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Abstract

Let X be a del Pezzo surface of degree d ≥ 2. We prove that the spaces
M0,0

`
X, β

´
are either empty or irreducible.

Introduction. The general question of the irreducibility of the spaces of
maps of curves to varieties with given numerical invariants has a long history:
from the irreducibility of the Hurwitz schemes [Fu] and the irreducibility of the
moduli space of curves [DM], to the “Severi problem” [Se] and its resolution
in [H].

More recently, the study of rationally connected varieties raised more ques-
tions on the subject: in particular the articles [dJS1], [dJS2] [HRS] and [HS],
examine the structure of the spaces of rational curves on rationally connected
varieties. One of the aims is to try to find the correct class of varieties to
extend the results of [GHS] in the case where the base is a surface. In a dif-
ferent direction, in [BS] genus zero mapping spaces are used to approach the
question of unirationality of some rationally connected varieties.

We establish the irreducibility of the spaces of rational curves on del Pezzo
surfaces of degree at least 2.

More specifically, let X be a del Pezzo surface of degree d ≥ 2. Let β ∈
H2

(
X,Z

)
be the class of a curve on X. Denote by R(β) the subscheme of

the linear system |β| consisting of the integral nodal curves of geometric genus
zero. The Kontsevich mapping spaceM0,0

(
X,β

)
is a natural compactification

of the space R(β): it parametrizes all (stable) maps to the surface X from
possibly reducible curves. Some care is required, since the mapping spaces
in general have more irreducible components than the corresponding spaces
R(β), arising from degenerate configurations of curves on the surface. In fact
it may happen that R(β) = ∅, while M0,0

(
X,β

)
6= ∅.

Let Mbir

(
X,β

)
be the closure of the subspace of M0,0

(
X,β

)
consisting of

morphisms f : C → X, with C ' P1 and f birational onto its image.
Our main result is that the space Mbir

(
X,β

)
is irreducible or empty.

1
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The idea of the proof is straightforward. First, prove that in the bound-
ary of all the irreducible components of Mbir

(
X,β

)
there are special mor-

phisms of a given type (called in what follows “standard morphisms”). Sec-
ond, show that the locus of standard morphisms is connected and contained
in the smooth locus of Mbir

(
X,β

)
. From these two facts we conclude imme-

diately that the smooth locus of Mbir

(
X,β

)
is connected. Since the smooth

locus is dense, we deduce that Mbir

(
X,β

)
is irreducible.

The methods used in the proof are of two different kinds. First, there are
general techniques, mainly Mori’s Bend and Break Theorem, to break curves
into components with low anticanonical degree. In the case where X = P2,
this shows that we may specialize a morphism in Mbir

(
X,β

)
so that its image

is a union of lines. Second, we need explicit geometric arguments to handle
the low degree cases. In the case of P2, this step is used to bring the domain
to a standard form (a chain of rational curves, rather than a general rational
tree), while preserving the property that the image of the morphism consists
of a union of lines.

Section 1 gives the two main deformation-theoretic tools. The first is a
computation of the obstruction space of a stable map to a smooth surface in
terms of combinatorial invariants of the map. The second is a lifting result that
allows us, given a deformation of a component of a curve, to get a deformation
of the whole curve. This is specific to the surface case.

Section 2 is devoted to the analysis of curves of low anticanonical degree
on a del Pezzo surface. We use extensively the group of symmetries of the
Picard lattice to reduce the number of cases to treat.

Section 3 uses systematically the results of Section 1. We produce curves
with many irreducible components in all components of Mbir

(
X,β

)
.

Section 4 contains the main techincal result: the irreducibility of all map-
ping spaces can be reduced to finitely many cases.

Section 5 contains the proof of the main result.
Acknowledgments. This work is part of the PhD thesis of the author,

written under the supervision of Johan de Jong. The author thanks Johan de
Jong and Jason Starr for their help and many illuminating discussions.

1. Cohomology Groups and Obstruction Spaces

1.1. The Conormal Sheaf. Let f : C → X be a morphism from a con-
nected, projective, at worst nodal curve C to a smooth projective variety X.

Definition 1.1. The morphism f : C → X is a stable map if C is a
connected, projective, at worst nodal curve and the normalization of every
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contracted component of geometric genus zero contains at least three points
lying over singular points of C and every contracted component of geometric
genus one contains at least one singular point of C.

Denote by L•f the complex f∗Ω1
X → Ω1

C , where f∗Ω1
X is in degree -1 and

Ω1
C is in degree 0. We want to compute the obstruction space to the deforma-

tions of the stable map f : C → X. The stability condition is equivalent to the
vanishing of the group Hom

(
L•f ,OC

)
. The tangent space to M0,0

(
X,β

)
at f

is the hypercohomology group Ext1
(
L•f ,OC

)
. The obstruction space is a quo-

tient of the hypercohomology group Ext2
(
L•f ,OC

)
. Our strategy to compute

these groups is to use the short exact sequence of complexes of sheaves0
↓
0

 //

 0
↓

Ω1
C

 //

f∗Ω1
X

↓
Ω1

C

 //

f∗Ω1
X

↓
0

 //

0
↓
0


apply the functor Hom(−,OC), use the long exact hypercohomology sequence
and several standard identifications to obtain

(1.1) 0 // Hom(Ω1
C ,OC) // H0(C, f∗TX) // Ext1

(
L•f ,OC

)
//

// Ext1(Ω1
C ,OC) // H1(C, f∗TX) // Ext2

(
L•f ,OC

)
// 0.

In particular we see that if H1(C, f∗TX) = 0, then the obstruction group
Ext2

(
L•f ,OC

)
vanishes as well, i.e. the map is unobstructed, the space of

stable maps has the expected dimension at f and the point represented by f
is smooth (for the stack). Consider the dual sequence of (1.1) and use Serre
duality to obtain

0 //
(
Ext2

)∨ // H0(C, f∗Ω1
X ⊗ ωC) α // H0(C,Ω1

C ⊗ ωC) //

//
(
Ext1

)∨ // H1(C, f∗Ω1
X ⊗ ωC) // H1(C,Ω1

C ⊗ ωC) // 0

where the morphism α is induced by df : f∗Ω1
X −→ ΩC . Associated to f

we define the sheaves Cf := ker(df) and Qf := coker(df) on C. Since the
dualizing sheaf ωC is locally free, tensoring by ωC is exact and taking global
sections is left exact. From these remarks we deduce that

H0
(
C, Cf ⊗ ωC

)
' Ext2

(
L•f ,OC

)∨
and we conclude that in order to compute the obstruction space of f , it is
enough to compute the global sections of the sheaf Cf ⊗ ωC .

Definition 1.2. The sheaf Cf defined above is the conormal sheaf of f .
We drop the subscript f , when the morphism is clear from the context.

Note that the support of every non-zero section of Cf has pure dimension one.
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Definition 1.3. Suppose that f is finite. A point p ∈ C is a ramification
point, if it belongs to the support of the sheaf Qf . The ramification divisor of
f is the (Weil) divisor whose multiplicity at p ∈ C is the length of Qf at p.

Let f : C → X be a non-constant morphism from a smooth curve to a
smooth surface. Suppose p ∈ C is a point and let u and v be local coordinates
on X near f(p) = q and let x be a local parameter for C near p. Since f is
not constant, there exists an integer k ≥ 1 such that

f∗ :

 u 7−→ xkU(x)

v 7−→ xkV (x)

and
(
U(0), V (0)

)
6= (0, 0). We call a tangent vector to C at p any non-zero

vector in TqX proportional to
(
U(0), V (0)

)
, and tangent direction to C at p

the point in P (TqX) determined by a tangent vector to C at p. We say that
the morphism f is ramified at p if k > 1 and we say it is unramified otherwise.
Given two morphisms as above fi : Ci → X with fi(pi) = q, i ∈ {1, 2}, the
curves C1 and C2 are transverse at the point q ∈ X if fi is unramified at pi

and the tangent directions of f1 at p1 and of f2 at p2 are distinct.
Definition 1.4. Same notation as above, denote by f̃i the morphism in-

duced by fi from Ci to the blow-up of X at q, and assume f̃i(pi) = q̃. We
say that the two curves C1 and C2 are simply tangent at q if C1 and C2 are
transverse at q̃.

Informally we can say that two curves are simply tangent at q if the mor-
phisms f1 and f2 agree to exactly first order and are non-zero. In the next
Lemma we will see that being simply tangent is closely related to the local
structure of the conormal sheaf.

Lemma 1.5. Suppose that X is a smooth surface and let f : C → X be
a morphism from a curve C consisting of two irreducible components C1 and
C2, meeting in a node p. Denote by fi the restriction of f to Ci and by pi ∈ Ci

the point p ∈ C, and suppose that f does not contract any component of C.
Then there are the following cases:

(1) if C1 and C2 are transverse at f(p), then Cf is locally free and the
following sequence is exact

0 // Cf // Cf1(−p)⊕ Cf2(−p) // Cf,p // 0;

(2) if C1 and C2 have distinct tangent directions at f(p), f1 is unramified
at p and f2 is ramified at p, then Cf is not locally free and

Cf
∼= Cf1(−p)⊕ Cf2(−2p);
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(3) if C1 and C2 have distinct tangent directions at f(p) and both maps
f1 and f2 are ramified at p, then Cf is not locally free and

Cf
∼= Cf1(−p)⊕ Cf2(−p);

(4) if C1 and C2 are simply tangent at f(p), then Cf is not locally free
and

Cf
∼= Cf1(−p)⊕ Cf2(−p);

(5) if C1 and C2 are not transverse nor simply tangent at f(p), then Cf

is locally free and there is an exact sequence

0 // Cf // Cf1 ⊕ Cf2
// Cf,p // 0.

Proof. The proofs of the five cases are similar; we prove only (3). Write

f∗ :

 u 7−→ xk1U1(x) + yk2U2(y)

v 7−→ xl1V1(x) + yl2V2(y)

where l1 > k1 ≥ 2, k2 > l2 ≥ 2 and U1(0), V2(0) 6= 0. Let α1(x) := k1U1(x) +
xU ′

1(x), α2(y) := l2V2(y) + yV ′
2(y). We have

OC,p · du+OC,p · dv
df

//

(
OC,p · dx+OC,p · dy

)
/
(
ydx+ xdy

)
du
α1

� // xk1−1dx+ yk2−1ϕ(y)dy

dv
α2

� // xl1−1ψ(x)dx+ yl2−1dy

with

yk2−1ϕ(y) =
yk2−1

k1U1(0)

(
k2U2(y) + yU ′

2(y)
)

xl1−1ψ(x) =
xl1−1

l2V2(0)

(
l1V1(x) + xV ′

1(x)
)
.

The elements of the kernel of df are determined by the condition

f1(x, y)
du

α1
+ f2(x, y)

dv

α2
7−→ r(x, y)

(
ydx+ xdy

)
which translates to the two equations

(1.2)
xk1−1

(
f1(x, y) + xl1−k1f2(x, y)ψ(x)

)
= yr(x, y) = yr(0, y)

yl2−1
(
yk2−l2f1(x, y)ϕ(y) + f2(x, y)

)
= xr(x, y) = xr(x, 0).
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The equations imply r(x, y) = 0, and thus f1(x, y) = −xl1−k1f2(x, y)ψ(x) +
yh1(y). Substituting back in (1.2), we find

yl2−1
(
yk2−l2+1h1(y)ϕ(y) + f2(x, y)

)
= 0

i.e. f2(x, y) = xg2(x)− yk2−l2+1h1(y)ϕ(y) and therefore

f1(x, y) = −xl1−k1+1g2(x)ψ(x) + yh1(y).

By inspection we see that choosing
(
g2(x), h1(y)

)
= (1, 0) or (0, 1) yields

elements of the kernel of df . Thus near p the kernel of df is generated by

x

(
−xl1−k1ψ(x)

du

α1
+
dv

α2

)
and y

(du
α1

+ yk2−l2ϕ(y)
dv

α2

)
.

We conclude that Cf is not locally free near p. Since the terms in brackets in
the previous expression are local generators for Cf1 and Cf2 respectively near
p, it follows that Cf

∼= Cf1(−p)⊕ Cf1(−p). Thus (3) is established. �
Let f : C → X be a stable map to a smooth surface X. In view of the

previous Lemma, we partition the set of nodes of C in five disjoint sets:

• τuu is the set of nodes p such that the two components of C meeting
at p are transverse at f(p);

• τur is the set of nodes p such that the two components of C meeting
at p have distinct tangent directions at f(p) and one is unramified
and the other one is ramified;

• τrr is the set of nodes p such that the two components of C meeting
at p have distinct tangent directions at f(p) and both are ramified;

• ν2 is the set of nodes p such that the two components of C meeting
at p are simply tangent at f(p);

• νl is the set of nodes p such that the two components of C meeting
at p are not transverse and not simply tangent at f(p).

It follows from the Lemma that the sheaf Cf is locally free at the nodes τuu

and νl, while it is not free at the others. Let C1, . . . , C` be the components
of C. Then we let τ i

uu denote the divisor on Ci of nodes lying in τuu, and
similarly for the other types of nodes. Note that only one of the definitions
above is not symmetric, namely τur (and τ i

ur). To take care of this, let us
introduce one more divisor on each component of C: let τ i

ru be the divisor
on Ci consisting of all nodes p of C on Ci, such that the two components
of C through p have distinct tangent directions at f(p), and the restriction
of f to these two components is ramified only on Ci. We will denote by the
same symbol a divisor on a curve and its degree. Given a coherent sheaf F
on a curve C, let τ(F) denote the subsheaf generated by the sections whose
support has dimension at most 0 and let Ffree be the sheaf F/τ(F).
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Proposition 1.6. Let f : C → X be a stable map of genus zero with
no contracted components to a smooth surface X and let C1, . . . , C` be the
irreducible components of C. We have

deg
(

(Cf ⊗ ωC)
∣∣free

Ci

)
= f∗[Ci] ·KX − deg τ i

ru + deg νi
l + degQi(1.3)

χ (Cf ⊗ ωC) = f∗[C] ·KX + deg τrr + deg ν2 +

+2deg νl +
∑

degQi + 1.

Moreover, let ν : C̃ → C be the normalization of C at the nodes in τur∪τrr∪ν2.
The sheaf Cf is the pushforward of a locally free sheaf on C̃.

Proof. Thanks to Lemma 1.5 there is a short exact sequence of sheaves

0 // Cf // ⊕iCfi

(
−τ i

uu − τ i
ur − 2τ i

ru − τ i
rr − νi

2

)
// Cf |τuu

⊕ Cf |νl
// 0.

We can write the divisor by which we are twisting Cfi as −val[Ci]− τ i
ru + νi

l

(where val[Ci] is the valence of the vertex [Ci] in the dual graph of C). We
have deg Cfi = f∗[Ci]·KX +2+degQi. The Proposition follows by twisting the
previous sequence by ωC and the fact that the dual graph of f is a tree. �

The next Proposition deals with morphisms with contracted components.
We introduce two more subsets of the nodes on contracted components, de-
pending on the behaviour of f : C̄ → X near the node:

• ρu is the set of nodes p such that f is constant on one of the two
components, and it is unramified on the other;

• ρr is the set of nodes p such that f is constant on one of the two
components, and it is ramified on the other.

Proposition 1.7. Let f : C̄ → X be a stable map of genus zero to a
smooth surface X. Let C̄ = C ∪ R, where C = C1 ∪ . . . ∪ C` is the union
of all components of C̄ which are not contracted by f , and R is the union
of all components of C̄ contracted by f . Let r be the number of connected
components of the curve R (equivalently, r = χ(OR)). We have

deg
(

(Cf ⊗ ωC̄)
∣∣free

Ci

)
= f∗[Ci] ·KX +Qi − τ i

ru + νi
l + ρi

u + ρi
r(1.4)

χ (Cf ⊗ ωC̄) = f∗[C] ·KX +
∑

Qi + τrr + ν2 + 2νl +

+ρu + 2ρr − 3r + 1.

Proof. The proof is similar to that of Proposition 1.6 and is omitted. �
1.2. Dimension Estimates. We refer to the integer −C · KX as the

anticanonical degree (or simply as the degree) of a curve C in X.
We consistently use the following notational convention: if f : C̄ → X is

a morphism and C̄1 denotes a component of C̄, we denote the image of C̄1



8 DAMIANO TESTA

by C1, and in general, a symbol with a bar over it denotes an object on the
source curve C̄, while the same symbol without the bar over it denotes the
image of the object in X.

Definition 1.8. ([Ko] II.3.6). Let f, g ∈ Hom(C̄,X); we say g is a defor-
mation of f , if there is an irreducible subscheme of Hom(C̄,X) containing f
and g. We say that a general deformation of f has some property if there is
an open subset U ⊂ Hom(C̄,X) containing f and a dense open subset V ⊂ U

such that all f ′ ∈ V have that property.
When we choose a general deformation g of a morphism f , we assume that

g is a deformation of f , i.e. that f and g lie in the same irreducible component
of Hom(C̄,X).

Lemma 1.9. Let f : P1 → X be a free morphism; if f is birational onto
its image, then a general deformation of f is free and it is an immersion.

Proof. The result follows from [Ko] Complement II.3.14.4, and the fact that
a general deformation of a free and birational map is free and birational. �

Fix a free rational curve β ⊂ X and let d := −β ·KX .
Definition 1.10. Denote by Mbir

(
X,β

)
the closure in M0,0

(
X,β

)
of the

set of free morphisms f : P1 → X such that f is birational onto its image.
We want to prove that given r ≤ d − 1 general points p1, . . . , pr ∈ X, in

all irreducible components of Mbir

(
X,β

)
there is a stable map whose image

contains all the pi’s.
Proposition 1.11. Let f : P1 → X be an immersion, and let d be the

degree of the image of f . Let c1, . . . , cr be distinct points where f is an em-
bedding. The natural morphism

F (r) : (P1)r ×Hom(P1, X) // Xr(
d1, . . . , dr; [g]

) � //
(
g(d1), . . . , g(dr)

)
is smooth at the point

(
c1, . . . , cr; [f ]

)
if and only if r ≤ d− 1.

Proof. Consider the commutative diagram with exact rows

0 // ⊕TciP1 //

∼
��

T(c;[f ])(P1)r ×Hom(P1, X) //

dF (r)

��

T[f ]Hom(P1, X) //

δ
��

0

0 // ⊕Tf(ci)f(P1) // ⊕Tf(ci)X // ⊕Nf,ci
// 0

where the second row is obtained by restricting the normal sequence of f to
{c1, . . . , cr}. The first vertical arrow is induced by f , while δ is the quotient
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map, followed by the evaluation map ([Ko] Proposition II.3.5):

T[f ]Hom(P1, X) ' H0(P1, f∗TX)
q

//

δ
**TTTTTTTTTTTTTTTTT

H0(P1,Nf )

ev

��

⊕Nf,ci

The morphism q is induced by the normal sequence and is surjective. Ob-
serve that dF (r) is surjective if and only if δ is surjective, and finally, δ is
surjective if and only if the evaluation map ev is surjective. Consider the
exact sequence of sheaves

(1.5) 0 // Nf (−c1 − . . .− cr) // Nf // ⊕Nf,ci
// 0.

Since degNf = d−2 and f is an immersion, Nf ' OP1(d−2). The sequence on
global sections induced by (1.5) is exact if and only if degNf (−c1− . . .−cr) =
d− 2− r ≥ −1. Therefore dF (r) is surjective if and only if r ≤ d− 1. �

Let f : P1 → X be an immersion representing an element of Mbir

(
X,β

)
,

and denote by fMbir

(
X,β

)
the irreducible component ofMbir

(
X,β

)
contain-

ing f . Denote byHf ⊂ Hom(P1, X) the irreducible component of Hom(P1, X)
containing [f ] (remember that Hom(P1, X) is smooth at [f ]). The action

Aut
(
P1

)
×

(
P1

)r ×Hom
(
P1, X

)
//
(
P1

)r ×Hom
(
P1, X

)(
ϕ, (c1, . . . , cr ; [g])

) � //
(
ϕ(c1), . . . , ϕ(cr) ; [g ◦ ϕ−1]

)
clearly preserves the irreducible components of Hom

(
P1, X

)
. Since f is not

constant, the action of Aut
(
P1

)
has finite stabilizers. Consider the diagram(

P1
)r ×Hf

M ''OOOOOOOOOOO

F (r)

zzuuuuuuuuuu

Xr
fMbir

(
X,β

)
where M is the projection onto the factor Hf followed by the natural map
that quotients out the action of Aut(P1). The morphism M is obviously
dominant, while Proposition 1.11 (together with Lemma 1.9) implies that
F (r) is dominant if r ≤ d− 1. Thus we may compute

dim
(
fMbir

(
X,β

))
= dim

((
P1

)r ×H
)
− r − 3 = −f(P1) ·KX − 1 = d− 1.

Let c1, . . . , cr ∈ P1 be r ≤ d− 1 distinct points at which f is an embedding
and let pi = f(ci). Let p := (c1, . . . , cr; [f ]) ∈

(
P1

)r × Hom(P1, X); it follows
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from Proposition 1.11 that

dim
(
F (r)

)−1(p1, . . . , pr) = r+dimHf −2r = −f(P1) ·KX +2− r = d− r+2.

Let Mbir

(
X,β

)
(p1, . . . , pr) be the closure of M

((
F (r)

)−1(p1, . . . , pr)
)
. Since

Aut(P1) has finite stabilizers on
(
F (r)

)−1(p1, . . . , pr), we find

(1.6) dimMbir

(
X,β

)
(p1, . . . , pr) = d− r − 1.

1.3. Independent Points. The next Lemma analyzes curves containing
d− 1 general points.

Lemma 1.12. For a general (p1, . . . , pd−1) ∈ Xd−1, all the morphisms in
Mbir

(
X,β

)
(p1, . . . , pd−1) are immersions.

Proof. Let I ⊂
(
P1

)d−1 ×Hf be the set of all d−tuples (c1, . . . , cd−1; [g])
such that g is not an immersion; Lemma 1.9 implies that I is a proper closed
subset of

(
P1

)d−1 × Hf . Note that I is Aut(P1)−invariant. By Proposi-
tion 1.11 and Lemma 1.9, F (d−1) is dominant, hence the general fiber of this
morphism has dimension d−1− f(P1) ·KX +2−2(d−1) = d+2−d+1 = 3,
thus the fibers of this morphism are Aut(P1)−orbits, since they are stable
under the action of Aut(P1). If the general fiber of F (d−1) met I, then we
would have

dim I ≥ 2(d− 1) + 3 = 2d+ 1 = (d− 1) + (d+ 2) = dim
((

P1
)d−1 ×Hf

)
and I would equal

(
P1

)d−1 ×Hf , which contradicts Lemma 1.9. Thus there
is an open dense subset U in Xd−1 not meeting the image of I. For any
(d− 1)−tuple (p1, . . . , pd−1) ∈ U we have that

Mbir

(
X,β

)
(p1, . . . , pd−1) = M

((
F (d−1)

)−1(p1, . . . , pd−1)
)
⊂Mbir

(
X,β

)
consists only of (finitely many) immersions. �

We now want to prove that for a general choice of d − 2 points on X, all
the resulting morphisms in Mbir

(
X,β

)
through them have reduced image.

Definition 1.13. We say that r points p1, . . . , pr in X are independent if
the following conditions hold for all k:

(1) no k of them are contained in a rational curve of degree k;
(2) the normalization of a rational curve of degree k + 1 in X through k

of them is an immersion.

Proposition 1.11, Lemma 1.12 and the dimension estimates (1.6) imply
that for any r ≥ 1 there are r−tuples of independent points if there are free
rational curves of anticanonical degree d ≥ r + 1, and that there are rational
curves of anticanonical degree d through r independent points if d ≥ r + 1.
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Lemma 1.14. Let C ⊂ X be a divisor of anticanonical degree d ≥ 3 all
of whose reduced irreducible component are rational. Let p1, . . . , pd−2 ∈ X be
d− 2 independent points contained in C. Then the divisor C has at most two
irreducible components and it is reduced.

Proof. Denote by C1, . . . , C` the reduced irreducible components of C. For
each curve Ci let di be the degree of Ci, mi be the multiplicity of Ci in C and
δi be the number of points p1, . . . , pd−2 lying on Ci. Then we have

∑
midi = d

and δi ≤ di − 1. Therefore

d− 2 =
∑

δi ≤
∑

di − ` ≤
∑

midi − ` = d− `

Thus ` ≤ 2, and the Lemma follows at once. �

Lemma 1.15. Let p1, . . . , pr ∈ X be r ≥ 2 independent points, and let
α ⊂ X be an integral curve of degree r + 2 and geometric genus zero con-
taining p1, . . . , pr. Let B be a smooth connected projective curve and let
F : B →Mα

bir(p1, . . . , pr) be a non-constant morphism. The reducible curves
in the family parametrized by B cannot always contain a component mapped
isomorphically to a curve of anticanonical degree strictly smaller than two.

Proof. Let S → B be the pull-back of the universal family M0,1(X,α) →
M0,0(X,α): S → B is a ruled surface with singularities of type Ak. The
reducible fibers consist of exactly two smooth rational curves (Lemma 1.14)
meeting at a point, possibly singular on S. By hypothesis S → B admits r
contractible sections. If all the reducible fibers of S contained a component
mapped to a curve of anticanonical degree strictly smaller than two, then
the r contractible sections would meet only smooth points of S and would
always be contained in the same component of each fiber (by definition of
independent points). This is impossible since a P1−bundle has at most one
negative section. �

1.4. Sliding moves. The next Lemma and its Corollary allow us to con-
struct irreducible subschemes in the boundary of the spaces M0,0

(
X,β

)
.

Let f : C̄ → X be a stable map of genus zero to the smooth surface X.
Let C̄0 be a connected subcurve, let C̄1, . . . , C̄` be the connected components
of the closure of C̄ \ C̄0. Let C̄0i be the irreducible component of C̄0 meeting
C̄i, and let C̄i,1 be the irreducible component of C̄i meeting C̄0 and let the
intersection point of C̄0i and C̄i,1 be p̄i. Denote by fi the restriction of f to
C̄i, for i ∈ {0, . . . , `}.

Let V ⊂M0,`

(
X, f∗[P1]

)
×

(
C̄1 × · · · × C̄`

)
be the subscheme consisting of

all points
(
[g ; c̄1, . . . , c̄`] ; c̄′1, . . . , c̄

′
`

)
, such that g(c̄i) = f(c′i) and [g ; c̄1, . . . , c̄`]

is in the same irreducible component of M0,`

(
X, f∗[P1]

)
as [f ; p̄1, . . . , p̄`].

Lemma 1.16. With notation as above, assume also that a general defor-
mation of f0 is generated by global sections, C̄0i is not contracted by f and
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f
(
C̄0i

)
6⊃ f

(
C̄i,1

)
, for all i’s. It follows that every irreducible component of

V containing
(
[f0 ; p̄1, . . . , p̄`] ; p̄1, . . . , p̄`

)
surjects onto the irreducible compo-

nent of M0,0

(
X, f∗[P1]

)
containing [f ].

Proof. Let Φ be an irreducible component of M0,0

(
X, f∗[P1]

)
containing

(the stable reduction of) [f ]. Define C by the Cartesian square on the left and
ev as the composite of the maps in the diagram

C //

��

ev:=(ev1,...,ev`)

((
M0,`

(
X, f∗[P1]

)
��

// X`

Φ � � // M0,0

(
X, f∗[P1]

)
.

Thus V fits in the diagram

V //

ι
��

π

##

(
C̄1 × · · · × C̄`

)
(f1,...,f`)

��

C
ev

//

��

X`

Φ

and we have V ⊂ W := C ×
(
C̄1 × · · · × C̄`

) P−→ C. Obviously P is flat and
since C −→ Φ is flat, it follows that W −→ Φ is flat. The fiber of π at the
point [g] is given by

π−1
(
[g]

)
=

{(
[g̃ ; c̄1, . . . , c̄`] ; c̄′1, . . . , c̄

′
`

) ∣∣∣ g̃(c̄i) = fi(c̄′i)
}

where the stable reduction of g̃ is g. If g has irreducible domain, and if
the image of g does not contain any singular point of (the reduced scheme)
f
(
C̄1∪ . . .∪C̄`

)
, nor does it contain any component of f

(
C̄i

)
, then the scheme

π−1
(
[g]

)
is finite. Thanks to [Ko] Theorem II.7.6 and Proposition II.3.7, a

general deformation g of f0 satisfies the previous conditions; thus the gen-
eral fiber of π in a neighbourhood of [f ] is finite and hence, letting v0 :=(
[f0 ; p̄1, . . . , p̄`] ; p̄1, . . . , p̄`

)
, we conclude that dimv0 V = dim Φ = dim C − `.

Let κi ∈ OX,f(p̄i) be a local equation of fi

(
P1

)
; clearly the ` equations

P ∗ev∗1(κ1), . . . , P ∗ev∗` (κ`) define V near v0. Since dimV = dim C−`, it follows
that OV,v0 is a Cohen-Macaulay OW,v0−module. Using [EGA4] Proposition
6.1.5, we deduce that OV,v0 is a flat OΦ,[f0]−module. The result follows. �

Construction. If f : C̄ → X is a stable map satisfying the hypothe-
ses of Lemma 1.16, then there is a proper irreducible subscheme Slf (C̄0) of
M0,0

(
X, f∗[C̄]

)
, consisting of morphisms g : C̄ ′ → X such that:
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• there is a decomposition C̄ ′ = C̄ ′
0 ∪ . . . ∪ C̄ ′

`, where C̄ ′
i are connected

curves;
• there are isomorphisms g|C̄′

i
' f |C̄i

;
• there is a morphism res : Slf (C̄0) → M0,0

(
X, f∗[C̄0]

)
, which is sur-

jective on the irreducible component containing f |C̄0
;

• there are dominant morphisms ai : Slf (C̄0) → C̄i, for i ∈ {1, . . . , `}.
We say that a stable map [g] ∈ Slf (C̄0) such that ai([g]) = p is obtained
from [f ] by sliding C̄0 along C̄i until it reaches p. We say that a stable map
[g] ∈ Slf (C̄0) such that π([g]) = [h] is obtained from [f ] by sliding C̄0 fixing
the remaining components until it reaches h.

A typical application of this construction can be found in the proof of
Lemma 3.1 as well as in many of the later proofs.

2. Divisors of Small Degree: the Picard Lattice

2.1. The Nef Cone. We collect here some results on the nef cone of a
del Pezzo surface. We prove a “numerical” decomposition of any nef divisor
on a del Pezzo surface in Corollary 2.3. In the later sections we will show how
to realize geometrically this decomposition.

Definition 2.1. Let Xδ be a del Pezzo surface of degree 9−δ. An integral
basis {`, e1, . . . , eδ} of Pic(Xδ) is a standard basis if there is a presentation
b : Xδ → P2 of Xδ as the blow up of P2 at δ points such that ` is the pull-back
of the class of a line and the ei’s are the exceptional divisors of b.

The following well-known Proposition gives a criterion to detect nef divisor
classes on del Pezzo surfaces.

Proposition 2.2. Let X be a del Pezzo surface of degree d ≤ 7. A divisor
class C ∈ Pic(X) is nef if and only if C · L ≥ 0 for all (−1)−curves L ⊂ X.

From this Proposition we deduce immediately the following Corollary.
Corollary 2.3. Let Xδ be a del Pezzo surface of degree 9 − δ ≤ 8. Let

D ∈ Pic(Xδ) be a nef divisor. There are non-negative integers n2, . . . , nδ, a
sequence of contraction of (−1)−curves Xδ → Xδ−1 → · · · → X1, and a nef
divisor D′ ∈ Pic(X1) such that

D = nδ(−KXδ
) + nδ−1(−KXδ−1) + . . .+ n2(−KX2) +D′.

Proof. Proceed by induction on δ. If δ ≤ 1, there is nothing to prove.
Suppose that δ ≥ 2 and let nδ := min

{
L · D | L ⊂ X a (−1)−curve}.

By assumption nδ ≥ 0. Let D̄ := D + nδKXδ
; then D̄ · L ≥ 0 for every

(−1)−curve L ⊂ Xδ. By Proposition 2.2 D̄ is nef and by construction there
is a (−1)−curve L0 ⊂ X such that D̄ · L0 = 0. Thus D̄ is the pull-back of
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a nef divisor on the del Pezzo surface Xδ−1 obtained by contracting L0. The
Corollary follows thanks to the inductive hypothesis. �

2.2. First Cases of the Main Theorem.

Proposition 2.4. Let Xδ be a del Pezzo surface of degree 9 − δ ≥ 3.
The scheme Mbir

(
Xδ,−KXδ

)
is birational to a P6−δ−bundle over Xδ; in

particular, it is rational and irreducible.

Proof. The rational map Mbir

(
Xδ,−KXδ

)
99K Xδ is obtained by assigning

to a stable map with irreducible domain the unique singular point of its image.
The rest of the proof is straightforward. �

Proposition 2.5. Let X be a del Pezzo surface of degree two. The scheme
Mbir

(
X,−KX

)
is isomorphic to a smooth plane quartic.

Proof. Let κ : X → P2 be the morphism associated to the anticanonical
sheaf. The branch curve R ⊂ P2 is a smooth quartic. The points of every
irreducible component of Mbir

(
X,−KX

)
correspond to the singular divisor

in | −KX |. These in turn are parameterized by the tangent lines to R. �

2.3. The Picard Group and the Orbits of the Weyl Group. In this
section we prove some results on the divisor classes of del Pezzo surfaces. In
particular, we determine the orbits of pairs of conics under the Weyl group.

Let Xδ be a del Pezzo surface of degree 9− δ.
Definition 2.6. A divisor C on Xδ is a conic if −KXδ

·C = 2 and C2 = 0.
Suppose that {`, e1, . . . , eδ} is a standard basis of Pic(Xδ). If C = a` −

b1e1 − . . .− bδeδ is a divisor on Xδ, we sometimes write it as (a ; b1, . . . , bδ).
Proposition 2.7. The conics on X8 are given, up to permutation of the

ei’s, by the following table:

(2.1)

Type ` e1 e2 e3 e4 e5 e6 e7 e8

A 1 1 0 0 0 0 0 0 0
B 2 1 1 1 1 0 0 0 0
C 3 2 1 1 1 1 1 0 0
D 4 2 2 2 1 1 1 1 0
E 5 2 2 2 2 2 2 1 0
D′ 4 3 1 1 1 1 1 1 1
F 5 3 2 2 2 1 1 1 1
G 6 3 3 2 2 2 2 1 1
H 7 3 3 3 3 2 2 2 1
H ′ 7 4 3 2 2 2 2 2 2
I 8 4 3 3 3 3 2 2 2
I ′ 8 3 3 3 3 3 3 3 1
J 9 4 4 3 3 3 3 3 2
K 10 4 4 4 4 3 3 3 3
L 11 4 4 4 4 4 4 4 3
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Their numbers are given by the table:

δ 8 7 6 5 4 3 2
conics 2160 126 27 10 5 3 2

Proof. We proceed just like in [Ma] IV, §25. The condition of being a conic
translates to the equations

a2 −
8∑

i=1

b2i = 0 and 3a−
8∑

i=1

bi = 2

and we may equivalently rewrite these as
8∑

i=1

(
a− 2bi − 2

)2 = 16 and 3a−
8∑

i=1

bi = 2

It is now easy (but somewhat long) to check that (2.1) is the complete list of
solutions up to permutations. �

Remark 2.8. The classes of conics on Xδ for δ ≤ 7 are obtained from
the ones in list (2.1) by erasing 8 − δ zeros and permuting the remaining
coordinates. Thus (up to permutations) the first five rows and seven columns
describe conics on X7, the first three rows and six columns are the conics on
X6 and so on.

Denote by · the intersection form on the lattice Pic(Xδ). From now on by
an automorphism of Pic(Xδ) we will always mean a group automorphism of
the lattice which preserves the intersection form and the canonical class; we
let Wδ := Aut

(
Pic(Xδ),KXδ

, ·
)
, and we refer to Wδ as the Weyl group. It

will be useful later to know what are the orbits of pairs of conics under the
automorphism group Wδ of Pic(Xδ).

Lemma 2.9. The group Wδ, 2 ≤ δ ≤ 8, acts transitively on the conics.
Proof. We only prove this in the case δ = 8 and it will be clear from the

proof that the same argument applies to the other cases.
Choose a standard basis {`, e1, . . . , e8} of Pic(X); it is enough to prove that

the elements in the list (2.1) are in the same orbit, since any permutation of
the indices is in W8. Let T123 be the involution of Pic(X8) such that(
a ; b1, . . . , b8

) T123−→
(
2a−b1−b2−b3 ; a−b2−b3, a−b1−b3, a−b1−b2, b4, . . . , b8

)
.

By inspection, the quantity 2a−b1−b2−b3 for elements in list (2.1) is always
strictly smaller than the initial value of a unless a = 1. Permuting the indices
so that b1, b2, b3 are the three largest coefficients among the bi’s and iterating
this strategy finishes the argument. Note that we are always “climbing up” list
(2.1) and the conics on X7 are the ones above line 5, and are hence preserved
by the automorphism T123 and the permutations needed. Similar remarks are
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valid for Xδ, with 3 ≤ δ ≤ 6, and the result is obvious for X2, where the
automorphism T123 is not defined. �

We now turn our attention to the action of the Weyl group on ordered
pairs of conics

(
Q1, Q2

)
. The number Q1 · Q2 is an invariant of this action.

Looking at the list (2.1) we see that

δ = 8 7 6 5 4 3 2
Q1 ·Q2 ≤ 8 4 2 2 1 1 1

and that all the possible values between 0 and the number given above are
attained; thus the action of W8 on pairs of conics has at least 9 orbits.

If δ = 8, there is one more “invariant” under W8 of pairs of conics: define
a pair

(
Q1, Q2

)
to be ample if Q1 +Q2 is an ample divisor on X8. Since the

property of being ample is a numerical property, it follows that it is a property
of the W8−orbit of the pair.

The next Proposition proves that the lower bounds on the number of orbits
obtained by considering the intersection product and ampleness (in case δ = 8)
of the pair are in fact the correct number of orbits.

Proposition 2.10. Let Q1 and Q2 be two conics in Xδ, 2 ≤ δ ≤ 8. The
intersection product Q1 ·Q2 determines uniquely the orbit of the (ordered) pair(
Q1, Q2

)
under Wδ with the only exception of δ = 8 and Q1 · Q2 = 4 which

has exactly two orbits, one ample and one not ample.

Proof. The proof is similar to the proof of Lemma 2.9. First we may
assume that Q1 = ` − e1. Then we again climb up the list (2.1) using the
automorphism T123 followed by a permutation of the indices {2, . . . , 8} so
that the resulting b2 and b3 are the two largest bi’s, with i ≥ 2. Note that
the elements of Wδ described above do indeed fix Q1. We leave the explicit
checks to the reader. �

3. Realizing the Deformation: from Large to Small Degree

3.1. Breaking the Curve. In this section we construct deformations of
a general point in every irreducible component of the space Mbir

(
X,β

)
to

morphisms with image containing only curves of small anticanonical degree.
Lemma 3.1. Let f : C̄1 ∪ . . .∪ C̄r → X be a stable map of genus zero and

suppose that f is a free morphism. If f(C̄1) ·f(C̄2) > 0 and C̄3 is the union of
the components between C̄1 and C̄2, then in the same irreducible component of
M0,0

(
X, f∗[C̄]

)
containing [f ] there is a free morphism g : C̄1 ∪ . . .∪ C̄r → X

with dual graph
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•

•

•

•

•

•

•��	�
��
��	�
��C̄2

��	�
��C̄3��
��

���	�
��C̄1
?????

Dual graph of f

•

•

•

•

•

•

•��	�
��
��	�
��C̄2

��	�
��C̄3��
��

���	�
��C̄1

Dual graph of g

Proof. Assume first that C̄3 is irreducible. Slide C̄1 along C̄3 until it reaches
C̄3 ∩ C̄2 to obtain a morphism f1 with dual graph

•

•

• •

•

•

•

•��	�
��
��	�
��C̄2��	�
��Ē

��	�
�� C̄3

��	�
��C̄′
1

Dual graph of f1

•

•

• •

•

•

•��	�
��
��	�
��C̄2

��	�
��C̄3��
��

���	�
��C̄′′
1

Dual graph of f2
where Ē is a contracted component. The morphism f1 is also obtained from
a morphism f2 with the dual graph shown above by sliding C̄ ′′

1 along C̄2 until
it reaches C̄2 ∩ C̄3. Finally, slide f2|C̄′′

1
until it reaches f |C̄1

.
If C̄3 is not irreducible, it suffices to start the deformation smoothing out

C̄3 fixing the remaining components, apply the Lemma, and then break again
C̄3 into its components. Thanks to Propositions 1.6 and 1.7 all the points
where the sliding moves ended are smooth. Thus all the deformations took
place in the component of M0,0

(
X, f∗[C̄]

)
containing f . �

Lemma 3.2. Let f : P1 → X be a free birational morphism to a del Pezzo
surface. In the same irreducible component of Mbir

(
X, f∗[P1]

)
as f there is

a free morphism g : C̄ → X birational to its image such that each irreducible
component of C̄ has image of anticanonical degree two or three.

Proof. We establish the Lemma by induction on d := −KX ·f∗[P1]. There is
nothing to prove if d ≤ 3, since the image of a free morphism has anticanonical
degree at least two. Suppose that d ≥ 4. By Proposition 1.11, we may assume
that the image of f contains d− 2 ≥ 2 independent points p1, . . . , pd−2 of X;
we know from (1.6) that dim[f ]Mbir

(
p1, . . . , pd−2

)
= 1. Thanks to the Bend

and Break Theorem and Lemmas 1.14 and 1.15 we deduce that in the same
irreducible component of Mbir

(
X, f∗[P1]

)
as f we can find a free morphism

f0 : C̄1 ∪ C̄2 → X birational to its image with C̄i irreducible. Note that [f0]
is a smooth point of the mapping space. Since di := −KX · f0(C̄i) ≥ 2, by
induction on d the irreducible component of Mbir

(
X, f0(C̄i)

)
containing f0|C̄i

contains a morphism gi : C̄i
1∪ . . .∪ C̄i

ri
−→ X with all the required properties.

Sliding C̄1 until it reaches g1 and then sliding C̄2 in the resulting morphism
until it reaches g2 we obtain a morphism f1 with dual graph
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•
dual
graph
of g1

•

• •

•

•

dual
graph
of g2��	�
��
C̄2

c

��	�
��C̄2
a

��	�
��C̄2
b

��	�
��C̄1
a

��	�
��
C̄1

c

��	�
��C̄1
b

Dual graph of f1

We need to show that the images f1(C̄1
a) and f1(C̄2

a) can be assumed to be
distinct. This follows at once from Lemma 3.1 and the fact that if two non-
zero nef classes have intersection product zero, then they must be multiples
of the same conic class. �

3.2. Easy Cases: P2, P1 × P1 and Blp(P2). This section proves the
irreducibility of the spaces Mbir

(
Blp(P2), α

)
; a similar argument could be

applied also to the case of P2 and P1×P1. In these last two cases though the
result is obvious and it also follows also from [KP].

Theorem 3.3. The spaces of stable maps Mbir

(
Blp(P2), α

)
are irreducible

or empty for all divisor classes α.

Proof. Let L,E ∈ Pic(Blp(P2)) be the divisor classes of a line and the
(−1)−curve respectively. Let f : P1 → Blp(P2) be a general morphism in an
irreducible component of Mbir

(
Blp(P2), α

)
and let d := −KBlp(P2) · α. Since

the integral divisors of degree d ≤ 3 on Blp(P2) are E, L− E and L and the
Theorem is true for them, we may assume that d ≥ 4.

Using Lemma 3.2 we deform f to an immersion f ′ : C̄ → Blp(P2) bira-
tional to its image and such that the irreducible components of f ′(C̄) have
anticanonical degree two or three. Since the divisors in |L − E| are either
disjoint or coincide, it follows that there must be a component C̄0 ⊂ C̄ such
that f∗[C̄0] = L. Using Lemma 3.1 we also assume that all the components
of C̄ different from C̄0 are adjacent to C̄0:

components

representing L− E

•

•

•

•

•��	�
��F̄r

...

��	�
��F̄1

��	�
��??
??

?

��	�
������
�
C̄0

��	�
�� L̄s

??
??

??
...

��	�
�� L̄1

��
��

��
components

representing L

Dual graph of f ′

The locus of morphisms having this labeled dual graph is an open subset of(
P2

)s+1 ×
(
P1

)r. Thus the smooth locus of Mbir

(
Blp(P2), γ

)
is connected

and the Theorem follows. �
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4. Realizing the Deformation: from Small to Large Degree

4.1. Growing from the Conics. In this section we prove some results
that allow us to deform unions of conics to divisors which are the anticanonical
divisor on a del Pezzo surface dominated by X. These results are the main
building blocks in the proof of Theorem 4.3.

Lemma 4.1. Let f : C̄ → X be a free morphism from a connected, pro-
jective, nodal curve of arithmetic genus zero to a del Pezzo surface. Sup-
pose that C̄1 and C̄2 are the irreducible components of C̄ and that E is a
(−1)−curve on X such that f∗[C̄1] · E = 0 and f∗[C̄2] · E > 0. Then in the
irreducible component of M0,0

(
X, f∗[C̄]

)
containing [f ] there is a morphism

g : D̄1 ∪ D̄2 → X representing a smooth point such that D̄1 and D̄2 are
irreducible, g∗[D̄1] = f∗[C̄1]− E and g∗[D̄2] = f∗[C̄2] + E.

Proof. Since f is free, we may assume that f(C̄2) does not contain any
intersection point of (−1)−curves and that the intersection f(C̄2)∩E is trans-
verse. Let p̄ ∈ C̄2 be a point such that p := f(p̄) ∈ E; such a point exists
since f(C̄2) ·E > 0. Slide C̄1 along C̄2 until it reaches p̄ to obtain a morphism
f1 : C̄ ′

1 ∪ C̄2 → X. Since f∗[C̄1] · E = 0 and f1(C̄ ′
1) 3 p, it follows that

C̄ ′
1 = D̄1 ∪ Ē, where D̄1 maps to f∗[C̄1]− E and Ē maps to E:

• • •��	�
��C̄2��	�
��Ē��	�
��D̄1

Dual graph of f1
Since f(C̄2) does not contain the intersections of two (−1)−curves, there can-
not be contracted components. Note that the node between D̄1 and Ē maps
to a node, since (f1)∗[D̄1] · E = 1. The stable map [f1] represents a smooth
point of its moduli space by an application of Proposition 1.6. Smoothing out
Ē ∪ C̄2 concludes the proof. �

Proposition 4.2. Let Xδ be a del Pezzo surface of degree 9 − δ such
that the spaces Mbir

(
Xδ, β

)
are irreducible or empty if −KXδ

· β = 2, 3.
Let f : Q̄ → Xδ be a morphism from a connected, projective, nodal curve of
arithmetic genus zero. Suppose that Q̄1 and Q̄2 are the irreducible components
of Q̄ and that f∗[Q̄1] and f∗[Q̄2] are conics. If f(Q̄1) · f(Q̄2) ≥ 2, then in the
irreducible component of M0,0

(
Xδ, f∗[Q̄]

)
containing [f ] there is a morphism

g : C̄ → Xδ such that

• all the irreducible components of C̄ are immersed and represent nef
divisor classes;

• there is a component C̄1 ⊂ C̄ and a standard basis
{
`, e1, . . . , eδ

}
of

Pic(Xδ) with g∗[C̄1] = 3`− e1 − . . .− eα for some α ≤ δ;
• the point [g] is smooth.

Proof. The cases 9− δ ≤ 1 are clear; suppose that 9− δ ≥ 2. Since f∗TX is
globally generated, f represents a smooth point of M0,0

(
Xδ, f∗[Q̄]

)
. Sliding
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f |Q̄1
fixing Q̄2, we may assume that Q1 := f(Q̄1) misses the intersection

points between any two (−1)−curves.
If Q1 · Q2 = 2, then by Proposition 2.10 we may write Q1 = ` − e1 and

Q2 = 2`− e2 − e3 − e4 − e5 and it suffices to smooth Q̄1 ∪ Q̄2 to conclude.
Suppose that Q1 ·Q2 ≥ 3; by Proposition 2.10 we may choose a standard

basis so that Q1 = `− e1 and Q2 = M1 +M2 with

Q1 ·Q2 = 3

Q2 =
(
5 ; 2, 2, 2, 2, 2, 2, 1

)
M1 =

(
2 ; 0, 1, 1, 1, 1, 1, 0

)
M2 =

(
3 ; 2, 1, 1, 1, 1, 1, 1

)
Q1 ·Q2 = 4

Q2 =
(
5 ; 1, 2, 2, 2, 2, 2, 2

)
M1 =

(
2 ; 0, 1, 1, 1, 1, 1, 0

)
M2 =

(
3 ; 1, 1, 1, 1, 1, 1, 2

)
Apply Lemma 4.1 with E = M1 to obtain a morphism g′ : Q̄′

1 ∪ M̄2 → X,
such that g′∗[Q̄

′
1] = 3` − e1 − . . . − e6. Apply again the same argument in

Lemma 4.1 with E = E7 to conclude (we do not need g′ to be nef, since we
have some freedom in the choice of the limit of Q̄′

1). �

4.2. Reduction of the Problem to Finitely Many Cases. This sec-
tion gathers the information obtained in the previous sections to prove that
the irreducibility of Mbir

(
X,β

)
for all β can be checked by examining only

finitely many cases. The proof involves several steps and is quite long.

Theorem 4.3. Let Xδ be a del Pezzo surface of degree 9−δ ≥ 2, such that
the spaces Mbir

(
X,β

)
are irreducible (or empty) for all nef divisors β with

2 ≤ −KX · β ≤ 3. Then, for any nef divisor D ⊂ X the space Mbir

(
X,D

)
is

irreducible or empty.

Proof. We prove the Theorem by induction on d := −KX ·D. By hypothesis
the Theorem is true if d ≤ 3 and by Theorem 3.3 it is true if δ ≤ 2.

If there is a (−1)−curve L ⊂ X such that L ·D = 0, then Mbir

(
X,D

)
'

Mbir

(
X ′, b∗D

)
, where b : X → X ′ is the contraction of L. Hence we reduce to

the case in which the divisor D intersects strictly positively every (−1)−curve,
i.e. D is ample (Proposition 2.2).

Suppose that d ≥ 4. Let f : P1 → X be a general morphism in an
irreducible component of Mbir

(
X,D

)
. Thanks to Lemma 3.2 we may deform

f to a morphism g : C̄ → X such that each component C̄0 ⊂ C̄ is immersed
to a curve of anticanonical degree two or three. We want to show that we
may specialize g to a morphism in which one component is mapped to a curve
with class −KX . We prove this in a series of steps.

Step 1. There is a standard basis {`, e1, . . . , eδ} of Pic(X) and a compo-
nent C̄1 of C̄ mapped birationally to a curve with class 3`− e1 − . . .− eα, for
some α ∈ {1, . . . , 7}. The morphism is free on all the components of C̄.
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The only nef divisors of anticanonical degree at most three on X that are
not of the required form are the conics and the divisor ` in some standard
basis. Hence we reduce to the case in which each component of C̄ is mapped
to a curve whose class is either a conic or `, for some choice of standard basis.
We reduce further to the following case:

(?)
There is a standard basis {`, e1, . . . , eδ} of Pic(X) such that all

curves of degree three in the image of g have divisor class `.
This is easily accomplished. Suppose that C̄1 and C̄2 are components of C̄

such that g∗[C̄1] = `1 and g∗[C̄2] = `2, where {`i, ei
1, . . . , e

i
δ} are two standard

basis of Pic(X) and `1 6= `2. We may first of all apply Lemma 3.1 to assume
that C̄1 and C̄2 are adjacent. Since `2 is not proportional to `1, it cannot
be orthogonal to e11, . . . , e

1
δ . Thus we may assume that `2 · e11 > 0. Applying

Lemma 4.1 with E = e11 and using Lemma 3.2 we decrease by two the number
of components mapping to curves of degree 3. Iterating this argument we
assume that condition (?) holds.

If there are three conics in the image of g with pairwise intersection prod-
ucts equal to one, smoothing them concludes the proof of Step 1. This remark
and Proposition 4.2 allow us further to reduce to the case in which there are
curves representing the divisor class ` in the image of g and all conics repre-
sent the same two divisors classes Q1 or Q2, with Q1 ·Q2 = 1. The divisor D
is ample and we may assume that the classes of the components of the image
of g are ` or conics. Since no multiple of ` is ample, it follows that there must
be components mapped to conics.

Suppose that C̄1 is mapped to a curve with class ` and C̄2 is mapped to a
curve with class a conic Q. Thanks to Lemma 3.1 we may assume that C̄1 and
C̄2 are adjacent. Referring to table (2.1), if Q is of type B, then smoothing
out C̄1 ∪ C̄2 concludes the first step; if Q is of type C,D or E, then applying
Lemma 4.1 with E = e1 concludes (with a different choice of standard basis,
when Q = D or E). The only remaining case is the one in which all the
conics are of type A. Since the image of g is an ample divisor and δ ≥ 2, it
follows that there must be two components Q̄1, Q̄2 mapped to ` − e1, ` − e2
respectively. Applying Lemma 3.1 and smoothing out C̄1∪ Q̄1∪ Q̄2 concludes
the first step.

Step 2. There is a component C̄1 ⊂ C̄ mapped to a curve with class −KX .
Let C̄1 be the component mapped to a curve with class 3`− e1 − . . .− eα

and apply Lemma 3.1 to assume that all remaining components are adjacent
to C̄1. Apply successively Lemma 4.1 with E = Eα+1, . . . , Eδ to conclude.

Step 3. If D + KX is not a multiple of a conic, then we may deform
g to a free morphism h : C̄1 ∪ C̄2 → X where C̄1 and C̄2 are irreducible,
h∗[C̄1] = −KX , h(C̄1) 6= h(C̄2). If D +KX is a multiple of a conic Q, then
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we may deform g : C̄ → X to a free morphism h : C̄1 ∪ Q̄1 ∪ . . . ∪ Q̄r → X

where C̄1 and all Q̄i’s are irreducible, h∗[C̄1] = −KX , h∗[Q̄i] = Q and C̄1 is
adjacent to all Q̄i.

Thanks to the previous steps, we may assume that g∗[C̄1] = −KX . If the
divisor D + KX is not a multiple of a conic, then any divisor representing
it is connected (this follows at once from Corollary 2.3). Let C̄ ′

2 ⊂ C̄ be a
component different from C̄1; using Lemma 3.1 we may assume that every
component of C̄ is adjacent to C̄ ′

2 and then we conclude by smoothing out all
the components of C̄ \ C̄1 to a single irreducible component C̄2.

If D + KX = rQ, where Q is a conic, use Lemma 3.2 to break every
component different from C̄1 to a union of curves representing Q and then
use Lemma 3.1 to make sure that all the components of the resulting curve
are adjacent to C̄1. This concludes the third step.

Write D = nδ(−KXδ
) + . . . + n2(−KX2) + D′ (Corollary 2.3) and let SD

be the locus of free morphisms k : Z̄ ∪ C̄1 ∪ . . . ∪ C̄r → X, where Z̄ and the
C̄i’s are all irreducible, Z̄ is adjacent to all the C̄i’s and represents −KXδ

,
nδ − 1 of the C̄i represent −KXδ

, nδ−1 of the C̄i represent −KXδ−1 , and so
on. Applying repeatedly the reduction of Step 3 and Lemma 3.1, we deduce
that every irreducible component of Mbir

(
X,D

)
contains points in SD.

Step 4. The locus SD is connected.
Let k0 : P1 → Xδ be a morphism with (k0)∗[P1] = −KXδ

and let S ⊂
M0,0

(
X,−KXδ

− KXα

)
be the locus of free morphisms k : P1 ∪ P1 → Xδ

birational to their image, where k agrees with k0 on the “first” component
and sends the “second” component to −KXα

. It is clearly enough to show
that S is connected for general k0 and all α. Unless α = δ = 7, the statement
is clear. If α = δ = 7, then S consists of at most two irreducible components:
restricting a morphism in S to its second component is a dominant morphism
to Mbir

(
X,−KX7

)
with fibers of length (−KX7)

2 = 2. If S is reducible,
the closures of its two irreducible components meet at the morphisms k :
P1 ∪ C̄ → X for which k(P1 ∩ C̄) is a ramification point for the anticanonical
map X7 → P2. For general k0 some such points are in S and S is connected.

The Theorem follows from Step 3 and Step 4, since SD is contained in the
smooth locus of Mbir

(
X,D

)
. �

Remark 4.4. It follows easily from Corollary 2.3 that if D is a nef divisor
which is not a multiple of a conic, then the space Mbir

(
X,D

)
is not empty.

Remark 4.5. The spaces M0,0

(
X,mC

)
, where C is the class of a conic,

are easily seen to be irreducible, for m ≥ 0.
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5. Conclusion

Theorem 5.1. Let Xδ be a del Pezzo surface of degree 9 − δ ≥ 2. The
spaces Mbir

(
Xδ, β

)
are irreducible or empty for every divisor β ∈ Pic(Xδ).

Proof. Suppose Mbir

(
Xδ, β

)
is not empty. Then β is represented by an

effective integral curve on Xδ. If β is not nef, then it follows that β2 < 0.
We deduce that β is a positive multiple d of a (−1)−curve. If d = 1, then
Mbir

(
Xδ, β

)
consists of a single point. If d > 1, then Mbir

(
Xδ, β

)
= ∅.

Suppose now that β is a nef divisor. Thanks to Theorem 4.3, we simply
need to check that on a del Pezzo surface of degree at least two, the spaces
Mbir

(
Xδ, β

)
are irreducible for all effective integral divisor classes β such that

−KXδ
· β equals two or three. These cases are easy and some of them have

already been treated in Propositions 2.4 and 2.5 and in Theorem 3.3. �

As a Corollary of the above Theorem, we deduce the irreducibility of the
Severi varieties of rational curves on the del Pezzo surfaces (of degree d ≥ 2).
Let β be a divisor class in Pic(Xδ) and let V0,β ⊂ |β| be the closure of the set
of points corresponding to integral rational divisors. We call V0,β the Severi
variety of rational curves on X with divisor class β.

Corollary 5.2. Let Xδ be a del Pezzo surface of degree 9 − δ ≥ 2. The
Severi varieties V0,β of rational curves on Xδ are either empty or irreducible
for every divisor β ∈ Pic(Xδ).
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