On Minimum Saturated Matrices

Andrzej Dudek* Oleg Pikhurko ${ }^{\text {* }}{ }^{\dagger \ddagger}$ Andrew Thomason ${ }^{〔}$

March 21, 2012

Abstract

Motivated both by the work of Anstee, Griggs, and Sali on forbidden submatrices and also by the extremal sat-function for graphs, we introduce sat-type problems for matrices. Let \mathcal{F} be a family of k-row matrices. A matrix M is called \mathcal{F}-admissible if M contains no submatrix $F \in \mathcal{F}$ (as a row and column permutation of F). A matrix M without repeated columns is \mathcal{F}-saturated if M is \mathcal{F}-admissible but the addition of any column not present in M violates this property. In this paper we consider the function $\operatorname{sat}(n, \mathcal{F})$ which is the minimal number of columns of an \mathcal{F}-saturated matrix with n rows. We establish the estimate $\operatorname{sat}(n, \mathcal{F})=O\left(n^{k-1}\right)$ for any family \mathcal{F} of k-row matrices and also compute the sat-function for a few small forbidden matrices.

1 Introduction

First, we must introduce some simple notation. Let the shortcut 'an $n \times m$-matrix' M mean a matrix with n rows (which we view as horizontal arrays) and m 'vertical' columns such that each entry is 0 or 1 . For an $n \times m$-matrix M, its $\operatorname{order} v(M)=n$ is the number of rows and its size $e(M)=m$ is the number of columns. We use expressions like 'an n-row matrix' and 'an n-row' to mean a matrix with n rows and a row containing n elements, respectively.

For an $n \times m$-matrix M and sets $A \subseteq[n]$ and $B \subseteq[m], M(A, B)$ is the $|A| \times|B|-$ submatrix of M formed by the rows indexed by A and the columns indexed by B. We use the following obvious shorthand: $M(A)=,M(A,[m]), M(A, i)=M(A,\{i\})$, etc.

[^0]For example, the rows and the columns of M are denoted by $M(1),, \ldots, M(n$,$) and$ $M(, 1), \ldots, M(, m)$ respectively while individual entries - by $M(i, j), i \in[n], j \in[m]$.

We say that a matrix M is a permutation of another matrix N if M can be obtained from N by permuting its rows and then permuting its columns. We write $M \cong N$ in this case. A matrix F is a submatrix of a matrix M (denoted $F \subseteq M$) if we can obtain a matrix which is a permutation of F by deleting some set of rows and columns of M. In other words, $F \cong M(A, B)$ for some index sets A and B. The transpose of M is denoted by M^{T} (we use this notation mostly to denote vertical columns, for typographical reasons); $(a)^{i}$ is the (horizontal) sequence containing the element $a i$ times. The $n \times\left(m_{1}+m_{2}\right)$-matrix $\left[M_{1}, M_{2}\right]$ is obtained by concatenating an $n \times m_{1}$-matrix M_{1} and an $n \times m_{2}$-matrix M_{2}. The complement $1-M$ of a matrix M is obtained by interchanging ones and zeros in M. The characteristic function χ_{Y} of $Y \subseteq[n]$ is the n-column with i th entry being 1 if $i \in Y$ and 0 otherwise.

Many interesting and important properties of classes of matrices can be defined by listing forbidden submatrices. (Some authors use the term 'forbidden configurations'.) More precisely, given a family \mathcal{F} of matrices (referred to as forbidden), we say that a matrix M is \mathcal{F}-admissible (or \mathcal{F}-free) if M contains no $F \in \mathcal{F}$ as a submatrix. A simple matrix M (that is, a matrix without repeated columns) is called \mathcal{F}-saturated (or \mathcal{F}-critical) if M is \mathcal{F}-free but the addition of any column not present in M violates this property; this is denoted by $M \in \operatorname{SAT}(n, \mathcal{F}), n=v(M)$. Note that, although the definition requires that M is simple, we allow multiple columns in matrices belonging to \mathcal{F}.

One well-known extremal problem is to consider forb (n, \mathcal{F}), the maximal size of a simple \mathcal{F}-free matrix with n rows or, equivalently, the maximal size of $M \in$ $\operatorname{SAT}(n, \mathcal{F})$. Many different results on the topic have been obtained; we refer the reader to a recent survey by Anstee [1]. We just want to mention a remarkable fact that one of the first forb-type results, namely formula (1) here, proved independently by Vapnik and Chervonenkis [22], Perles and Shelah [20], and Sauer [19], was motivated by such different topics as probability, logic, and a problem of Erdős on infinite set systems.

The forb-problem is reminiscent of the Turán function $\operatorname{ex}(n, \mathcal{F})$: given a family \mathcal{F} of forbidden graphs, $\operatorname{ex}(n, \mathcal{F})$ is the maximal size of an \mathcal{F}-free graph on n vertices not containing any member of \mathcal{F} as a subgraph (see e.g. surveys [15, 21, 17]). Erdős, Hajnal, and Moon [11] considered the 'dual' function $\operatorname{sat}(n, \mathcal{F})$, the minimal size of a maximal \mathcal{F}-free graph on n vertices. This is an active area of extremal graph theory; see the dynamic survey by Faudree, Faudree, and Schmitt [12].

Here we consider the 'dual' of the forb-problem for matrices. Namely, we are interested in the value of $\operatorname{sat}(n, \mathcal{F})$, the minimal size of an \mathcal{F}-saturated matrix with n rows:

$$
\operatorname{sat}(n, \mathcal{F})=\min \{e(M): M \in \operatorname{SAT}(n, \mathcal{F})\}
$$

We decided to use the same notation as for its graph counterpart. This should not cause any confusion as this paper will deal with matrices. Obviously, $\operatorname{sat}(n, \mathcal{F}) \leq$
forb (n, \mathcal{F}). If $\mathcal{F}=\{F\}$ consists of a single forbidden matrix F then we write $\operatorname{SAT}(n, F)=\operatorname{SAT}(n,\{F\})$, and so on.

We denote by T_{k}^{l} the simple $k \times\binom{ k}{l}$-matrix consisting of all k-columns with exactly l ones and by K_{k} - the $k \times 2^{k}$ matrix of all possible columns of order k. Naturally, $T_{k}^{\leq l}$ denotes the $k \times f(k, l)$-matrix consisting of all distinct columns with at most l ones, and so on, where we use the shortcut

$$
f(k, l)=\binom{k}{0}+\binom{k}{1}+\cdots+\binom{k}{l} .
$$

Vapnik and Chervonenkis [22], Perles and Shelah [20], and Sauer [19] showed independently that

$$
\begin{equation*}
\operatorname{forb}\left(n, K_{k}\right)=f(n, k-1) \tag{1}
\end{equation*}
$$

Formula (1) turns out to play a significant role in our study.
This paper is organizes as follows. In $\S 2$ we give some general results about the satfunction, the principal one being Theorem 2.2 which states that $\operatorname{sat}(n, \mathcal{F})=O\left(n^{k-1}\right)$ holds for any family \mathcal{F} of k-row matrices. Turning to specific matrices, in $\S 3$ we compute $\operatorname{sat}\left(n, K_{k}\right)$ for $k=2$ and $k=3$. By Theorem 2.2 , $\operatorname{sat}\left(n, K_{2}\right)$ can grow at most linearly, and indeed it is linear in n. Surprisingly, though, $\operatorname{sat}\left(n, K_{3}\right)$ is constant for $n \geq 4$. Finally, in $\S 4$, we examine a selection of small matrices F to see how sat (n, F) behaves. In particular, we find some F for which the function grows and other F for which it is constant (or bounded): it would be interesting to determine a criterion for when $\operatorname{sat}(n, F)$ is bounded, but we cannot guess one from the present data.

2 General Results

Here we present some results dealing with $\operatorname{sat}(n, \mathcal{F})$ for a general family \mathcal{F}.
The following simple observation can be useful in tackling these problems. Let M^{\prime} be obtained from $M \in \operatorname{SAT}(n, \mathcal{F})$ by duplicating the nth row of M, that is, we let $M^{\prime}([n])=$,$M and M^{\prime}(n+1)=,M(n$,$) . Suppose that M^{\prime}$ is \mathcal{F}-admissible. Complete M^{\prime}, by adding columns in an arbitrary way, to an \mathcal{F}-saturated matrix. Let C be any added $(n+1)$-column. As both $M^{\prime}([n]$,$) and M^{\prime}([n-1] \cup\{n+1\}$,$) are equal to$ $M \in \operatorname{SAT}(n, \mathcal{F})$, we conclude that both $C([n])$ and $C([n-1] \cup\{n+1\})$ must be columns of M. As C is not an M^{\prime}-column, $C=\left(C^{\prime}, b, 1-b\right)$ where $b \in\{0,1\}$ and C^{\prime} is some $(n-1)$-column such that both $\left(C^{\prime}, 0\right)$ and $\left(C^{\prime}, 1\right)$ are columns of M. This implies that $\operatorname{sat}(n+1, \mathcal{F}) \leq e(M)+2 d$, where d is the number of pairs of equal columns in M after we delete the nth row. In particular, the following theorem follows.

Theorem 2.1 Suppose that F is a matrix with no two equal rows. Then either $\operatorname{sat}(n, F)$ is constant for large n, or $\operatorname{sat}(n, F) \geq n+1$ for every n.

Proof. If some $M \in \operatorname{SAT}(n, F)$ has at most n columns, then a well-known theorem of Bondy [7] (see, e.g., Theorem 2.1 in [6]) implies that there is $i \in[n]$ such that the removal of the i th row does not create two equal columns. Since F has no two equal rows, the duplication of any row cannot create a forbidden submatrix, so $\operatorname{sat}(n+1, F) \geq \operatorname{sat}(n, F)$. However, by the remark made just prior to the theorem, the duplication of the i th row gives an $(n+1)$-row F-saturated matrix, implying $\operatorname{sat}(n+1, F) \leq \operatorname{sat}(n, F)$, as required.

Suppose that \mathcal{F} consists of k-row matrices. Is there any good general upper bound on forb (n, \mathcal{F}) or $\operatorname{sat}(n, \mathcal{F})$? There were different papers dealing with general upper bounds on forb (n, \mathcal{F}), for example, by Anstee and Füredi [5], by Frankl, Füredi and Pach [14] and by Anstee [2], until the conjecture of Anstee and Füredi [5] that forb $(n, \mathcal{F})=O\left(n^{k}\right)$ for any fixed \mathcal{F} was elegantly proved by Füredi (see [3] for a proof).

On the other hand, we can show that $\operatorname{sat}(n, \mathcal{F})=O\left(n^{k-1}\right)$ for any family \mathcal{F} of k-row matrices (including infinite families). Note that the exponent $k-1$ cannot be decreased in general since, for example, $\operatorname{sat}\left(n, T_{k}^{k}\right)=f(n, k-1)$.

Theorem 2.2 For any family \mathcal{F} of k-row matrices, sat $(n, \mathcal{F})=O\left(n^{k-1}\right)$.
Proof. We may assume that K_{k} is \mathcal{F}-admissible (i.e. every matrix of \mathcal{F} contains a pair of equal columns) for otherwise we are home by (1) as then $\operatorname{sat}(n, \mathcal{F}) \leq$ forb $\left(n, K_{k}\right)=$ $O\left(n^{k-1}\right)$.

Let us define some parameters l, d, and m that depend on \mathcal{F}. Let $l=l(\mathcal{F}) \in$ $[0, k]$ be the smallest number such that there exists s for which $\left[s T_{k}^{\leq l}, T_{k}^{>l}\right]$ is not \mathcal{F}-admissible. (Clearly, such l exists: if we set $l=k$, then $s T_{k}^{\leq l}=s K_{k}$ contains any given k-row submatrix for all large s.) Let $d=d(\mathcal{F})$ be the maximal integer such that $\left[s T_{k}^{<l}, d T_{k}^{l}, T_{k}^{>l}\right]$ is \mathcal{F}-admissible for every s. Note that $d \geq 1$ as $\left[s T_{k}^{<l}, T_{k}^{l}, T_{k}^{>l}\right]=$ $\left[s T_{k}^{<l}, T_{k}^{\geq l}\right]$ cannot contain a forbidden submatrix by the choice of l. Choose the minimal $m=m(\mathcal{F}) \geq 0$ such that $\left[m T_{k}^{<l},(d+1) T_{k}^{l}, T_{k}^{>l}\right]$ is not \mathcal{F}-admissible. The subsequent argument will be valid provided n is large enough, which we shall tacitly assume.

We consider the two possibilities $l(\mathcal{F})<k$ and $l(\mathcal{F})=k$ separately. Suppose first that $l(\mathcal{F})<k$. Consider the following set system:

$$
H=\bigcup_{j \in[d-1]}\left\{Y \in\binom{[n]}{l+1}: \sum_{y \in Y} y \equiv j \quad(\bmod n)\right\}
$$

Here $\binom{X}{i}=\{Y \subseteq X:|Y|=i\}$ denotes the set of all subsets of X of size i.
Note that any $A \in\binom{[n]}{l}$ is contained in at most $d-1$ members of H, as there are at most $d-1$ possibilities to choose $i \in[n] \backslash A$ so that $A \cup\{i\} \in H$: namely, $i \equiv j-\sum_{a \in A} a(\bmod n)$ for $j \in[d-1]$.

On the other hand, the collection H^{\prime}, of all l-subsets of $[n]$ contained in fewer than $d-1$ members of H, has size at most $2(d-1)\binom{n}{l-1}$. Indeed, if $A \in H^{\prime}$ then, using
the previous observation, it must be that for some $j \in[d-1]$ and $x \in A$ we have $2 x \equiv j-\sum_{a \in A \backslash\{x\}} a(\bmod n)$: hence, once $A \backslash\{x\}$ and j have been chosen, there are at most 2 choices for x.

Call $X \in\binom{[n]}{k}$ bad if, for some $A \in\binom{X}{l}$,

$$
|\{Y \in H: Y \cap X=A\}| \leq d-2
$$

To obtain a bad k-set X, we either complete some $A \in H^{\prime}$ to any k-set, or we take any l-set A and let X contain some member of H that contains A. Therefore, the number of bad sets is at most

$$
2(d-1)\binom{n}{l-1}\binom{n}{k-l}+\binom{n}{l}(d-1)\binom{n}{k-l-1}=O\left(n^{k-1}\right) .
$$

Let $M^{\prime}=\left[N, T_{n}^{l}\right]$, where N is the $n \times|H|$ incidence matrix of H. Then we have that

$$
M^{\prime}(X,) \subseteq\left[e\left(M^{\prime}\right) T_{k}^{<l}, d T_{k}^{l}, T_{k}^{l+1}\right], \quad \text { for any } X \in\binom{[n]}{k}
$$

Hence, M^{\prime} cannot contain a forbidden submatrix by the definition of d. Now complete it to arbitrary $M=\left[M^{\prime}, M^{\prime \prime}\right] \in \operatorname{SAT}(n, \mathcal{F})$ by adding new columns as long as no forbidden submatrix is created.

Suppose that $e\left(M^{\prime \prime}\right) \neq O\left(n^{k-1}\right)$. Then, by (1), $K_{k} \cong M^{\prime \prime}(X, Y)$ for some X, Y. Now, remove the columns corresponding to Y from $M^{\prime \prime}$ and repeat the procedure as long as possible to obtain more than $O\left(n^{k-1}\right)$ column-disjoint copies of K_{k} in $M^{\prime \prime}$. No $X \in\binom{[n]}{k}$ can appear more than d times: otherwise (because $T_{n}^{l}(X,) \supseteq m T_{k}^{<l}$ for all large n) we have that $M(X)=,\left[M^{\prime}, M^{\prime \prime}\right](X,) \supseteq\left[m T_{k}^{<l},(d+1) K_{k}\right]$ is not \mathcal{F}-admissible. Since we have $O\left(n^{k-1}\right)$ bad k-sets of rows and, by above, each has at most d column-disjoint copies of K_{k}, we have that $K_{k} \subseteq M^{\prime \prime}(X$,$) for at least one$ good (i.e., not bad) $X \in\binom{[n]}{k}$. But then $N(X,) \supseteq(d-1) T_{k}^{l}$ and $M(X$,$) contains a$ forbidden matrix. This contradiction proves the required bound for $l<k$.

Consider now the other possibility, that $l=l(\mathcal{F})$ equals k. The above argument does not work in this case because the size of $M^{\prime} \supseteq T_{n}^{l}$ is too large. Let \mathcal{F}^{*} consist of those k-row matrices F such that $\left[d T_{k}^{k}, F\right]$ is not \mathcal{F}-admissible, where $d=d(\mathcal{F})$. Note that $\left[s T_{k}^{<k}, T_{k}^{k}\right] \in \mathcal{F}^{*}$ for all large s by the definition of d. Thus $l\left(\mathcal{F}^{*}\right)<k$ and by the above argument we can find $L \in \operatorname{SAT}\left(n-d, \mathcal{F}^{*}\right)$ with $O\left(n^{k-1}\right)$ columns. Define

$$
M^{\prime}=\left[\begin{array}{cc}
d T_{n-d}^{n-d} & L \\
T_{d}^{1} & e(L) T_{d}^{0}
\end{array}\right],
$$

that is, M^{\prime} is obtained from $\left[d T_{n-d}^{n-d}, L\right]$ by adding d extra rows that encode the sets $\{i\}, i \in[d]$. Note that M^{\prime} does not have multiple columns even if T_{n-d}^{n-d} is a column of L because $d \geq 1$.

Take arbitrary $X \in\binom{[n]}{k}$. If $X \subseteq[n-d]$, then $M^{\prime}(X)=,\left[d T_{k}^{k}, L(X),\right]$ is \mathcal{F} admissible because L is \mathcal{F}^{*}-admissible; otherwise $M^{\prime}(X,) \subseteq\left[e\left(M^{\prime}\right) T_{k}^{<k}, T_{k}^{k}\right]$ is \mathcal{F} admissible because $l(\mathcal{F})=k$. Thus M^{\prime} is \mathcal{F}-free.

Complete M^{\prime} to an arbitrary $M \in \operatorname{SAT}(n, \mathcal{F})$. Let C be any added column. Since

$$
\left[M^{\prime}, C\right]([n-d],)=\left[d T_{n-d}^{n-d}, L, C([n-d])\right]
$$

is \mathcal{F}-free, we have that $[L, C([n-d])]$ is \mathcal{F}^{*}-free. By the \mathcal{F}^{*}-saturation of L, we have that $C([n-d])$ is a column of L. Hence

$$
\operatorname{sat}(n, \mathcal{F}) \leq e(M) \leq 2^{d} e(L)+d=O\left(n^{k-1}\right)
$$

proving the theorem.
Remark 2.3 Theorem 2.2 is the matrix analog of the main result in [18] that $\operatorname{sat}(n, \mathcal{F})=O\left(n^{k-1}\right)$ for any finite family \mathcal{F} of k-graphs.

3 Forbidding Complete Matrices

Let us investigate the value of $\operatorname{sat}\left(n, K_{k}\right)$. (Recall that K_{k} is the $k \times 2^{k}$-matrix consisting of all distinct k-columns.) We are able to settle the cases $k=2$ and $k=3$.

We will use the following trivial lemma a couple of times.
Lemma 3.1 Each row of any $M \in \operatorname{SAT}\left(n, K_{k}\right), n \geq k$, contains at least l ones and at least l zeros, $l=2^{k-1}-1$.

Proof. Suppose on the contrary that the first row $M(1$,$) has m_{0}$ zeros followed by m_{1} ones with $m_{0} \geq m_{1}$ and $l>m_{1}$.

For $i \in\left[m_{0}\right]$, let C_{i} equal the i th column of M with the first entry 0 replaced by 1 . Then the addition of C_{i} to M cannot create a new copy of K_{k}, because the first row of M^{\prime} contains too few 1's, while $C_{i}([2, n])$ is already a column of $M([2, n]$, $)$, which does not contain K_{k}. Therefore, C_{i} must be a column of M. Since $i \in\left[m_{0}\right]$ was arbitrary, we have $m_{0}=m_{1}$.

But then M has at most $2^{k}-2$ columns, which is a contradiction.
Theorem 3.2 For $n \geq 1$, we have $\operatorname{sat}\left(n, K_{2}\right)=n+1$.
Proof. The upper bound is given by $T_{n}^{\leq 1} \in \operatorname{SAT}\left(n, K_{2}\right)$.
Suppose that the statement is not true, that is, there exists a K_{2}-saturated matrix with its size not exceeding its order. By Theorem 2.1, $\operatorname{sat}\left(n, K_{2}\right)$ is eventually constant so we can find an $n \times m$-matrix $M \in \operatorname{SAT}\left(n, K_{2}\right)$ having two equal rows for some $n \in \mathbb{N}$.

As we are free to complement and permute rows, we may assume that, for some $i \geq 2, M(1)=,\cdots=M(i$,$) while M(j,) \neq M(1$,$) and M(j,) \neq 1-M(1$,$) for$ any $j \in[i+1, n]$. Note that $i<n$ as we do not allow multiple columns in M (and $\left.m \geq e\left(K_{2}\right)-1=3\right)$.

Let $j \in[i+1, n]$. By Lemma 3.1, the j th row $M(j$,$) contains both 0's and 1$'s. By the definition of $i, M(j$,$) is not equal to M(1$,$) nor to 1-M(1$,$) . It easily follows$
that there are $f_{j}, g_{j} \in[m]$ with $M\left(1, f_{j}\right)=M\left(1, g_{j}\right)$ and $M\left(j, f_{j}\right) \neq M\left(j, g_{j}\right)$. Again by Lemma 3.1, we can furthermore find $h_{j} \in[m]$ with $M\left(1, h_{j}\right)=1-M\left(1, f_{j}\right)$. Let $b_{j}=M\left(j, h_{j}\right)$. By exchanging f_{j} and g_{j} if necessary, we can assume that $M\left(j, g_{j}\right)=b_{j}$.

Now, as $M \in \operatorname{SAT}\left(n, K_{2}\right)$, the addition of the column

$$
C=\left(1,(0)^{i-1}, b_{i+1}, \ldots, b_{n}\right)^{T}
$$

(which is not in M because $C(1) \neq C(2))$ must create a new K_{2}-submatrix, say in the x th and y th rows for some $1 \leq x<y \leq n$. Clearly, $\{x, y\} \nsubseteq[i]$ because each column of $M\left([i]\right.$,) is either $\left((0)^{i}\right)^{T}$ or $\left((1)^{i}\right)^{T}$. Also, it is impossible that $x \in[i]$ and $y \in[i+1, n]$ because then, for some $a_{1}, a_{2} \in[m], M\left(y, a_{1}\right)=M\left(y, a_{2}\right)=$ $1-C(y)=1-b_{y}, M\left(x, a_{1}\right)=1-M\left(x, a_{2}\right)$ and we can see that K_{2} is isomorphic to $M\left(\{x, y\},\left\{a_{1}, a_{2}, g_{y}, h_{y}\right\}\right)$, which contradicts $K_{2} \nsubseteq M(\{x, y\}$,$) . So we have to assume$ that $i<x<y \leq n$.

As $K_{2} \nsubseteq M\left(\{x, y\}\right.$, , no column of $M\left(\{x, y\}\right.$,) can equal $C(\{x, y\})=\left(b_{x}, b_{y}\right)^{T}$. In particular, since $M\left(x, g_{x}\right)=M\left(x, h_{x}\right)=b_{x}$ and similarly for y, we must have $\left\{g_{x}, h_{x}\right\} \cap\left\{g_{y}, h_{y}\right\}=\emptyset$, and moreover $M\left(y, g_{x}\right)=M\left(y, h_{x}\right)=1-b_{y}$. But then

$$
K_{2} \cong M\left(\{1, y\},\left\{g_{x}, h_{x}, g_{y}, h_{y}\right\}\right),
$$

which is a contradiction proving our theorem.
Note that forb $\left(n, K_{2}\right)=n+1$ for $n \geq 1$; the upper bound follows, for example, from Formula (1) with $k=2$. Thus Theorem 3.2 yields that $\operatorname{sat}\left(n, K_{2}\right)=$ forb $\left(n, K_{2}\right)$ which, in our opinion, is rather surprising. A greater surprise is yet to come as we are going to show now that $\operatorname{sat}\left(n, K_{3}\right)$ is constant for $n \geq 4$.
Theorem 3.3 For K_{3} the following holds:

$$
\operatorname{sat}\left(n, K_{3}\right)= \begin{cases}7, & \text { if } n=3 \\ 10, & \text { if } n \geq 4\end{cases}
$$

Proof. The claim is trivial for $n=3$, so assume $n \geq 4$. A computer search [10] revealed that

$$
\operatorname{sat}\left(4, K_{3}\right)=\operatorname{sat}\left(5, K_{3}\right)=\operatorname{sat}\left(6, K_{3}\right)=\operatorname{sat}\left(7, K_{3}\right)=10
$$

which suggested that $\operatorname{sat}\left(n, K_{3}\right)$ is constant. An example of a K_{3}-saturated 6×10 matrix is the following.

$$
M=\left[\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

It is possible (but very boring) to check by hand that M is indeed K_{3}-saturated as is, in fact, any $n \times 10$-matrix M^{\prime} obtained from M by duplicating any row, $c f$. Theorem 2.1. (The symmetries of M shorten the verification.) A K_{3}-saturated 5×10-matrix can be obtained from M by deleting one row (any). For $n=4$, we have to provide a special example:

$$
M=\left[\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

So sat $\left(n, K_{3}\right) \leq 10$ for each $n \geq 4$ and, to prove the theorem, we have to show that no K_{3}-saturated matrix M with at most 9 columns and at least 4 rows can exist. Let us assume the contrary.
Claim 1. Any row of $M \in \operatorname{SAT}\left(n, K_{3}\right)$ necessarily contains at least four 0 's and at least four 1's, for $n \geq 4$.

Proof of Claim. Suppose, contrary to the claim, that the first row $M(1$,$) contains$ only three 0's, say in the first three columns. (By Lemma 3.1 we must have at least three 0's.)

If we replace the i th of these 0 's by $1, i \in[3]$, then the obtained column C_{i}, if added to M, does not create any K_{3}-submatrix. Indeed, the first row of [M, C_{i}] contains at most three 0's, while $C_{i}([2, n])$ is a column of $M([2, n],) \nsupseteq K_{3}$. As M is K_{3}-saturated, C_{1}, C_{2} and C_{3} are columns of M. These columns differ only in the first entry from $M(, 1), M(, 2)$ and $M(, 3)$ respectively. Therefore, for each $A \in\binom{[2, n]}{3}$, the matrix $M(A$,$) can contain at most e(M)-3 \leq 6$ distinct columns. But then any column C which is not a column of M and has top entry $1(C$ exists as $n \geq 4)$ can be added to M without creating a K_{3} submatrix, because the first row of $[M, C]$ contains at most three 0's. This contradiction proves Claim 1.

Therefore, $e(M)$ is either 8 or 9 . As we are free to complement the rows, we may assume that each row of M contains exactly four 1's. Call $A \in\binom{[n]}{3}$ (and also $M(A$,$))$ nearly complete if $M(A$,$) has 7$ distinct columns.
Claim 2. Any nearly complete $M(A$,$) contains (0,0,0)^{T}$ as a column.
Proof of Claim. Indeed, otherwise $M(A,) \supseteq T_{3}^{\geq 1}$ which already contains four 1's in each row; this implies that the (one or two) remaining columns must contain zeros only. Hence $M(A,) \supseteq K_{3}$, which is a contradiction.
Claim 3. Every nearly complete $M(A$,$) contains T_{3}^{1}$ as a submatrix.
Proof of Claim. Indeed, if $(0,0,1)^{T}$ is the missing column of $M(A$,$) , then some 7$ columns contain a copy of $K_{3} \backslash(0,0,1)^{T}$. By counting 1's in the rows we deduce that the remaining column(s) of $M(A$,$) must have exactly one non-zero entry, and$ moreover one of these columns equals $(0,0,1)^{T}$, which is a contradiction.

By the K_{3}-saturation of M there exists some nearly complete $M(A$,$) ; choose one$ such. Assume without loss of generality that $A=[3]$ and that the first 7 columns of $M([3]$,$) are distinct. We know that the 3-column missing from M([3],[7])$ has at least two 1's.

If $(1,1,1)^{T}$ is missing, then $M([3],[7])$ contains exactly three ones in each row, so the remaining column(s) of M must contain an extra 1 in each row. As $(1,1,1)^{T}$ is the missing column, we conclude that $e(M)=9$ and the 8th and 9th columns of $M([3]$,$) are, up to a row permutation, (0,0,1)^{T}$ and $(1,1,0)^{T}$. This implies that $M([3]$,$) contains the column (0,0,0)^{T}$ only once. Thus at least one of the columns $C_{0}=\left((0)^{n}\right)^{T}$ and $C_{1}=\left((0)^{n-1}, 1\right)^{T}$ is not in M and its addition creates a copy of K_{3}, say on the rows indexed by $B \in\binom{[n]}{3}$. The submatrix $M(B$,$) is nearly complete$ and, by Claims 2 and 3 , contains $T_{3}^{\leq 1}$. But both $C_{0}(B)$ and $C_{1}(B)$ are columns of $T_{3}^{\leq 1} \subseteq M(B$,$) , which is a contradiction.$

Similarly, if $(1,1,0)^{T}$ is missing, then one can deduce that $e(M)=9$ and, up to a row permutation, $M([3],\{8,9\})$ consists of the columns $(1,0,0)^{T}$ and $(0,1,0)^{T}$. Again, the column $(0,0,0)^{T}$ appears only once in $M([3]$,$) , which leads to a contradiction as$ above, completing the proof of the theorem.

We do not have any non-trivial results concerning $K_{k}, k \geq 4$, except that a computer search [10] showed that $\operatorname{sat}\left(5, K_{4}\right)=22$ and $\operatorname{sat}\left(6, K_{4}\right) \leq 24$. (We do not know if a K_{4}-saturated 6×24-matrix discovered by a partial search is minimum.)

Problem 3.4 For which $k \geq 4$, is $\operatorname{sat}\left(n, K_{k}\right)=O(1)$?

4 Forbidding Small Matrices

In this final section we try to gain further insight into the sat-function by computing $\operatorname{sat}(n, F)$ for some forbidden matrices with up to three rows.

4.1 Forbidding 1-Row Matrices

For any given 1-row matrix F, we can determine $\operatorname{sat}(n, F)$ for all but finitely many values of n. The answer is unpleasantly intricate.

Proposition 4.1 Let $F=\left((0)^{m},(1)^{l}\right)=\left[m T_{1}^{0}, l T_{1}^{1}\right]$ with $l \geq m$. Then, for $n \geq$ $\max (l-1,1)$,
$\operatorname{sat}(n, F)= \begin{cases}l, & \text { if } m=0 \text { and } l \leq 2 \text { or if } m=1 \text { and } l \geq 1 \text { is a power of } 2, \\ l+1, & \text { if } m=0 \text { and } l \geq 3 \text { or if } m=1 \text { and } l \text { is } n \text { ot a power of } 2, \\ l+m-1, & \text { if } m \geq 2 \text { and } l \geq 2 .\end{cases}$
Proof. Assume that $l \geq 3$, as the case $l \leq 2$ is trivial.

For $m \in\{0,1\}$ an example of $M \in \operatorname{SAT}(n, F)$ with $e(M)=l+1$ can be built by taking $T_{n}^{0}, T_{n}^{n}, \chi_{[l-2]}$, and $\chi_{[n \backslash \backslash i\}}$ for $i \in[l-2]$ as the columns. If $m=1$ and $l=2^{k}$, one can do slightly better by adding $n-k$ copies of the row $\left((1)^{l}\right)$ to K_{k}.

Let us prove the lower bound for $m \in\{0,1\}$. Suppose that some F-saturated matrix M has $n \geq l-1$ rows and $c \leq l$ columns. First, let $m=0$. As $c<2^{n}$ and M contains the all- 0 column, we have $c=l$ and some row $M(i$,$) contains exactly l-1$ ones. As we are not allowed multiple columns in M, some other row, say $M(j$,$) , has$ at most $l-2$ ones. Then $\chi_{\{j\}}$ is not a column of M but its addition does not create l ones in a row, a contradiction. Let $m=1$. Trivially, $e(M) \geq e(F)-1=l$. It remains to show that l is a power of 2 if $e(M)=l$. Let C be the column whose i th entry is 1 if and only if $M(i)=,(1)^{l}$. Then the addition of the column C cannot create an F-submatrix, and so C is already a column of M. Let $C=M(, 1)=\left((0)^{i},(1)^{n-i}\right)^{T}$. The last $n-i$ rows of M consist of 1 's only. Since $l \geq 3$ and M has no multiple columns, we have that $i \geq 2$ and that $M([i],[2, l])$ must contain at least one 0 , say $M(i, l)=0$. Since the addition of $\chi_{[i, n]}$ cannot create F, it is already a column of M. Thus each row of $M([i]$,) has at least two 0 's, and to avoid a contradiction we must have $M([i],) \cong K_{i}$ and $l=2^{i}$. This completes the case when $m \leq 1$.

For $m \geq 2$, let M consist of T_{n}^{n} plus $\chi_{\{i\}}, i \in[m-2]$, plus $\chi_{[n] \backslash i\}}, i \in[l-1]$ and $\chi_{[m-1, l-1]}$. Clearly, each row of M contains l 's and $m-10$'s, so the addition of any new column (which must contain at least one 0) creates an F-submatrix and the upper bound follows. The lower bound is trivial.
Remark 4.2 The case when $n \leq l-2$ in Proposition 4.1 seems messy so we do not investigate it here.

4.2 Forbidding 2-Row Matrices

Now let us consider some particular 2-row matrices.
Let $F=l T_{2}^{2}$, that is, F consists of the column $(1,1)^{T}$ taken l times. Trivially, for $l=1$ or 2 , $\operatorname{sat}\left(n, l T_{2}^{2}\right)=n+l$, with $T_{n}^{\leq 1}$ and $\left[T_{n}^{\leq 1}, T_{n}^{n}\right]$ being the only extremal matrices. For $l \geq 3$, we can only show the following lower bound. It is almost sharp for $l=3$, when we can build a $3 T_{2}^{2}$-saturated $n \times(2 n+2)$-matrix by taking $T_{n}^{\leq 1}$, $\chi_{[n-1]}, \chi_{[n]}$, plus $\chi_{\{i, n\}}$ for $i \in[n-1]$.
Lemma 4.3 For $l \geq 3$ and $n \geq 3$, $\operatorname{sat}\left(n, l T_{2}^{2}\right) \geq 2 n+1$.
Proof. Let $M=\left[T_{n}^{\leq 1}, M^{\prime}\right]$ be $l K_{2}^{2}$-saturated. Note that M^{\prime} must have the property that every column χ_{A}, with $A \in\binom{[n]}{2}$, either belongs already to M^{\prime}, or its addition creates an F-submatrix; in the latter case, exactly $l-1$ columns of M^{\prime} have ones in both positions of A. Therefore, by adding to M^{\prime} some columns of T_{n}^{2} (with possibly some columns being added more than once), we can obtain a new matrix $M^{\prime \prime}$ such that, for every $A \in\binom{[n]}{2}, M^{\prime \prime}(A$,$) contains the column (1,1)^{T}$ exactly $l-1$ times. If we let the set X_{i} be encoded by the i th row of $M^{\prime \prime}$ as its characteristic vector, we have that $\left|X_{i} \cap X_{j}\right|=l-1$ for every $1 \leq i<j \leq n$. The result of Bose [8]
(see [16, Theorem 14.6]), which can be viewed as an extension of the famous Fisher inequality [13], asserts that, either the rows of $M^{\prime \prime}$ are linearly independent over the reals, or $M^{\prime \prime}$ has two equal rows, say $X_{i}=X_{j}$. The second case is impossible here, because then $\left|X_{i}\right|=l-1$ and each other X_{h} contains X_{i} as a subset; this in turn implies that the column $\left((1)^{n}\right)^{T}$ appears at least $l-1 \geq 2$ times in $M^{\prime \prime}$ and (since $n \geq 3$) the same number of times in M^{\prime}, a contradiction. Thus the rank of $M^{\prime \prime}$ over the reals is n. Note that every column $C \in T_{n}^{2}$ added to M^{\prime} during the construction of $M^{\prime \prime}$ was already present in M^{\prime} (otherwise C contradicts the assumption that M is $l T_{2}^{2}$-saturated). Thus the matrices M^{\prime} and $M^{\prime \prime}$ have the same rank over the reals. We conclude that M^{\prime} has at least n columns and the lemma follows.

Let us show that Lemma 4.3 is sharp for $l=3$ and some n. Suppose there exists a symmetric $(n, k, 2)$-design (meaning we have $n k$-sets $X_{1}, \ldots, X_{n} \in\binom{[n]}{k}$ such that every pair $\{i, j\} \in\binom{[n]}{2}$ is covered by exactly two X_{i} 's). Let M be the $n \times n$-matrix whose rows are the characteristic vectors of the sets X_{i}. Then $\left[T_{n}^{\leq 1}, M\right]$ is a $3 T_{2}^{2}-$ saturated $n \times(2 n+1)$-matrix. For $n=4$, we can take all 3 -subsets of $[n]$. For $n=7$, we can take the family $\left\{[7] \backslash Y_{i}: i \in[7]\right\}$, where $Y_{1}, \ldots, Y_{7} \in\binom{[7]}{3}$ form the Fano plane. Constructions of such designs for $n=16,37,56$, and 79 can be found in [9, Table 6.47].

Of course, the non-existence of a symmetric ($n, k, 2$)-design does not directly imply anything about sat $\left(n, 3 T_{2}^{2}\right)$, since a minimum $3 T_{2}^{2}$-saturated matrix $\left[T_{n}^{\leq 1}, M\right]$ need not have the same number of ones in the rows of M.

Lemma 4.3 is not always optimal for $l=3$. One trivial example is $n=3$. Another one is $n=5$.
Lemma $4.4 \operatorname{sat}\left(5,3 T_{2}^{2}\right)=12$.
Proof. Suppose, on the contrary, that we have a $3 T_{2}^{2}$-saturated $5 \times(s+6)$-matrix $M=\left[N, T_{5}^{\leq 1}\right]$ with $s \leq 5$. Let X_{1}, \ldots, X_{5} be the subsets of $[s]$ encoded by the rows of N.

If, for example, $X_{1}=[s]$, then every X_{i} with $i \geq 2$ has at most two elements. Let $C_{1}=(0,1,1,0,0)^{T}, C_{2}=(0,0,0,1,1)^{T}$ and $C_{3}=(0,0,1,1,0)^{T}$. None of these columns is in M so the addition of any one of them creates a copy $3 T_{2}^{2}$. So we may assume that $M(\{2,3\},\{a, b\})=M(\{4,5\},\{c, d\})=M(\{3,4\},\{e, f\})=2 T_{2}^{2}$. If $\{a, b\}=\{c, d\}$ then $M(, a)$ and $M(, b)$ are two equal columns with all 1's, a contradiction. Hence $\{a, b\} \neq\{c, d\}$, and so at least one of $\{e, f\} \neq\{a, b\}$ or $\{e, f\} \neq\{c, d\}$ holds: we may assume the former. But then $M(\{1,3\}$,$) contains 3 T_{2}^{2}$, a contradiction.

Thus we can assume that each X_{i} with $i \in[5]$ has at most $s-1$ elements. If $X_{1} \subseteq\{1,2\}$, then by considering columns that begin with 1 and have one other entry 1, we conclude that $X_{1}=\{1,2\}$ and that every X_{i} contains X_{1} as a subset. Thus $M(,\{1,2\})=2 T_{5}^{5}$, that is, M has two equal columns, a contradiction.

So we can assume that each $\left|X_{i}\right| \geq 3$, which also implies that $s=5$. If $X_{1}=[4]$, then for each $i \in[2,5]$ we have $5 \in X_{i}$ (because $\left|X_{i}\right| \geq 3$ and M is $3 T_{2}^{2}$-free). Each two of the sets X_{2}, \ldots, X_{5} have to intersect in exactly two elements, which is impossible.

Thus each $\left|X_{i}\right|=3$. A simple case analysis gives a contradiction in this case as well.

Problem 4.5 Determine sat $\left(n, 3 T_{2}^{2}\right)$ for every n.
Remark 4.6 It is interesting to note that if we let $F=\left[l T_{2}^{2},(0,1)^{T}\right]$ then $\operatorname{sat}(n, F)$ function is bounded. Indeed, complete $M^{\prime}=\left[\chi_{[n] \backslash\{i\}}\right]_{i \in[l]}$ to an arbitrary F-saturated matrix M. Clearly, in any added column all entries after the l th position are either 0 's or 1 's; hence sat $(n, F) \leq 2 \cdot 2^{l}$.

It is easy to compute $\operatorname{sat}\left(n, T_{2}^{1}\right)$ by observing that the n-row matrix M_{Y} whose columns encode $Y \subseteq 2^{[n]}$ is T_{2}^{1}-free if and only if Y is a chain - that is, for any two members of Y, one is a subset of the other. Thus M_{Y} is T_{2}^{1}-saturated if and only if Y is a maximal chain without repeated entries. As all maximal chains in $2^{[n]}$ have size $n+1$, we conclude that

$$
\operatorname{sat}\left(n, T_{2}^{1}\right)=\operatorname{forb}\left(n, T_{2}^{1}\right)=n+1, \quad n \geq 2
$$

Theorem 4.7 Let $F=\left[T_{2}^{0}, T_{2}^{2}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$. Then $\operatorname{sat}(n, F)=3, n \geq 2$.
Proof. For $n \geq 3$, the matrix M consisting of the columns $\left(0,1,(1)^{n-2}\right)^{T},\left(1,0,(1)^{n-2}\right)^{T}$ and $\left(0,0,(1)^{n-2}\right)^{T}$ can be easily verified to be F-saturated and the upper bound follows.

Since $n=2$ is trivial, let $n \geq 3$. Any 2 -column F-free matrix M is, without loss of generality, the following: we have n_{00} rows $(0,0)$, followed by n_{11} rows $(1,1), n_{10}$ rows $(1,0)$ and n_{01} rows $(0,1)$, where $n_{10} \leq 1$ and $n_{01} \leq 1$. Since (by taking complements if necessary) we may assume $n_{00} \leq n_{11}$, we have $n_{11} \geq 1$ because $n \geq 3$. But then the addition of a new column $\left((0)^{n_{00}+1}, 1,1, \ldots\right)^{T}$ does not create an F-submatrix.

Theorem 4.8 Let $F=T_{2}^{\geq 1}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$. Then

$$
\operatorname{sat}(n, F)=\operatorname{forb}(n, F)=n+1, \quad n \geq 2
$$

Proof. Clearly, forb $(n, F) \leq \operatorname{forb}\left(n, K_{2}\right)=n+1$.
Suppose the theorem is false and that $\operatorname{sat}(n, F) \leq n$ for some n. Since the rows of F are distinct, Theorem 2.1 shows that $\operatorname{sat}(n, F)$ is bounded.

It follows that, if n is large enough, then $M \in \operatorname{SAT}(n, F)$ has two equal rows, for example, $M(1)=,M(2)=,\left((1)^{l},(0)^{m}\right)$. By considering the column $(1,0, \ldots, 0)^{T}$ that is not in M, we conclude that $l, m \geq 1$. Let $X=[l]$ and $Y=[l+1, l+m]$. Define

$$
A_{i}=\{j \in[l+m]: M(i, j)=1\}, \quad i \in[n] .
$$

(For example, $A_{1}=A_{2}=X$.) As M is F-free, for every $i, j \in[n]$, the sets A_{i} and A_{j} are either disjoint or one is a subset of the other. For $i \in[3, n]$, let $b_{i}=1$ if A_{i}
strictly contains X or Y and let $b_{i}=0$ otherwise (that is, when A_{i} is contained in X or Y). Let $b_{1}=1$ and $b_{2}=0$.

Clearly, $C=\left(b_{1}, \ldots, b_{n}\right)^{T}$ is not a column of M so its addition creates a forbidden submatrix, say $F \subseteq[M, C](\{i, j\}$, $)$. Of course, $b_{i}=b_{j}=0$ is impossible because $(0,0)^{T} \nsubseteq F$. If $b_{i}=b_{j}=1$ then necessarily $A_{i} \cap A_{j} \neq \emptyset$, and $M(\{i, j\},) \supseteq(1,1)^{T}$ contains F, a contradiction. Finally, if $b_{i} \neq b_{j}$, e.g., $b_{i}=0, b_{j}=1$ and $i<j$, then $A_{i} \supseteq A_{j}$ (as $(0,1)^{T}$ cannot be a column of $\left.M(\{i, j\}),\right)$, which implies $A_{i}=A_{j}$; but then we do not have a copy of F as $(1,0)^{T}$ is missing. This contradiction completes the proof.

Remark 4.9 It is trivial that $\operatorname{sat}\left(n,\left[(0,1)^{T},(1,1)^{T}\right]\right)=\operatorname{sat}\left(\left[(0,0)^{T},(0,1)^{T},(1,1)^{T}\right]\right)=$ 2 . We have thus determined the sat-function for every simple 2-row matrix.

4.3 Forbidding 3-Row Matrices

Here we consider some particular 3-row matrices. First we solve completely the case when $F=\left[T_{3}^{0}, T_{3}^{3}\right]$.

Theorem 4.10 Let $F=\left[T_{3}^{0}, T_{3}^{3}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}\right]$. Then

$$
\operatorname{sat}(n, F)= \begin{cases}7, & \text { if } n=3 \text { or } n \geq 6, \\ 10, & \text { if } n=4 \text { or } 5 .\end{cases}
$$

Proof. For the upper bound we define the following family of matrices.

$$
\begin{aligned}
& M_{4}= {\left[\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right] } \\
& M_{5}=\left[\begin{array}{llllllllll}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] \\
& M_{6}=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

For any $n \geq 7$ define the $(n \times 7)$-matrix M_{n} by $M_{n}([6])=,M_{6}$ and $M_{n}(i)=$, $\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$ for every $7 \leq i \leq n$. A computer search [10] showed that M_{n} is a minimum F-saturated matrix for $3 \leq n \leq 10$. This implies that each M_{n} with $n \geq 11$ is F-saturated. It remains to show that

$$
\operatorname{sat}(n, F) \geq 7
$$

for $n \geq 11$. In order to see this, we show the following result first.
Claim. If M is an F-saturated $n \times m$-matrix with $n \geq 11$ and $m \leq 6$ then M contains a row with all zero entries or with all one entries.

Proof of Claim. Suppose, on the contrary, that we have a counterexample M. We may assume that the first 6 entries of the first column of M are equal to 0 . Consider a matrix $A=M([6],\{2, \ldots, m\})$. Note that every column of A contains at most two entries equal to 1 , otherwise $M([6],) \supseteq F$. Hence, the number of 1 's in A is at most $2(m-1)$. By our assumption, each row of A has at least one 1. Since $2(m-1)<12, A$ has a row with precisely one 1 . We may assume that $A(1,1)=1$ and $A(1, i)=0$ for $2 \leq i \leq m-1$. Let C_{2} be the second column of M (remember that $\left.C_{2}(1)=A(1,1)=1\right)$.

Consider the n-column $C_{3}=\left[0, C_{2}(\{2, \ldots, n\})^{T}\right]^{T}$ which is obtained from C_{2} by changing the first entry to 0 . If it is not in M, then $F \subseteq\left[M, C_{3}\right]$. This copy of F has to contain the entry in which C_{3} differs from C_{2}. But the only non-zero entry in Row 1 is $M(1,2)$; thus $F \subseteq\left[C_{2}, C_{3}\right]$, which is an obvious contradiction. Thus we may assume that C_{3} is the third column of M.

We have to consider two cases. First, suppose that $C_{2}(\{2, \ldots, 6\})$ has at least one entry equal to 1 . Without loss of generality, assume that $C_{2}(2)=C_{3}(2)=1$.

It follows that $C_{2}(i)=C_{3}(i)=0$ for $3 \leq i \leq 6$ (otherwise the first and the second columns of M would contain F). Let

$$
\begin{equation*}
B=M(\{3,4,5,6\},\{4, \ldots, m\}) \tag{2}
\end{equation*}
$$

By our assumption, each row of B has at least one 1 ; in particular $m \geq 5$. Clearly, B contains at most $2(m-3)<8$ ones. Thus, by permuting Rows $3, \ldots, 6$ and Columns $4, \ldots, m$, we can assume that $B(1,1)=1$ while $B(1, i)=0$ for $2 \leq i \leq m-3$. Let C_{4} be the fourth column of M and C_{5} be such that C_{4} and C_{5} differ at the third position only, i.e., $C_{4}(3)=1$ and $C_{5}(3)=0$. As before, C_{5} must be in M, say it is the fifth column. Since $C_{4}(\{4,5,6\})$ has at most one 1, assume that $C_{4}(5)=C_{4}(6)=$ $C_{5}(5)=C_{5}(6)=0$. We need another column C_{6} with $C_{6}(5)=C_{6}(6)=1$ (otherwise the fifth or the sixth row of M would consist of all zero entries). In particular, $m=6$. But now the new column C_{7} which differs from C_{6} at the fifth position only (i.e. $C_{7}(5)=0$ and $C_{7}(i)=C_{6}(i)$ for $\left.i \neq 5\right)$ should be also in M, since M is F-saturated. This contradicts $e(M)=6$. Thus the first case does not hold.

In the second case, we have $C_{2}(i)=C_{3}(i)=0$ for every $2 \leq i \leq 6$. We may define B as in (2) and get a contradiction in the same way as above. This proves the claim.

Suppose, contrary to the theorem, that we can find an F-saturated matrix M with $n \geq 11$ rows and $m \leq 6$ columns. By the claim, M has a constant row; we may assume that the final row of M is all zero, and let $N=M([n-1]$, $)$. If C is an $(n-1)$-column missing from N, then the column $Q=\left(C^{T}, 0\right)^{T}$ is missing in M. Moreover, a copy of F in $[M, Q]$ cannot use the n-th row. Thus $F \subseteq[N, C]$, which means that $N \in \operatorname{SAT}(n-1, F)$ and $\operatorname{sat}(n-1, F) \leq m \leq 6$. Repeating this argument, we eventually conclude that $\operatorname{sat}(10, F) \leq 6$, a contradiction to the results of our computer search. The theorem is proved.
Theorem 4.11 Let $F=\left[T_{3}^{0}, T_{3}^{2}, T_{3}^{3}\right]=\left[\begin{array}{lllll}0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1\end{array}\right]$. Then

$$
\operatorname{sat}(n, F)= \begin{cases}7, & \text { if } n=3,6 \text { or } 7 \\ 9, & \text { if } n=4 \text { or } 5\end{cases}
$$

Moreover, for any $n \geq 8$, $\operatorname{sat}(n, F) \leq 7$.
Proof. We define the following matrices:

$$
\begin{aligned}
M_{4}= & {\left[\begin{array}{lllllllll}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right], } \\
M_{5}= & {\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right], } \\
M_{6} & =\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right],
\end{aligned}
$$

For any $n \geq 7$ let $M_{n}([6])=,M_{6}$ and $M_{n}(i)=,\left[\begin{array}{lllllll}0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$ for every $7 \leq i \leq n$ (i.e. the last row of M_{6} is repeated $(n-6)$ times). For $n=3, \ldots, 7$ the theorem (with M_{n} being a minimum F-saturated matrix) follows from a computer search [10]. It remains to show that $M_{n}, n \geq 8$, is F-saturated. Clearly, this is the case, since M_{7} is F-saturated and F contains no pair of equal rows.

Conjecture 4.12 Let $F=\left[T_{3}^{0}, T_{3}^{2}, T_{3}^{3}\right]$. Then $\operatorname{sat}(n, F)=7$ for every $n \geq 8$.

Theorem 4.13 Let $F=T_{3}^{\leq 2}=\left[\begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0\end{array}\right]$. Then

$$
\operatorname{sat}(n, F)= \begin{cases}7, & \text { if } n=3 \\ 10, & \text { if } 4 \leq n \leq 6\end{cases}
$$

Moreover, for any $n \geq 7$, $\operatorname{sat}(n, F) \leq 10$.
Proof. For $n=3, \ldots, 6$ the statement follows from a computer search [10] with the following F-saturated matrices.

$$
\begin{aligned}
& M_{4}=\left[\begin{array}{llllllllll}
0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right] \\
& M_{5}=\left[\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

For any $n \geq 6$ let $M_{n}([5])=,M_{5}$ and $M_{n}(i)=,\left[\begin{array}{llllllllll}1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1\end{array}\right]$ for every $6 \leq i \leq n$. It remains to show that $M_{n}, n \geq 7$, is F-saturated. Clearly, this is the case, since M_{6} is F-saturated and F contains no pair of equal rows.

Conjecture 4.14 Let $F=T_{3}^{\leq 2}$. Then $\operatorname{sat}(n, F)=10$ for every $n \geq 7$.
Theorem 4.15 Let $F_{1}=T_{3}^{2}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$, and $F_{2}=\left[T_{3}^{2}, T_{3}^{3}\right]=\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1\end{array}\right]$.
Then $\operatorname{sat}\left(n, F_{1}\right)=\operatorname{sat}\left(n, F_{2}\right)=3 n-2$ for any $3 \leq n \leq 6$. Moreover, for any $n \geq 7$, $\operatorname{sat}\left(n, F_{1}\right) \leq 3 n-2$ and $\operatorname{sat}\left(n, F_{2}\right) \leq 3 n-2$ as well.

Proof. Let $M_{n}=\left[T_{n}^{0}, T_{n}^{1}, T_{n}^{n}, \tilde{T}_{n}^{2}\right]$, where $\tilde{T}_{n}^{2} \subseteq T_{n}^{2}$ consists of all those columns of T_{n}^{2} which have precisely one entry equal to 1 either in the first or in the nth row (but not in both), e.g., for $n=5$ we obtain

$$
M_{5}=\left[\begin{array}{lllllllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Clearly, $e\left(M_{n}\right)=e\left(T_{n}^{0}\right)+e\left(T_{n}^{1}\right)+e\left(T_{n}^{n}\right)+e\left(\tilde{T}_{n}^{2}\right)=1+n+1+2 n-4=3 n-2$. Moreover, since \tilde{T}_{n}^{2} is F_{1}-admissible we get that M_{n} is both F_{1} and F_{2} admissible. Now we show that M_{n} is F_{1}-saturated. Indeed, pick any column $C=\left(c_{1}, \ldots, c_{n}\right)^{T}$ which is not present in M_{n}. Such a column must contain at least 2 ones and 1 zero. Let $1 \leq i, j, k \leq n$ be the indices such that $c_{i}=0, c_{j}=c_{k}=1$. If $i=1$ or $i=n$, then the matrix $\left[M_{n}, C\right](\{i, j, k\}$,$) contains F_{1}$. Otherwise, $c_{1}=c_{n}=1$, and there also exists $1<i<n$ such that $c_{i}=0$. Here $\left[M_{n}, C\right](\{1, i, n\}$,$) contains F_{1}$. Thus M_{n} is F_{1} saturated and, since it must contain T_{n}^{n} is a column, M_{n} is also F_{2}-saturated. We conclude that $\operatorname{sat}\left(n, F_{1}\right) \leq 3 n-2$ and $\operatorname{sat}\left(n, F_{2}\right) \leq 3 n-2$ for any $n \geq 3$. A computer search [10] yields that these inequalities are equalities when $n=3, \ldots, 6$.

Conjecture 4.16 Let $F_{1}=T_{3}^{2}$ and $F_{2}=\left[T_{3}^{2}, T_{3}^{3}\right]$. Then $\operatorname{sat}\left(n, F_{1}\right)=\operatorname{sat}\left(n, F_{2}\right)=$ $3 n-2$ for every $n \geq 7$.
Remark 4.17 It is not hard to see that $\operatorname{sat}\left(n, F_{1}\right) \geq n+c \sqrt{n}$ for some absolute constant c and all $n \geq 3$. Indeed, let M be an $n \times(n+2+\lambda) F_{1}$-saturated matrix of size $\operatorname{sat}\left(n, F_{1}\right)$ for some $\lambda=\lambda(n)$. We may assume that $M(,[n+2])=\left[T_{n}^{0}, T_{n}^{1}, T_{n}^{n}\right]$. Suppose that $\lambda \leq n$ for otherwise we are done. Moreover, we assume that every column of matrix $M([\lambda],\{n+3, \ldots, n+2+\lambda\})$ contains at least one entry equal to 1 (trivially, there must be a permutation of the rows of M satisfying this requirement). We claim that all rows of $M(\{\lambda+1, \ldots, n\},\{n+3, \ldots, n+2+\lambda\})$ are different. Suppose not. Then, there are indices $\lambda+1 \leq i, j \leq n$ such that $M(i,\{n+3, \ldots, n+2+\lambda\})=$ $M(j,\{n+3, \ldots, n+2+\lambda\})$. Now consider a column C in which the only nonzero entries correspond to i and j. Clearly, C is not present in M, since the first λ entries of C equal 0 . Moreover, since M is F_{1}-saturated, the matrix $[M, C]$ contains F_{1}. In other words, there are three rows in M which form F_{1} as a submatrix. Note that the i th and j th row must be among them. But this is not possible since F_{1} has no pair of equal rows.

Let $M_{0}=M(\{\lambda+1, \ldots, n\},\{n+3, \ldots, n+2+\lambda\})^{T}$. Clearly, M_{0} is F_{1}-admissible. Anstee and Sali showed (see Theorem 1.3 in [4]) that forb $\left(\lambda, F_{1}\right)=O\left(\lambda^{2}\right)$. That means that $n-\lambda=O\left(\lambda^{2}\right)$, and consequently, $\lambda=\Omega(\sqrt{n})$. Hence, sat $\left(n, F_{1}\right)=$ $e(M) \geq n+\Omega(\sqrt{n})$, as required.

Acknowledgements

We are grateful to the referees for their careful reading and insightful comments.

References

[1] R. Anstee, A survey of forbidden configuration results, Manuscript, 2010.
[2] R. P. Anstee, Forbidden configurations: Induction and linear algebra, Europ. J. Combin. 16 (1995), 427-438.
[3] R. P. Anstee, J. R. Griggs, and A. Sali, Small forbidden configurations, Graphs Combin. 13 (1997), 97-118.
[4] R. P. Anstee and A. Sali, Small forbidden configurations IV: The 3 rowed case, Combinatorica 25 (2005), no. 5, 503-518.
[5] R.P. Anstee and Z. Füredi, Forbidden submatrices, Discrete Math. 62 (1986), 225-243.
[6] B. Bollobás, Combinatorics, Set Systems, Families of Vectors, and Combinatorial Probability, Cambridge Univ. Press, 1986.
[7] J. A. Bondy, Induced subsets, J. Combin. Theory (B) 12 (1972), 201-202.
[8] R. C. Bose, A note on Fisher's inequality for balanced incomplete block designs, Ann. Math. Statist. 20 (1949), 619-620.
[9] C. J. Colbourn and J. H. Dinitz (eds.), Handbook of combinatorial designs, second ed., Discrete Mathematics and its Applications (Boca Raton), Chapman \& Hall/CRC, Boca Raton, FL, 2007.
[10] A. Dudek, O. Pikhurko, and A. Thomason, On minimum saturated matrices, E-print arxiv.org:0909.1970, 2009.
[11] P. Erdős, A. Hajnal, and J. W. Moon, A problem in graph theory, Amer. Math. Monthly 71 (1964), 1107-1110.
[12] J. Faudree, R. Faudree, and J. Schmitt, A survey of minimum saturated graphs and hypergraphs, Electronic J. Combin. DS19 (2011), 36pp.
[13] R. A. Fisher, An examination of the possible different solutions of a problem in incomplete blocks, Ann. Eugenics (London) 10 (1940), 52-75.
[14] P. Frankl, Z. Füredi, and J. Pach, Bounding one-way differences, Graphs Combin. 3 (1987), 341-347.
[15] Z. Füredi, Turán type problems, Surveys in Combinatorics, London Math. Soc. Lecture Notes Ser., vol. 166, Cambridge Univ. Press, 1991, pp. 253-300.
[16] S. Jukna, Extremal combinatorics with applications to computer science, Springer Verlag, 2001.
[17] P. Keevash, Hypergraph Turán problem, Surveys in Combinatorics (R. Chapman, ed.), Cambridge Univ. Press, 2011, pp. 83-140.
[18] O. Pikhurko, The minimum size of saturated hypergraphs, Combin. Prob. Computing 8 (1999), 483-492.
[19] N. Sauer, On the density of families of sets, J. Combin. Theory (A) 13 (1973), 145-147.
[20] S. Shelah, A combinatorial problem: Stability and order for models and theories in infinitary languages, Pac. J. Math 4 (1972), 247-261.
[21] A. Sidorenko, What we know and what we do not know about Turán numbers, Graphs Combin. 11 (1995), 179-199.
[22] V. N. Vapnik and A. Chervonenkis, The uniform convergence of frequences of the appearance of events to their probabilities (in Russian), Teor. Veroyatn. Primen. 16 (1971), 264-279.

[^0]: *Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008, USA
 ${ }^{\dagger}$ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
 ${ }^{\ddagger}$ Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
 ${ }^{\S}$ Partially supported by the National Science Foundation, Grants DMS-0758057 and DMS1100215.
 ${ }^{\text {® }}$ Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, CB3 0WB, UK

