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Abstract

Motivated both by the work of Anstee, Griggs, and Sali on forbidden sub-
matrices and also by the extremal sat-function for graphs, we introduce sat-type
problems for matrices. Let F be a family of k-row matrices. A matrix M is
called F-admissible if M contains no submatrix F ∈ F (as a row and column
permutation of F ). A matrix M without repeated columns is F-saturated if M
is F-admissible but the addition of any column not present in M violates this
property. In this paper we consider the function sat(n,F) which is the mini-
mal number of columns of an F-saturated matrix with n rows. We establish
the estimate sat(n,F) = O(nk−1) for any family F of k-row matrices and also
compute the sat-function for a few small forbidden matrices.

1 Introduction

First, we must introduce some simple notation. Let the shortcut ‘an n ×m-matrix’
M mean a matrix with n rows (which we view as horizontal arrays) and m ‘vertical’
columns such that each entry is 0 or 1. For an n×m-matrix M , its order v(M) = n
is the number of rows and its size e(M) = m is the number of columns. We use
expressions like ‘an n-row matrix’ and ‘an n-row’ to mean a matrix with n rows and
a row containing n elements, respectively.

For an n×m-matrix M and sets A ⊆ [n] and B ⊆ [m], M(A,B) is the |A| × |B|-
submatrix of M formed by the rows indexed by A and the columns indexed by B. We
use the following obvious shorthand: M(A, ) = M(A, [m]), M(A, i) = M(A, {i}), etc.
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For example, the rows and the columns of M are denoted by M(1, ), . . . ,M(n, ) and
M(, 1), . . . ,M(,m) respectively while individual entries – by M(i, j), i ∈ [n], j ∈ [m].

We say that a matrix M is a permutation of another matrix N if M can be
obtained from N by permuting its rows and then permuting its columns. We write
M ∼= N in this case. A matrix F is a submatrix of a matrix M (denoted F ⊆ M)
if we can obtain a matrix which is a permutation of F by deleting some set of rows
and columns of M . In other words, F ∼= M(A,B) for some index sets A and B. The
transpose of M is denoted by MT (we use this notation mostly to denote vertical
columns, for typographical reasons); (a)i is the (horizontal) sequence containing the
element a i times. The n× (m1 +m2)-matrix [M1,M2] is obtained by concatenating
an n×m1-matrix M1 and an n×m2-matrix M2. The complement 1−M of a matrix
M is obtained by interchanging ones and zeros in M . The characteristic function χY

of Y ⊆ [n] is the n-column with ith entry being 1 if i ∈ Y and 0 otherwise.
Many interesting and important properties of classes of matrices can be defined by

listing forbidden submatrices. (Some authors use the term ‘forbidden configurations’.)
More precisely, given a family F of matrices (referred to as forbidden), we say that
a matrix M is F-admissible (or F-free) if M contains no F ∈ F as a submatrix. A
simple matrix M (that is, a matrix without repeated columns) is called F-saturated
(or F-critical) if M is F -free but the addition of any column not present in M violates
this property; this is denoted by M ∈ SAT(n,F), n = v(M). Note that, although the
definition requires that M is simple, we allow multiple columns in matrices belonging
to F .

One well-known extremal problem is to consider forb(n,F), the maximal size
of a simple F -free matrix with n rows or, equivalently, the maximal size of M ∈
SAT(n,F). Many different results on the topic have been obtained; we refer the reader
to a recent survey by Anstee [1]. We just want to mention a remarkable fact that
one of the first forb-type results, namely formula (1) here, proved independently by
Vapnik and Chervonenkis [22], Perles and Shelah [20], and Sauer [19], was motivated
by such different topics as probability, logic, and a problem of Erdős on infinite set
systems.

The forb-problem is reminiscent of the Turán function ex(n,F): given a family
F of forbidden graphs, ex(n,F) is the maximal size of an F -free graph on n vertices
not containing any member of F as a subgraph (see e.g. surveys [15, 21, 17]). Erdős,
Hajnal, and Moon [11] considered the ‘dual’ function sat(n,F), the minimal size of a
maximal F -free graph on n vertices. This is an active area of extremal graph theory;
see the dynamic survey by Faudree, Faudree, and Schmitt [12].

Here we consider the ‘dual’ of the forb-problem for matrices. Namely, we are
interested in the value of sat(n,F), the minimal size of an F -saturated matrix with
n rows:

sat(n,F) = min{e(M) : M ∈ SAT(n,F)}.

We decided to use the same notation as for its graph counterpart. This should not
cause any confusion as this paper will deal with matrices. Obviously, sat(n,F) ≤
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forb(n,F). If F = {F} consists of a single forbidden matrix F then we write
SAT(n, F ) = SAT(n, {F}), and so on.

We denote by T l
k the simple k×

(
k
l

)
-matrix consisting of all k-columns with exactly

l ones and by Kk – the k × 2k matrix of all possible columns of order k. Naturally,
T≤lk denotes the k × f(k, l)-matrix consisting of all distinct columns with at most l
ones, and so on, where we use the shortcut

f(k, l) =

(
k

0

)
+

(
k

1

)
+ · · ·+

(
k

l

)
.

Vapnik and Chervonenkis [22], Perles and Shelah [20], and Sauer [19] showed inde-
pendently that

forb(n,Kk) = f(n, k − 1). (1)

Formula (1) turns out to play a significant role in our study.
This paper is organizes as follows. In §2 we give some general results about the sat-

function, the principal one being Theorem 2.2 which states that sat(n,F) = O(nk−1)
holds for any family F of k-row matrices. Turning to specific matrices, in §3 we
compute sat(n,Kk) for k = 2 and k = 3. By Theorem 2.2, sat(n,K2) can grow at
most linearly, and indeed it is linear in n. Surprisingly, though, sat(n,K3) is constant
for n ≥ 4. Finally, in §4, we examine a selection of small matrices F to see how
sat(n, F ) behaves. In particular, we find some F for which the function grows and
other F for which it is constant (or bounded): it would be interesting to determine
a criterion for when sat(n, F ) is bounded, but we cannot guess one from the present
data.

2 General Results

Here we present some results dealing with sat(n,F) for a general family F .
The following simple observation can be useful in tackling these problems. Let

M ′ be obtained from M ∈ SAT(n,F) by duplicating the nth row of M , that is, we let
M ′([n], ) = M and M ′(n+1, ) = M(n, ). Suppose that M ′ is F -admissible. Complete
M ′, by adding columns in an arbitrary way, to an F -saturated matrix. Let C be any
added (n + 1)-column. As both M ′([n], ) and M ′([n − 1] ∪ {n + 1}, ) are equal to
M ∈ SAT(n,F), we conclude that both C([n]) and C([n − 1] ∪ {n + 1}) must be
columns of M . As C is not an M ′-column, C = (C ′, b, 1 − b) where b ∈ {0, 1} and
C ′ is some (n− 1)-column such that both (C ′, 0) and (C ′, 1) are columns of M . This
implies that sat(n+1,F) ≤ e(M)+2d, where d is the number of pairs of equal columns
in M after we delete the nth row. In particular, the following theorem follows.

Theorem 2.1 Suppose that F is a matrix with no two equal rows. Then either
sat(n, F ) is constant for large n, or sat(n, F ) ≥ n+ 1 for every n.
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Proof. If some M ∈ SAT(n, F ) has at most n columns, then a well-known theorem
of Bondy [7] (see, e.g., Theorem 2.1 in [6]) implies that there is i ∈ [n] such that
the removal of the ith row does not create two equal columns. Since F has no
two equal rows, the duplication of any row cannot create a forbidden submatrix, so
sat(n + 1, F ) ≥ sat(n, F ). However, by the remark made just prior to the theorem,
the duplication of the ith row gives an (n + 1)-row F -saturated matrix, implying
sat(n+ 1, F ) ≤ sat(n, F ), as required.

Suppose that F consists of k-row matrices. Is there any good general upper
bound on forb(n,F) or sat(n,F)? There were different papers dealing with general
upper bounds on forb(n,F), for example, by Anstee and Füredi [5], by Frankl, Füredi
and Pach [14] and by Anstee [2], until the conjecture of Anstee and Füredi [5] that
forb(n,F) = O(nk) for any fixed F was elegantly proved by Füredi (see [3] for a
proof).

On the other hand, we can show that sat(n,F) = O(nk−1) for any family F of
k-row matrices (including infinite families). Note that the exponent k − 1 cannot be
decreased in general since, for example, sat(n, T k

k ) = f(n, k − 1).

Theorem 2.2 For any family F of k-row matrices, sat(n,F) = O(nk−1).

Proof. We may assume that Kk is F -admissible (i.e. every matrix of F contains a pair
of equal columns) for otherwise we are home by (1) as then sat(n,F) ≤ forb(n,Kk) =
O(nk−1).

Let us define some parameters l, d, and m that depend on F . Let l = l(F) ∈
[0, k] be the smallest number such that there exists s for which [sT≤lk , T>l

k ] is not
F -admissible. (Clearly, such l exists: if we set l = k, then sT≤lk = sKk contains any
given k-row submatrix for all large s.) Let d = d(F) be the maximal integer such
that [sT<l

k , dT l
k, T

>l
k ] is F -admissible for every s. Note that d ≥ 1 as [sT<l

k , T l
k, T

>l
k ] =

[sT<l
k , T≥lk ] cannot contain a forbidden submatrix by the choice of l. Choose the

minimal m = m(F) ≥ 0 such that [mT<l
k , (d + 1)T l

k, T
>l
k ] is not F -admissible. The

subsequent argument will be valid provided n is large enough, which we shall tacitly
assume.

We consider the two possibilities l(F) < k and l(F) = k separately. Suppose first
that l(F) < k. Consider the following set system:

H =
⋃

j∈[d−1]

{Y ∈
(
[n]
l+1

)
:
∑

y∈Y y ≡ j (mod n)}.

Here
(
X
i

)
= {Y ⊆ X : |Y | = i} denotes the set of all subsets of X of size i.

Note that any A ∈
(
[n]
l

)
is contained in at most d − 1 members of H, as there

are at most d − 1 possibilities to choose i ∈ [n] \ A so that A ∪ {i} ∈ H: namely,
i ≡ j −

∑
a∈A a (mod n) for j ∈ [d− 1].

On the other hand, the collection H ′, of all l-subsets of [n] contained in fewer than
d − 1 members of H, has size at most 2(d − 1)

(
n

l−1

)
. Indeed, if A ∈ H ′ then, using
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the previous observation, it must be that for some j ∈ [d − 1] and x ∈ A we have
2x ≡ j−

∑
a∈A\{x} a (mod n): hence, once A \ {x} and j have been chosen, there are

at most 2 choices for x.
Call X ∈

(
[n]
k

)
bad if, for some A ∈

(
X
l

)
,

|{Y ∈ H : Y ∩X = A}| ≤ d− 2.

To obtain a bad k-set X, we either complete some A ∈ H ′ to any k-set, or we take
any l-set A and let X contain some member of H that contains A. Therefore, the
number of bad sets is at most

2(d− 1)

(
n

l − 1

)(
n

k − l

)
+

(
n

l

)
(d− 1)

(
n

k − l − 1

)
= O(nk−1).

Let M ′ = [N, T l
n], where N is the n × |H| incidence matrix of H. Then we have

that
M ′(X, ) ⊆ [e(M ′)T<l

k , dT l
k, T

l+1
k ], for any X ∈

(
[n]
k

)
.

Hence, M ′ cannot contain a forbidden submatrix by the definition of d. Now complete
it to arbitrary M = [M ′,M ′′] ∈ SAT(n,F) by adding new columns as long as no
forbidden submatrix is created.

Suppose that e(M ′′) 6= O(nk−1). Then, by (1), Kk
∼= M ′′(X, Y ) for some X, Y .

Now, remove the columns corresponding to Y from M ′′ and repeat the procedure as
long as possible to obtain more than O(nk−1) column-disjoint copies of Kk in M ′′.
No X ∈

(
[n]
k

)
can appear more than d times: otherwise (because T l

n(X, ) ⊇ mT<l
k

for all large n) we have that M(X, ) = [M ′,M ′′](X, ) ⊇ [mT<l
k , (d + 1)Kk] is not

F -admissible. Since we have O(nk−1) bad k-sets of rows and, by above, each has at
most d column-disjoint copies of Kk, we have that Kk ⊆ M ′′(X, ) for at least one
good (i.e., not bad) X ∈

(
[n]
k

)
. But then N(X, ) ⊇ (d − 1)T l

k and M(X, ) contains a
forbidden matrix. This contradiction proves the required bound for l < k.

Consider now the other possibility, that l = l(F) equals k. The above argument
does not work in this case because the size of M ′ ⊇ T l

n is too large. Let F∗ consist of
those k-row matrices F such that [dT k

k , F ] is not F -admissible, where d = d(F). Note
that [sT<k

k , T k
k ] ∈ F∗ for all large s by the definition of d. Thus l(F∗) < k and by the

above argument we can find L ∈ SAT(n− d,F∗) with O(nk−1) columns. Define

M ′ =

[
dT n−d

n−d L
T 1
d e(L)T 0

d

]
,

that is, M ′ is obtained from [dT n−d
n−d , L] by adding d extra rows that encode the sets

{i}, i ∈ [d]. Note that M ′ does not have multiple columns even if T n−d
n−d is a column

of L because d ≥ 1.
Take arbitrary X ∈

(
[n]
k

)
. If X ⊆ [n − d], then M ′(X, ) = [dT k

k , L(X, )] is F -
admissible because L is F∗-admissible; otherwise M ′(X, ) ⊆ [e(M ′)T<k

k , T k
k ] is F -

admissible because l(F) = k. Thus M ′ is F -free.
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Complete M ′ to an arbitrary M ∈ SAT(n,F). Let C be any added column. Since

[M ′, C]([n− d], ) = [dT n−d
n−d , L, C([n− d])]

is F -free, we have that [L,C([n− d])] is F∗-free. By the F∗-saturation of L, we have
that C([n− d]) is a column of L. Hence

sat(n,F) ≤ e(M) ≤ 2d e(L) + d = O(nk−1),

proving the theorem.

Remark 2.3 Theorem 2.2 is the matrix analog of the main result in [18] that
sat(n,F) = O(nk−1) for any finite family F of k-graphs.

3 Forbidding Complete Matrices

Let us investigate the value of sat(n,Kk). (Recall that Kk is the k × 2k-matrix
consisting of all distinct k-columns.) We are able to settle the cases k = 2 and k = 3.

We will use the following trivial lemma a couple of times.

Lemma 3.1 Each row of any M ∈ SAT(n,Kk), n ≥ k, contains at least l ones and
at least l zeros, l = 2k−1 − 1.

Proof. Suppose on the contrary that the first row M(1, ) has m0 zeros followed by
m1 ones with m0 ≥ m1 and l > m1.

For i ∈ [m0], let Ci equal the ith column of M with the first entry 0 replaced
by 1. Then the addition of Ci to M cannot create a new copy of Kk, because the
first row of M ′ contains too few 1’s, while Ci([2, n]) is already a column of M([2, n], ),
which does not contain Kk. Therefore, Ci must be a column of M . Since i ∈ [m0]
was arbitrary, we have m0 = m1.

But then M has at most 2k − 2 columns, which is a contradiction.

Theorem 3.2 For n ≥ 1, we have sat(n,K2) = n+ 1.

Proof. The upper bound is given by T≤1n ∈ SAT(n,K2).
Suppose that the statement is not true, that is, there exists a K2-saturated matrix

with its size not exceeding its order. By Theorem 2.1, sat(n,K2) is eventually constant
so we can find an n × m-matrix M ∈ SAT(n,K2) having two equal rows for some
n ∈ N.

As we are free to complement and permute rows, we may assume that, for some
i ≥ 2, M(1, ) = · · · = M(i, ) while M(j, ) 6= M(1, ) and M(j, ) 6= 1 − M(1, ) for
any j ∈ [i + 1, n]. Note that i < n as we do not allow multiple columns in M (and
m ≥ e(K2)− 1 = 3).

Let j ∈ [i + 1, n]. By Lemma 3.1, the jth row M(j, ) contains both 0’s and 1’s.
By the definition of i, M(j, ) is not equal to M(1, ) nor to 1−M(1, ). It easily follows
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that there are fj, gj ∈ [m] with M(1, fj) = M(1, gj) and M(j, fj) 6= M(j, gj). Again
by Lemma 3.1, we can furthermore find hj ∈ [m] with M(1, hj) = 1−M(1, fj). Let
bj = M(j, hj). By exchanging fj and gj if necessary, we can assume thatM(j, gj) = bj.

Now, as M ∈ SAT(n,K2), the addition of the column

C = (1, (0)i−1, bi+1, . . . , bn)T

(which is not in M because C(1) 6= C(2)) must create a new K2-submatrix, say in
the xth and yth rows for some 1 ≤ x < y ≤ n. Clearly, {x, y} * [i] because each
column of M([i], ) is either ((0)i)T or ((1)i)T . Also, it is impossible that x ∈ [i]
and y ∈ [i + 1, n] because then, for some a1, a2 ∈ [m], M(y, a1) = M(y, a2) =
1− C(y) = 1− by, M(x, a1) = 1−M(x, a2) and we can see that K2 is isomorphic to
M({x, y}, {a1, a2, gy, hy}), which contradicts K2 *M({x, y}, ). So we have to assume
that i < x < y ≤ n.

As K2 * M({x, y}, ), no column of M({x, y}, ) can equal C({x, y}) = (bx, by)
T .

In particular, since M(x, gx) = M(x, hx) = bx and similarly for y, we must have
{gx, hx} ∩ {gy, hy} = ∅, and moreover M(y, gx) = M(y, hx) = 1− by. But then

K2
∼= M({1, y}, {gx, hx, gy, hy}),

which is a contradiction proving our theorem.

Note that forb(n,K2) = n + 1 for n ≥ 1; the upper bound follows, for example,
from Formula (1) with k = 2. Thus Theorem 3.2 yields that sat(n,K2) = forb(n,K2)
which, in our opinion, is rather surprising. A greater surprise is yet to come as we
are going to show now that sat(n,K3) is constant for n ≥ 4.

Theorem 3.3 For K3 the following holds:

sat(n,K3) =

{
7, if n = 3,

10, if n ≥ 4.

Proof. The claim is trivial for n = 3, so assume n ≥ 4. A computer search [10]
revealed that

sat(4, K3) = sat(5, K3) = sat(6, K3) = sat(7, K3) = 10,

which suggested that sat(n,K3) is constant. An example of a K3-saturated 6 × 10-
matrix is the following.

M =


0 0 0 0 1 1 0 1 1 1
0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 0 1 0 1 1
1 0 0 0 0 1 1 0 1 1
1 0 1 0 0 0 1 1 0 1
0 1 0 0 1 0 1 1 0 1

 .
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It is possible (but very boring) to check by hand thatM is indeedK3-saturated as is, in
fact, any n×10-matrix M ′ obtained from M by duplicating any row, cf. Theorem 2.1.
(The symmetries of M shorten the verification.) A K3-saturated 5 × 10-matrix can
be obtained from M by deleting one row (any). For n = 4, we have to provide a
special example:

M =


0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 0 1 1
0 0 1 1 0 0 1 1 0 1
0 1 0 1 0 1 0 1 1 0

 .
So sat(n,K3) ≤ 10 for each n ≥ 4 and, to prove the theorem, we have to show

that no K3-saturated matrix M with at most 9 columns and at least 4 rows can exist.
Let us assume the contrary.

Claim 1. Any row of M ∈ SAT(n,K3) necessarily contains at least four 0’s and at
least four 1’s, for n ≥ 4.

Proof of Claim. Suppose, contrary to the claim, that the first row M(1, ) contains
only three 0’s, say in the first three columns. (By Lemma 3.1 we must have at least
three 0’s.)

If we replace the ith of these 0’s by 1, i ∈ [3], then the obtained column Ci,
if added to M , does not create any K3-submatrix. Indeed, the first row of [M,Ci]
contains at most three 0’s, while Ci([2, n]) is a column of M([2, n], ) 6⊇ K3. As M is
K3-saturated, C1, C2 and C3 are columns of M . These columns differ only in the first
entry from M(, 1), M(, 2) and M(, 3) respectively. Therefore, for each A ∈

(
[2,n]
3

)
,

the matrix M(A, ) can contain at most e(M) − 3 ≤ 6 distinct columns. But then
any column C which is not a column of M and has top entry 1 (C exists as n ≥ 4)
can be added to M without creating a K3 submatrix, because the first row of [M,C]
contains at most three 0’s. This contradiction proves Claim 1.

Therefore, e(M) is either 8 or 9. As we are free to complement the rows, we may
assume that each row of M contains exactly four 1’s. Call A ∈

(
[n]
3

)
(and also M(A, ))

nearly complete if M(A, ) has 7 distinct columns.

Claim 2. Any nearly complete M(A, ) contains (0, 0, 0)T as a column.

Proof of Claim. Indeed, otherwise M(A, ) ⊇ T≥13 which already contains four 1’s in
each row; this implies that the (one or two) remaining columns must contain zeros
only. Hence M(A, ) ⊇ K3, which is a contradiction.

Claim 3. Every nearly complete M(A, ) contains T 1
3 as a submatrix.

Proof of Claim. Indeed, if (0, 0, 1)T is the missing column of M(A, ), then some 7
columns contain a copy of K3 \ (0, 0, 1)T . By counting 1’s in the rows we deduce
that the remaining column(s) of M(A, ) must have exactly one non-zero entry, and
moreover one of these columns equals (0, 0, 1)T , which is a contradiction.
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By the K3-saturation of M there exists some nearly complete M(A, ); choose one
such. Assume without loss of generality that A = [3] and that the first 7 columns
of M([3], ) are distinct. We know that the 3-column missing from M([3], [7]) has at
least two 1’s.

If (1, 1, 1)T is missing, then M([3], [7]) contains exactly three ones in each row,
so the remaining column(s) of M must contain an extra 1 in each row. As (1, 1, 1)T

is the missing column, we conclude that e(M) = 9 and the 8th and 9th columns
of M([3], ) are, up to a row permutation, (0, 0, 1)T and (1, 1, 0)T . This implies that
M([3], ) contains the column (0, 0, 0)T only once. Thus at least one of the columns
C0 = ((0)n)T and C1 = ((0)n−1, 1)T is not in M and its addition creates a copy of
K3, say on the rows indexed by B ∈

(
[n]
3

)
. The submatrix M(B, ) is nearly complete

and, by Claims 2 and 3, contains T≤13 . But both C0(B) and C1(B) are columns of
T≤13 ⊆M(B, ), which is a contradiction.

Similarly, if (1, 1, 0)T is missing, then one can deduce that e(M) = 9 and, up to a
row permutation, M([3], {8, 9}) consists of the columns (1, 0, 0)T and (0, 1, 0)T . Again,
the column (0, 0, 0)T appears only once in M([3], ), which leads to a contradiction as
above, completing the proof of the theorem.

We do not have any non-trivial results concerning Kk, k ≥ 4, except that a
computer search [10] showed that sat(5, K4) = 22 and sat(6, K4) ≤ 24. (We do not
know if a K4-saturated 6× 24-matrix discovered by a partial search is minimum.)

Problem 3.4 For which k ≥ 4, is sat(n,Kk) = O(1)?

4 Forbidding Small Matrices

In this final section we try to gain further insight into the sat-function by computing
sat(n, F ) for some forbidden matrices with up to three rows.

4.1 Forbidding 1-Row Matrices

For any given 1-row matrix F , we can determine sat(n, F ) for all but finitely many
values of n. The answer is unpleasantly intricate.

Proposition 4.1 Let F = ((0)m, (1)l) = [mT 0
1 , lT

1
1 ] with l ≥ m. Then, for n ≥

max(l − 1, 1),

sat(n, F ) =


l, if m = 0 and l ≤ 2 or if m = 1 and l ≥ 1 is a power of 2,

l + 1, if m = 0 and l ≥ 3 or if m = 1 and l is not a power of 2,

l +m− 1, if m ≥ 2 and l ≥ 2.

Proof. Assume that l ≥ 3, as the case l ≤ 2 is trivial.
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For m ∈ {0, 1} an example of M ∈ SAT(n, F ) with e(M) = l + 1 can be built by
taking T 0

n , T n
n , χ[l−2], and χ[n]\{i} for i ∈ [l − 2] as the columns. If m = 1 and l = 2k,

one can do slightly better by adding n− k copies of the row ((1)l) to Kk.
Let us prove the lower bound for m ∈ {0, 1}. Suppose that some F -saturated

matrix M has n ≥ l − 1 rows and c ≤ l columns. First, let m = 0. As c < 2n and M
contains the all-0 column, we have c = l and some row M(i, ) contains exactly l − 1
ones. As we are not allowed multiple columns in M , some other row, say M(j, ), has
at most l− 2 ones. Then χ{j} is not a column of M but its addition does not create l
ones in a row, a contradiction. Let m = 1. Trivially, e(M) ≥ e(F )−1 = l. It remains
to show that l is a power of 2 if e(M) = l. Let C be the column whose ith entry is
1 if and only if M(i, ) = (1)l. Then the addition of the column C cannot create an
F -submatrix, and so C is already a column of M . Let C = M(, 1) = ((0)i, (1)n−i)T .
The last n − i rows of M consist of 1’s only. Since l ≥ 3 and M has no multiple
columns, we have that i ≥ 2 and that M([i], [2, l]) must contain at least one 0, say
M(i, l) = 0. Since the addition of χ[i,n] cannot create F , it is already a column of M .
Thus each row of M([i], ) has at least two 0’s, and to avoid a contradiction we must
have M([i], ) ∼= Ki and l = 2i. This completes the case when m ≤ 1.

For m ≥ 2, let M consist of T n
n plus χ{i}, i ∈ [m− 2], plus χ[n]\{i}, i ∈ [l − 1] and

χ[m−1,l−1]. Clearly, each row of M contains l 1’s and m − 1 0’s, so the addition of
any new column (which must contain at least one 0) creates an F -submatrix and the
upper bound follows. The lower bound is trivial.

Remark 4.2 The case when n ≤ l − 2 in Proposition 4.1 seems messy so we do not
investigate it here.

4.2 Forbidding 2-Row Matrices

Now let us consider some particular 2-row matrices.
Let F = lT 2

2 , that is, F consists of the column (1, 1)T taken l times. Trivially,
for l = 1 or 2, sat(n, lT 2

2 ) = n + l, with T≤1n and [T≤1n , T n
n ] being the only extremal

matrices. For l ≥ 3, we can only show the following lower bound. It is almost sharp
for l = 3, when we can build a 3T 2

2 -saturated n × (2n + 2)-matrix by taking T≤1n ,
χ[n−1], χ[n], plus χ{i,n} for i ∈ [n− 1].

Lemma 4.3 For l ≥ 3 and n ≥ 3, sat(n, lT 2
2 ) ≥ 2n+ 1.

Proof. Let M = [T≤1n ,M ′] be lK2
2 -saturated. Note that M ′ must have the property

that every column χA, with A ∈
(
[n]
2

)
, either belongs already to M ′, or its addition

creates an F -submatrix; in the latter case, exactly l − 1 columns of M ′ have ones in
both positions of A. Therefore, by adding to M ′ some columns of T 2

n (with possibly
some columns being added more than once), we can obtain a new matrix M ′′ such
that, for every A ∈

(
[n]
2

)
, M ′′(A, ) contains the column (1, 1)T exactly l − 1 times.

If we let the set Xi be encoded by the ith row of M ′′ as its characteristic vector,
we have that |Xi ∩ Xj| = l − 1 for every 1 ≤ i < j ≤ n. The result of Bose [8]
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(see [16, Theorem 14.6]), which can be viewed as an extension of the famous Fisher
inequality [13], asserts that, either the rows of M ′′ are linearly independent over the
reals, or M ′′ has two equal rows, say Xi = Xj. The second case is impossible here,
because then |Xi| = l − 1 and each other Xh contains Xi as a subset; this in turn
implies that the column ((1)n)T appears at least l − 1 ≥ 2 times in M ′′ and (since
n ≥ 3) the same number of times in M ′, a contradiction. Thus the rank of M ′′ over
the reals is n. Note that every column C ∈ T 2

n added to M ′ during the construction
of M ′′ was already present in M ′ (otherwise C contradicts the assumption that M
is lT 2

2 -saturated). Thus the matrices M ′ and M ′′ have the same rank over the reals.
We conclude that M ′ has at least n columns and the lemma follows.

Let us show that Lemma 4.3 is sharp for l = 3 and some n. Suppose there exists
a symmetric (n, k, 2)-design (meaning we have n k-sets X1, . . . , Xn ∈

(
[n]
k

)
such that

every pair {i, j} ∈
(
[n]
2

)
is covered by exactly two Xi’s). Let M be the n × n-matrix

whose rows are the characteristic vectors of the sets Xi. Then [T≤1n ,M ] is a 3T 2
2 -

saturated n× (2n+ 1)-matrix. For n = 4, we can take all 3-subsets of [n]. For n = 7,
we can take the family {[7]\Yi : i ∈ [7]}, where Y1, . . . , Y7 ∈

(
[7]
3

)
form the Fano plane.

Constructions of such designs for n = 16, 37, 56, and 79 can be found in [9, Table
6.47].

Of course, the non-existence of a symmetric (n, k, 2)-design does not directly imply
anything about sat(n, 3T 2

2 ), since a minimum 3T 2
2 -saturated matrix [T≤1n ,M ] need not

have the same number of ones in the rows of M .
Lemma 4.3 is not always optimal for l = 3. One trivial example is n = 3. Another

one is n = 5.

Lemma 4.4 sat(5, 3T 2
2 ) = 12.

Proof. Suppose, on the contrary, that we have a 3T 2
2 -saturated 5 × (s + 6)-matrix

M = [N, T≤15 ] with s ≤ 5. Let X1, . . . , X5 be the subsets of [s] encoded by the rows
of N .

If, for example, X1 = [s], then every Xi with i ≥ 2 has at most two elements.
Let C1 = (0, 1, 1, 0, 0)T , C2 = (0, 0, 0, 1, 1)T and C3 = (0, 0, 1, 1, 0)T . None of these
columns is in M so the addition of any one of them creates a copy 3T 2

2 . So we
may assume that M({2, 3}, {a, b}) = M({4, 5}, {c, d}) = M({3, 4}, {e, f}) = 2T 2

2 . If
{a, b} = {c, d} then M(, a) and M(, b) are two equal columns with all 1’s, a contra-
diction. Hence {a, b} 6= {c, d}, and so at least one of {e, f} 6= {a, b} or {e, f} 6= {c, d}
holds: we may assume the former. But then M({1, 3}, ) contains 3T 2

2 , a contradiction.
Thus we can assume that each Xi with i ∈ [5] has at most s − 1 elements. If

X1 ⊆ {1, 2}, then by considering columns that begin with 1 and have one other entry
1, we conclude that X1 = {1, 2} and that every Xi contains X1 as a subset. Thus
M(, {1, 2}) = 2T 5

5 , that is, M has two equal columns, a contradiction.
So we can assume that each |Xi| ≥ 3, which also implies that s = 5. If X1 = [4],

then for each i ∈ [2, 5] we have 5 ∈ Xi (because |Xi| ≥ 3 and M is 3T 2
2 -free). Each two

of the sets X2, . . . , X5 have to intersect in exactly two elements, which is impossible.
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Thus each |Xi| = 3. A simple case analysis gives a contradiction in this case as
well.

Problem 4.5 Determine sat(n, 3T 2
2 ) for every n.

Remark 4.6 It is interesting to note that if we let F = [lT 2
2 , (0, 1)T ] then sat(n, F )-

function is bounded. Indeed, complete M ′ = [χ[n]\{i}]i∈[l] to an arbitrary F -saturated
matrix M . Clearly, in any added column all entries after the lth position are either
0’s or 1’s; hence sat(n, F ) ≤ 2 · 2l.

It is easy to compute sat(n, T 1
2 ) by observing that the n-row matrix MY whose

columns encode Y ⊆ 2[n] is T 1
2 -free if and only if Y is a chain — that is, for any two

members of Y , one is a subset of the other. Thus MY is T 1
2 -saturated if and only if Y

is a maximal chain without repeated entries. As all maximal chains in 2[n] have size
n+ 1, we conclude that

sat(n, T 1
2 ) = forb(n, T 1

2 ) = n+ 1, n ≥ 2.

Theorem 4.7 Let F = [T 0
2 , T

2
2 ] =

[
0 1
0 1

]
. Then sat(n, F ) = 3, n ≥ 2.

Proof. For n ≥ 3, the matrixM consisting of the columns (0, 1, (1)n−2)T , (1, 0, (1)n−2)T

and (0, 0, (1)n−2)T can be easily verified to be F -saturated and the upper bound fol-
lows.

Since n = 2 is trivial, let n ≥ 3. Any 2-column F -free matrix M is, without loss of
generality, the following: we have n00 rows (0, 0), followed by n11 rows (1, 1), n10 rows
(1, 0) and n01 rows (0, 1), where n10 ≤ 1 and n01 ≤ 1. Since (by taking complements
if necessary) we may assume n00 ≤ n11, we have n11 ≥ 1 because n ≥ 3. But then the
addition of a new column ((0)n00+1, 1, 1, . . . )T does not create an F -submatrix.

Theorem 4.8 Let F = T≥12 =

[
0 1 1
1 0 1

]
. Then

sat(n, F ) = forb(n, F ) = n+ 1, n ≥ 2.

Proof. Clearly, forb(n, F ) ≤ forb(n,K2) = n+ 1.
Suppose the theorem is false and that sat(n, F ) ≤ n for some n. Since the rows

of F are distinct, Theorem 2.1 shows that sat(n, F ) is bounded.
It follows that, if n is large enough, then M ∈ SAT(n, F ) has two equal rows,

for example, M(1, ) = M(2, ) = ((1)l, (0)m). By considering the column (1, 0, . . . , 0)T

that is not in M , we conclude that l,m ≥ 1. Let X = [l] and Y = [l + 1, l + m].
Define

Ai = {j ∈ [l +m] : M(i, j) = 1}, i ∈ [n].

(For example, A1 = A2 = X.) As M is F -free, for every i, j ∈ [n], the sets Ai and
Aj are either disjoint or one is a subset of the other. For i ∈ [3, n], let bi = 1 if Ai
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strictly contains X or Y and let bi = 0 otherwise (that is, when Ai is contained in X
or Y ). Let b1 = 1 and b2 = 0.

Clearly, C = (b1, . . . , bn)T is not a column of M so its addition creates a forbidden
submatrix, say F ⊆ [M,C]({i, j}, ). Of course, bi = bj = 0 is impossible because
(0, 0)T * F . If bi = bj = 1 then necessarily Ai ∩ Aj 6= ∅, and M({i, j}, ) ⊇ (1, 1)T

contains F , a contradiction. Finally, if bi 6= bj, e.g., bi = 0, bj = 1 and i < j, then
Ai ⊇ Aj (as (0, 1)T cannot be a column of M({i, j}, )), which implies Ai = Aj; but
then we do not have a copy of F as (1, 0)T is missing. This contradiction completes
the proof.

Remark 4.9 It is trivial that sat(n, [(0, 1)T , (1, 1)T ]) = sat([(0, 0)T , (0, 1)T , (1, 1)T ]) =
2. We have thus determined the sat-function for every simple 2-row matrix.

4.3 Forbidding 3-Row Matrices

Here we consider some particular 3-row matrices. First we solve completely the case
when F = [T 0

3 , T
3
3 ].

Theorem 4.10 Let F = [T 0
3 , T

3
3 ] =

 0 1
0 1
0 1

. Then

sat(n, F ) =

{
7, if n = 3 or n ≥ 6,

10, if n = 4 or 5.

Proof. For the upper bound we define the following family of matrices.

M4 =


1 0 1 0 1 0 1 1 0 0
0 1 1 0 0 1 1 0 1 0
0 0 0 1 1 1 1 0 0 1
0 0 0 0 0 0 0 1 1 1



M5 =


1 1 0 1 1 0 1 0 1 0
1 0 1 1 0 1 0 1 1 0
0 1 1 1 0 0 1 1 0 1
0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1



M6 =


1 0 1 0 0 1 0
1 0 0 1 1 0 0
0 1 1 0 1 0 0
0 1 0 1 0 1 0
0 0 1 1 0 0 1
0 0 0 0 1 1 1
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For any n ≥ 7 define the (n × 7)-matrix Mn by Mn([6], ) = M6 and Mn(i, ) =[
0 0 0 0 0 0 0

]
for every 7 ≤ i ≤ n. A computer search [10] showed that Mn

is a minimum F -saturated matrix for 3 ≤ n ≤ 10. This implies that each Mn with
n ≥ 11 is F -saturated. It remains to show that

sat(n, F ) ≥ 7

for n ≥ 11. In order to see this, we show the following result first.

Claim. If M is an F -saturated n×m-matrix with n ≥ 11 and m ≤ 6 then M contains
a row with all zero entries or with all one entries.

Proof of Claim. Suppose, on the contrary, that we have a counterexample M . We
may assume that the first 6 entries of the first column of M are equal to 0. Consider
a matrix A = M([6], {2, . . . ,m}). Note that every column of A contains at most
two entries equal to 1, otherwise M([6], ) ⊇ F . Hence, the number of 1’s in A is
at most 2(m − 1). By our assumption, each row of A has at least one 1. Since
2(m − 1) < 12, A has a row with precisely one 1. We may assume that A(1, 1) = 1
and A(1, i) = 0 for 2 ≤ i ≤ m − 1. Let C2 be the second column of M (remember
that C2(1) = A(1, 1) = 1).

Consider the n-column C3 = [0, C2({2, . . . , n})T ]T which is obtained from C2 by
changing the first entry to 0. If it is not in M , then F ⊆ [M,C3]. This copy of F
has to contain the entry in which C3 differs from C2. But the only non-zero entry in
Row 1 is M(1, 2); thus F ⊆ [C2, C3], which is an obvious contradiction. Thus we may
assume that C3 is the third column of M .

We have to consider two cases. First, suppose that C2({2, . . . , 6}) has at least one
entry equal to 1. Without loss of generality, assume that C2(2) = C3(2) = 1.

It follows that C2(i) = C3(i) = 0 for 3 ≤ i ≤ 6 (otherwise the first and the second
columns of M would contain F ). Let

B = M({3, 4, 5, 6}, {4, . . . ,m}). (2)

By our assumption, each row of B has at least one 1; in particular m ≥ 5. Clearly,
B contains at most 2(m − 3) < 8 ones. Thus, by permuting Rows 3, . . . , 6 and
Columns 4, . . . ,m, we can assume that B(1, 1) = 1 while B(1, i) = 0 for 2 ≤ i ≤ m−3.
Let C4 be the fourth column of M and C5 be such that C4 and C5 differ at the third
position only, i.e., C4(3) = 1 and C5(3) = 0. As before, C5 must be in M , say it is
the fifth column. Since C4({4, 5, 6}) has at most one 1, assume that C4(5) = C4(6) =
C5(5) = C5(6) = 0. We need another column C6 with C6(5) = C6(6) = 1 (otherwise
the fifth or the sixth row of M would consist of all zero entries). In particular, m = 6.
But now the new column C7 which differs from C6 at the fifth position only (i.e.
C7(5) = 0 and C7(i) = C6(i) for i 6= 5) should be also in M , since M is F -saturated.
This contradicts e(M) = 6. Thus the first case does not hold.

In the second case, we have C2(i) = C3(i) = 0 for every 2 ≤ i ≤ 6. We may
define B as in (2) and get a contradiction in the same way as above. This proves the
claim.
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Suppose, contrary to the theorem, that we can find an F -saturated matrix M
with n ≥ 11 rows and m ≤ 6 columns. By the claim, M has a constant row; we
may assume that the final row of M is all zero, and let N = M([n − 1], ). If C
is an (n − 1)-column missing from N , then the column Q = (CT , 0)T is missing in
M . Moreover, a copy of F in [M,Q] cannot use the n-th row. Thus F ⊆ [N,C],
which means that N ∈ SAT(n − 1, F ) and sat(n − 1, F ) ≤ m ≤ 6. Repeating this
argument, we eventually conclude that sat(10, F ) ≤ 6, a contradiction to the results
of our computer search. The theorem is proved.

Theorem 4.11 Let F = [T 0
3 , T

2
3 , T

3
3 ] =

 0 0 1 1 1
0 1 0 1 1
0 1 1 0 1

. Then

sat(n, F ) =

{
7, if n = 3, 6 or 7,

9, if n = 4 or 5.

Moreover, for any n ≥ 8, sat(n, F ) ≤ 7.

Proof. We define the following matrices:

M4 =


1 0 1 0 1 0 0 0 1
0 1 1 0 0 1 0 1 1
0 0 0 1 1 0 1 1 1
0 0 0 0 0 1 1 1 1

 ,

M5 =


1 1 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 1
0 0 1 0 1 0 1 1 1
0 0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 1 1

 ,

M6 =


1 1 0 0 1 1 0
1 0 1 1 0 1 0
1 0 1 0 1 0 1
0 1 1 1 1 0 0
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 ,

For any n ≥ 7 let Mn([6], ) = M6 and Mn(i, ) =
[

0 0 0 1 1 1 1
]

for every
7 ≤ i ≤ n (i.e. the last row of M6 is repeated (n − 6) times). For n = 3, . . . , 7 the
theorem (with Mn being a minimum F -saturated matrix) follows from a computer
search [10]. It remains to show that Mn, n ≥ 8, is F -saturated. Clearly, this is the
case, since M7 is F -saturated and F contains no pair of equal rows.

Conjecture 4.12 Let F = [T 0
3 , T

2
3 , T

3
3 ]. Then sat(n, F ) = 7 for every n ≥ 8.
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Theorem 4.13 Let F = T≤23 =

 0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0

. Then

sat(n, F ) =

{
7, if n = 3,

10, if 4 ≤ n ≤ 6.

Moreover, for any n ≥ 7, sat(n, F ) ≤ 10.

Proof. For n = 3, . . . , 6 the statement follows from a computer search [10] with the
following F -saturated matrices.

M4 =


0 1 0 1 0 1 1 0 0 1
0 0 1 1 0 0 1 1 0 1
0 0 0 0 1 1 1 0 1 1
0 0 0 0 0 0 0 1 1 1



M5 =


1 0 1 0 1 0 0 0 1 1
0 1 0 1 1 0 1 0 0 1
0 0 1 0 1 1 1 0 0 1
0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 1 1 1 1 1


For any n ≥ 6 let Mn([5], ) = M5 and Mn(i, ) =

[
1 1 0 0 0 0 1 0 1 1

]
for

every 6 ≤ i ≤ n. It remains to show that Mn, n ≥ 7, is F -saturated. Clearly, this is
the case, since M6 is F -saturated and F contains no pair of equal rows.

Conjecture 4.14 Let F = T≤23 . Then sat(n, F ) = 10 for every n ≥ 7.

Theorem 4.15 Let F1 = T 2
3 =

 0 1 1
1 0 1
1 1 0

, and F2 = [T 2
3 , T

3
3 ] =

 0 1 1 1
1 0 1 1
1 1 0 1

.

Then sat(n, F1) = sat(n, F2) = 3n − 2 for any 3 ≤ n ≤ 6. Moreover, for any n ≥ 7,
sat(n, F1) ≤ 3n− 2 and sat(n, F2) ≤ 3n− 2 as well.

Proof. Let Mn = [T 0
n , T

1
n , T

n
n , T̃

2
n ], where T̃ 2

n ⊆ T 2
n consists of all those columns of T 2

n

which have precisely one entry equal to 1 either in the first or in the nth row (but
not in both), e.g., for n = 5 we obtain

M5 =


0 1 0 0 0 0 1 1 1 1 0 0 0
0 0 1 0 0 0 1 1 0 0 1 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0
0 0 0 0 1 0 1 0 0 1 0 0 1
0 0 0 0 0 1 1 0 0 0 1 1 1

 .
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Clearly, e(Mn) = e(T 0
n) + e(T 1

n) + e(T n
n ) + e(T̃ 2

n) = 1 + n + 1 + 2n − 4 = 3n − 2.
Moreover, since T̃ 2

n is F1-admissible we get that Mn is both F1 and F2 admissible.
Now we show that Mn is F1-saturated. Indeed, pick any column C = (c1, . . . , cn)T

which is not present in Mn. Such a column must contain at least 2 ones and 1 zero.
Let 1 ≤ i, j, k ≤ n be the indices such that ci = 0, cj = ck = 1. If i = 1 or i = n, then
the matrix [Mn, C]({i, j, k}, ) contains F1. Otherwise, c1 = cn = 1, and there also
exists 1 < i < n such that ci = 0. Here [Mn, C]({1, i, n}, ) contains F1. Thus Mn is
F1 saturated and, since it must contain T n

n is a column, Mn is also F2-saturated. We
conclude that sat(n, F1) ≤ 3n− 2 and sat(n, F2) ≤ 3n− 2 for any n ≥ 3. A computer
search [10] yields that these inequalities are equalities when n = 3, . . . , 6.

Conjecture 4.16 Let F1 = T 2
3 and F2 = [T 2

3 , T
3
3 ]. Then sat(n, F1) = sat(n, F2) =

3n− 2 for every n ≥ 7.

Remark 4.17 It is not hard to see that sat(n, F1) ≥ n + c
√
n for some absolute

constant c and all n ≥ 3. Indeed, let M be an n× (n+ 2 + λ) F1-saturated matrix of
size sat(n, F1) for some λ = λ(n). We may assume that M(, [n + 2]) = [T 0

n , T
1
n , T

n
n ].

Suppose that λ ≤ n for otherwise we are done. Moreover, we assume that every
column of matrix M([λ], {n+ 3, . . . , n+ 2 +λ}) contains at least one entry equal to 1
(trivially, there must be a permutation of the rows of M satisfying this requirement).
We claim that all rows ofM({λ+1, . . . , n}, {n+3, . . . , n+2+λ}) are different. Suppose
not. Then, there are indices λ+ 1 ≤ i, j ≤ n such that M(i, {n+ 3, . . . , n+ 2 +λ}) =
M(j, {n + 3, . . . , n + 2 + λ}). Now consider a column C in which the only nonzero
entries correspond to i and j. Clearly, C is not present in M , since the first λ entries
of C equal 0. Moreover, since M is F1-saturated, the matrix [M,C] contains F1. In
other words, there are three rows in M which form F1 as a submatrix. Note that the
ith and jth row must be among them. But this is not possible since F1 has no pair
of equal rows.

Let M0 = M({λ+1, . . . , n}, {n+3, . . . , n+2+λ})T . Clearly, M0 is F1-admissible.
Anstee and Sali showed (see Theorem 1.3 in [4]) that forb(λ, F1) = O(λ2). That
means that n − λ = O(λ2), and consequently, λ = Ω(

√
n). Hence, sat(n, F1) =

e(M) ≥ n+ Ω(
√
n), as required.
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