we want to �nd what is the

maximum possible number of subsets I � [n℄ suh that a

I

is equal to either 0

or 1. (Here and later we denote a

I

=

P

i2I

a

i

.) The best possible bound of

�

n+1

b(n+1)=2

�

was found by Miller, Roberts and Simpson [MRS91℄ and all extremal

sequenes were haraterized by Miller and Sarvate [MS95℄. Both papers make

use of the existene of a symmetri hain deomposition of B

n

.

Here, applying a symmetri hain deomposition of L(B

n

), we an �nd K,

the maximal possible number of elements (I � J) 2 L(B

n

) suh that fa

I

; a

J

g =

f0; 1g, over all real sequenes a

1

; : : : ; a

n

. Atually, we an allow zero entries

for, as we will see later, this does not a�et K. Apparently, this problem does

not have suh an appliation like that of the original problem, but it might be

of some interest espeially as an unexpeted appliation of a symmetri hain

deomposition of L(B

n

).

The expression (a)

i

is a shorthand for a repeated i times. Also we assume

that all n-tuples have their entries ordered non-dereasingly.

Theorem 73 For n � 2 we have

K = dn=2e

�

n

bn=2

�

; (95)

and this value is ahieved for and only for the following sequenes. For n = 2k,

((�1)

k

; (+1)

k

), ((�1)

k�1

; (+1)

k+1

) and ((�1)

k�1

; 0; (+1)

k

). For n = 2k + 1,

((�1)

k

; (+1)

k+1

).
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Proof. Let m be the largest index for whih a

m

< 0. De�ne f : 2

[n℄

! 2

[n℄

by

the formula

f(I) = I4[m℄ = (I n [m℄) [ ([m℄ n I); I � [n℄:

One an easily hek that I � J � [n℄ implies a

f(I)

� a

f(J)

.

D

n

an be viewed as a olletion of symmetri hains in 2

[n℄

. Let X

r

� : : : �

X

n�r

be one suh hain. The sequene

a

f(X

r

)

; : : : ; a

f(X

n�r

)

is non-dereasing and therefore 0 and 1 an our side by side there at most

one. As every A � B is present in exatly one hain and f is a bijetion

preserving or reversing the �-relation, K does not exeed the total number of

hains, whih gives the required upper bound.

A moment's thought reveals that a neessary and suÆient ondition for an

n-tuple to be optimal is the following. If n = 2k+1 then for every A � B � X,

jAj = k, we have a

f(A)

= 0 and a

f(B)

= 1. If n = 2k then for every A � B �

C � X, jAj = k � 1, among the numbers

a

f(A)

� a

f(B)

� a

f(C)

(96)

there is a 0 adjaent a 1.

This ondition is ful�lled for the sequenes mentioned in the statement.

Indeed, let us onsider ((�1)

k

; (+1)

k+1

), for example. Here m = k and for any

A � B with jAj = k we have

a

f(A)

= a

A4[k℄

= (�1)(k � s) + (k � s) = 0; (97)

where s = jA \ [k℄j. Similarly, a

f(B)

= 1 so the sequene is optimal.

We laim that these are essentially the ases of the equality. Let us do

the harder ase n = 2k. If, for some i 6= j, we have a

i

6= �1 and a

j

6= �1,

then A � A [ fig � A [ fi; jg with any A 2 X

(k�1)

, A 63 i; j, obviously

violates the ondition. If, for exatly one i, we have a

i

6= �1, then onsidering

A � A [ fig � C we onlude that a

f(A[fig)

= 0 for any A 2 (X n fig)

(k�1)

.

Suppose a

i

� 0, for example. Then a

f(A[fig)

= k � j � 1 + a

i

= 0, where j is

the total number of elements equal to �1 (so 2k � 1� j elements equal +1). If
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a

i

= 0, then we have the third example mentioned in the theorem. If a

i

� 2

then j � k+1 and any sequene (96) with C 63 i violates the ondition. Finally,

if ja

i

j = 1 for every i then arguing as in (97) we dedue that we an have either

k or k + 1 positive entries.

17 Charaterization of Line Posets

For graphs we know that we an haraterize line graphs in terms of forbidden

indued subgraphs (Beineke [Bei68℄) and we an reonstrut a onneted graph

G given L(G) exept for L(G) = K

3

when G is either K

3

or K

1;3

.

Here we ask ourselves when a given poset L is the line poset of some P

and what information about P an be reonstruted from L(P). (Of ourse, it

is impliitly understood that we operate with isomorphism lasses of posets.)

While for line graphs there are nine forbibben on�guration, for line posets we

have only two (or in�nitely many, depending on how we look at it).

Note that L(P) annot ontain elements w; x; y; z suh that w l y, x l y,

wl z but x 6lz; all this on�guration N . Indeed, if y and z over w they must

be of the form (al b), (al ), where w = (dl a), some a; b; ; d 2 P. Then the

relation xl y implies that x = (el a) whih implies that xl z.

Also, L(P) annot ontain the on�guration C

n

, n � 3, made of elements

y and x

1

; : : : ; x

n

suh that x

1

l y l x

n

and x

i

l x

i+1

, for i 2 [n � 1℄. Indeed,

suppose the ontrary. Clearly, P ontains elements z

0

l z

1

l : : :l z

n

suh that

x

i

= (z

i�1

l z

i

). But y overs the same element as x

2

and is overed by the

same element as x

n�1

, so y = (z

1

l z

n�1

) and n = 3; but then y = x

2

, whih is

a ontradition.

For a poset P let T (P) = (C; k; l; u) be the quadruple with C being a subposet

of P spanned by the non-extremal elements, that is by fa 2 P : 9 b;  2 P; b <

a < g and k is the number of pairs (al b) with a; b 2 P n C while the funtions

l; u : C ! N

0

are given by

l(a) = jfx 2 P n C : xl agj;

u(a) = jfx 2 P n C : xm agj; a 2 P:

It is easy to see that T (P) determines L(P) uniquely.
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The following theorem states that the above examples provide a omplete

answer to our two questions.

Theorem 74 A poset L is isomorphi to L(P) for some P if and only if L

ontains neither on�guration N nor any of C

n

, n � 3. Furthermore, T (P)

determines L(P) and an be reonstruted from it.

Proof. Given a poset L without N or C

n

let X be two disjoint opies of its

vertex set, namely X = fx

^

; x

_

: x 2 Lg. Let x

^

� y

_

if xl y; let x

^

� y

^

if,

for some s 2 L, we have sm x and sm y; let x

_

� y

_

if, for some s 2 L, sl x

and sl y.

We laim that � is an equivalene relation. Indeed, if x

^

� y

^

and y

^

� z

^

then there are s; t 2 L suh that x; y l s and y; z l t. But then t must over

x for otherwise x; y; s; t would span a forbidden on�guration. So x; z l t and

x

^

� z

^

. The remaining ases are equally easy.

Let x denote the equivalene lass of x 2 X. De�ne the poset P (also

denoted by L

�1

(L)) on V = X=� = fx : x 2 Xg by A < B, A;B 2 V i� in L

there exist y � z with y

_

2 A and z

^

2 B. One an hek that this is indeed an

ordering. For example, to hek its transitivity, let A < B and B < C, hoose

w � x and y � z in L with w

_

2 A, x

^

; y

_

2 B and z

^

2 C; then x

^

� y

_

implies that w � xl y � z and A < C.

Let us show that x

^

overs x

_

. Assuming the ontrary we �nd z � y and

w � v in L with z

^

� x

^

, y

_

� w

^

and v

_

� x

_

. By the de�nition of �,

some t 2 L overs both x and z, some s 2 L is overed by both x and v and

v � w l y � z|whih implies that L ontains some C

n

, whih is forbidden.

We laim that L

�

=

L(P) via the map F whih sends x 2 L to (x

_

l x

^

).

First note that F is an order preserving map: if xm y in L then x

_

� y

^

whih

implies F (x) m F (y) as desired. Next, F is injetive for if F (x) = F (y) then

x

^

� y

^

and x

_

� y

_

whih implies that for some w and z we have wlxlz and

w l y l z; but as L does not ontain on�guration C

3

we onlude that x = y.

To show that F is surjetive take any (A l B) 2 L(P). As A < B, for some

L-elements x � y we have A = x

_

, B = y

^

. But it is easy to see that x

^

� y

^

,

whih implies (A l B) equals (x

_

l x

^

) = F (x). Finally, if F (x) l F (y) then

x

^

� y

_

and xl y. This proves ompletely that L

�

=

L(P).
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In the seond part it is enough to show that for any poset R we have T (R)

�

=

T (P), where P = L

�1

(L), L = L(R). To build a natural isomorphism H :

C(R) ! C(P) take, for any element a 2 C(R), some b l a whih exists as a is

a non-extremal element of R. Now let H(a) = x

^

, where x = (b l a) 2 L and

� is as above. To show that H is well de�ned, let b

0

be another hoie of b and

denote y = (b

0

l a). Let  be an element overing a. Then (a l ) overs in L

both x and y, so by the de�nition of P we have x

^

� y

^

. Also, H(a) 2 P is not

extremal as

(bl a)

_

< H(a) < (al )

^

:

Next, H is an order-preserving bijetion. Indeed, let am b in C(R). Choose

 l b. Then H(a) = (bl a)

^

and H(b) = (l b)

^

. But ( l b)

^

� (b l a)

_

and we have H(a) > H(b) by the de�nition of the order on P. To show that

H is injetive hoose any a; a

0

2 C(R). Then H(a) = H(a

0

) implies that y =

(la)

^

� y

0

= (

0

la

0

)

^

, some ; 

0

2 R. Therefore there is x 2 L overing both

y and y

0

whih implies a = a

0

in R as required. To establish the surjetivity of

H onsider x = (al b)

_

2 C(P), for example. Observe �rst that a 2 R is not

extremal. Indeed, take any y 2 P overed by x; as we have already shown any

pair ylx is of the form (l d)

_

l (l d)

^

whih implies d = a and la. Now

H(a) = (l a)

^

= x as required. Again, any two adjaent elements of C(P)

an be represented as (al b)

_

l (al b)

^

and then they are the images of two

adjaent elements, al b of C(R), whih implies that C(P)

�

=

C(R).

Finally, as P and R give rise to naturally isomorphi line posets, in the sense

that

F (al b) =

�

(al b)

_

l (al b)

^

�

= (H(a)lH(b)) ; a; b 2 C(R);

our mapping H preserves k, l and u, whih are naturally reonstrutible from

the line poset.



Part IV

Enumeration Results for Trees

18 Introdution

The notion of a tree and its di�erent extensions to hypergraphs play an im-

portant role in disrete mathematis and omputer siene. We will dwell

upon the following, rather general, de�nition suggested independently by Dewd-

ney [Dew74℄ and Beineke and Pippert [BP77℄.

Let us agree that the vertex set is [n℄ = f1; : : : ; ng. Fix the edge size k

and the overlap size m, 0 � m � k � 1. We refer to k-subsets and m-subsets

of [n℄ as edges and laps respetively. A non-empty k-graph without isolated

verties is alled a (k;m)-tree if we an order its edges, say E

1

; : : : ; E

e

, so that

for every i, 2 � i � e, there is i

0

, 1 � i

0

< i, suh that jE

i

\ E

i

0

j = m and

(E

i

nE

i

0

) \

�

[

i�1

j=1

E

j

�

= ;. In other words, we start with a single edge and an

onseutively aÆx a new edge along an m-subset of an existing edge.

Thus, a (k;m)-tree with e edges has n = e(k�m)+m verties and its edges

over f = e

�

�

k

m

�

� 1

�

+ 1 laps. For example, a (k; 0)-tree onsists of disjoint

edges.

The problem of ounting (m+1;m)-trees whih are known in the literature

as m-trees, reeived great attention and was ompletely settled by Beineke and

Pippert [BP69℄ and Moon [Moo69℄. This extends the elebrated theorem of

Cayley [Cay89℄ as, learly, 1-trees orrespond to usual (Cayley) trees. Later,

di�erent bijetive proofs for m-trees appeared as well, see [RR70, Foa71, GI75,

ES88, Che93℄.

Here we enumerate (k;m)-trees. In fat, a onsiderable diÆulty was to

guess the right formula. When we had a plausible onjeture, we tried to prove

it indutively by writing a reurrene relation. We were rather fortunate: the

result redued to the identity proved by Beineke and Pippert [BP69, Lemma 2℄.

This enabled us to write a short indutive proof, published in [Pik99℄, whih is

presented in Setion 19.

Of ourse, a bijetive proof (that is, a orrespondene between the set of

trees to ount and some simple set) is a far more satisfatory answer. (For
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example, a bijetive proof may allow us to generate one by one all trees or to

ount the number of trees satisfying some given property.) In Subsetion 20.2

we exhibit an expliit bijetion between the set of rooted vertex labelled trees

of given size and a trivially simple set; it is based on the ideas of Foata [Foa71℄

whih are presented in Subsetion 20.1. The knowledge of the atual formula

was essential, as otherwise we would have had little idea what and how to bijet.

In fat, this method (based on Foata's bijetion) an be applied to enumerate

bijetively other tree-like strutures. For example, we an enumerate so alled

k-gon trees, a struture studied in [CL85, Whi88, Pen93, KT96℄. In order not

to repeat the same portions of proof twie, we present a more general result

inluding both (k;m)-trees and k-gon trees as partial ases.

In Subsetion 20.3 we onsider the question whether our bijetion an ount

edge labelled trees. We present a onstrution for 2-graphs only, whih in fat

answers a question posed by Cameron [Cam95℄. This question was motivated

by the possibility that suh a bijetion might simplify some of his enumeration

results (or proofs) from [Cam95℄. However, although we answered Cameron's

question, we were not able to improve [Cam95℄. Please refer to Subsetion 20.3

for further details.

19 Indutive Proof

Let T

km

(e) denote the number of distint (k;m)-trees on [n℄ with e edges, n =

e(k�m)+m, and let R

km

(e) ount the trees rooted at the lap [m℄, that is, those

trees for whih [m℄ is overed by some edge.

Theorem 75 Given integers k, m, e with 0 � m � k � 1 and e � 1, let

n = e(k �m) +m, l =

�

k

m

�

and f = e(l � 1) + 1. Then the number of di�erent

(k;m)-trees on [n℄ equals

T

km

(e) =

n!f

e�2

e!m! ((k �m)!)

e

: (98)

Proof. As in Beineke and Pippert [BP69℄, to prove the theorem, we write

down a reurrene relation for T

km

(e) and then verify that (98) does satisfy the

relation. Let us agree that T

km

(0) = R

km

(0) = 1.
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Counting in two di�erent ways the number of pairs (H;L), where H is a

(k;m)-tree on [n℄ rooted at L 2 [n℄

(m)

, we obtain

�

n

m

�

R

km

(e) = f � T

km

(e): (99)

Next, onsider the following method for onstruting trees. Selet an edge

E 2 [n℄

(k)

and label by L

1

; : : : ; L

l

the laps of E. Represent e� 1 as a sum of l

non-negative integers, e�1 = e

1

+ : : :+ e

l

. Partition [n℄nE into sets X

1

; : : : ;X

l

of sizes e

1

(k�m); : : : ; e

l

(k�m) respetively. On eah L

i

[X

i

build a (k;m)-tree

H

i

rooted at L

i

, i 2 [l℄. Clearly, the union of all H

i

's plus the edge E forms a

(k;m)-tree and every suh tree is obtained exatly e times. Therefore, by (99),

we obtain

eT

km

(e) =

�

n

k

�

X

e

(n� k)!

(e

1

(k �m))! : : : (e

l

(k �m))!

l

Y

i=1

R

km

(e

i

)

=

n!

k!

X

e

l

Y

i=1

m!(e

i

(l � 1) + 1)T

km

(e

i

)

(e

i

(k �m) +m)!

; (100)

where

P

e

denotes the summation over all representations e� 1 = e

1

+ : : : + e

l

with non-negative integer summands.

Clearly, formula (98) gives orret values for e = 0. Also, the substitution

of (98) into the both sides of (100) gives (after routine anellations)

l(e(l � 1) + 1)

e�2

=

X

e

(e� 1)!

e

1

! : : : e

l

!

l

Y

i=1

(e

i

(l � 1) + 1)

e

i

�1

:

The last identity (in slightly di�erent notation) was established by Beineke and

Pippert [BP69, Lemma 2℄, whih proves our theorem by indution.

Corollary 76 The number of vertex labelled m-trees on n verties, n > m � 1,

is T

m+1;m

(n�m) =

�

n

m

�

(mn�m

2

+ 1)

n�m�2

.

20 Bijetive Proofs

20.1 Foata's Bijetion

Given disjoint �nite sets A, B, C and a surjetion  : B ! A, a funtion

f : A ! B [ C is alled yle-free if for every b 2 B the sequene (f Æ )

i

(b)
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eventually terminates at some  2 C. Foata [Foa71, Theorem 1℄ exhibited a

bijetion between F (A;B;C; ), the set of yle-free funtions, and the set of

funtions g : A ! B [ C suh that g(a

1

) 2 C, some beforehand �xed a

1

2 A;

this implies

jF (A;B;C; )j = jCj(jBj+ jCj)

jAj�1

: (101)

We briey desribe a simpler onstrution than that in [Foa71℄. Fix some

ordering of A. Let f 2 F (A;B;C; ). Let Z = (z

1

; : : : ; z

s

) denote the inreasing

sequene of the elements in A n (f(A)). (For onveniene we assume that

() = ,  2 C.) We build, one by one, s sequenes Æ

1

; : : : ; Æ

s

omposed of

elements in B[C. Having onstruted sequenes Æ

1

; : : : ; Æ

i�1

, let m

i

� 0 be the

smallest integer suh that (f Æ )

m

i

(f(z

i

)) either belongs to C or ours in at

least one of Æ

1

; : : : ; Æ

i�1

. We de�ne (mind the order)

Æ

i

=

�

(f Æ )

m

i

(f(z

i

)); (f Æ )

m

i

�1

(f(z

i

)); : : : ; f(z

i

)

�

: (102)

One an hek that Z is non-empty if A is, every m

i

exists, and Æ, the

juxtaposition produt of the s sequenes Æ

1

; : : : ; Æ

s

, ontains jAj elements. (In

fat, Æ is but a permutation of (f(a))

a2A

.) The obtained sequene Æ of jAj

elements of B [C, whih starts with an element of C, orresponds naturally to

the required funtion g : A! B [ C.

Conversely, given g (or Æ), we an reonstrut Z whih onsists of the ele-

ments of An(g(A)). Then, exatly s = jZj times, an element of Æ either belongs

to C or equals some preeding element. These s elements mark the beginnings

of Æ

1

; : : : ; Æ

s

. Now we an restore the required f by (102). To establish (101)

ompletely, one has to hek easy details.

20.2 H-Built-Trees

Adopting the ideas of Foata [Foa71℄, we present a bijetive proof of (98). Our

method an enumerate some other tree-like strutures. For example, we an

�nd a bijetion for vertex labelled k-gon trees (also known as ati or trees of

polygons), a struture that appears in [CL85, Whi88, Pen93, KT96℄.

We de�ne a k-gon tree indutively. A k-gon (that is, a k-yle) is a k-gon

tree. A k-gon tree with g+1 k-gons is obtained from a k-gon tree with g k-gons

by adding k � 2 new verties and a new k-gon through these verties and an
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already existing edge. Thus, a k-gon tree is a (usual) 2-graph; if we have g

k-gons, then it has e = g(k � 1) + 1 edges and n = g(k � 2) + 2 verties.

In order not to repeat the same portions of proof twie, we present the

following, more general, result whih inludes (k;m)-trees and k-gon trees as

partial ases.

Let H be any m-graph on [k℄. An H-built-tree (T; fH

1

; : : : ;H

e

g) onsists of

a usual (k;m)-tree T with edges E

1

; : : : ; E

e

plus H-graphs H

i

on E

i

, i 2 [e℄,

suh that if E

i

\E

j

is a lap (that is, has size m), then it is an edge of both H

i

and H

j

, for any distint i; j 2 [e℄. Let n = e(k�m) +m be the total number of

verties and let

f =

�

�

[

i2[e℄

E(H

i

)

�

�

= e(l � 1) + 1;

where l = e(H). Also, let R

H

be the set of distint H-graphs on [k℄ rooted at

[m℄, that is, ontaining [m℄ as an edge. Clearly,

jR

H

j =

k!l

�

k

m

�

jAut(H)j

:

An H-built-tree is rooted on an m-set L if L 2 [

i2[e℄

E(H

i

).

Theorem 77 There is a bijetion between the set Y of H-built-trees on [n℄

rooted at [m℄ and the set

Z = F (A;B;C; ) �

e

Y

i=1

(X

i

�R

H

) ;

where A = [e℄, B = [e℄ � [l � 1℄, C = f[m℄g,  is the oordinate projetion

B ! A, and X

i

= [

�

(k�m)(e�i+1)�1

k�m�1

�

℄. In partiular,

jY j = f

e�1

 

k!l

�

k

m

�

jAut(H)j

!

e

e

Y

i=1

�

(k �m)(e� i+ 1)� 1

k �m� 1

�

:

Proof. Given an H-built-tree T rooted at [m℄, order its edges E

1

; : : : ; E

e

so

that [m℄ 2 E(H

1

) and eah E

i

, i 2 [2; e℄, shares a lap with some E

j

, j < i.

Correspond an edge E

i

to the lap g

0

(E

i

) = E

i

\ [

i�1

j=1

E

j

, 2 � i � e. (We

agree that g

0

(E

1

) = [m℄.) Call the set f(E

i

) = E

i

n g

0

(E

i

) the free part of E

i

;

the free parts partition [n℄ n [m℄. Clearly, these de�nitions of g

0

and f do not

depend on the partiular ordering.
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Relabel the edges by D

1

; : : : ;D

e

so that d

i

= minf(D

i

) inreases; let H

0

i

denote the orresponding H-graph on D

i

. Label, in the olex order, all edges

(laps) of H

0

i

but g

0

(D

i

) 2 E(H

0

i

) by (i; j), j = 1; : : : ; l � 1. Note that now we

have indexing of the edges of T by A, namely (D

i

)

i2A

, and of the laps of T by

B[C. Let g : A! B[C be the map orresponding to g

0

. A moment's thought

reveals that g is yle-free.

Repeat the following for i = 1; : : : ; e. Index, in the olex order, the (k�m�

1)-subsets of ([

e

j=i

f(D

j

)) n fd

i

g by the elements of X

i

and let x

i

2 X

i

be the

index orresponding to f(D

i

) n fd

i

g. Consider the bijetion h : D

i

! [k℄ suh

that h is monotone on g

0

(D

i

) and f(D

i

) whih are respetively mapped onto

[m℄ and [m+ 1; k℄. Let r

i

2 R

H

be the image of H

0

i

under h.

Now, (g; x

1

; r

1

; : : : ; x

e

; r

e

) 2 Z is the `ode' of T 2 Y .

Conversely, given an element (g; x

1

; r

1

; : : : ; x

e

; r

e

) 2 Z we an onseutively

reonstrut the sequene (d

i

; f(D

i

)), i = 1; : : : ; e. Indeed, d

i

is the smallest

element of V = [n℄n(([

i�1

j=1

f(D

j

))[[m℄) while f(D

i

)nfd

i

g is the x

i

th (k�m�1)-

subset of V n fd

i

g. For i 2 A with g(i) 2 C, we have D

i

= [m℄ [ f(D

i

) and

(knowing g

0

(D

i

) = [m℄ and f(D

i

)), we an determine H

0

i

from r

i

; then we an

reover the lap orresponding to (i; j) 2 B as the jth lap of E(H

0

i

) n f[m℄g,

j 2 [l � 1℄.

Likewise, we an reonstrut all information aboutD

i

for any i 2 A with g(i)

being already assoiated with a lap. As f is yle-free, all edges are eventually

identi�ed, produing T 2 Y .

A plain veri�ation shows that we have indeed a bijetive orrespondene

between Y and Z.

It is trivial to hek that if a union of K

m

k

-graphs an be formed into a

K

m

k

-built-tree, then the latter is uniquely de�ned. Hene, the number of vertex

labelled (k;m)-trees equals the number of K

m

k

-built-trees. Now, jR

K

m

K

j = 1,

jY j = R

km

(e), and we an easily dedue formula (98).

Similarly, k-gon trees are in bijetive orrespondene with C

k

-built-trees.

We have jR

C

k

j = (k � 2)!, so we obtain that there are

(g(k � 1) + 1)

g�1

((k � 2)!)

g

g

Y

i=1

�

(k � 2)(g � i+ 1)� 1

k � 3

�

rooted k-gon trees with g k-gons, whih implies the following result.
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Corollary 78 The number of vertex labelled k-gon trees with g k-gons is

(g(k � 2) + 2)!(g(k � 1) + 1)

g�2

2(g!)

; k � 3:

20.3 Edge Labelled Trees

Cameron [Cam95℄ enumerates ertain lasses of what is alled there two-graphs:

redued, 5-free, and (5; 6)-free and presents their onnetions to Coxeter groups

of graphs. Please refer to his work for all de�nitions and details. Also, he

de�nes, for a given (Cayley) tree T , the equivalene relation

�

=

on its edges

whih is the smallest one suh that two edges are related if they interset at a

vertex of degree 2 in T . For example, T is series-redued (that is, T does not

ontain a vertex of degree 2) if and only if

�

=

is the identity relation.

Cameron had to ount the number S

n

of trees with n edges with labelled

�

=

-lasses. He found the following formula ([Cam95, Proposition 3.5(a)℄):

S

n

=

n

X

k=1

S(n; k)

1

k + 1

k�1

X

j=0

(�1)

j

�

k + 1

j

��

k � 1

j

�

j!(k � j + 1)

k�j�1

; (103)

where S(n; k) is the Stirling number of the seond kind: the number of partition

of an n-set into k non-empty parts. The sequene (S

n

) starts as 1; 1; 2; 8; 52; : : :

and probably annot be represented in a simple form but, of ourse, one an try

to simplify (103).

Cameron [Cam95℄ asks the following question.

Problem 79 (Cameron) Desribe a onstrutive bijetion between edge la-

belled trees and edge Pr�ufer odes, not going via vertex labellings. Desribe

the equivalene relation

�

=

in terms of this ode.

The motivation for the problem was apparently that suh a ode might

simplify (103). Although we answer here this question, we have not so far been

able to simplify (103) or its proof from [Cam95℄. But anyway, let us desribe our

onstrution. Of ourse, we use Foata's [Foa71℄ bijetion for yle-free funtions.

Let e

1

; : : : ; e

n

be the edges. Suppose e

1

= fa; bg; this edge will play a

speial role. Let A = B = fe

2

; : : : ; e

n

g, C = fa; bg and  : B ! A be the

identity funtion. Let us orrespond an f 2 F (A;B;C; ) to a given tree T .

Eah edge e an be onneted to e

1

by the unique path in T . If e is inident
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to e

1

, then let f(e) be equal to their ommon vertex; otherwise, let f(e) be

the �rst edge on the path from e to e

1

. This gives a orrespondene between

twie the number of edge-labelled trees (we an label the two verties of e

1

by

a and b in two di�erent ways) and F (A;B;C; ). Foata's bijetion shows that

jF (A;B;C; )j = jCj(jAj+ jCj)

jAj�1

, whih implies, as desired, that the number

of edge-labelled trees with n edges is (n+ 1)

n�2

.

Of ourse, the ode is rather simple; we desribe briey only one diretion.

A ode Æ is a sequene of length n� 1 onsisting of elements in fa; b; e

2

; : : : ; e

n

g

and staring with a or b. The set Z � fe

2

; : : : ; e

n

g of edges whih do not our

in the sequene onsists of leaves. (If a or b does not our, then e

1

is also a

leaf.) Clearly, an element of Æ equals either a or b or some previously ourring

element exatly z = jZj times. Cut Æ before eah suh element; we have z piees

Æ

1

; : : : ; Æ

z

. Append the ith element z

i

of Z to the end of Æ

i

to obtain Æ

0

i

, i 2 [z℄.

The reversed sequene Æ

0

i

desribes the initial segment P

0

i

of the path P

i

from the element z

i

2 Z to e

1

until it hits e

1

or some previous path P

j

, i 2 [z℄.

Clearly, this determines some tree.

This bijetion orresponds to every edge-labelled tree two odes, one starting

with a and the other|with b. To make this orrespondene one-to-one, we

onsider only a half of the odes, e.g. those starting with a.

How an we read the

�

=

-relation from Æ? First, let

�

=

0

be the minimal equiv-

alene relation on fa; b; e

2

; : : : ; e

n

g suh that e

i

�

=

0

e

j

if e

i

and e

j

interset at a

vertex of degree 2, 2 � i < j � n, and x

�

=

0

e

i

if x is a degree-2 vertex inident to

e

i

, x 2 fa; bg, i 2 [2; n℄. (Informally, we ut e

1

in its middle and take the usual

�

=

-relation on the both reated omponents separately.) Clearly,

�

=

is obtained

from

�

=

0

by identifying a and b into a single element e

1

, so let us indiate how

to determine the latter relation.

Take any maximal ontiguous subsequene S � Æ onsisting of elements that

our in Æ exatly one. Clearly, S lies entirely within some Æ

i

and S [ fyg is a

�

=

0

-equivalene lass, where y is the symbol following S in Æ

0

i

. Conversely, it is

easy to hek that all non-trivial

�

=

0

-lasses are obtained this way, as required.

This answers Problem 79. Unfortunately, I do not see how this desription

an simplify Cameron's formula (103).

Remark. We do not know any bijetion enumerating edge labelled (k;m)-trees

for k � 3.



Part V

Large Degrees in Subgraphs

21 Introdution

All researh arried in this part revolves around the following onjeture of

Erdos [Erd81℄ whih is disproved here.

Erd}os [Erd81℄, see also e.g. [Chu97, Erd99℄, onjetured that for n � 3 any

graph with

�

2n+1

2

�

�

�

n

2

�

� 1 edges is a union of a bipartite graph and a graph

with maximum degree less than n. This value arises from the onsideration of

P

n+1;n

whih does not admit the above representation. (P

m;n

= K

m

+ E

n

has

m+ n verties of whih m verties are onneted to every other vertex.)

In the arrowing notation the latter statement reads \P

n+1;n

! (K

1;n

; C

odd

)":

for any blue-red olouring of the edge-set of P

n+1;n

we neessarily have either

a blue star K

1;n

or a red yle of odd length. (By C

odd

we denote the family of

odd yles.) Thus the onjeture states that r̂(K

1;n

; C

odd

) = e(P

n+1;n

) and, if

true, would give the same value for the size Ramsey number r̂(K

1;n

;K

3

), sine

ertainly r̂(K

1;n

;K

3

) � r̂(K

1;n

; C

odd

) and in fat P

n+1;n

! (K

1;n

;K

3

).

We show, however, that both these size Ramsey numbers grow as n

2

plus a

term of order n

3=2

. (Atually, the onjeture fails for all n � 5.) More preisely,

our main result is the following.

Theorem 80

r̂(K

1;n

;K

3

) < n

2

+

p

2n

3=2

+ n; for n � 1; (104)

r̂(K

1;n

; C

odd

) > n

2

+ 0:577n

3=2

; for suÆiently large n. (105)

In [FRS97, Setion 1℄ it is asked whether the onjeture is true for graphs

with (at most) m verties. Faudree (for a proof see [ERSS96℄) showed this is

the ase for m = 2n+ 1. Our onstrution an beat P

n+1;n

on 3n+ 1 verties.

Perhaps P

n+1;n

is extremal for graphs with 2n plus few more verties, but even

for 2n+ 2 verties we do not know whether this is true.

Some previous attempts to prove Erd}os' onjeture resulted in new interest-

ing diretions of researh; here we investigate also some of these questions.
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Erd}os and Faudree [EF99℄ onsider the related problem of determination of

the minimal size of a graph G suh that if G is a union of two graphs, one

having maximal degree less than n, then the other ontains all odd yles C

m

with 3 � m � n� 3. Here we demonstrate a graph G of size (1 + ")n

2

, for any

given onstant " > 0, suh that, for any blue-red olouring of G without a blue

K

1;n

, we have red yles of all lengths (odd and even) between 3 and n, where

 = (") > 0 does not depend on n.

For positive integers n; k; j with k � j, Erd}os, Reid, Shelp and Staton

[ERSS96℄ onsider the property M(n; k; j) whih is de�ned as follows. A graph

G belongs toM(n; k; j) if it has n+k verties and for every (n+j)-set A � V (G)

we have �(G[A℄) � n. (That is, the maximal degree of the subgraph of G

spanned by A is at least n.) The problem is to ompute

m(n; k; j) = minfe(G) : G 2M(n; k; j)g:

Erd}os et al [ERSS96, Conjeture 1℄ onjetured that for any n � k � j � 1 and

n � 3, we have

m(n; k; j) = (k � j + 1)n+

�

k � j + 1

2

�

: (106)

This value arises from the onsideration of P

k�j+1;n

tE

j�1

. Erd}os et al [ERSS96,

Theorem 3℄ proved that (106) is true if j = 1 or if j � 2 and

n � max

�

j(k � j);

�

k�j+2

2

�

�

: (107)

In Setion 23 we demonstrate a onstrutive ounterexample to (106) if n �

(j � 2)(k � j). On the other hand, we show that the formula (106) is true if

n � max

�

�

j +

1

2

�

(k � j) +

j+k

4j�2

; 14

�

;

whih is an improvement on (107) for j / k=3. This shows that the value j(k�j)

is roughly the threshold on n when the obvious onstrution suggesting (106)

fails to be extremal. Some other onstrutions are presented.

Another funtion whose study was motivated by Erd}os' onjeture is as

follows. Let B(n;m) onsist of all graphs suh that, for any partition V (G) =

A [ B, either �(G[A℄) � n or �(G[B℄) � m (or both). We are interested in

the bisplit funtion b(n;m) = minfe(G) : G 2 B(n;m)g. Clearly, b(n; n) =



22 TRIANGLE-VS-STAR SIZE RAMSEY NUMBER 123

r̂(K

1;n

; C

odd

) is preisely the funtion investigated in Erd}os' onjeture, whih

was the original motivation for introduing the `o�-diagonal' numbers b(n;m).

In Subsetion 24.1 we present a simple argument giving a lower bound on

b(n;m), any n;m, and a onstrution of G 2 B(n;m) (whih obviously gives

an upper bound) whih together ompute the funtion asymptotially when

m = min(n;m) is large:

b(n;m) = 2nm�m

2

+ o(m)n: (108)

Conerning small values of m, not muh is known. Of ourse, the bounds

of Subsetion 24.1 are appliable here, but the error term is not negligible if

m is bounded. Namely, we obtain that, for any �xed m � 1, the numbers

b(n;m), n 2 N, lie between two funtions linear in n with slopes 2m + 1 and

2m+

p

2m+

5

2

.

We prove that b(n; 1) = 4n � 2 for n � 8 (and haraterize all extremal

graphs) and that b(n; 2) = 6n + O(1). As the reader will see the proofs are

rather lengthy and require onsideration of many ases. This indiates that the

omputation of lim

n!1

b(n;m)=n for any �xed m (if the limit exists) is perhaps

a hard task.

22 Triangle-vs-Star Size Ramsey Number

Here we will prove the bounds on r̂(K

1;n

;K

3

) stated in the introdution.

22.1 Upper Bound

Proof of (104). We provide an expliit onstrution of a (K

1;n

;K

3

)-arrowing

graph G.

Take any representation n = k

1

+ : : :+k

m

and let G be the disjoint union of

P

k

i

;n

, i 2 [m℄, plus a vertex x onneted to everything else. Consider any blue-

red olouring of E(G) without a blue K

1;n

. Among n(m+1) edges inident to x

there are at least mn+1 red ones. By the pigeon-hole priniple, x sends at least

n+ 1 red edges to some P

k

j

;n

, say fx; y

i

g, i 2 [0; n℄, of whih at least one must

be inident to a vertex of K

k

j

� P

k

j

;n

, say y

0

. But of n edges fy

0

; y

i

g 2 E(G),

i 2 [n℄, one is neessarily red and reates a red triangle whose third vertex is x.

Hene, G! (K

1;n

;K

3

).
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We have e(G) = (m + n + 1)n +

P

i2[m℄

�

k

i

2

�

. To minimize e(G) we take

the k

i

's nearly equal; so they are essentially uniquely determined by m. Any

value of m we hoose will give some upper bound for r̂(K

1;n

;K

3

). Choose m so

that n = 2m

2

+ r, where jrj � 2m. So, for example, when n = 2m

2

� 2m we

ould hoose either m or m� 1. We believe, though we do not prove, that suh

a hoie of m is optimal. The veri�ation of (104) is now best split into four

ases. For example, for 0 � r � m we have m � r times k

i

= 2m and r times

k

i

= 2m+ 1. Routine simpli�ations show that

2n

3

� (e(G) � n

2

� n=2� r=2)

2

= 3m

2

r

2

+ 2r

3

� 0;

whih implies (104). The other ases an be veri�ed similarly.

One an hek that the bound (104) gives stritly better values than

�

2n+1

2

�

�

�

n

2

�

for all n � 6. In fat, Erd}os' onjeture fails also for n = 5 when the

representation n = 2 + 3 produes a graph with 44 edges.

We do not know any example beating our onstrution, whih therefore

might be an extremal one, but we do not dare to make any onjeture yet. It is

surprising that a ounterexample was not found earlier. An explanation might

be that P

n+1;n

is perhaps extremal among all (K

1;n

; C

odd

)-arrowing graphs with

few verties; as shown by Faudree (for a proof see [ERSS96℄) this is the ase for

graphs of order 2n+ 1. Note that we an beat P

n+1;n

using 3n+ 1 verties for

n � 5: take m = 2 in our onstrution.

22.2 Lower Bound

In this setion we suppose on the ontrary to (105) that there is a (K

1;n

; C

odd

)-

arrowing graph G with at most n

2

+ 0:577n

3=2

edges and try to derive a on-

tradition for large n.

Instead of 2-olourings of E(G) we �nd it more onvenient to operate with

2-partitions of V (G). Thus our assumption on G states that

max f�(G[A℄);�(G[B℄)g � n

for any partition V (G) = A [B.

The following simple argument, whih we all the greedy algorithm, shows

that any A � V (G) spans at least n(n� jAj+ 1) edges, where A = V (G) n A.
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Indeed, indutively let x

i

be any vertex (if exists) of degree at least n in

G[Anfx

1

; : : : ; x

i�1

g℄. Let X = fx

1

; : : : ; x

k

g � A be the set eventually obtained.

By de�nition, �(G[A nX℄) < n. But then A[X ontains at least n+1 verties

(to allow a vertex of degree n), that is, k � n� jAj+ 1, and the laim follows.

Taking A = V (G) we obtain e(G) � n

2

+n. We will add an n

3=2

-term to this

trivial bound by using a probabilisti argument. But before we an apply it, we

have to �ddle a lot with the greedy algorithm in order to gain some strutural

information about G.

Let us introdue some notation �rst. By d

A

(x) = jA \ �(x)j we denote

the number of neighbours of x lying in A, x 2 V (G), A � V (G). Also let

L = fx 2 V (G) : d(x) � ng, l = jLj � n and e(G) = n

2

+ 

g

n

3=2

. Thus we

assume that 

g

� 0:577 and in fat, by adding edges to G, that 

g

= 0:577+o(1).

Lemma 81 l � 

g

n

1=2

+O(1).

Proof. Apply a modi�ed greedy algorithm. Set initially A = C = ; and

B = V (G). These three sets will always partition V (G).

Repeat the following as long as possible or until jAj = n+ 1. Take a vertex

x 2 B (if exists) with d

B

(x) � n and move it to A; olour aqua all edges

onneting x to B. Then for every suh x do the n-hek, that is, move to C

all verties in B \ L whose B [ C-degree is now smaller than n, that is, equals

n�1. (Thus before we proeed with another x we ensure that a vertex z 2 LnA

belongs to B if and only if d

B[C

(z) � n.)

When we stop we have a+ � n+1, where a, b,  are the ardinalities of the

eventual sets A, B, C. Indeed, if a < n+1 then �(G[B℄) < n so �(G[A[C℄) � n

and the laim follows.

The number of aqua edges is e

a

� an. Call non-aqua edges inident to C

yan. Every vertex in C is inident to exatly n� 1 yan edges; hene we have

e



� (n� 1)�

�



2

�

yan edges.

By applying our usual greedy algorithm to B[C we obtain that there is a set

Y = fy

1

; : : : ; y

n+1�a

g � B[C suh that eah y

i

has at least n neighbours in the

omplement of A [ fy

1

; : : : ; y

i�1

g. Clearly, Y must be disjoint from C, that is,

Y � B. We have e

y

� (n+1�a)n edges between Y and C [B; olour all these

edges yellow. (Some edges may be yellow and yan simultaneously.) Finally,

eah vertex in R = L\(B nY ) has degree in B[C at least n (otherwise it would
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have been moved to C earlier). Hene R is inident to e

r

� r(n� jY j � )�

�

r

2

�

edges lying within B n Y , where r = jRj; all them red edges.

We laim that  = o(n). Suppose not. As e

a

+ e

y

> n

2

, the number of yan-

only edges is o(n

2

) and the average yellow-degree of x 2 C is n + o(n); hene

jY j � n+o(n). Now jCj � jY j beause a+ � n+1 = a+ jY j, so jCj � n+o(n).

But C [ Y � L and jLj � 2n + o(n) by the handshaking lemma. Therefore

 = n+ o(n), a = o(n), r = o(n) and all but o(n

2

) edges lie between C and Y .

But onsider partition V (G) = V

1

[ V

2

obtained by plaing in V

1

all of A [ R,

n=3 verties from C, n=3 verties from Y and all (= o(n)) verties from C (and

resp. from Y ) whih have in G at least n=6 neighbours outside Y (resp. outside

C). As jV

1

j = 2n=3 + o(n) some x 2 V

2

satis�es d

V

2

(x) � n. But x neessarily

belongs to Y [C, say x 2 C, and an have at most jY \V

2

j+n=6 � 5n=6+o(n)

V

2

-neighbours, whih is a ontradition proving  = o(n).

Using the above lower bounds on e

a

; e



; e

y

and the inequality a � n� + 1

we obtain

e(G) = n

2

+ 

g

n

3=2

� e

a

+ e



+ e

y

� (n� a+ 1)

� n

2

+ n�



2

+3

2

+ a � n

2

+ n+

�3

2

+(2n�1)

2

:

Solving this (quadrati in ) inequality we obtain that neessarily  < 

g

n

1=2

for

large n as  annot be bigger than the larger root 2n=3 + o(n).

Writing e(G) � e

a

+ e



+ e

y

� (n�a+1)+ e

r

and substituting a � n� +1

everywhere (as the total oeÆient of a is positive) we obtain



g

n

3=2

�

�r

2

+r(2n+1)

2

+ n� 2r +O(n):

The larger root of this quadrati in r inequality is 2n+o(n), but r � n+o(n) sine

a = n+ o(n) and a+ r � jLj. So we onlude that l� 1 = + r � 

g

n

1=2

+O(1)

as required.

Now let us try to derive a �nal ontradition.

Proof of (105). Let x

max

be a vertex of maximal degree �(G) = 

m

n

3=2

.

The greedy algorithm shows that e(G) � n

2

+ �(G), that is, 

m

� 

g

. Let



0

= ((4 + 

2

g

)

1=2

� 

g

)=2 and 

f

= 1:732.

We apply a version of the greedy algorithm. Set initially A = C = ; and

B = V (G).
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At Stage 1 move to A, one by one and as long as possible, a vertex x 2 B

with d

BnL

(x) � n � l and d

B[C

(x) � n. After x was moved do the n-hek,

that is, move to C all verties y 2 B \ L with d

B[C

(y) < n. We may assume

that we were seleting x 2 B so that d

G

(x) was non-inreasing. Let A

1

be the

set of verties moved to A at Stage 1, F = fx 2 A

1

: d

G

(x) � n+ 

f

n

1=2

g and

a

f

= jF j=n. By Lemma 81 we have l � 

g

n

1=2

+ o(1), so the number of edges

inident to F is at least

X

x2F

d(x) �

X

x2F

d(x)� n+ l

2

� a

f

n

2

+ a

f



f

� 

g

2

n

3=2

+ o(n

3=2

):

At Stage 2 move to A, one by one and as long as possible, any vertex x 2 B

having at least n + 

0

n

1=2

neighbours in B [ C and for every suh x do the

n-hek as in Stage 1.

At Stage 3 we repeat the following until B\L = ;. Take x 2 B\L. As long

as d

B[C

(x) � n move to A some x-neighbour y 2 B\L (note that d

B[C

(y) � n)

and perform the n-hek. Suh y neessarily exists as x has fewer than n � l

neighbours in B n L while jCj � l. (The latter inequality is true beause if

jCj > l at some moment then ontinuing with the standard greedy algorithm

applied to B [C we �nd at least n� jAj+1 verties in B \L whih ontradits

jLj = n+ l.) Of ourse, the last n-hek moves x itself to C.

Let a

i

n (resp. 

i

n

1=2

) be the number of verties moved to A (resp. to C) at

the ith Stage. As eventually �(G[B[C℄) < n we onlude that a

1

+a

2

+a

3

> 1.

Also a

3

� 

0



3

as for every x moved to C at Stage 3 we moved at most 

0

n

1=2

verties to A.

Note that the �rst vertex moved at Stage 1 may be assumed to have degree

�(G) = 

m

n

3=2

unless �(G) = O(n). So our algorithm produes the following

lower bound on the size of G:

e(G) � n

2

+

�



m

+ a

f



f

�

g

2

+ a

2



0

+ 

3

(1� a

3

) + o(1)

�

n

3=2

: (109)

Now using the inequalities a

3

� 

0



3

(twie) and 0 � 

3

� 

g

+ o(1) (by

Lemma 81 we have 

3

� jCjn

�1=2

� 

g

+ o(1)) we obtain from (109) that

a

2

+ a

3

�



g

� a

f

(

f

� 

g

)=2� 

m

� 

3

+ 

0



2

3



0

+ 

0



3

+ o(1)

�



g

� a

f

(

f

� 

g

)=2� 

m



0

+max

�

0; 

2

g

+ 

0



g

� 

g

=

0

�

+ o(1):
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But our 

0

satis�es 

2

g

+ 

0



g

= 

g

=

0

so the seond term disappears.

Choose a set Y � L by plaing eah vertex of L into Y independently with

probability p = (

f

+ 2")n

�1=2

, where " > 0 denotes a small onstant.

The number of Y -neighbours of any x 2 L has a binomial distribution with

expetation at most p

m

n

3=2

= (

f

+ 2")

m

n. Hene the probability that say

d

Y

(x) > (

f



m

+3")n is exponentially small in n by Cherno�'s bounds [Che52℄.

Similarly, the expeted value of d

Y

(x) for x 2 A

1

is at least p(n � l) �

(

f

+ 2")n

1=2

and d

Y

(x) < (

f

+ ")n

1=2

with probability at most exp(�n

1=2

)

for some onstant  > 0.

Hene, there exists Y (in fat, almost every hoie would do) suh that

d

Y

(x) � (

f



m

+ 3")n for every x 2 L and d

Y

(y) � (

f

+ ")n

1=2

for every

y 2 A

1

.

Now onsider the partition V (G) = V

1

[ V

2

, where V

1

= (L n Y ) [ (A

1

n F ).

Any x 2 A

1

n F has at least (

f

+ ")n

1=2

> d(x) � n neighbours in Y , so

d

V

1

(x) < n. But then d

V

2

(x) � n for some x 2 L \ V

2

. Hene,

n � jV

2

n Y j+ d

Y

(x) � n+ l � jA

1

j+ jF j+ (

f



m

+ 3")n;

or equivalently

a

2

+ a

3

+ a

f

+ 

f



m

� 1 + error term; (110)

where the error term an be made arbitrarily small by hoosing the onstant "

small.

Chopping o� some terms in (109) we obtain that a

f

lies between 0 and

2(

g

� 

m

)=(

f

� 

g

) + o(1). Hene

a

2

+ a

3

+ a

f

�



g

� a

f

(

f

� 

g

)=2� 

m



0

+ a

f

+ o(1)

� max

�



g

�

m



0

; 2



g

�

m



f

�

g

�

+ o(1): (111)

Using the values of 

g

and 

f

we obtain from (110) and (111) that neessarily

max(0:767 + 0:403 

m

; 0:9992 + 0:0004 

m

) � 1 + o(1);

whih annot be satis�ed for 0 � 

m

� 0:577.

Remark. The onstant 0:577 an be improved, even with the present proof.

For example, the optimal hoie



f

= min

�

q

4 + 

2

g

; 

g

+

q

2(

g

� 

m

)=

m

�

;
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should give (with extra algebrai work) 

g

� 0:591.

Also, after Stage 2 we ould apply the algorithm of Lemma 81: we have

identi�ed at least (

m

+ a

2

(

0

� 

g

) + a

f



f

�

g

2

)n

3=2

`useless' (from the point of

view of Lemma 81) edges, whih should bring down the bound on l there. We

do not know how muh gain this would have given (the alulations get rather

messy) but we believe that we have reahed a good ompromise in the sense

that the proof is not too long and the bound is not too bad.

22.3 Cyles of Conseutive Lengths

As we already mentioned, Erd}os and Faudree [EF99℄ study minimum graphs G

suh that if G is a union of two graphs, one having maximal degree less than

n, then the other ontains all odd yles C

m

with 3 � m � n � 3. Here we

show, that if we require yles lengths from 3 to �(n), then we an present a

onstrution with only (1 + ")n

2

edges for any �xed " > 0.

In the proof below we introdue onstants 

1

; 

2

; and so on. It should not be

hard to hek that we an always hoose 

i

(depending on 

1

; : : : ; 

i�1

) satisfying

all onditions set in the proof. We do not try to optimize the onstants.

Theorem 82 For any �xed " > 0, there is a graph G with at most (1 + ")n

2

edges suh that if E(G) is oloured blue-red without a blue K

1;n

, then we have

red yles of all lengths (even and odd) between 3 and n for some  = (") > 0

whih does not depend on n.

Proof. Choose integers

m =

p

n=2 +O(1);

k = (

p

2 + 

1

)

p

n+O(1);

l = n+ 

1

n+O(1);

h = 

1

p

n+O(1):

Choose k-sets K

1

; : : : ;K

m

, l-sets L

1

; : : : ; L

m

, and an h-set H (all disjoint). Let

G onsist of all edges interseting H and of all edges interseting K

i

and lying

within K

i

[ L

i

, i 2 [m℄, that is, G = K

h

+mP

k;l

. If 

1

> 0 is small, then G has

at most (1 + ")n

2

edges.
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Consider any blue-red olouring of E(G) without a blue K

1;n

. Let G

0

� G

be the red subgraph, let d

0

(x) be the red degree of x 2 V (G), and so on.

De�ne the bipartite graph F with lasses H and [m℄ as follows; x 2 H is

onneted to i 2 [m℄ if and only if x sends at least l+

2

p

n red edges to K

i

[L

i

,



2

= 

1

=2. Now, the inequality

(m� d

F

(x))

2

p

n+ d

F

(x)k � mk � n+ 1;

implies that eah x 2 H has d

F

(x) � 

3

p

n neighbours in F .

First, let us show how to �nd red yles of all lengths up to 

4

p

n. Choose,

any fx; ig 2 E(F ).

In G

0

, we have d

0

K

i

(x) � 

2

p

n and eah vertex in �

0

K

i

(x) has at least 

1

n+

o(n) neighbours in �

0

K

i

[L

i

(x). (Beause the latter set has size n+ 

1

n+O(

p

n)

while we do not have a blue K

1;n

in G.) Thus we have �(n

3=2

) red edges within

�

0

K

i

[L

i

(x). By the theorem of Erd}os and Gallai [EG59℄, we have a red path of

length 

4

p

n there, whih together with x reates red yles of all lengths up to



4

p

n.

Next, the graph F (whih, in fat, has positive density) has a yle of

length 2t = �(

p

n) with 4t < 

4

p

n for large n; let it go through verties

x

1

; i

1

; ; : : : ; x

t

; i

t

; x

t+1

= x

1

, where x

j

2 H for j 2 [t℄.

To prove the theorem it is learly enough to show that, for any j 2 [t℄, we

an �nd a red path onneting x

j

and x

j+1

through K

i

j

[ L

i

j

of any length

between 2 and 

5

p

n, for some onstant 

5

.

ConsiderX = (�

0

(x

j

)[�

0

(x

j+1

))\(K

i

j

[L

i

j

). Now, X\K

i

j

has at least 

2

p

n

elements, eah being inident to at least 

1

n+O(

p

n) red edges. It is not hard to

see that we an �nd a red yle C within X of length at least 

5

p

n interseting

�

0

(x

j

)\�

0

(x

j+1

). (The latter set has size n+ 

1

n+O(

p

n) and it is inident to

almost all red edges lying within X.) It is easy to see that we an additionally

require that C has a red ord E. Now, by a simple lemma (whih is impliit in

Bondy and Simonovits [BS74℄ and expliit in Verstra�ete [Ver99℄), C+E ontain

paths onneting �

0

(x

j

) \ V (C) to �

0

(x

j+1

) \ V (C) (two interseting sets that

over V (C)) of all lengths from 0 to v(C)� 1, as required.

Remark. For eah j 2 [t℄, we an �nd a red yle of any presribed length

between 3 and 

4

p

n lying withinK

i

j

[L

i

j

[fx

j

g. Hene, we an �nd t = �(

p

n)
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suh vertex disjoint yles in G. Of ourse, one an try to prove many other

similar results about our graph G. For example, what is  = (") if " tends to

zero with a given rate as n ! 1, say " = �(1=

p

n)? But we do not want to

build a whole theory out of it: our purpose was to demonstrate that if we allow

(1 + ")r̂(K

1;n

; C

odd

) edges then we an witness muh stronger properties.

23 Removing Verties

In this setion we denote l = k� j � 0. Thus a graph of order n+ k belongs to

M(n; k; j) if after the removal of any l verties the maximal degree is at least

n.

23.1 Some Construtions

Here is our ounterexample to the onjeture of Erd}os, Reid, Shelp and Sta-

ton [ERSS96, Conjeture 1℄.

Example 83 The formula (106) is not true if n � (j � 2)l.

Proof. Write n = lq + r with 0 � r < l. Let A = [l + 1℄, y = l + 2, and

R = [l+3; l+r+2℄, that is, R � X n (A[fyg) is a set of size r. Our assumption

on n implies that j � q + 2, that is,

n+ k � l � r � 2 � (l + 1)q:

Therefore, in X n (A [R [ fyg) we an hoose disjoint q-sets Q

1

; : : : ; Q

l+1

. Let

our graph G onsist of the following edges: ff; hg 2 A

(2)

with jf � hj > 1 (that

is, A spans the omplete graph but for a Hamiltonian path), all edges between A

and R, all edges onneting f 2 A to Q

h

with h 6= f and edges ff; yg, f 2 [2; l℄.

Thus all verties in A have degree n+ l � 1. It is easy to hek that the size of

G is by one smaller than the bound given by (106).

We laim that G 2 M(n; k; j). Suppose on the ontrary to our laim that

we an remove some set L of size l so that the remaining graph has maximal

degree less than n. Let x be any vertex in A n L whih is not empty as jAj > l.

As the degree of x should be less than n now, we onlude that x is onneted to

eah vertex in L. Therefore, any vertex in A non-inident to some x 2 AnL lies
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itself in A nL. As G[A℄ is onneted (it is a path), we onlude that A\L = ;.

But the set of verties onneted (in G) to everything in A is preisely R and it

has r < l elements, whih is a ontradition.

Remark. In Example 83 we an win a few more edges if n is yet smaller. As

before, we let A = [l+1℄ and y = l+2. Suppose that for some p we an squeeze

into [l + 3; n + k℄ an r-set R and q-element sets Q

1

; : : : ; Q

p+1

with r < p and

pq + r = n. To de�ne G, let G[A℄ onsist of h = b

l+1

p+1

 vertex-disjoint paths of

length p+ 1 eah; for every suh path (x

1

; : : : ; x

p+1

) we onnet x

i

, i 2 [p+ 1℄,

to everything in R and in Q

j

, j 6= i, and we onnet x

i

, i 2 [2; p℄, to y. Also, we

add some extra edges so that any vertex of A not on a path has degree n+ l.

Suppose that G 62 M(n; k; j), that is, there is an l-set L with �(G�L) < n.

Let x

0

2 A n L. It must lie on a path P . (Otherwise d

G

(x) = n + l.) Like

in Example 83 we argue that P does not interset L and, in fat, every x 2 P

is onneted to all verties in L. But the number of verties onneted to the

whole of P is j(L n P ) [Rj < l, whih is a ontradition.

It is easy to see that we have h edges less than in (106), so it is advantageous

to hoose p as small as possible. The ondition we have to satisfy is

n+ k � l � 2 � r + (p+ 1)q

or, equivalently, j � 2 � q = bn=p. Therefore, we hoose p = d

n

j�2

e. Note that

our gain ompared to (106) is h = b

l+1

p+1

.

Erd}os et al [ERSS96℄ observe that (106) is not true `when k is very large

ompared to n.' Here is an example, for any given l and n, giving only a fration

of (106) with k moderately small (starting with k � n+ l + 1).

Example 84 Suppose that n + k � pn + l + 1, where p is an integer greater

than 1. Take a representation l+1 = l

1

+ : : :+ l

p

and let G = t

i2[p℄

(K

l

i

+E

n

).

Then G 2M(n; k; k � l).

Proof. Let L � V (G) be any l-set. There must exist i 2 [p℄ suh that L

intersets the orresponding omponent C

i

in less then l

i

verties. Hene, at

least one vertex in K

l

i

survives and it has at least n neighbours outside L.
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23.2 Improving Condition (107)

We an prove the following (whih is an improvement of (107) if j / k=3).

Theorem 85 Let j � 2 and n � 14. Then (106) is true if

n �

�

j +

1

2

�

l +

2j + l

4j � 2

:

Proof. Let G 2M(n; k; j). To prove the theorem by indution is it enough to

show that maximal degree of G is at least n + l. (Beause removing a vertex

from G we obtain a graph in M(n; k � 1; j) and learly m(n; j; j) = n.)

Let H = fx 2 V (G) : d(x) � ng and h = jHj. Let us show that h is not

large by applying the following proedure to G.

Let A = C = ; and B = V (G). Repeat the following as long as possible

or until jAj = l + 1. Move to A any vertex x 2 B (if it exists) having at

least n neighbours in B. For every suh x do the n-hek, that is, move to C all

y 2 B\H with d

B[C

(y) < n. (In fat, for every suh y we have d

B[C

(y) = n�1.)

Suppose we have stopped. Let a; b;  be the sizes of the eventual sets A;B;C.

Indutively, we �nd a set Y = fy

1

; : : : ; y

l+1�a

g � B [ C suh that eah y

i

has

at least n neighbours in C [ B n fy

1

; : : : ; y

i�1

g. As eah y 2 C has fewer than

n neighbours in B [ C, we onlude that Y � B. Let R = (B n Y ) \ H and

r = jC [ Rj. Eah x 2 R has at least n neighbours in C [ B for otherwise it

would belong to C.

Counting the number of edges enountered in our algorithm we obtain that

e(G) � an+ jY jn+ r(n� 1)�

�

r

2

�

� rjY j:

Using a+ jY j = l + 1 (and the trivial inequality jY j � l) we obtain

�

l+1

2

�

� r

�

n� 1�

r�1

2

� jY j

�

� r

�

n� l �

r+1

2

�

:

To satisfy this quadrati in r inequality, r must not lie between the roots r

1;2

=

n� l �

1

2

�R, where

R =

1

2

p

4n

2

� 4n(2l + 1) + 1:

The assumption of the theorem implies that

l � 3n=8: (112)
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Using (112), one an hek that R � (n� 3)=2. Suppose that r � r

2

. Observe

that

r

2

� n� l �

1

2

+

n�3

2

=

3

2

n� l � 2 �

9

8

n� 2: (113)

As before, the inequality e(G) � an+ jY jn+ r

n�1

2

� rjY j implies that

�

l+1

2

�

� r(

n�1

2

� l): (114)

Using (112) and (113), we an dedue from (114) that n �

9

128

n

2

+ 1, whih

annot be satis�ed for n � 14.

The above ontradition implies that r � r

1

; then we have

h = r + l + 1 � n+

1

2

�R: (115)

Suppose on the ontrary that k > j and �(G) < n+ l. For every x 2 H we

hoose a j-set D

x

� �(x) and let D = [

x2H

D

x

. We have jDj � jh and we laim

that this does not exeed n + j. To verify this, it is enough to hek by (115)

that jR � jn � n � j=2. Squaring, we obtain that the latter is equivalent to

n(2j � 1) � 2j

2

l + j, whih is preisely our assumption.

CompleteD to an arbitrary (n+j)-set E. AsG 2M(n; k; j), some x 2 E\H

has at least n neighbours in E, whih is a ontradition as, by de�nition, E

ontains at least j non-neighbours of x.

Hene, �(G) � n+ l and the theorem follows by indution.

24 Splitting into Parts

Here we onsider b(n;m) = minfe(G) : G 2 B(n;m)g, where B(n;m) onsists

of all graphs G suh that, for any partition A [B = V (G), either �(G[A℄) � n

or �(G[B℄) � m.

Clearly, b(n;m) = b(m;n). Let us assume n � m.

24.1 General Bounds

The following simple argument gives a very good general lower bound on b(n;m).

Let G 2 B(n;m) be any graph. Set initially A = V (G) and B = ;. As

long as jBj � m, move to B any x 2 A with d

A

(x) � n. (Suh a vertex exists,

beause obviously �(G[B℄) < m.)
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When we �nish, jBj = m + 1. Swap the sets A and B eah with the other.

(So that now jAj = m + 1.) Next, onseutively and as long as possible, move

to A any vertex of G[B℄ of degree at least m. As eventually �(G[B℄) < m, our

assumption on G implies that jAj � n+ 1 (to allow a vertex of degree at least

n). Counting the edges enountered in this proedure, we obtain the following

bound valid for any n and m.

b(n;m) � (m+ 1)n+ ((n+ 1)� (m+ 1))m = 2mn�m

2

+ n: (116)

Next, we provide a general onstrution giving an upper bound on b(n;m).

Example 86 Choose representations m = m

1

+ : : : +m

f

and n �m = n

1

+

: : : + n

g

. Let G be the disjoint union of P

m

i

;n

, i 2 [f ℄, and P

n

j

;m

, j 2 [g℄, plus

a vertex x onneted to everything else. We laim that G 2 B(n;m).

Proof. Let V (G) = A [B be any partition.

Case 1 Suppose x 2 A. Observe that at least m

i

verties from eah P

m

i

;n

and

at least n

j

verties from eah P

n

j

;m

lie in A. (Otherwise �(G[B℄) � m.) But

then

d

A

(x) = jAj � 1 �

X

i2[f ℄

m

i

+

X

j2[g℄

n

j

= n:

Case 2 If x 2 B (and �(G[A℄) < n), then from eah P

m

i

;n

at least m

i

verties

go to B and d

B

(x) �

P

i2[f ℄

m

i

= m, as required.

Let us ompute how many edges we use in Example 86.

b(n;m) � e(G) = n+fn+gm+mn+(n�m)m+

X

i2[f ℄

�

m

i

2

�

+

X

j2[g℄

�

n

j

2

�

; (117)

To minimize it, we let the m

i

's (and the n

j

's) be nearly equal while f and g have

to be aroundm(2n)

�1=2

and (n�m)(2m)

�1=2

respetively. Putting bounds (116)

and (117) together we obtain the equality (108) laimed in the introdution.

24.2 Small Fixed m

In the extreme ase when m is �xed and n tends to in�nity, we onsider Exam-

ple 86 with f = 1 (so m

1

= m) and g = n(2m)

�1=2

+O(1). Then

X

j2[g℄

�

n

j

2

�

< g

�

n

g

+ 1

�

n

g

2

�

n

2

(

p

2m+ 1) +O(1);
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and we obtain the following.

Corollary 87 Let m � 1 be �xed. Then b(n;m), n 2 N, lie between two linear

funtions, namely

(2m+ 1)n+O(1) � b(n;m) � (2m+

p

2m+

5

2

)n+O(1):

However, for a few partiular small instanes of m we an be more preise.

Let us provide a onstrution of G 2 B(n; 1), n � 2. Represent n = 2k+ l+1

and let G be disjoint union of k triangles, l disjoint edges, plus verties x; y; x is

onneted to every other vertex while y is onneted to some n verties (besides

x). Clearly, e(G) = 3k + 3k + l + 2l + n+ 1 = 4n� 2.

To show that G 2 B(n; 1), suppose that we have a partition V (G) = A [B

with B being an independent set. If one of x or y belongs to B, then A ontains

the other plus their n ommon neighbours and so �(G[A℄) � n. If fx; yg � A,

then at least 2 verties from eah triangle and at least 1 vertex from eah edge

must be in A and d

A

(x) � 1 + 2k + l = n, as required.

Theorem 88 For any n � 8, b(n; 1) = 4n�2 and all extremal graphs are given

by the above onstrution.

Proof. Let n � 1 and let G be any graph in B(n; 1) of size at most 4n� 2. Let

L be the set of verties of G of degree at least n. Clearly, jLj > 1.

First, suppose that jLj = 3, say L = fx; y; zg. The partition with B = L

shows that L is not independent in G.

Case 1 G[L℄ onsists of a single edge, say fx; yg. The partition with B =

fx; zg (resp. B = fy; zg)) shows that y (resp. x) has at least n neighbours

outside L. Hene, L is inident to at least 3n + 1 edges, and we have at most

(4n � 2) � (3n + 1) = n � 3 edges non-inident to L. Letting A onsist of all

verties of L plus an arbitrary endvertex of eah edge outside L, we obtain a

ontradition: A is independent while jAj � n.

Case 2 G[L℄ onsists of two edges, say fx; yg and fx; zg. The partition with

B = fy; zg shows d

L

(x) � n. The partition with B = fxg shows that another

vertex of L has at least n neighbours outside L. Hene, L is inident to at least

3n+ 1 edges, and we an derive a ontradition as above.
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Case 3 G[L℄ is the omplete graph. Plaing in B a vertex of L, we dedue that

some two verties in L, say x and y, have at least n+1 neighbours eah. Thus,

we have already found 3n� 1 edges inident to L; so we an have at most one

more suh edge.

Case 3.1 Suppose that d(z) = n and d(x) � d(y). (That is, d(y) = n + 1.)

Every neighbour u of y is onneted to x. (Otherwise onsider B = fx; ug.) This

means that jU j = n�1, where U = (�(x)[�(y))nL. Choose any u 2 Un�(z) 6= ;.

The partition with B = fz; ug shows that d(x) = n+ 2. By letting A = L and

onseutively moving to A a non-isolated vertex of G[A℄, we onlude that G[L℄

onsists of n � 2 disjoint edges. (And e(G) = 4n � 2.) Furthermore, if n � 5,

we an hoose an independent 3-set C � �

L

(x). If z sends at least one edge to

C, let B = C; otherwise let B = C [ fzg. It is easy to see that in either ase

�(G[B℄) < n, whih is a ontradition.

Case 3.2 Suppose d(x) = d(y) = d(z) = n + 1. As before, we onlude that

G[L℄ onsists of n� 2 disjoint edges. (And e(G) = 4n� 2.) Let n � 7. Clearly,

jV j � 2, where V = �(x) \ �(y) \ �(z). (Otherwise, onsider any independent

2-set B � L.) Also, there is no v 2 (�(x) \ �(y)) n �(z). (Otherwise, let

B = fv; zg.) But then, for n � 5, we an hoose non-inident u; v 2 �(z)

with u 2 �(x) and v 2 �(y), and the onsideration of B = fu; v; zg yields a

ontradition.

Similarly, but with less e�ort, we an exlude the ase jLj � 4 for n � 6. So,

we onlude that L = fx; yg. Considering the partition with B = fx; yg, we see

that x is onneted to y. Considering the partition with B = fxg or B = fyg,

we onlude that d(x) � n+ 1 and d(y) � n+ 1.

We apply the following proedure. Let A onsist of x and y plus all verties

onneted neither to x nor to y; let B = A. At Stage 0 onseutively move to

A a vertex of degree at least 3 in G[B℄. Stage 1: one by one and as long as

possible, move to A a vertex of degree 2 in G[B℄.

Now, G[B℄ onsists of isolated edges. Stage 2: for eah edge fa; bg 2 E(G[B℄)

with �(a) \ L � �(b) \ L we move a to A but keep b in B.

After this stage eah edge in G[B℄ together with L spans a C

4

; let s

3

=

e(G[B℄). For j 2 [0; 2℄ let s

j;i

be the number of verties moved to A at Stage j

whih were inident to i verties in L, i 2 [2℄, and let s

j

= s

j;1

+ s

j;2

.



24 SPLITTING INTO PARTS 138

Case 4 Suppose that �(G[A℄) � n; let d

A

(x) � n. Then the total number of

edges in G is at least n+1 (edges inident to y) plus 3(n�1). (Beause for eah

of n � 1 verties inident to x whih were moved to A we ount at least three

edges; for example, for a vertex a moved at Stage 2, we enounter the edges

fa; xg, fa; bg 2 E(G[B℄) and fb; xg.) Hene, e(G) � 4n� 2 as required.

Case 5 Suppose that �(G[A℄) < n. As we an make B � V (G) independent

by moving an arbitrary endvertex of eah edge to A (and after this we must

have �(G[A℄) � n), we onlude that now

2n� 1 � s

3

+ d

A

(x) + d

A

(y) = s

3

+ 2 +

2

X

j=0

(s

j;1

+ 2s

j;2

): (118)

On the other hand, we have the following estimate.

e(G) � 4s

0;1

+5s

0;2

+3s

1;1

+4s

1;2

+max(s

1

� s

2

� s

3

; 0)+3s

2;1

+5s

2;2

+3s

3

+1:

(119)

Only the max-term needs some explanation. After Stage 1 G[B℄ onsists of

s

3

+ s

4

isolated edges. Let us move bak to B the s

1

verties moved at Stage 1.

As the resulting graph has maximal degree 2, we must use at least s

1

�s

2

�s

3

new

verties. Eah of these verties sends at least one edge to L, whih onstitutes

the extra term. If we multiply (118) by 2 and substitute this from (119), we

obtain (using e(G) � 4n� 2)

s

3

+ 2s

0;1

+ s

0;2

+ s

1;1

+ s

2

+max(s

1

� s

2

� s

3

; 0) � 3:

Hene, s

1

� 3 (and s

2

+ s

3

� 3). From (118) we dedue that

n � (s

1

+ s

2

) + (s

3

+ 3)=2 � 7

1

2

:

Hene, we have shown that b(n; 1) = 4n�2, for n � 8. Conversely, if a graph

G ahieves this bound, then jLj = 2, s

0

= 0, s

3

= 0, one vertex of L is onneted

to every L-neighbour of the other L-vertex, and every vertex moved at Stage 1

belonged to an isolated triangle of G[B℄. Now the required haraterization

follows. The details are left to the reader.

Remark. Perhaps, b(n; 1) = 4n�2 for any n � 2 (learly b(1; 1) = 3), but then

there are many other onstrutions ahieving this bound. A diret searh is

feasible (note that our proof of Theorem 88 ontains some information reduing

this searh), but it would be too long to inlude here.
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Theorem 89 b(n; 2) = 6n+O(1).

Proof. A onstrution of G 2 B(n; 2) �rst. Consider d

n

2

e disjoint 4-yles and

one triangle, say on X = fx

1

; x

2

; x

3

g. To this we add some further edges: x

1

is onneted to every other vertex while x

2

and x

3

are onneted to some �xed

m-set C � �(x

1

) n fx

2

; x

3

g.

Let V (G) = A [ B be any partition with �(G[B℄) � 1. If x

1

2 A, then at

least 2 verties of eah C

4

belong to A and d

A

(x

1

) = jAj � 1 � n, as required.

If x

1

2 B, then all but at most one vertex in C [ fx

2

; x

3

g lie in A and a vertex

in X \ A 6= ; has at least jCj = n neighbours in A. Hene, G 2 B(n; 2) and

b(n; 2) � 6n+O(1), as required.

We show the lower bound. Let G 2 B(n; 2) be any graph with at most 6n

edges; we have to dedue 6n� e(G) = O(1). Let L = fx 2 V (G) : d(x) � ng.

If jLj � 4 then we have at least 4n+ O(1) edges inident to L. Let A = L

and B = A. As long as possible, move to A a vertex of G[B℄ of degree at least

2. Before we stop, we repeat the iteration at least n+1� jLj = n+O(1) times,

whih means that there are 2n+O(1) edges not inident to L and we are home.

Clearly, jLj � 2. (Otherwise the partition with B = L ontradits G 2

B(n; 2).) Hene, jLj = 3 and the theorem follows from Lemma 90 below.

The following related notion is useful. Let B

0

(n;m; l) be the lass of graphs

G with a �xed l-set L � V (G) suh that d(x) � n, x 2 L, and for any partition

V (G) = A [B with �(G[B℄) < m and L � A some vertex x 2 L has at least n

neighbours in A. Also, denote b

0

(n;m; l) = minfe(G) : G 2 B

0

(n;m; l)g.

Lemma 90 For l 2 [3℄, b

0

(n; 2; l) � (3 + l)n+O(1).

Proof. Let G 2 B

0

(n; 2; l) be any graph. We may freely remove any vertex

inident to no vertex of the seleted set L = fx

1

; : : : ; x

l

g, as this does not

violates the B

0

(n; 2; l)-property. Let

�

A

=

�

y 2 L : fy; x

i

g 2 E(G) i� i 2 A

	

; A � [l℄:

Case 1 Let l = 1. Let A = L and B = V (G) n L. As long as possible, move

to A any y 2 B with d

B

(y) � 3. At the end, G[B℄ onsists of disjoint yles,

paths and verties. But we an move to A at most b

p+2

3

 (resp. b

p+1

3

) verties
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from eah yle (resp. path) of length p to ensure �(G[B℄) < 2. As the number

of moved verties must be at least n and we use at least 4 edges per vertex

(inluding edges inident to x

1

), the laim follows.

Case 2 Let l = 2. We apply an indutive on n argument, ensuring that we have

at least 5 edges per every removed vertex, exept in O(1) ases. First, whenever

we have y 2 L with d

G

(y) � 5, we remove it, obtaining a graph in B

0

(n�1; 2; 2).

Next, if we have y

1

2 �

1

and y

2

2 �

2

at distane at least 3, we ontrat

them without loosing the B

0

(n; 2; 2)-property. Suppose we are �nally stuk and

suppose j�

1

j � j�

2

j. As �(G[L℄) < 4, we onlude that g = j�

1

j = O(1).

Removing �

1

from G, we obtain a graph in B

0

(n� g; 2; 2); further, removing x

2

(and at least n� g edges) we obtain a graph in B

0

(n� g� 1; 2; 1) whih has size

at least 4n+O(1). Hene, b

0

(n; 2; 2) � 5n+O(1).

Case 3 Let m = 3. Like in Case 2, we remove a vertex x 2 L of degree at least

6; also, we ontrat any y 2 �

A

, z 2 �

B

, at distane at least 3 for A \ B = ;.

Next, removing O(1) verties we ensure that all but one of �

i

, i 2 [3℄, are

empty, say �

1

= �

2

= ;. Also, we make either �

12

or �

3

empty. If �

12

= ;,

then �(x

1

) � �(x

3

); removing x

1

(and � n+O(1) edges) we obtain a graph in

B

0

(n+O(1); 2; 2) of size at least 5n+O(1)|we are home.

So, suppose �

3

= ;. If possible, remove any three verties in respetively

�

12

;�

13

;�

23

inident to at least 12 edges to obtain a graph in B

0

(n � 2; 2; 3).

Removing up to O(1) verties, we an assume that d

L

(y) = 1 for eah y in, for

example, �

12

. Let z 2 L be the neighbour of some y 2 �

12

. If d

L

(z) = 1, then

we an remove y; z from G without violating the B

0

(n; 2; 3)-property; otherwise,

removing y; z we remove at least 6 edges and obtain a B

0

(n � 1; 2; 3)-graph.

Eventually, we ahieve �

12

= ;, that is, �(x

1

) � �(x

3

) and we are home again

by Case 2.

Remark. In the next ase m = 3 we an only show that

7n+O(1) � b(n; 3) � 9n+O(1):
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