Contact in algebraic and tropical geometry

Damiano Testa
University of Warwick

Séminaire dématerialisé de "Algèbre and Géométrie" Université de Versailles

March 31, 2020

```
- Stream here @ 11am (GMT+2)
```


Outline

(1) Overview

- Background
- Inflection points and bitangent lines of plane curves
(2) An elementary approach
(3) Inflection points and inflection lines

44 Bitangent lines
(5) Further directions

Goal

Reconcile

classical constructions in algebraic geometry over
and
recent results in tropical geometry
via

positive characteristic.

Based on joint work with Marco Pacini (UFF, Rio de Janeiro).

Conventions

Curve usually means a projective, plane curve $C \subset \mathbb{P}_{k}^{2}$ over a field k.

Often, a curve C is general among plane curves of the same degree as C. In particular, there is no loss in thinking that curves are smooth.

The field k can be taken to be algebraically closed. Important characteristics of fields in this talk are 0,3 and 2 .

Inflection points of plane curves

An inflection point of a curve C is a point $a \in C$ at which the tangent line to C meets the curve C with multiplicity at least 3 .

The Fermat cubic $x^{3}+y^{3}+z^{3}=0$ and its 9 inflection points:

$$
[0,1, \zeta], \quad[1,0, \zeta], \quad[1, \zeta, 0], \quad \text { with } \zeta^{3}+1=0
$$

Bitangent lines of plane curves

A bitangent line of a curve C is a line $\ell \subset \mathbb{P}_{k}^{2}$ that is tangent to C at two distinct points.

The quartic $\left(x^{2}-z^{2}\right)^{2}=y\left(2 z^{3}-x z^{2}+y z^{2}-x y^{2}\right)$ and its bitangent line $y=0$.

Complex and tropical geometry

Two starting points.

Theorem.

A $\left\langle\begin{array}{c}\text { plane curve over } \mathbb{C} \\ \text { tropical plane curve }\end{array}\right\rangle$ of degree d has $\left\langle\begin{array}{c}3 d(d-2) \\ d(d-2)\end{array}\right\rangle$ inflection points.

Theorem.

A $\left\langle\begin{array}{c}\text { plane quartic over } \mathbb{C} \\ \text { tropical plane quartic }\end{array}\right\rangle$ has $\left\langle\begin{array}{c}28 \\ 7\end{array}\right\rangle$ bitangent lines.
(Recall: curve means general curve.)

Algebraic and tropical geometry

Let k and l be algebraically closed fields of characteristics 3 and 2 . Our observations are underlined.

Theorem.

A $\left\langle\begin{array}{c}\text { plane curve over } \mathbb{C} \\ \text { plane curve over } k \\ \text { tropical plane curve }\end{array}\right\rangle$ of degree d has $\left\langle\begin{array}{c}3 d(d-2) \\ \frac{d(d-2)}{d(d-2)}\end{array}\right\rangle$ inflection points.

Theorem.

A $\left\langle\begin{array}{c}\text { plane quartic over } \mathbb{C} \\ \text { plane quartic over } l \\ \text { tropical plane quartic }\end{array}\right\rangle$ has $\left\langle\begin{array}{c}28 \\ \underline{7} \\ 7\end{array}\right\rangle$ bitangent lines.

Inflection points

Arguing via the real numbers, Klein, Ronga, Schuh, Viro, Brugallé, López de Medrano,... address the factor 3 between the $3 d(d-2)$ complex and the $d(d-2)$ tropical inflection points.

Theorem.

A general $\left\langle\begin{array}{c}\text { plane curve over } \mathbb{R} \\ \text { tropical plane curve }\end{array}\right\rangle$ of degree d has at most $d(d-2)$
distinct $\left\langle\begin{array}{c}\text { real } \\ \text { tropical }\end{array}\right\rangle$ inflection points. The upper bound is achieved.

Takeaway

- For each real inflection point, there are two further complex conjugate inflection points.
- Reading off real multiplicities in tropical geometry is hard!

An elementary approach

We propose a local approach in positive characteristic to explain geometrically the discrepancy between the complex and the tropical counts.

The intuition is that the contact multiplicities interact with the characteristic of the field.

For instance,

- working with inflection points, we reduce modulo 3 ;
- working with bitangent lines, we reduce modulo 2 .

The method has the potential for broader applications.

Basic computation: multiple roots

Lemma.

Let k be a field and let $f(x) \in k[x]$ a polynomial with a root α of multiplicity m. The $\operatorname{gcd}\left(f, f^{\prime}\right)$ is

- divisible by $(x-\alpha)^{m-1}$;
- divisible by $(x-\alpha)^{m}$ if and only if char $k \mid m$.

Proof. Write

$$
f(x)=(x-\alpha)^{m} g(x),
$$

with $g(x) \in k[x]$, and $g(\alpha) \neq 0$. Compute

$$
f^{\prime}(x)=(x-\alpha)^{m-1}\left(m g(x)+(x-\alpha) g^{\prime}(x)\right)
$$

Thus $(x-\alpha)^{m-1}$ divides $f^{\prime}(x)$ and

$$
\begin{aligned}
(x-\alpha)^{m} \text { divides } f^{\prime}(x) & \Longleftrightarrow(x-\alpha) \text { divides } m g(x) \\
& \Longleftrightarrow m=0 \text { in } k .
\end{aligned}
$$

Basic computation: multiple roots

Conclusion

Let k be a field, let p be a prime number and let $n \geq p$ be an integer. There is a rational function $r_{p}\left(f_{0}, \ldots, f_{n}\right)$ in $(n+1)$ variables with the following property.

Assume that the polynomial $f=f_{0} x^{n}+f_{1} x^{n-1}+\cdots+f_{n}$ has a unique root α of multiplicity at least 2 and that the multiplicity of α is p.

- If char $k \neq p$, then $r_{p}(f)=\alpha$.
- If char $k=p$, then $r_{p}(f)=\alpha^{p}$.

Proof. Use the previous lemma and induction to show

$$
\operatorname{gcd}\left(f, f^{\prime}, \ldots, f^{(p-1)}\right)=\left\{\begin{array}{cl}
x-\alpha, & \text { if char } k \neq p \\
(x-\alpha)^{p}=x^{p}-\alpha^{p}, & \text { if } \operatorname{char} k=p
\end{array}\right.
$$

(Derivatives $=$ Hasse derivatives) Compute gcd via Euclid's Algorithm.

Inflection points and inflection lines

Back to inflection points of curves in \mathbb{P}_{k}^{2}.
Fix a curve $C \subset \mathbb{P}_{k}^{2}$. Define the incidence correspondence:

$$
\mathscr{F}_{C}=\left\{\begin{array}{l|l}
(x, \ell) \in \mathbb{P}_{k}^{2} \times\left(\mathbb{P}_{k}^{2}\right)^{\vee} & \begin{array}{l}
x \text { is an inflection point of } C \\
\ell \text { is the tangent line to } C \text { at } x
\end{array}
\end{array}\right\}
$$

where $\left(\mathbb{P}_{k}^{2}\right)^{\vee}$ is projective plane dual to \mathbb{P}_{k}^{2}.
$\left(\right.$ Points of $\left(\mathbb{P}_{k}^{2}\right)^{\vee}$ correspond to lines in \mathbb{P}_{k}^{2}.)

Question.

Can we reconstruct \mathscr{F}_{C} from either the set of inflection points or the set of inflection lines of C ?

Inflection points and inflection lines

(\Longrightarrow) From inflection points to inflection lines.

$$
\mathscr{F}_{C}=\left\{\begin{array}{l|l}
(x, \ell) \in \mathbb{P}_{k}^{2} \times\left(\mathbb{P}_{k}^{2}\right)^{\vee} & \begin{array}{l}
x \text { is an inflection point of } C \\
\ell \text { is the tangent line to } C \text { at } x
\end{array}
\end{array}\right\}
$$

Fix an inflection point x. We can reconstruct the corresponding inflection line, by computing the tangent line to C at x.

Thus, \mathscr{F}_{C} has as many elements as C has inflection points:

$$
\# \mathscr{F}_{C}=\#\{\text { inflection points of } C\} .
$$

Inflection points and inflection lines

(\Longleftarrow) From inflection lines to inflection points.

$$
\mathscr{F}_{C}=\left\{\begin{array}{l|l}
(x, \ell) \in \mathbb{P}_{k}^{2} \times\left(\mathbb{P}_{k}^{2}\right)^{\vee} & \begin{array}{l}
x \text { is an inflection point of } C \\
\ell \text { is the tangent line to } C \text { at } x
\end{array}
\end{array}\right\}
$$

Fix an inflection line ℓ to the curve C.
As C is general, the inflection line ℓ is tangent to C at just one point x and the intersection multiplicity between ℓ and C at x is exactly 3 .

Thus, a polynomial F vanishing on C restricts to a polynomial $\left.F\right|_{\ell}$ on $\ell \simeq \mathbb{P}_{k}^{1}$ with the following properties:

- $\left.F\right|_{\ell}$ has a unique repeated root, corresponding to the inflection point of C on ℓ;
- the multiplicity of the repeated root is 3 .

Inflection points and inflection lines

Inflection lines to inflection points.

Fix an inflection line ℓ to C.
As C is general [...], we find a polynomial $\left.F\right|_{\ell}$ satisfying:

- $\left.F\right|_{\ell}$ has a unique repeated root α, corresponding to the inflection point of C on ℓ;
- the multiplicity of the repeated root α is 3 .

We have seen earlier to what extent we can reconstruct α from F !
If char $k \neq 3$, then we can reconstruct α from $\left.F\right|_{\ell}$ and we deduce that

$$
\# \mathscr{F}_{C}=\#\{\text { inflection lines of } C\} .
$$

If char $k=3$, then we can reconstruct α^{3} from $\left.F\right|_{\ell}$ and we deduce that

$$
\# \mathscr{F}_{C}=3 \cdot \#\{\text { inflection lines of } C\}
$$

Summary for inflection points

$$
\left.\left.\begin{array}{rl}
\mathscr{F}_{C} & =\left\{(x, \ell) \in \mathbb{P}_{k}^{2} \times\left(\mathbb{P}_{k}^{2}\right)^{\vee} \left\lvert\, \begin{array}{c}
x \text { is an inflection point of } C, \\
\ell \text { is the tangent line to } C \text { at } x .
\end{array}\right.\right\} \\
\text { birational }
\end{array}\right\} \begin{array}{r}
\text { char } k \neq 3, \text { birational } \begin{array}{l}
\text { char } k=3, \text { purely } \\
\text { inseparable } \\
\text { of degree } 3
\end{array} \\
\left\{x \in \mathbb{P}_{k}^{2}\right.
\end{array} \begin{array}{l}
x \text { inflection } \\
\text { point of } C
\end{array}\right\} \xrightarrow{\text { "Gauss map" }}\left\{\begin{array}{l}
\ell \in\left(\mathbb{P}_{k}^{2}\right)^{\vee}
\end{array} \begin{array}{l}
\ell \text { inflection } \\
\text { line of } C
\end{array}\right\}
$$

Amusing consequence. (If you happen to like imperfect fields)
Let k be a separably closed field of characteristic 3 .
Let C be a general plane curve defined over k.
The coordinates of the inflection lines are contained in k.
The coordinates of the inflection points are contained in $k^{\frac{1}{3}}$.

Bitangent lines

Similarly for bitangent lines. Fix a plane quartic $C \subset \mathbb{P}_{k}^{2}$.

$$
\left\{(x, \ell) \in \mathbb{P}_{k}^{2} \times\left(\mathbb{P}_{k}^{2}\right)^{\vee} \left\lvert\, \begin{array}{c}
x \text { is point of bitangency of } C, \\
\ell \text { is the (bi)tangent line to } C \text { at } x .
\end{array}\right.\right\}
$$

$$
\left\{\begin{array}{l|l|l}
x \in \mathbb{P}_{k}^{2} & \begin{array}{l}
x \text { bitangent } \\
\text { point of } C
\end{array}
\end{array}\right\} \xrightarrow{\text { "Gauss map" }}\left\{\begin{array}{ll}
\ell \in\left(\mathbb{P}_{k}^{2}\right)^{\vee} & \begin{array}{l}
\ell \text { bitangent } \\
\text { line of } C
\end{array}
\end{array}\right\}
$$

In char 2 , contact points contribute 2 each to the inseparable degree. Thus, bitangents give a $4: 1$ degree ratio.
The 28 bitangents of plane quartics over \mathbb{C}, correspond to the $7=\frac{28}{4}$ bitangents in characteristic 2 .

From bitangents to theta-characteristics

Bitangent lines to plane quartics generalize to odd theta-characteristics of curves C of genus g. The inseparable degree works out to be 2^{g-1}.

The curve C has

- $2^{g-1}\left(2^{g}-1\right)$ odd theta-characteristics over \mathbb{C}.
- $2^{g}-1$ edd effective theta-characteristics in char 2.

Even theta-characteristics also work, but are slightly more involved.
Open tropical questions already in genus 5 .

Further directions

Steiner's conic problem

Number of conics simultaneously tangent to 5 general plane conics. 3264 over \mathbb{C} (Steiner, Chasles, de Jonquières, Fulton, MacPherson); $51=\frac{3264}{2^{6}}$ over char 2 (Vainsencher).
de Jonquières formula
A formula for counting the number of hyperplanes with prescribed contact multiplicities with a given curve.

Gromov-Witten invariants

Further directions

Gromov-Witten invariants

The number of plane, nodal, rational curves of degree d containing a general point and meeting a fixed line and conic in a single point each is

$$
\binom{2 d}{d}
$$

(Bousseau, Brini, van Garrel).
Connection: choose d to be a prime number p. The congruence

$$
\binom{2 p}{p} \equiv 2 \quad\left(\bmod p^{2}\right)
$$

holds. It even holds modulo p^{3}, for $p \geq 5$.

Merci!

