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I want to report on joint work in progress with Nuno Arala Santos.

In these slides, n denotes a natural number.

This talk presents yet another construction of polynomials with Galois
group the alternating group An.

Even more specifically, just the even alternating groups A2n.

(And the odd symmetric groups, by accident.)
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It’s the journey, not the destination. . .

Set Kn = Q
(√

(−1)n−1(2n− 1)
)

— an extension of Q of degree ≤ 2.

Theorem

The Galois group of the polynomial

x2n + nx2n−1 + t
(
nx+ (n− 1)2

)
coincides with A2n, for most values of t ∈ Kn.

The polynomials depend linearly on t;

any number field containing Kn works just as well;

most is intended in analytic number theory sense;

for n ∈ {1, 5, 13, 25, . . . , 2k(k + 1) + 1, . . .}, we can choose t ∈ Q ;

the field Kn arises from a simple discriminant computation.
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Motivation from enumerative Galois theory

Let n,H ∈ N be natural numbers and let G ⊂ Sn be a subgroup.

Denote by FG(H) the number of monic, integer polynomials of degree n
with coefficients bounded by H and Galois group conjugate to G:

FG(H) = #

{
f = xn + a1x

n−1 + · · ·+ an

∣∣∣∣∣ ∀i ∈ {1, . . . , n}, |ai| ≤ HGal(f) ∼ G

}
.

The estimate FSn(H) = Hn + o(Hn) is a result of Hilbert.

The error term o(Hn) involves contributions of polynomials whose
Galois group is not Sn.
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n = 2, H = 20, (a, b)↔ f(x) = x2 + ax+ b
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◦ Galois group S2

contributes to FS2

• Galois group A2

contributes to FA2
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FG(H) = #

{
f = xn + a1x

n−1 + · · ·+ an

∣∣∣∣∣ ∀i ∈ {1, . . . , n}, |ai| ≤ HGal(f) ∼ G

}

The estimate FSn(H) = H n + o(Hn) is a result of Hilbert.

The exponent n comes from a linear family of dimension n.
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FG(H) = #

{
f = xn + a1x

n−1 + · · ·+ an

∣∣∣∣∣ ∀i ∈ {1, . . . , n}, |ai| ≤ HGal(f) ∼ G

}

Today, I focus on linear families of polynomials with Galois group An.

In fact, on lines of polynomials with Galois group An (and even n).

Definition

A line of polynomials is a family of polynomials of the form
f(x) + tg(x), where f, g ∈ Q[x] and t is a parameter.

Expectation:
Use special lines of polynomials to prove lower bounds for FAn(H).
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Lines of polynomials and Galois groups

Nuno was able to follow this circle of ideas to find lines of polynomials
with Galois group An, for odd n.

More generally, this raises the following question.

Let G ⊂ Sn be a subgroup.

Question

Can the generic Galois group of a line of polynomials be conjugate
to G?
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Goal

Find polynomials f(x), g(x) of degree ≤ n such that for “most” values
t ∈ Q, the Galois group of the polynomial f(x) + tg(x) is An.

n = 2 Good Bad Good, but misleading?

f x2 + x x2 x2

g x+ 1 −1 x

f + tg x2 + (t+ 1)x+ t x2 − t2 x2 + tx
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From lines of polynomials to morphisms P1 −→ P1

Goal

Find polynomials f(x), g(x) of degree ≤ n such that for “most” values
t ∈ Q, the Galois group of the polynomial f(x) + tg(x) is An.

Step 1. View f(x), g(x) as defining an inclusion

ι : Q(t) −→ Q(x)

t 7−→ f(x)

g(x)
.

Step 2. Ensure that the Galois group of the extension ι is An.

Step 3. Hilbert’s Irreducibility Theorem takes care of the “most”.
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From lines of polynomials to morphisms P1 −→ P1

Goal

Find polynomials f(x), g(x) of degree ≤ n such that for “most” values
t ∈ Q, the Galois group of the polynomial f(x) + tg(x) is An.

Step 1. View f(x), g(x) as defining

Algebra Geometry

an inclusion a morphism

ι : Q(t) −→ Q(x)

t 7−→ f(x)

g(x)
.

F : P1 −→ P1

[x, 1] 7−→ [f(x), g(x)]

of degree n.

Step 2. Ensure that the Galois group of the extension ι is An.

Step 3. Hilbert’s Irreducibility Theorem takes care of the “most”.
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Snapshots of polynomials

Aside

How to think of a line of polynomials f(x) + tg(x) very informally .

View f(x) + tg(x) as a movie.

Each value of t is a frame: a polynomial in x for a fixed value of t.

Each frame, is a snapshot of our characters: the roots of the polynomial.

The movie tracks the characters throughout all the snapshots.

Most snapshots are boring: these are the values of t for which the
polynomial f(x) + tg(x) has distinct roots.

We like snapshots with interactions, i.e., where roots come together.

Our aim: reconstruct a whole movie, from a few key scenes.
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The Galois group1 of a morphism F : P1 −→ P1

Each fiber consists of n points counted with multiplicity.

When F ([x, 1]) = [f(x), g(x)], the fiber over [t, 1] consists of the roots
of the equation f(x)− tg(x) = 0.

If one fiber is defined by
∏s

i=1(x− αi)
ri = 0, with distinct α1, . . . , αs,

then Gal(F ) contains a permutation with cycle structure (r1, . . . , rs).

1Properly, they are monodromy groups
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If one fiber is defined by
∏s

i=1(x− αi)
ri = 0, with distinct α1, . . . , αs,

then Gal(F ) contains a permutation with cycle structure (r1, . . . , rs).

The group Gal(F ) is generated by the permutations described above,
as you range over all possible fibers.
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From a morphism F : P1 −→ P1 to lists of permutations

Except for finitely many points, every multiplicity is equal to 1: sadly,
most scenes are boring.

From F : P1 −→ P1 we extract finitely many non-identity permutations
σ1, . . . , σh, such that

the cycle structure of σ1, . . . , σh is determined by the multiplicities;

Gal(F ) is generated by σ1, . . . , σh.

The conditions above are highly redundant.

For most choices of σ1, . . . , σh ∈ Sn, there does not exist a morphism
F : P1 → P1 with σ1, . . . , σh as associated (non-identity) permutations.
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An identity in Sn

Nevertheless, we can realize a very specific choice of permutations.

Two (n− 1)-cycles whose product is a 3-cycle

Set σ1 = (1, 2, 3, . . . , n− 2, n− 1) and σ2 = (n, n− 1, . . . , 4, 3, 2), so that

σ1 ◦ σ2 = (1, 2, n) = σ−13

We are going to find a line of polynomials with 3 “interesting frames”:

two frames giving the (n− 1)-cycles σ1, σ2 and

one frame giving the 3-cycle σ3.
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The group generated by σ1, σ2, σ3

σ1 = (1, 2, 3, . . . , n− 2, n− 1)

σ2 = (n, n− 1, . . . , 4, 3, 2)

σ3 = (1, n, 2)

First, we determine the subgroup of Sn that σ1, σ2 (and σ3) generate.

Theorem (Jordan)

A transitive subgroup of Sn containing an (n− 1)-cycle and a 3-cycle
contains An.

Hence, σ1 and σ2 generate

 Sn, if n is odd;

An, if n is even.
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Theorem (Jordan)

A transitive subgroup of Sn containing an (n− 1)-cycle and a

3-cycle contains An.

Let F : P1 → P1 be a morphism and p1, p2, p3 ∈ P1 be points such that

1 for all p ∈ P1 \ {p1, p2, p3}, the fiber F−1(p) has n distinct fibers
(the only interesting frames are p1, p2.p3);

2 the fibers over the points p1, p2 both contribute an (n− 1)-cycle
(each has one point of multiplicity exactly n− 1);

3 the fiber over the point p3 contributes a 3-cycle
(one point of multiplicity 3, all remaining ones of multiplicity 1).

The group Gal(F ) is generated by two (n− 1)-cycles and a 3-cycle .

The irreducibility of P1 implies that Gal(F ) is transitive .

Jordan’s Theorem implies that Gal(F ) contains An.

Damiano Testa (Warwick) Lines of A2n GANTSeminar 17 / 33



Want: a morphism F : P1 −→ P1 and 3 points p1, p2, p3 ∈ P1 with

1 for all p ∈ P1 \ {p1, p2, p3}, the fiber F−1(p) has n distinct fibers;

2 the fibers over the points p1, p2 have multiplicities (n− 1, 1);

3 the fiber over the point p3 has multiplicities (3, 1, 1, . . . , 1).

The conditions above involve points p1, p2, p3 on the target P1 .

Each point p1, p2, p3 in the target P1 determines a unique point

q1, q2, q3 in the source P1 :

q1 is the point of P1 of multiplicity n− 1 in F−1(p1);

q2 is the point of P1 of multiplicity n− 1 in F−1(p2);

q3 is the point of P1 of multiplicity 3 in F−1(p3).

These last three conditions suffice (use the Riemann-Hurwitz formula).
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q1 is the point of P1 of multiplicity n− 1 in F−1(p1);

q2 is the point of P1 of multiplicity n− 1 in F−1(p2);

q3 is the point of P1 of multiplicity 3 in F−1(p3).

These last three conditions suffice (use the Riemann-Hurwitz formula).
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Summing up

Let F : P1 −→ P1 be a morphism.

Suppose that q1, q2, q3 are distinct points of P1 with

1 q1 is a point of P1 of multiplicity n− 1 in its fiber;

2 q2 is a point of P1 of multiplicity n− 1 in its fiber;

3 q3 is a point of P1 of multiplicity at least 3 in its fiber.

Then, Gal(F ) contains An.

Moreover, Gal(F ) coincides with An if and only if n is even.

Small print: we must (and will) be careful about the ground field.

We also need to impose linearity .
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Snapshots of a morphism

We look for a morphism with three fibers of the form

(x− a1)n−1(x− b1) — a point of multiplicity n− 1 (a1 6= b1);

(x− a2)n−1(x− b2) — another point of multiplicity n− 1 (a2 6= b2);

(x− a3)3h(x) — a point of multiplicity 3 (deg h(x) = n− 3).

Linearity : the three polynomials above should be linearly dependent .

Further non-degeneracy: we want a1, a2, a3 to be distinct.

We now choose convenient coordinates, via a small geometric detour.
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The space of polynomials of degree n

Let k be a field. Let Pn be the set of polynomials of degree n over k.

For i ∈ N, let X(i) ⊂ Pn be the set of polynomials with a root of
multiplicity at least i:

X(i) =
{

(x− a)ih(x) | a ∈ k, h(x) ∈ k[x]
}
.

Our players:

X(n−1) =
{

polynomials with a root of multiplicity n− 1
}

X(3) =
{

polynomials with a root of multiplicity 3
}
.
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Geometric picture

Besides the repeated roots loci X(n−1) and X(3), we want a line
meeting X(n−1) twice and X(3) once.

We are after a secant line to X(n−1) that also meets X(3).
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Parametrizing the line of polynomials

We can choose two coordinates:

the coordinate x of the polynomial;

the coordinate t along the line of polynomials.

Each coordinate has 3 parameters, since it is a coordinate on P1.
For a little flexibility, we only fix 5 parameters.

Damiano Testa (Warwick) Lines of A2n GANTSeminar 23 / 33



We parametrize the line of polynomials with parameter t so that

the two intersection points with X(n−1) are t = 0 and t =∞;

the intersection point with X(3) is a flexible t = t0.

We parametrize the polynomials with the variable x so that

the polynomial for t = 0 has x = 0 as multiple root;

the polynomial for t =∞ has x =∞ as multiple root;

the polynomial for t = t0 has x = 1 as multiple root.
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With these choices, the candidate polynomial is

ft(x) = xn−1(x− b1)− t(x− b2).

For t = 0, the polynomial xn−1(x− b1) has an (n− 1)st root at 0;

For t =∞, the polynomial x− b2 has an (n− 1)st root at ∞.

For t = t0, we obtain the polynomial

ft0(x) = xn−1(x− b1)− t0(x− b2)

and we impose a triple root at x = 1.
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Fixing xn−1(x− b1)− t(x− b2)

For t = t0, we obtain the polynomial

xn−1(x− b1)− t0(x− b2)

and we impose a triple root at x = 1.

ft0(x) = xn−1(x− b1)− t0(x− b2)

f ′t0(x) = (n− 1)xn−2(x− b1) + xn−1 − t0

f ′′t0(x) = (n− 1)
(
(n− 2)xn−3(x− b1) + xn−2

)
0 = ft0(1) = (1− b1)− t0(1− b2)

0 = f ′t0(1) = (n− 1)(1− b1) + 1− t0

0 = f ′′t0(1) = (n− 1) ((n− 2)(1− b1) + 1)

 =⇒


b1 = n

n−2

t0 = − n
n−2

b2 = n−2
n
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Set rn =
n

n− 2
.

We found a morphism Fn : P1 −→ P1 given by

Fn : P1 −→ P1

[x, y] 7−→
[
xn−1(x− rny), (x− r−1n y)yn−1

]
.

The rational function associated to the morphism Fn is

xn−1
x− rn
x− r−1n

.

The line of polynomials associated to the morphism Fn is

xn − rnxn−1 − tx+ tr−1n .

Theorem

The Galois group associated to the line of polynomials

xn − rnxn−1 − tx+ tr−1n

contains An. It coincides with An if n is even.
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Caring for the ground field

Theorem

The Galois group associated to the line of polynomials

xn − rnxn−1 − tx+ tr−1n

contains An. It coincides with An if n is even.

So far, we have disregarded issues about the ground field.

The result above computes the Galois group of the field extension

k(t) ⊂ k(x)

t 7→ xn−1
x− rn
x− r−1n

when k is algebraically closed and char k - n(n− 1)(n− 2).
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Discriminants

Recall that the Galois group of a square-free polynomial of degree n is
contained in An if and only if its discriminant is a square.

Theorem

The Galois group associated to the line of polynomials

an,t(x) = x2n + nx2n−1 + t
(
nx+ (n− 1)2

)
coincides with A2n.

The discriminant ∆n(t) = disc an,t(x)
of an,t(x) is a polynomial in t and is a square in Q(t).

∆n(t) divided by its leading coefficient, is a square in Q[t].

Hence, there is no need to go all the way to Q: adding a square root of
the leading coefficient of ∆n(t) is enough.
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Back to our first slide

Set Kn = Q
(√

(−1)n−1(2n− 1)
)

— an extension of Q of degree ≤ 2.

Theorem

The Galois group of the polynomial

x2n + nx2n−1 + t
(
nx+ (n− 1)2

)
coincides with A2n, for most values of t ∈ Kn.

The discriminant of the polynomial in the theorem is

(−1)n−1n2n(2n− 1)2n−1t2n−2
(
t+ (n− 1)2n−2

)2
=

(−1)n−1(2n− 1)
(
nn(2n− 1)n−1tn−1

(
t+ (n− 1)2n−2

))2
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Summary

We searched for families of polynomials with generic Galois group An.

We found the linear families

an,t(x) = x2n + nx2n−1 + t
(
nx+ (n− 1)2

)
over an at most quadratic extension of Q.

However, the methods used are fairly flexible.
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Future directions

Do lines of A2n exist over Q, not over a quadratic extension?
For what subgroups of Sn do lines of polynomials exist?

We would like to quantify rates of growth of numbers of polynomials
with given Galois groups and coefficients of bounded size.

High dimensional linear families of polynomials with a given generic
Galois group provide potentially interesting lower bounds.

This feeds into enumerative Galois theory.

The methods that we use go via classical projective geometry of
coincident root loci.

Employ more tools from algebraic geometry to address questions
motivated by analytic number theory.
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Thank you!!

Questions?
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