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About myself

For those who do not know me, I consider myself an algebraic
geometer, with a strong interest in number theory.

My computer experience prior to this summer was
@ browsing the internet,
e typing in KTEX,
e using the computational algebra system called MAGMA.

However, I know Kevin Buzzard and I was aware of his efforts in
formalization of mathematics.
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Disclaimer

I started using Lean over the summer and I am still a beginner.
I feel confident in the mathematical side of my presentation.
The Lean side is quite a bit shakier: I welcome all sorts of comments!

I am going to present my personal experience with my first, serious,
ongoing formalization project.

In these slides, what is trivial, is formalized; what is interesting is in
progress.

The ideas expressed in this presentation are mostly reflection of my limited
understanding of how mathematics can be formalized.
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Chevalley’s Theorem

My long-term, yet unreached, goal is to formalize Chevalley’s Theorem.

Theorem (Chevalley)

Let m: X — 'Y be a morphism of schemes [more assumptions].
The image of a constructible subset of X is constructible.

Do not worry if you do not understand the meaning of most of the
words in this statement: we will reduce to polynomials very quickly!

As an algebraic geometer, I view this statement as an important and
useful result.
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Theorem (Chevalley)

Let m: X — 'Y be a morphism of schemes [more assumptions/.
The image of a constructible subset of X is constructible.

Constructible means a finite union of intersections of open and a closed set.
I also thought that it was relatively easy to prove...on paper!

Reduction steps: it suffices to consider the case

Geometry side Algebra side

X =Y x A" and R is a comm_ring («+Y)

m:Y x A" — Y is the | study the inclusion R — Rz1,...,z,]
projection
r=1 {R : Typex} [comm_ring R]
Y xAl =5 Y C : R — polynomial R
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Chevalley’s Theorem — reductions

Lemma (Simplified Chevalley’s Theorem, version 1)
Let m: Y x Al = Y be the projection onto the first factor.
Given U,V open subsets of Y x A, the set m1(U NV®) is constructible.

Recall: constructible is a finite union of intersections of open and a closed set.

It turns out that the projection map ¥ x Al — Y is open, and we can
break our goal further:

@ if U C Y x Al is open, then show that 7(U) C Y is open (instead
of just constructible).

@ if C C Y x Al is closed, then show that 7(C) C Y is constructible.
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Progress with formalization

Lemma (Simplified Chevalley’s Theorem, version 2)

Let m: Y x A! = Y be the projection onto the first factor.
@ The morphism 7 is open.

Q@ if C CY x Al is closed, then n(C) C Y is constructible.

Item (1) is fully formalized! (More on this below.)

Item (2) is still in progress.
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A proof that 7: Y x A' — Y is open
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A proof that 7: Y x A' = Y is open — frame 2
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7Y x Al -5 Y is

goals accomplished

intros U hu,
rw 1s_open_iff at hu,

cases hU with fs cl,

ave funi : fs = (U 1: fs, {i.1}),

{ext1,
SpLit;finish},
v fund at ct,
rw zero_locus_Union at cl,

= (N : 1Ts), zero_locus {1.val})e,

Y,
exact compl_compl U,},

cases hx with X1,
cases hy_h with conplement ing,
symnetry” at ing,
™ ing,
apply 1mma_spec,
exact complement, },
{ intro hx
simp * at *,
use (1deal.map € x.val ; dgeal (polymonial R)),
{ exact liftprime x.2,
split,
{ exact surj 1f x hx,
{ exact 1iftproj x, }, } Lot
rw image,

exact total_inage f.1,]
&nd

end Rx2Ropen
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9

o rwuuni,

1

2 | image_Union,
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5
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]

9
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1 {extl,

2 spLit,

3 { intro hx,

4

¥ Tactic state

oo goals accomplished X
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Golfing the proof

After that, I became better at golfing!

I am learning golfing tricks thanks to the combined efforts of the many
users of the Zulip chat.

I am incredibly grateful for the time that everyone on Zulip devotes to
answering the questions that appear there!
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Shortened version
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The proof went from approx 250 to approx 90 lines.

Of course, there is room for further compression.




Looking back at formalization

However, I have not inspected the proof with the idea of formalizing it.
I simply took some mathematical proof and converted it step by step.

The proofs above are based on Lemma 10.28.7 of the Stacks project
and its dependencies.

The arguments in the Stacks project are very easy to read for a human.
For me, though, they were hard to formalize directly.

The end result is the initial long argument.

Golfing provided a layer of compression, basically navigating inside the
same proof, but taking fewer detours.
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Revising the proof with the idea of formalizing

BT TEL A

Image credit: Robert Hodgin. Image credit: Aubrey Jaffer.

Writing a mathematical paper gives a chance to revise proofs:

e many arguments are dead-ends,
e several lemmas go around in circles,

@ some steps required a more details.

(Warwick)
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Image credit: Robert Hodgin. Image credit: Aubrey Jaffer.

For me, the initial plane-filling proof is almost a necessity.

I make sure that what I am saying is true by

e working out representative cases,

e thinking about extreme cases and pushing boundaries,
e removing hypotheses to see what fails,
e proving related, but unnecessary statements.
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Plane-filling, meanders, API

I believe that the carpet of lemmas around a definition is related to
what is called an API by the Lean community!

In the long run, the vast amount of auxiliary results, unneeded
corollary, trivial implications, barely off-target proofs is what convinces

me that what I want to prove is actually true.

After that, I write a proof.
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Frame Title

I am confident that I am proving something true, because of the
carpet of auxiliary results.

I am also confident that I may make mistakes in writing it down.

The meanderings around my arguments are the reason that I am
confident that my mistakes are fixable.

What I am still getting used to, is that now Lean is making sure of the
soundness of the arguments!

Of course, there is still the need of the carpet of lemmas of the API,
but it now plays a somewhat different role, at least in my mind!
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Chevalley’s Theorem — formalization revised

Back to the projection map
7: Spec R[x] — Spec R
or, in Lean,

prime_spectrum.comap (C : R —* polynomial R)

Going deeper into the proof, besides inductions, open covers,
restrictions and tautologies, the main lemma is the following.

Let R be a commutative ring and let I C R be an ideal. A polynomial
f € R|x] belongs to the ideal generated by I if and only if all the
coefficients of f belong in I.
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mem map_C_iff

Let R be a commutative ring and let I C R be an ideal. A polynomial
f € R[z] belongs to the ideal generated by I if and only if all the
coefficients of f belong in I.

This lemma appears in ring_theory/polynomial/basic.lean under
the name mem map C_iff.

Theorem (mem map C_iff)

{I : ideal R} {f : polynomial R} :
f € (ideal.map C I : ideal (polynomial R)) <>
Vn:N, f.coeffnel:=

Also, I understand better the mathematical proof!
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Future steps

I think that I can further substantially shorten the proof.

In the golfed proof above, lemma mem map_C_iff only appears at the
very end of the final proof.

I need to go back and rethink all the proofs with the aim of extending
the application of mem map C_iff.
In fact, I might even discover that this is already developed in mathlib!

If someone knows that this is the case, then I would be extremely
happy to learn this!
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Thank you!

Questions?
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