Contact in algebraic and tropical geometry

Damiano Testa

University of Warwick

Séminaire dématerialisé de "Algèbre and Géométrie" Université de Versailles

March 31, 2020

Stream here
@ 11am (GMT+2)

Outline

Overview

- Background
- Inflection points and bitangent lines of plane curves

2 An elementary approach

- 3 Inflection *points* and inflection *lines*
 - 4 Bitangent lines
- 5 Further directions

Reconcile

classical constructions in algebraic geometry over the **complex numbers**

and

recent results in **tropical** geometry

via

positive characteristic.

Based on joint work with Marco Pacini (UFF, Rio de Janeiro).

Damiano Testa (Warwick)

Social distancing

Curve usually means a projective, plane curve $C \subset \mathbb{P}^2_k$ over a field k.

Often, a curve C is **general** among plane curves of the same degree as C. In particular, there is no loss in thinking that curves are smooth.

The field k can be taken to be algebraically closed.

Important **characteristics** of fields in this talk are 0, 3 and 2.

An *inflection point* of a curve C is a point $a \in C$ at which the tangent line to C meets the curve C with multiplicity at least 3.

The Fermat cubic $x^3 + y^3 + z^3 = 0$ and its 9 inflection points:

 $[0,1,\zeta], \quad [1,0,\zeta], \quad [1,\zeta,0], \quad \text{with } \zeta^3+1=0.$

Bitangent lines of plane curves

A bitangent line of a curve C is a line $\ell \subset \mathbb{P}^2_k$ that is tangent to C at two distinct points.

The quartic $(x^2 - z^2)^2 = y(2z^3 - xz^2 + yz^2 - xy^2)$ and its bitangent line y = 0.

Two starting points.

Theorem. A $\left\langle \begin{array}{c} \text{plane curve over } \mathbb{C} \\ \text{tropical plane curve} \end{array} \right\rangle$ of degree d has $\left\langle \begin{array}{c} 3d(d-2) \\ d(d-2) \end{array} \right\rangle$ inflection points.

Theorem.

A
$$\left\langle \begin{array}{c} \text{plane quartic over } \mathbb{C} \\ \text{tropical plane quartic} \end{array} \right\rangle$$
 has $\left\langle \begin{array}{c} 28 \\ 7 \end{array} \right\rangle$ bitangent lines.

(Recall: curve means general curve.)

Damiano Testa (Warwick)

Algebraic and tropical geometry

Let k and l be algebraically closed fields of characteristics 3 and 2. Our observations are <u>underlined</u>.

Theorem. A $\left\langle \begin{array}{c} \text{plane curve over } \mathbb{C} \\ \text{plane curve } \underline{\text{over } k} \\ \text{tropical plane curve} \end{array} \right\rangle$ of degree d has $\left\langle \begin{array}{c} 3d(d-2) \\ \frac{d(d-2)}{d(d-2)} \end{array} \right\rangle$ inflection points.

Theorem.

$$A \left\langle \begin{array}{c} \text{plane quartic over } \mathbb{C} \\ \text{plane quartic } \underline{\text{over } l} \\ \text{tropical plane quartic} \end{array} \right\rangle \text{ has } \left\langle \begin{array}{c} 28 \\ \frac{7}{7} \\ 7 \end{array} \right\rangle \text{ bitangent lines.}$$

Inflection points

Arguing via the real numbers, Klein, Ronga, Schuh, Viro, Brugallé, López de Medrano,... address the factor 3 between the 3d(d-2) complex and the d(d-2) tropical inflection points.

Takeaway

- For each real inflection point, there are two further complex conjugate inflection points.
- Reading off real multiplicities in tropical geometry is hard!

We propose a *local* approach in *positive characteristic* to explain geometrically the discrepancy between the complex and the tropical counts.

The intuition is that the **contact multiplicities** interact with the **characteristic** of the field.

For instance,

- working with inflection points, we reduce modulo 3;
- working with bitangent lines, we reduce modulo 2.

The method has the potential for broader applications.

Lemma.

Let k be a field and let $f(x)\in k[x]$ a polynomial with a root α of multiplicity m. The $\gcd(f,f')$ is

- divisible by $(x \alpha)^{m-1}$;
- divisible by $(x \alpha)^m$ if and only if char $k \mid m$.

Proof. Write $f(x) = (x - \alpha)^m g(x),$

with $g(x) \in k[x]$, and $g(\alpha) \neq 0$. Compute

$$f'(x) = (x - \alpha)^{m-1} (mg(x) + (x - \alpha)g'(x)).$$

Thus $(x - \alpha)^{m-1}$ divides f'(x) and

$$(x - \alpha)^m$$
 divides $f'(x) \iff (x - \alpha)$ divides $mg(x)$
 $\iff m = 0$ in k.

Conclusion

Let k be a field, let p be a prime number and let $n \ge p$ be an integer. There is a rational function $r_p(f_0, \ldots, f_n)$ in (n+1) variables with the following property.

Assume that the polynomial $f = f_0 x^n + f_1 x^{n-1} + \dots + f_n$ has a unique root α of multiplicity at least 2 and that the multiplicity of α is p.

• If char $k \neq p$, then $r_p(f) = \alpha$.

• If char
$$k = p$$
, then $r_p(f) = \alpha^p$.

Proof. Use the previous lemma and induction to show

$$\gcd\left(f, f', \dots, f^{(p-1)}\right) = \begin{cases} x - \alpha, & \text{if } \operatorname{char} k \neq p;\\ (x - \alpha)^p = x^p - \alpha^p, & \text{if } \operatorname{char} k = p. \end{cases}$$

(Derivatives = Hasse derivatives) Compute gcd via Euclid's Algorithm.

Back to inflection points of curves in \mathbb{P}_k^2 .

Fix a curve $C \subset \mathbb{P}^2_k$. Define the incidence correspondence:

$$\mathscr{F}_C = \begin{cases} (x,\ell) \in \mathbb{P}^2_k \times (\mathbb{P}^2_k)^{\vee} & \text{x is an inflection point of C,} \\ \ell \text{ is the tangent line to C at x.} \end{cases}$$

where $(\mathbb{P}_k^2)^{\vee}$ is projective plane dual to \mathbb{P}_k^2 . (Points of $(\mathbb{P}_k^2)^{\vee}$ correspond to lines in \mathbb{P}_k^2 .)

Question.

Can we reconstruct \mathscr{F}_C from either the set of inflection points or the set of inflection lines of C?

(\Longrightarrow) From inflection points to inflection lines.

$$\mathscr{F}_C = \begin{cases} (x,\ell) \in \mathbb{P}^2_k \times (\mathbb{P}^2_k)^{\vee} & \text{x is an inflection point of C,} \\ \ell \text{ is the tangent line to C at x.} \end{cases}$$

Fix an inflection *point* x. We can reconstruct the corresponding inflection *line*, by computing the tangent line to C at x.

Thus, \mathscr{F}_C has as many elements as C has inflection *points*:

$$#\mathscr{F}_C = #\{ \text{inflection points of } C \}.$$

 (\Leftarrow) From inflection lines to inflection points.

$$\mathscr{F}_C = \begin{cases} (x,\ell) \in \mathbb{P}^2_k \times (\mathbb{P}^2_k)^{\vee} & \text{is an inflection point of } C, \\ \ell \text{ is the tangent line to } C \text{ at } x. \end{cases}$$

Fix an inflection line ℓ to the curve C.

As C is general, the inflection line ℓ is tangent to C at just one point x and the intersection multiplicity between ℓ and C at x is exactly 3.

Thus, a polynomial F vanishing on C restricts to a polynomial $F|_{\ell}$ on $\ell \simeq \mathbb{P}^1_k$ with the following properties:

- F|ℓ has a unique repeated root, corresponding to the inflection point of C on ℓ;
- the multiplicity of the repeated root is 3.

Inflection *points* and inflection *lines*

Inflection lines to inflection points.

Fix an inflection line ℓ to C.

As C is general $[\ldots]$, we find a polynomial $F|_{\ell}$ satisfying:

- F|_ℓ has a unique repeated root α, corresponding to the inflection point of C on ℓ;
- the multiplicity of the repeated root α is 3.

We have seen earlier to what extent we can reconstruct α from F! If char $k \neq 3$, then we can reconstruct α from $F|_{\ell}$ and we deduce that

 $#\mathscr{F}_C = #\{ \text{inflection lines of } C \}.$

If char k = 3, then we can reconstruct α^3 from $F|_{\ell}$ and we deduce that

$$#\mathscr{F}_C = 3 \cdot \# \{ \text{inflection lines of } C \}.$$

Summary for inflection points

$$\mathscr{F}_{C} = \left\{ (x,\ell) \in \mathbb{P}^{2}_{k} \times (\mathbb{P}^{2}_{k})^{\vee} \middle| \begin{array}{c} x \text{ is an inflection point of } C, \\ \ell \text{ is the tangent line to } C \text{ at } x. \end{array} \right\}$$

birational
birational
$$\overset{char \ k=3, \text{ purely}}{(\operatorname{inseparable})} \circ \operatorname{fdegree} 3$$

$$\left\{ x \in \mathbb{P}^{2}_{k} \middle| \begin{array}{c} x \text{ inflection} \\ \text{point of } C \end{array} \right\} \xrightarrow{\text{``Gauss map''}} \left\{ \ell \in (\mathbb{P}^{2}_{k})^{\vee} \middle| \begin{array}{c} \ell \text{ inflection} \\ \text{line of } C \end{array} \right\}$$

Amusing consequence. (If you happen to like imperfect fields) Let k be a separably closed field of characteristic 3. Let C be a general plane curve defined over k. The coordinates of the inflection lines are contained in k. The coordinates of the inflection points are contained in $k^{\frac{1}{3}}$. Similarly for bitangent lines. Fix a plane quartic $C \subset \mathbb{P}^2_k$.

 $\left\{ (x,\ell) \in \mathbb{P}^2_k \times (\mathbb{P}^2_k)^{\vee} \ \left| \begin{array}{c} x \text{ is point of bitangency of } C, \\ \ell \text{ is the (bi)tangent line to } C \text{ at } x. \end{array} \right\} \right.$ char $k \neq 2$, double cover char k=2, purely inseparable birational of degree 4 $\left\{x \in \mathbb{P}^2_k \mid x \text{ bitangent} \atop \text{point of } C \right\} \xrightarrow{\text{"Gauss map"}} \left\{\ell \in (\mathbb{P}^2_k)^{\vee} \mid \ell \text{ bitangent} \atop \text{line of } C \right\}$

In char 2, contact points contribute 2 each to the inseparable degree. Thus, bitangents give a 4 : 1 degree ratio.

The 28 bitangents of plane quartics over \mathbb{C} , correspond to the $7 = \frac{28}{4}$ bitangents in characteristic 2.

Bitangent lines to plane quartics generalize to odd theta-characteristics of curves C of genus g. The inseparable degree works out to be 2^{g-1} . The curve C has

- $2^{g-1}(2^g-1)$ odd theta-characteristics over \mathbb{C} .
- $2^g 1$ odd effective theta-characteristics in char 2.

Even theta-characteristics also work, but are slightly more involved.

Open tropical questions already in genus 5.

Steiner's conic problem

Number of conics simultaneously tangent to 5 general plane conics.

3264 over \mathbb{C} (Steiner, Chasles, de Jonquières, Fulton, MacPherson); $51 = \frac{3264}{2^6}$ over char 2 (Vainsencher).

de Jonquières formula

A formula for counting the number of hyperplanes with prescribed contact multiplicities with a given curve.

Gromov-Witten invariants

. . .

Further directions

Gromov-Witten invariants

The number of plane, nodal, rational curves of degree d containing a general point and meeting a fixed line and conic in a single point each is

$$\binom{2d}{d}$$

(Bousseau, Brini, van Garrel).

Connection: choose d to be a prime number p. The congruence

$$\binom{2p}{p} \equiv 2 \pmod{p^2}$$

holds. It even holds modulo p^3 , for $p \ge 5$.

Merci!