$\overline{M}_{0,134}$ is not a Mori Dream Space

Damiano Testa

$\overline{M}_{0,n}$ seminar, November 22nd, 2021

This talk is an exposition of the main steps in the paper $\overline{M}_{0,n} \text{ is not a Mori Dream Space}$

by Ana-Maria Castravet and Jenia Tevelev.

- Definition of Mori Dream Spaces.
- 2 Examples and non-examples.
- Solution Blow-up presentation of the Losev-Manin spaces \overline{LM}_n .
 Blow-up presentation of the spaces $\overline{M}_{0,n}$.
- (Goto, Nishida, Watanabe) The blow-up of P(25, 72, 29) at the point [1, 1, 1] is not a Mori Dream Space.
- Putting it all together.

In many of the previous talks in this seminar, the modular interpretation of the spaces of stable curves of genus 0 and n-marked points played a fundamental role.

We also saw how to extend/weaken the conditions to obtain the *Hassett spaces* with their modified modular interpretation.

This allowed us to view the *Losev-Manin spaces* as different, but related, compactifications of $\overline{M}_{0,n}$.

In this talk, the modular interpretation plays a virtually inexistent role.

We work directly with presentations of $\overline{M}_{0,n}$ and of the Losev-Manin spaces \overline{LM}_n as blow-ups of projective spaces.

A normal projective variety X is called a Mori Dream Space (MDS) if the following conditions hold:

- X is \mathbb{Q} -factorial and $\operatorname{Pic}(X)_{\mathbb{Q}} \simeq \operatorname{N}^1(X)_{\mathbb{Q}};$
- **2** $\operatorname{Nef}(X)$ is generated by finitely many semiample line bundles;
- **③** there is a finite collection of small Q-factorial modifications $\{f_i \colon X \dashrightarrow X_i\}_{i \in \{1, \dots, r\}} \text{ such that }$
 - for each $i \in \{1, \ldots, r\}$, X_i satisfies (1) and (2), and
 - Mov(X) coincides with the union $\bigcup_i f_i^* \operatorname{Nef}(X_i)$.

The actual definition will not play a big role in this talk.

A normal projective variety X is called a Mori Dream Space (MDS) if the following conditions hold:

- X is \mathbb{Q} -factorial and $\operatorname{Pic}(X)_{\mathbb{Q}} \simeq \operatorname{N}^{1}(X)_{\mathbb{Q}};$
- \bigcirc Nef(X) is generated by finitely many semiample line bundles;
- **③** there is a finite collection of small Q-factorial modifications { f_i : X → X_i}_{i \in {1,...,r}} such that
 - for each $i \in \{1, \ldots, r\}$, X_i satisfies (1) and (2), and
 - Mov(X) coincides with the union $\bigcup_i f_i^* \operatorname{Nef}(X_i)$.

The actual definition will not play a big role in this talk.

Mori Dream Spaces are finitely generated in some sense.

Mori Dream Spaces (MDS)

A normal projective variety X is called a Mori Dream Space (MDS) if the following conditions hold:

- X is \mathbb{Q} -factorial and $\operatorname{Pic}(X)_{\mathbb{Q}} \simeq \operatorname{N}^{1}(X)_{\mathbb{Q}}$;
- \bigcirc Nef(X) is generated by finitely many semiample line bundles;
- ③ there is a finite collection of small Q-factorial modifications $\{f_i \colon X \dashrightarrow X_i\}_{i \in \{1, \dots, r\}} \text{ such that}$
 - for each $i \in \{1, \ldots, r\}$, X_i satisfies (1) and (2), and
 - Mov(X) coincides with the union $\bigcup_i f_i^* \operatorname{Nef}(X_i)$.

The actual definition will not play a big role in this talk.

Mori Dream Spaces are finitely generated in some sense.

Small Q-factorial modifications crop up sometimes. If you do not know what they are, think about birational models with the same divisors.

Damiano Testa

 $M_{0,134}$ is not a Mori Dream Space

Properties of Mori Dream Spaces

Let X, Y be smooth¹ projective varieties.

• The image of a MDS is a MDS:

if $X \longrightarrow Y$ is a dominant morphism, then

 $X \text{ is a MDS} \implies Y \text{ is a MDS.}$

• Small Q-factorial modifications preserve MDSs:

if X is a small \mathbb{Q} -factorial modification of Y, then

 $X \text{ is a MDS} \iff Y \text{ is a MDS.}$

For this talk, the second property is only useful if you know what it means.

¹normal and \mathbb{Q} -factorial is enough.

A toric variety is a Mori Dream Space.

Thus, (weighted) projective spaces \mathbb{P}^n (or $\mathbb{P}(a_0, a_1, \ldots, a_n)$), products of such (weighted) projective spaces, are all MDS.

Losev-Manin spaces \overline{LM}_n are toric varieties and hence are MDS. Blow ups have a tendency of messing up Mori Dream Spaces. For $n \ge 5$, the space $\overline{M}_{0,n}$ is not a toric variety. From now on, we concentrate on $\overline{M}_{0,n}$, \overline{LM}_n and $\mathbb{P}(a, b, c)$. Let $e_1, \ldots, e_{n-2} \in \mathbb{P}^{n-3}$ be the n-2 coordinate points

$$e_1 = [1, 0, 0, \dots, 0, 0],$$

$$e_2 = [0, 1, 0, \dots, 0, 0],$$

$$\vdots$$

$$e_{n-2} = [0, 0, 0, \dots, 0, 1],$$

and let $\mathbf{e} \in \mathbb{P}^{n-3}$ be the point

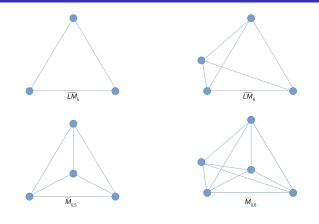
$$e = [1, 1, \dots, 1].$$

Losev-Manin spaces and $\overline{M}_{0,n}$ – Blow ups

Start with \mathbb{P}^{n-3} .

Losev-Manin \overline{LM}_n	$\overline{M}_{0,n}$
• Blow up the points e_1, \ldots, e_{n-2} .	• \dots and e.
• Blow up the strict transforms of the lines through the points e_1, \ldots, e_{n-2} .	• and e.
• Blow up the strict transforms of the planes connecting all triples of points e_1, \ldots, e_{n-2} .	• and e.
÷	÷
 Blow up the strict transforms of the (n-4)-planes connecting all (n-3)-tuples of points e₁,, e_{n-2}. 	• and e.

Losev-Manin spaces and $\overline{M}_{0,n}$ – Blow ups

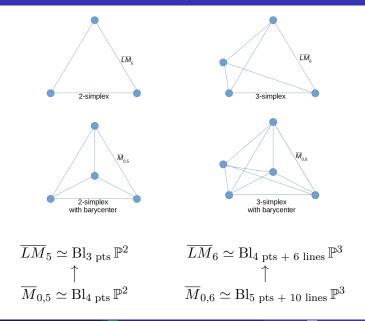


 $\overline{LM}_5 \simeq \operatorname{Bl}_{3 \text{ pts}} \mathbb{P}^2 \qquad \overline{LM}_6 \simeq \operatorname{Bl}_{4 \text{ pts} + 6 \text{ lines}} \mathbb{P}^3$

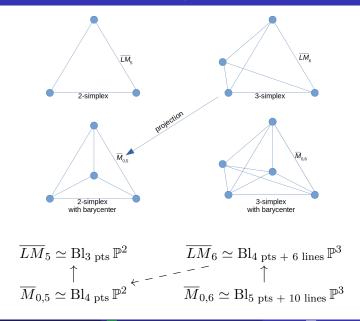
 $\overline{M}_{0,5} \simeq \operatorname{Bl}_{4 \text{ pts}} \mathbb{P}^2 \qquad \qquad \overline{M}_{0,6} \simeq \operatorname{Bl}_{5 \text{ pts} + 10 \text{ lines}} \mathbb{P}^3$

 $M_{0,134}$ is not a Mori Dream Space

Losev-Manin spaces and $\overline{M}_{0,n}$ – Simplices



Losev-Manin spaces and $\overline{M}_{0,n}$ – Projections



Denote by $\mathbf{e} = [1, 1, \dots, 1]$ the barycenter of the standard simplex.

$$\overline{LM}_{n+1} \dashrightarrow \overline{M}_{0,n} \longrightarrow \operatorname{Bl}_{\mathbf{e}} \overline{LM}_n$$

$$\widetilde{LM}_{n+1} \longrightarrow \overline{M}_{0,n} \longrightarrow \operatorname{Bl}_{\mathbf{e}} \overline{LM}_n$$

where \widetilde{LM}_{n+1} is² Bl_e \overline{LM}_{n+1} .

 $^2\mathbf{a}$ small Q-factorial projective modification of

The sequence

$$\widetilde{LM}_{n+1} \longrightarrow \overline{M}_{0,n} \longrightarrow \operatorname{Bl}_{\mathbf{e}} \overline{LM}_n$$

gives the implications:

- if $\overline{M}_{0,n}$ is a MDS, then $\operatorname{Bl}_{\mathbf{e}} \overline{LM}_n$ is a MDS;
- if $\operatorname{Bl}_{\mathbf{e}} \overline{LM}_{n+1}$ is a MDS, then $\overline{M}_{0,n}$ is a MDS.

Recall that \widetilde{LM}_{n+1} is³ Bl_e \overline{LM}_{n+1} .

 $^{^3 \}mathrm{a}$ small Q-factorial projective modification of

Let X be a toric variety and let $\mathbf{e} \in X$ be a point contained in the open torus orbit. Denote by $\operatorname{Bl}_{\mathbf{e}} X$ the blow-up of X at the point \mathbf{e} .

Question

When is $\operatorname{Bl}_{\mathbf{e}} X$ a Mori Dream Space?

Imprecisely, "When is the blow-up of a toric variety a MDS?"

Remark

It does not matter which point \mathbf{e} in the open orbit we choose.

(Why?)

15/25

Let X be a toric variety and let $\mathbf{e} \in X$ be a point contained in the open torus orbit. Denote by $\operatorname{Bl}_{\mathbf{e}} X$ the blow-up of X at the point \mathbf{e} .

Question

When is $Bl_{\mathbf{e}} X$ a Mori Dream Space?

Example (Goto, Nishida, Watanabe)

Over a field of characteristic zero, the surface $\mathrm{Bl}_{\mathbf{e}}\,\mathbb{P}(25,72,29)$ is not a MDS.

If there is time, ask me about this result.

The summary so far

• For every $n \ge 3$ there are morphisms

$$\widetilde{LM}_{n+1} \longrightarrow \overline{M}_{0,n} \longrightarrow \operatorname{Bl}_{\mathbf{e}} \overline{LM}_n.$$

• The surface $\operatorname{Bl}_{\mathbf{e}} \mathbb{P}(25, 72, 29)$ is not a MDS.

Wanted A morphism: $\operatorname{Bl}_{\mathbf{e}} \overline{LM}_{134} \longrightarrow \operatorname{Bl}_{\mathbf{e}} \mathbb{P}(25, 72, 29).$

With this, we conclude that $\overline{M}_{0,134}$ is not a MDS.

Using the small Q-factorial stuff, this also proves that, for $n \ge 134$, the space $\overline{M}_{0,n}$ is not a MDS.

To construct the missing morphism

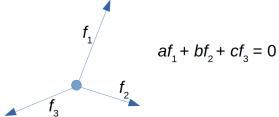
$\operatorname{Bl}_{\mathbf{e}} \overline{LM}_{134} \to \operatorname{Bl}_{\mathbf{e}} \mathbb{P}(25, 72, 29)$

we first compare the toric data of $\mathbb{P}(a, b, c)$ and of \overline{LM}_n , for general choices of a, b, c and n.

Toric data for $\mathbb{P}(a, b, c)$

Let $a, b, c \in \mathbb{N}$ be pairwise coprime. Let $f_1, f_2, f_3 \in \mathbb{R}^2$ be three vectors spanning \mathbb{R}^2 and satisfying

 $af_1 + bf_2 + cf_3 = 0.$



The vectors f_1, f_2, f_3 span the extremal rays of the fan associated to the toric variety $\mathbb{P}(a, b, c)$.

Let $e_1, ..., e_{n-3}$ be a basis of \mathbb{R}^{n-3} and set $e_{n-2} = -(e_1 + \cdots + e_{n-3})$.

Let $N \subset \mathbb{R}^{n-3}$ be the lattice spanned by the vectors e_1, \ldots, e_{n-2} .

The extremal rays of the fan associated to \overline{LM}_n are the rays spanned by the primitive vectors

$$\sum_{i \in I} e_i, \quad \text{for all subsets } I \subset \{1, \dots, n-2\} \text{ with } 1 \le |I| \le n-3.$$

The higher dimensional cones of the fan correspond to higher codimensional torus-stable subvarieties of \overline{LM}_n : we need not worry about them, due to the small \mathbb{Q} -factorial stuff.

Map

Given $a, b, c \in \mathbb{N}$, set

$$n = (a + 2) + (b + 2) + (c + 2) + 2 = a + b + c + 8.$$

Toric variety	$\mathbb{P}(a,b,c)$
Lattice	\mathbb{Z} -span $\{f_1, f_2, f_3\} / (af_1 + bf_2 + cf_3) \simeq \mathbb{Z}^2$
Rays	f_1, f_2, f_3

Toric variety	\overline{LM}_n
Lattice	\mathbb{Z} -span $\{e_1, \dots, e_{n-2}\}/(e_1 + \dots + e_{n-2}) \simeq \mathbb{Z}^{n-3}$
Rays	all non-zero sums of the vectors e_1, \ldots, e_{n-2}

Given $a, b, c \in \mathbb{N}$, set n - 2 = (a + 2) + (b + 2) + (c + 2).

Partition $S = \{e_1, \ldots, e_{n-2}\} = S_1 \sqcup S_2 \sqcup S_3$ in three parts, with

$$|S_1| = a + 2$$
 $|S_2| = b + 2$ $|S_3| = c + 2.$

Fix

$$e_{n_1} \in S_1, \qquad e_{n_2} \in S_2, \qquad e_{n_3} \in S_3.$$

Define a linear map \mathbb{Z} -span $S \longrightarrow \mathbb{Z}$ -span $\{f_1, f_2, f_3\}$ by assigning to each vector $e \in S$

$$e \longmapsto \begin{cases} f_i, & \text{if } e \in S_i, \ e \neq e_{n_i}, \\ -f_i, & \text{if } e = e_{n_i}, \end{cases}$$

and extending linearly. The kernel of such map is generated by

$$\Big\{ e + e_{n_i} \mid i \in \{1, 2, 3\} \text{ and } e \in S_i \setminus \{e_{n_i}\} \Big\}.$$

The relation $\sum_{e \in S} e = \sum_{i=1}^{3} \sum_{e \in S_{n_i}} e \longmapsto af_1 + bf_2 + cf_3$ holds.

We obtain a homomorphism of lattices

lattice of
$$\overline{LM}_n \longrightarrow$$
 lattice of $\mathbb{P}(a, b, c)$

where

lattice of
$$\overline{LM}_n = \mathbb{Z}$$
-span $\{e_1, \dots, e_{n-2}\}/(e_1 + \dots + e_{n-2})$
lattice of $\mathbb{P}(a, b, c) = \mathbb{Z}$ -span $\{f_1, f_2, f_3\}/(af_1 + bf_2 + cf_3)$.

This induces a rational maps

 $\overline{LM}_n\dashrightarrow \mathbb{P}(a,b,c) \qquad \text{and} \qquad \mathrm{Bl}_{\mathbf{e}}\,\overline{LM}_n\dashrightarrow \mathrm{Bl}_{\mathbf{e}}\,\mathbb{P}(a,b,c).$

Using some slightly involved lattice-theoretic reasoning, this is enough to prove the implication

 $\operatorname{Bl}_{\mathbf{e}} \mathbb{P}(a, b, c)$ is not a MDS $\Longrightarrow \operatorname{Bl}_{\mathbf{e}} \overline{LM}_n$ is not a MDS.

Summarizing, there are maps

 $\overline{M}_{0,n} \longrightarrow \operatorname{Bl}_{\mathbf{e}} \overline{LM}_n \quad \text{and} \quad \operatorname{Bl}_{\mathbf{e}} \overline{LM}_n \dashrightarrow \operatorname{Bl}_{\mathbf{e}} \mathbb{P}(a,b,c),$ where n = a + b + c + 8.

The blow-up $\operatorname{Bl}_{\mathbf{e}} \mathbb{P}(25, 72, 29)$ is not a Mori Dream Space.

Since 25 + 72 + 29 + 8 = 134, neither Bl_e \overline{LM}_{134} is a Mori Dream Space.

Finally, $\overline{M}_{0,134}$ is not a Mori Dream Space.

Thank you!!

Questions?

Damiano Testa

 $M_{0,134}$ is not a Mori Dream Space

