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University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary

email: amathe@cs.elte.hu

amathe.web.elte.hu

September 27, 2005

Abstract

Suppose F ⊂ [0, 1] is closed. Is it true that the typical (in the
sense of Baire category) function in C1[0, 1] is one-to-one on F? If
dimBF < 1/2 we show that the answer to this question is yes, though
we construct an F with dimBF = 1/2 for which the answer is no. If
Cα is the middle-α Cantor set we prove that the answer is yes if and
only if dim(Cα) ≤ 1/2. There are F ’s with Hausdorff dimension one
for which the answer is still yes. Some other related results are also
presented.
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1 Introduction

For the annual Miklós Schweitzer Competition organized by the János Bolyai
Mathematical Society in 2004 the first listed author, having some general-
izations in his mind as well, proposed the following problem:
Is it true that if the perfect set F ⊂ [0, 1] is of zero Lebesgue measure then
those functions in C1[0, 1] which are one-to-one on F form a dense subset of
C1[0, 1]?
The answer to this question is negative. The winner of this Schweitzer Com-
petition, the second listed author of this paper, found a particularly trans-
parent solution to this problem and also suggested some generalizations. So
the authors of this paper teamed up and wrote this paper.

We do not interrupt this introduction with definitions and notation which
can be found in Section 2 together with some further references.

If one considers the space C[0, 1] of the continuous functions equipped
with the supremum norm, instead of the space C1[0, 1] then the answer to
the above problem is yes. In fact, much more is true. From Lemma 9 and
the proof of Corollary 8 of [1] it follows that if F ⊂ [0, 1] is of first category
then there exists a residual set S ⊂ C[0, 1] such that for all f ∈ S the
sets fn(F ), n = 0, 1, ... are pairwise disjoint and f is one-to-one on each set
fn(F ), n = 0, 1, ..., (where fn denotes the n’th iterate of f). This implies
that for any nowhere dense perfect set F ⊂ [0, 1] if F denotes the set of those
functions in C[0, 1] which are one-to-one on F then F is dense in C[0, 1].

In the space C1[0, 1] the answer depends on F . In Theorem 5 we show
that if the lower box dimension of F is less than 1/2 then the typical C1[0, 1]
function is one-to-one on F . In Theorem 12 we construct a closed F ⊂ [0, 1]
of box dimension 1/2 such that the set of those f ∈ C1[0, 1] for which f |F is
one-to-one is not dense in C1[0, 1]. This shows that the value 1/2 in Theorem
5 cannot be improved. The first natural idea to construct a closed set F for
Theorem 12 would be by using a middle-α Cantor set, Cα or, more generally,
by using a self similar set with the Open Set Condition. For these sets
the Hausdorff and box dimension coincide and it is interesting that if the
dimension of such sets equals 1/2 then the typical C1[0, 1] function is still
one-to-one on them, see Theorems 7 and 10. In Theorem 10 we also show
that for the Cantor sets Cα the typical C1[0, 1] function is one-to-one on Cα

if and only if dim(Cα) ≤ 1/2.
Hausdorff dimension seems to be less appropriate since in Theorem 11

we construct a closed set F of Hausdorff dimension one such that the typical
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C1[0, 1] function is one-to-one on F. Moreover, by Theorem 6 if the Hausdorff
dimension of F × F is less than one then we can guarantee that a typical
C1[0, 1] function is one-to-one on F.

Several of the results in this paper depend on property P, introduced in
Section 2, which roughly says that the image of F ×F is nowhere dense under
projections in some “dense set of directions”. In Theorem 2 we show that if
the closed set F ⊂ [0, 1] has property P then the typical C1[0, 1] function is
one-to-one on F.

2 Notation and Preliminary Results

Recall that the usual metrics ρ0, and ρ1 on C[0, 1], and on C1[0, 1], respec-
tively, are given by

ρ0(f, g) = max
x∈[0,1]

|f(x) − g(x)| for f, g ∈ C[0, 1],

and
ρ1(f, g) = ρ0(f, g) + ρ0(f

′, g′) for f, g ∈ C1[0, 1].

It is well known that the metric spaces (C[0, 1], ρ0) and (C1[0, 1], ρ1) are
complete and hence Baire’s category theorem holds in these spaces. We say
that a typical C[0, 1], or C1[0, 1] function has a certain property if the set
of those functions which do not have this property is of first category in
C[0, 1], or in C1[0, 1]. (Certain authors prefer using the term generic instead
of typical.)

Let F ⊂ R be bounded. By Nδ(F ) denote the minimum number of closed
intervals of length δ that cover F . Then the lower and upper box dimensions
of F are defined as

dimBF = lim inf
δ↘0

log Nδ(F )

− log δ
and dimBF = lim sup

δ↘0

log Nδ(F )

− log δ
,

respectively. If dimBF = dimBF then we call this number the box dimension
of F and we denote it by dimBF . By equivalent definitions 3.1 on p. 41 of
[4], instead of Nδ(F ) several other expressions can be used in the definition
of box dimension, for example, the number of those [kδ, (k +1)δ], k ∈ Z grid
intervals which intersect F .

Suppose ϕ(0) = 0, ϕ(x) > 0 for x > 0, moreover ϕ is monotone increasing
and continuous from the right.
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For A ⊂ R we denote by |A| the diameter of A. For δ > 0 set

Hϕ
(δ)(A) = inf

{

∑

j

ϕ(|Aj|) : A ⊂ ∪jAj , |Aj| < δ

}

,

and
Hϕ(A) = lim

δ↘0
Hϕ

(δ)(A) = sup
δ>0

Hϕ
(δ)(A).

Then, (see Theorem 27 in [6], p. 50), Hϕ is a regular Borel measure and
each set of finite Hϕ measure contains an Fσ set of the same measure.

If ϕ(x) = xs then we obtain the s-dimensional Hausdorff measure which
will be denoted by Hs. Set

ϕ1−(x) =







0, if x = 0;
−x log x, if 0 < x < 1/e;

x, if 1/e ≤ x.

For ease of notation the measure Hϕ
1− will be denoted by H1− . Since

dimH(A), the Hausdorff dimension of A equals inf{s : Hs(A) = 0} one can
easily see that if 0 < H1−(A) < ∞ then dimH(A) = 1 and H1(A) = λ(A) = 0,
where λ denotes the Lebesgue measure.

Let F be a closed set in [0, 1]. Consider the Cartesian product F ×F , and
its projections in various directions. Let us denote by πβ/α the projection
onto the line with tangent vector (α, β) of unit length, that is, α2 + β2 = 1
and πβ/α(x, y) = αx+βy. Note that β/α is the slope of the line with tangent
vector (α, β).

We say that property P holds for the closed set F ⊂ [0, 1] if there exists
a dense subset H of R for which πh(F × F ) ⊂ R is nowhere dense for every
h ∈ H . That is, the image of F × F is nowhere dense under projections in
some “dense set of directions”.

For the definition of iterated function systems and self-similar sets satis-
fying the Open Set Condition (OSC) we refer to Section 9 of [4]. We could
not find an explicit reference to the next lemma so we outline its proof.

Lemma 1. Let F ⊂ R be a self-similar set with OSC. Then the Hausdorff
measure of F × F in its dimension is finite.

Proof. Recall from Theorem 9.3 of [4] p. 118 that dimHF = dimBF = s
where

∑m
i=1 rs

i = 1 and F = ∪m
i=1Si(F ), with similarities Si of contraction
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ratio ri < 1. By Corollary 7.4 of [4], dimH(F × F ) = 2dimH(F ). Given
δ > 0, as in the proof of Theorem 9.3 of [4], choose and fix a finite set Q of
finite sequences i = (i1, . . . , ik) such that for every infinite sequence (i1, ...)
there is exactly one value of k with i ∈ Q and

(min
i

ri)δ ≤ ri1 · · · rik < δ. (1)

Considering the sets Fi = Fi1,...,ik
def
=Si1 ◦ · · · ◦ Sik(F ) we obtain a covering

{Fi : i ∈ Q} of F such that (see the last paragraph of the proof of Theorem
9.3 in [4])

∑

i∈Q

|Fi|s = |F |s
∑

i∈Q

(ri1 · · · rik)
s = |F |s.

Moreover, from
∑

i∈Q(ri1 · · · rik)
s = 1 it also follows that Q contains at most

(mini ri)
−sδ−s = N∗(δ) many sequences.

Now, F ×F is covered by the sets Fi ×Fj , (i, j) ∈ Q×Q of diameter less

than
√

2δ|F |. Therefore,

H2s
(
√

2δ|F |)(F × F ) < (N∗(δ))2(
√

2δ|F |)2s = (min
i

ri)
−2s2s|F |2s.

This implies that H2s(F × F ) < ∞.

3 Main Results

Theorem 2. Let F ⊂ [0, 1] be a closed set. If property P holds for F then
the typical C1[0, 1] function is one-to-one on F .

To prove Theorem 2 we need Claim 3 and Lemma 4.

Claim 3. Let F be a closed subset of [0, 1] for which property P holds. Let N
be a positive integer and m′

i, c′i be given real numbers (i = 1, . . . , N). For any
ε > 0 there exist real numbers mi 6= 0, ci for which |mi−m′

i| < ε, |ci−c′i| < ε
and the sets miF + ci are pairwise disjoint.

Proof. We will prove the following slightly stronger statement, denoted by
SN : Suppose we have given real numbers mi 6= 0, ci (i = 1, . . . , N), ε > 0,
m′ and c′. There exist real numbers m 6= 0 and c such that |m − m′| <
ε, |c − c′| < ε and for each i = 1, . . . , N the sets miF + ci are disjoint from
mF + c. From this, Claim 3 follows by induction, taking m′ = m′

N+1 and
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c′ = c′N+1 and supposing that we have already found suitable mi and ci for
i = 1, . . . , N , by SN we can find suitable mN+1 and cN+1.

Statements SN are also proved by induction on N . We start with S1. We
need to choose m and c such that

(m1F + c1) ∩ (mF + c) = ∅.

Equivalently,
(

F +
c1

m1

)

∩
(

m

m1
F +

c

m1

)

= ∅,

F ∩
(

m

m1
F +

c − c1

m1

)

= ∅,

0 6∈ F −
(

m

m1

F +
c − c1

m1

)

,

c − c1

m1
6∈ F +

(

− m

m1

)

F.

By property P we have a dense subset H of R, for which for every h ∈ H
πh(F × F ) is nowhere dense. If α 6= 0 and β are such that β/α = h and
α2 + β2 = 1, then

πh(F × F ) = αF + βF = α(F + hF ). (2)

Hence, for any h ∈ H the set F + hF is nowhere dense. Since H is dense we
can choose m 6= 0 with |m−m′| < ε such that − m

m1

∈ H . Thus F +(− m
m1

)F

is nowhere dense and we can choose c with |c − c′| < ε such that c−c1
m1

6∈
F + (− m

m1

)F . This proves statement S1.
Suppose N > 1. By our induction hypothesis, SN−1 applied to the index

set i = 2, . . . , N , we can choose real numbers m′′ and c′′ such that |m′′−m′| <
ε/2, |c′′ − c′| < ε/2 and for each i = 2, . . . , N the sets miF + ci are disjoint
from m′′F + c′′. Since F is a compact set, m′′F + c′′ and miF + ci are also
compact sets, so they have a positive distance for each i = 2, . . . , N . Hence,
for a sufficiently small δ > 0, for any real numbers m ∈ (m′′ − δ, m′′ + δ),
c ∈ (c′′ − δ, c′′ + δ) for each i = 2, . . . , N the sets mF + c and miF + ci

are still disjoint. Now we use statement S1 with m′′ and c′′ instead of m′

and c′ and with min(ε/2, δ) instead of ε. We obtain m 6= 0 and c for which
|m−m′′| < min(ε/2, δ), |c−c′′| < min(ε/2, δ) and (mF +c)∩(m1F +c1) = ∅.
By the choice of δ, (mF +c)∩(miF +ci) = ∅ also holds for every i = 2, . . . , N .
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Since |m′′ − m′| < ε/2 and |m − m′′| < min(ε/2, δ) ≤ ε/2, we also have
|m − m′| < ε. The same way we obtain |c − c′| < ε. This proves statement
SN .

Lemma 4. Suppose we have disjoint closed intervals Ii = [xi, yi], i = 1, . . . , N ,
in [0, 1] and a function f ∈ C1[0, 1]. For every ε > 0 there exists γ > 0 such
that if the functions hi ∈ C1[0, 1] satisfy

|hi(xi) − f(xi)| ≤ γ, |hi(yi) − f(yi)| ≤ γ,

max
x∈Ii

|hi(x) − f(x)| < ε, and max
x∈Ii

|h′
i(x) − f ′(x)| < ε, (i = 1, . . . , N),

then there exists a function g ∈ C1[0, 1] for which g|Ii
= hi|Ii

, (i = 1, . . . , N)
and

max
x∈[0,1]

|g(x) − f(x)| < ε, and max
x∈[0,1]

|g′(x) − f ′(x)| < ε,

which implies ρ1(g, f) < 2ε.

Proof. The proof is straightforward and left to the reader. We only remark
that γ is needed to handle the cases when xi is too close to yi−1 to avoid that
(hi(xi) − hi−1(yi−1))/(xi − yi−1) differs too much from f ′(xi).

Proof of Theorem 2. By property P, the set F cannot contain any interval
so it is nowhere dense and closed. Consider those functions in C1[0, 1] which
are one-to-one on F . We have to prove that these functions form a residual
set in C1[0, 1]. First we will prove that this set is Gδ. Then we will prove
that it is dense. This will prove the theorem.

Let

Gn = {f ∈ C1[0, 1] : ∀x, y ∈ F, |x − y| ≥ 1/n =⇒ f(x) 6= f(y)}.

We claim that Gn is an open set in C1[0, 1]. Let M = {(x, y) ∈ R
2 : x, y ∈

F, |x− y| ≥ 1/n}. The set M is clearly compact. Suppose that f ∈ Gn. Let
us define f0 : M → R as f0((x, y)) = f(x) − f(y). Then f0 is continuous
and nowhere zero on the compact set M . Hence, there exists an ε > 0
for which f0(M) ∩ (−ε, ε) = ∅. Take a function g ∈ C1[0, 1] for which
maxx∈[0,1] |f(x) − g(x)| = ρ0(f, g) ≤ ρ1(f, g) < ε/2. Then the function
g0 : M → R, g0((x, y)) = g(x)− g(y) is nowhere zero, therefore g ∈ Gn. This
proves that Gn is open. Put G = ∩∞

n=1Gn. It is clear that G is a Gδ set and if
f ∈ G then it is one-to-one on F .

7



Now we prove that G is dense. Take any f ∈ C1[0, 1]. Let ε > 0 be given.
We will show that there exists a function g ∈ C1[0, 1] which is one-to-one on
F and ρ1(f, g) < 6ε.

Since f ′ ∈ C[0, 1] there exists 0 < δ < 1 such that for any x, y ∈ [0, 1] if
|x − y| ≤ δ then |f ′(x) − f ′(y)| < ε.

Let us cover the nowhere dense closed set F by disjoint intervals Ii =
[xi, yi], i = 1, . . . , N with yi − xi < δ for i = 1, . . . , N , and yi−1 < xi for
i = 2, . . . , N.

Now choose real numbers m′
i, c′i such that f(xi) = m′

ixi + c′i and f(yi) =

m′
iyi + c′i hold (i = 1, . . . , N), that is, y = gi(x)

def
=m′

ix + c′i is the line pass-
ing through the points (xi, f(xi)) and (yi, f(yi)). Thus, f(xi) = gi(xi) and
f(yi) = gi(yi). By the Mean Value Theorem there exists zi ∈ Ii for which
m′

i = f ′(zi). Since the length of Ii is at most δ we have

max
x∈Ii

|f ′(x) − m′
i| = max

x∈Ii

|f ′(x) − g′
i(x)| = max

x∈Ii

|f ′(x) − f ′(zi)| < ε. (3)

Let γ > 0 be the constant we obtain from Lemma 4 applied with 3ε, for
the function f and intervals Ii. We can suppose that γ < ε.

By applying Claim 3 we obtain real numbers mi 6= 0, ci for which |mi −
m′

i| < γ/2, |ci − c′i| < γ/2 and the sets miF + ci are pairwise disjoint (i =
1, . . . , N). Let hi : [0, 1] → R be the function x 7→ mix + ci. Then

|hi(xi) − f(xi)| ≤ |hi(xi) − gi(xi)| + |gi(xi) − f(xi)| =

|(mi − m′
i)xi + ci − c′i| + 0 ≤ γ,

and similarly we obtain |hi(yi)− f(yi)| ≤ γ. On the other hand by using (3)

max
x∈Ii

|h′
i(x) − f ′(x)| ≤ |mi − m′

i| + max
x∈Ii

|m′
i − f ′(x)| < 2ε,

and

max
x∈Ii

|hi(x) − f(x)| ≤|hi(xi) − f(xi)| + max
x∈Ii

∣

∣

∣

∣

∫ x

xi

h′
i(t) − f ′(t)dt

∣

∣

∣

∣

≤

γ + δ · 2ε < 3ε.

Thus we can apply Lemma 4 for the functions f and hi with intervals Ii.
By the choice of γ we obtain a function g ∈ C1[0, 1] such that g|Ii

= hi|Ii

(i = 1, . . . , N), and ρ1(f, g) < 6ε.
Observe that F ⊂ ∪N

i=1Ii, g(x) = hi(x) = mix + ci on Ii with mi 6= 0,
and the sets miF + ci are pairwise disjoint. This clearly implies that g is
one-to-one on F .
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Theorem 5. If F ⊂ [0, 1] is closed and dimBF < 1/2 then a typical C1[0, 1]
function is one-to-one on F .

Proof. By Theorem 2 it is enough to show that property P holds for F .
It is not too difficult to see that dimB(F × F ) ≤ 2 · dimBF which implies
dimB(F ×F ) < 1. Projections cannot increase the lower box dimension, thus
dimBπh(F×F ) < 1 for any h ∈ R. Hence πh(F×F ) for any h cannot contain
an interval and, being compact, it is nowhere dense. Therefore property P
holds.

Theorem 6. Let F be a closed subset of [0, 1]. If the Hausdorff dimension
of F ×F is less than one then a typical C1[0, 1] function is one-to-one on F .

Proof. An argument similar to the one in the proof Theorem 5 can be used,
the details are left to the reader.

Theorem 7. Let F ⊂ [0, 1] be a self-similar set with OSC of dimension
≤ 1/2. Then a typical C1[0, 1] function is injective on F .

Proof. If the dimension of F is smaller than 1/2 then Theorem 5 implies
the statement. Suppose that the dimension is 1/2. Then from the product
formulas and dimBF = dimHF (Corollary 7.4 and Theorem 9.3 of [4]) one
can obtain that the Hausdorff dimension of F × F is exactly one. Lemma
1 shows that its one dimensional Hausdorff measure is finite, so F × F is
clearly an irregular 1-set (for the properties of irregular 1-sets we refer to
Chapters 3 and 6 of [3] and Sections 5.2 and 6.2 of [4]). We obtain from the
projection characterization of 1-sets that almost every projection of F × F
has Lebesgue measure zero, and hence it is nowhere dense. This implies that
property P holds for F .

Definition 8. Suppose 0 < α < 1 and t = (1 − α)/2. The middle-α Cantor
set, denoted by Cα, is the self-similar set generated by the similarities ϕ1 :
x 7→ 1−α

2
x = tx and ϕ2 : x 7→ 1 + (x − 1)1−α

2
= (1 − t) + tx. When α = 1/3

we obtain the usual triadic Cantor set.
Let Φ be the operator on compact subsets of R for which Φ(F ) = ϕ1(F )∪

ϕ2(F ). Put Fn = Φn([0, 1]), (n = 0, 1, . . .), which is a union of 2n intervals
of length tn. Then Cα =

⋂∞
n=0 Fn.

Set h0(x) = x/2.
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Figure 1: f and g

Lemma 9. Suppose that α < 1/2 and g ∈ C1[0, 1] is such that g([0, 1]) ∩
[0, 1] 6= ∅, and g(Cα)∩Cα = ∅. Then, ρ1(g, h0) ≥ maxx∈[0,1] |g′(x)− 1/2| > δ
for some δ > 0 depending only on α.

Proof. Suppose that f ∈ C1[0, 1] is such that the graph of f , {(x, f(x)) :
x ∈ [0, 1]}, intersects the square [0, 1]× [0, 1], but does not intersect F1 × F1

(which consists of four squares each of side length t, see the left side of Figure
1). By the location of these four squares and the Mean Value Theorem one
can easily see that there exists x ∈ [0, 1] for which either f ′(x) < α (when
the graph of f has points on the two opposite vertical sides of [0, 1]× [0, 1]),
or f ′(x) > t

α
= 1−α

2α
> 1/2 (when the graph of f has a point on one of

the horizontal sides of [0, 1] × [0, 1], see the left side of Figure 1), hence
maxx∈[0,1] |f ′(x) − 1/2| > δ for some δ > 0 depending only on α.

Suppose that g ∈ C1[0, 1] is such that g([0, 1])∩[0, 1] 6= ∅ and g(Cα)∩Cα =
∅. That is, the graph of g does not intersect Cα × Cα. Since Cα × Cα =
⋂∞

n=0(Fn × Fn), there exists a smallest n ∈ N for which the graph of g
intersects Fn−1 × Fn−1 but does not intersect Fn × Fn. Then there is a
subsquare Qn−1 of Fn−1 × Fn−1 of side length tn−1 which contains points of
the graph of g (see the right side of Figure 1). Since the graph of g does not
intersect the four subsquares Qn−1∩ (Fn ×Fn) of side length tn, an argument

10



similar to the one stated above for f shows that there is an x ∈ [0, 1] for
which |g′(x) − 1/2| > δ.

Theorem 10. A typical C1[0, 1] function is injective on Cα if and only if
dim(Cα) ≤ 1/2 (that is, 1/2 ≤ α < 1).

Proof. If α ≥ 1/2 then the dimension of Cα is at most 1/2, so Theorem 7
yields the proof.

Suppose that α < 1/2. Recall that h0(x) = x/2 and set h1(x) = x. For
any given functions f0, f1 ∈ C1[0, 1] satisfying

ρ1(f0, h0) < δ/100 and ρ1(f1, h1) < δ/100 (4)

the function f(x) = f−1
1 (f0(x)) is such that ρ1(f, h0) < δ and the graph of f

intersects [0, 1]× [0, 1]. Hence by Lemma 9, f(Cα)∩Cα 6= ∅ and equivalently
f0(Cα) ∩ f1(Cα) 6= ∅.

Now suppose that g0(x) = x/2 for x ∈ [0, t], g0(x) = x + t − 1 for
x ∈ [1− t, 1] and otherwise g0 is defined so that g0 ∈ C1[0, 1]. We claim that
any g ∈ C1[0, 1] satisfying

ρ1(g, g0) < δ/400 (5)

is not one-to-one on Cα. Consider f0(x) = g(tx)/t and f1(x) = g(tx+1−t)/t
for x ∈ [0, 1]. Then (5) implies that f0 and f1 satisfy (4) and hence f0(Cα)∩
f1(Cα) 6= ∅, that is, there exists x, y ∈ Cα such that g(tx)/t = g(ty +1− t)/t.
Since tCα ∩ (tCα +1− t) = ∅ and tCα ∪ (tCα +(1− t)) = Cα if we let x′ = tx
and y′ = ty + (1− t) then x′, y′ ∈ Cα, x′ 6= y′ and g(x′) = g(y′) showing that
g is not one-to-one on Cα.

Theorem 11. There exists a closed set F ⊂ [0, 1] of Hausdorff dimension
one such that a typical C1[0, 1] function is one-to-one on F .

Proof. The main idea of this proof is based on Lemma 1.3 of [2].
Choose a countable dense set T = {ti : i ∈ N

+} ⊂ R.
Let K ⊂ [0, 1] be any compact 1−-set, that is, 0 < H1−(K) < ∞. Define

a new measure H1−

K by H1−

K (H) = H1−(H ∩ K). Hence H1−

K is a finite Borel
measure.

Fix an index i.
Set M = {(x, y) : x + y ∈ tiK} ⊂ R

2. Clearly, M is a Borel set, and
hence H1−

K ×λ measurable. We apply the Fubini theorem to the characteristic
function of M . The vertical sections of M are of the form

{y ∈ R : x + y ∈ tiK} = {y ∈ R : y ∈ tiK − x} = tiK − x.

11



Since K is a compact 1− set, its Lebesgue measure is zero, hence all the
vertical sections are of Lebesgue measure zero. By the Fubini theorem (H1−

K ×
λ)(M) = 0, and hence λ-almost every horizontal section of M is of H1−

K -
measure zero. A horizontal section of M is {x ∈ R : x ∈ tiK − y} = tiK − y.
From this it follows that for λ-almost every y we have 0 = H1−

K (tiK − y) =
H1−(K ∩ (tiK − y)). Therefore, we can choose a countable dense set D ⊂ R

such that H1−(K ∩ (tiK + d)) = 0 for every d ∈ D.
Let B = K \ ∪d∈D(tiK + d). Then B is a Borel set of the same H1−-

measure as K. We claim that

D ∩ (B − tiB) = ∅. (6)

Suppose that for some d ∈ D we have d ∈ B− tiB, that is, (d+ tiB)∩B 6= ∅.
Since B ⊂ K \ (tiK + d) we have (d + tiB) ∩

(

K \ (tiK + d)
)

6= ∅. Thus
(d + tiK) ∩

(

K \ (tiK + d)
)

6= ∅. But this is impossible.

Let Fi be a compact subset of B for which H1−(Fi) > H1−(B)·(1−4−i) =
H1−(K) · (1− 4−i). By (6), D ∩ (Fi − tiFi) = ∅. Using (2) with h = −ti one
can see that Fi − tiFi is similar to the set π−ti(Fi ×Fi), that is, to the image
of Fi × Fi under the projection onto the line with slope −ti passing through
the origin. Since D is dense, the compact set π−ti(Fi ×Fi) is nowhere dense.

Now consider the same construction for each index i. We obtain compact
sets Fi with measures H1−(Fi) > H1−(K) · (1 − 4−i). Let F = ∩∞

i=1Fi.
Then 0 < H1−(F ) < ∞, that is, F is a 1−-set and for each index i the set
π−ti(F ×F ) is nowhere dense. Since T = {ti : i ∈ N

+} is dense in R, property
P holds for F . Thus, the typical C1[0, 1] function is one-to-one on F .

Theorem 12. There exists a closed F ⊂ [0, 1] such that dimBF = 1/2 and
the set of those f ∈ C1[0, 1] for which f |F is one-to-one is not dense in
C1[0, 1].

Proof. Set F1,1 = [1/2, 1], l1,1 = 1/2 = λ(F1,1), r1,0 = 1, r1,j = 4−2j+1 for
j = 1, 2, . . ., and l1,j = l1,j−1r

2
1,j−1 = l1,1(r1,1 · · · r1,j−1)

2 = 1
2
(4−1 · · · 4−2j+3)2

for j = 2, 3, . . . .
We also put F2,1 = [0, 1/4], l2,1 = 1/4 = λ(F1,2), r2,0 = 1, r2,j = 4−2j =

r1,j/4 for j = 1, 2, . . ., and l2,j = l2,j−1r
2
2,j−1 = l2,1(r2,1 · · · r2,j−1)

2 = 1
4
(4−2 · · ·

4−2j+2)2 for j = 2, 3, . . ..
Direct computation shows that

2r1,kl1,k = l2,k and 2r2,kl2,k = l1,k+1. (7)
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Suppose that j ≥ 1, F1,j and F2,j are defined and they consist of the union
of systems of disjoint closed intervals I1,j and I2,j, respectively. We also
suppose that each interval I belonging to Ii,j, (i = 1, 2) is of length li,j and

#Ii,j = (ri,0 · · · ri,j−1)
−1 for i = 1, 2. (8)

Next we define Fi,j+1 ⊂ Fi,j and Ii,j+1. Suppose that I = [a, b] ∈ Ii,j .
Then b = a + li,j. For m = 1, . . . , r−1

i,j we consider the intervals Im = [a +

(m − 1)li,jri,j, a + (m − 1)li,jri,j + li,jr
2
i,j], that is, we divide I into r−1

i,j many
equal subintervals of length ri,jli,j and select in each piece the “first” closed
sub-subinterval of length r2

i,jli,j . Then λ(Im) = li,j+1 for all m. We will define

Fi,j+1 so that Fi,j+1 ∩ I = ∪r−1

i,j

m=1Im. We repeat this procedure in all I ∈ Ii,j .
Let Ii,j+1 be the set of the intervals Im (m = 1, . . . , r−1

i,j ) for all the intervals

I ∈ Ii,j and Fi,j+1 =
⋃ Ii,j+1. It is clear that #Ii,j+1 = r−1

i,j #Ii,j, showing
that (8) holds for j + 1.

We set Fi = ∩∞
j=1Fi,j, (i = 1, 2).

Suppose f0(x) = x on [0, 1/4] and f0(x) = x− 1
2

on [1/2, 1] and otherwise
f0 is defined so that f0 ∈ C1[0, 1].

Set ε0 = 1/1000 and suppose ρ1(f, f0) < ε0 for some f ∈ C1[0, 1]. We
show that f is not one-to-one on F = F1 ∪ F2 by finding x ∈ F1 and y ∈ F2

such that f(x) = f(y).
From ρ1(f, f0) < ε0 it follows that for x ∈ [0, 1/4] ∪ [1/2, 1]

1 − ε0 < f ′(x) < 1 + ε0 and |f(0)|, |f(1/2)| < ε0. (9)

Set I1,1 = F1,1 = [1/2, 1] and I2,1 = F2,1 = [0, 1/4]. Observe that by (7),
λ(I2,1) = l2,1 = 2r1,1l1,1. Recall that during the definition of F1,2 we subdivide
I1,1 into subintervals of length r1,1l1,1 and in each such subinterval we keep the
first sub-subinterval of length r2

1,1l1,1. By (9) and the Mean Value Theorem we
can select an interval I1,2 ∈ I1,2 such that f(I1,2) ⊂ f(I2,1), I1,2 ⊂ I1,1. Now,
by (7), λ(I1,2) = l1,2 = 2r2,1l2,1. During the definition of F2,2 we subdivide I2,1

into subintervals of length r2,1l2,1 and in each such subinterval we keep the
first sub-subinterval of length r2

2,1l2,1. By (9) and the Mean Value Theorem
we can select an interval I2,2 ∈ I2,2 such that f(I2,2) ⊂ f(I1,2), I2,2 ⊂ I2,1.

Repeating the above steps one can select sequences of intervals I1,1, I1,2, . . .
and I2,1, I2,2, . . . such that f(I2,1) ⊃ f(I1,2) ⊃ f(I2,2) ⊃ f(I1,3) ⊃ f(I2,3) ⊃
. . ., I1,1 ⊃ I1,2 ⊃ I1,3 ⊃ . . ., I2,1 ⊃ I2,2 ⊃ I2,3 ⊃ . . ., and Ii,j ∈ Ii,j, (i = 1, 2,
j = 1, 2, 3, . . .). Then for x = ∩∞

j=1I1,j ∈ F1 and y = ∩∞
j=1I2,j ∈ F2 we have

f(x) = f(y).
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By Theorem 5, dimBF ≥ 1/2. So we need to show that dimBF ≤ 1/2.
For a given δ, (0 < δ < l1,1) choose k such that

l1,1(r1,0 · · · r1,k−1)
2 ≥ δ > l1,1(r1,0 · · · r1,k−1r1,k)

2, (10)

that is, l1,k ≥ δ > l1,k+1. By (7), l2,k+1 < l1,k+1. Since Fi,k+1 consists
of (ri,0 · · · ri,k)

−1 many intervals of length li,k+1 < δ, clearly Nδ(Fi,k+1) ≤
(ri,0 · · · ri,k)

−1, (i = 1, 2). Hence from F1 ⊂ F1,k+1, we obtain

log Nδ(F1) ≤ log Nδ(F1,k+1) ≤ (1 + 3 + . . . + (2k − 1)) log 4,

and from F2 ⊂ F2,k+1 we obtain

log Nδ(F2) ≤ log Nδ(F2,k+1) ≤ (2 + 4 + . . . + 2k) log 4.

By an elementary calculation

log Nδ(Fi) ≤ (k2 + k) log 4, (i = 1, 2). (11)

From (10) we obtain log δ ≤ log(l1,1(r1,0 · · · r1,k−1)
2) = log l1,1 − 2(log 4)(1 +

3 + . . . + (2k − 3)) = log l1,1 − 2(k2 − 2k + 1) log 4. Using (11)

dimB(Fi) = lim sup
δ↘0

log Nδ(Fi)

− log δ
≤

≤ lim sup
k→∞

(k2 + k) log 4

− log l1,1 + 2(k2 − 2k + 1) log 4
=

1

2
.

Therefore the upper box dimension of F = F1∪F2 is also at most 1/2, which
proves the theorem.
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