
ar
X

iv
:1

21
1.

24
73

v1
  [

m
at

h.
C

O
] 

 1
1 

N
ov

 2
01

2

POSET LIMITS CAN BE TOTALLY ORDERED

JAN HLADKÝ, ANDRÁS MÁTHÉ, VIRESH PATEL, AND OLEG PIKHURKO

Abstract. S. Janson [Poset limits and and exchangeable random posets, Combinatorica

31 (2011), 529–563] defined limits of finite posets in parallel to the emerging theory of

limits of dense graphs.

We prove that each poset limit can be represented as a kernel on the unit interval with

the standard order, thus answering an open question of Janson. We provide two proofs:

real-analytic and combinatorial. The combinatorial proof is based on a Szemerédi-type

Regularity Lemma for posets which may be of independent interest.

1. Introduction

Given a class C of finite structures and some measure t(F,G) for F,G ∈ C of how

frequently F appears in G as a substructure, one can say that a sequence {Gn}n∈N converges

if {t(F,Gn)}n∈N converges for every F ∈ C.

For example, if C consists of finite graphs and t denotes the subgraph density, then we

obtain the convergence of (dense) graphs whose systematic study was initiated by Lovász

and Szegedy [13] and Borgs et al [4]. In particular, Lovász and Szegedy [13] showed that for

every convergent sequence {Gn}n∈N of graphs there is a measurable function W : [0, 1]2 →

[0, 1] (called graphon) such that for every graph F the limit of t(F,Gn) as n → ∞ is a certain

integral involving W . In fact, many other parameters of Gn can be well approximated as

n → ∞ if we know W . This opens a general way of bringing analytic methods into the

study of large finite graphs. Connections to other areas are established by alternative

representations of “graph limits”: by reflection positive graph parameters (Lovász and

Szegedy [13]), by positive flag algebra homomorphisms (Razborov [17]), and by partially

exchangeable random arrays (Diaconis and Janson [6]).

The theory of graph limits has received a great deal of attention and has been extended

to other structures as well, such as hypergraphs (Elek and Szegedy [8], see also Tao [21]
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and Austin [1]), permutations (Hoppen et al [9, 10]), functions on compact Abelian groups

(Szegedy [19]), and other.

An analogous theory for limits of posets (i.e. partially ordered sets) was initiated by

Brightwell and Georgiou [5] and further developed by Janson [11]. Let us state some of

these results.

We represent a poset as a pair (P,≺) where P is a finite ground set and ≺ is a strict

order relation (i.e. it is transitive and no a, b ∈ P satisfy a ≺ b and b ≺ a simultaneously).

A map f : P → Q (not necessarily injective) is a homomorphism from (P,≺) to (Q,≪)

if we have f(x) ≪ f(y) for every x, y ∈ P with x ≺ y. The density t( (P,≺), (Q,≪) ) is the

number of homomorphisms from (P,≺) to (Q,≪) divided by the total number of possible

maps P → Q. In other words, it is the probability that a random map P → Q between the

ground sets preserves the order relation.

Definition 1.1. A sequence of posets {(Pn,≺n)}n∈N converges if |Pn| → ∞ and

(1)
{
t( (P,≺), (Pn,≺n) )

}
n∈N

converges for every poset (P,≺).

Remark 1.2. It is not hard to show (cf [13, Section 2.4]) that Definition 1.1 does not

change if we modify t to be the density of induced and/or injective homomorphisms.

The potential usefulness of (1) comes from the result of Janson [11, Theorem 1.7] that

for each convergent sequence there is an analytic limit object as follows. (See Section 2 for

an overview of the measure theory notation that we use.)

Definition 1.3. An ordered probability space (S,F , µ,⊳) is a probability space (S,F , µ)

equipped with a strict order relation ⊳ such that {(x, y) : x ⊳ y} is an F ⊗ F-measurable

subset of S × S.

Definition 1.4. A (poset) kernel is a 5-tuple (S,F , µ,⊳,W ), where (S,F , µ,⊳) is an

ordered probability space and W is an F ⊗F-measurable function S×S → [0, 1] such that,

for all x, y, z ∈ S,

W (x, y) > 0 ⇒ x ⊳ y,(2)

W (x, y) > 0 and W (y, z) > 0 ⇒ W (x, z) = 1.(3)

In particular, it follows from Definition 1.4 that W (x, y)W (y, x) = 0 for every x, y ∈ S.

When no confusion arises, we may abbreviate (P,≺) to P and (S,F , µ,⊳,W ) to W .

Also, we will usually say “kernel” instead of “poset kernel”.

Definition 1.5. The density of a poset (P,≺) in a kernel (S,F , µ,⊳,W ) is

(4) t(P,W ) :=

∫

S|P |

∏

a,b∈P

a≺b

W (xa, xb)
∏

a∈P

dµ(xa).
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There is some analogy between t(P,Q) and t(P,W ). Namely, one can interpret the

expression in the right-hand side of (4) as follows. Select random elements xa of (S,F , µ)

indexed by P and let xa ≪ xb with probability W (xa, xb), with all choices being mutually

independent. Then t(P,W ) is exactly the probability that xa ≪ xb for all a ≺ b in P . In

fact, the connection is much deeper as the following result shows.

Theorem 1.6 (Janson [11, Theorems 1.7 and 1.9(ii)]). For every convergent sequence

{Pn}n∈N of posets there is a kernel (S,F , µ,⊳, U) such that

(5) t(P,U) = lim
n→∞

t(P,Pn), for every poset P .

Moreover, we can assume in (5) that

(6) (S,F , µ) = ([0, 1],B, λ)

is the unit interval with the Lebesgue measure λ on the Borel σ-algebra B.

Also, the converse of Theorem 1.6 was established in [11]: for every kernel U there is a

sequence of posets {Pn}n∈N that satisfies (5). In fact, the sampling procedure informally

described after (4) yields such a sequence with probability 1.

Although we can require that (6) holds, the proof in [11] gives no control over the or-

der relation ⊳. This prompted Janson [11, Problem 1.10] to ask if one can always take

([0, 1],B, λ,<) with the standard order < in Theorem 1.6. In a later paper [12], Jan-

son answered his question for convergent sequences of interval orders (see also [11, Theo-

rem 1.9(iii)] for a related result). Here we give the affirmative answer in the general case.

Theorem 1.7. For every convergent sequence {Pn}n∈N of posets there is a kernel ([0, 1],B,

λ,<,U) such that (5) holds.

In fact, we provide two different proofs of Theorem 1.7.

One goes via a Regularity Lemma for posets that we prove in Section 6. Our lemma

finds a partition P = V1∪· · ·∪Vk which is ε-regular with respect to the underlying graph of

(P,≺) and has the additional property that all ≺-relations between parts go “forward” only.

Having such a Regularity Lemma, we follow the method of Lovász and Szegedy [13, 14] to

construct a kernel U by taking the “limit” of ε-regular partitions as ε → ∞. The above

“forward” property allows us to ensure that U(x, y) = 0 whenever x ≥ y, thus proving

Theorem 1.7. We expect our Regularity Lemma to have further applications.

The other proof of Theorem 1.7 is real-analytic. Actually, we prove a somewhat stronger

result (Theorem 1.9 below). In order to state it, we have to give some further definitions.

Let (S,F , µ,⊳,W ) be a kernel. We call it strict if W (x, y) > 0 for every x, y ∈ S with

x ⊳ y. (Thus a kernel is strict if the two sides of (2) are equivalent.) Kernel axioms imply

that if define ⊳′ := {(x, y) ∈ S2 : W (x, y) > 0} then (S,F , µ,⊳′) is an ordered probability

space on which W is a strict kernel. Clearly, this change does not affect (4). Thus, we can

addionally assume in Theorem 1.6 that U is strict, see [11, Remark 1.2].
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Definition 1.8. An inclusion between ordered probability spaces (S,F , µ,⊳) and (S′,F ′,

µ′,⊳′) is a measure preserving function f : S → S′ such that the set

(7)
{
(x, y) ∈ S2 : x ⊳ y, f(x) 6⊳′ f(y)

}

has µ ⊗ µ-measure zero. Additionally, if we have a kernel U on (S′,F ′, µ′,⊳′) then its

pull-back along f is the function Uf : S2 → [0, 1], defined by Uf (x, y) := U(f(x), f(y)) for

x, y ∈ S.

Theorem 1.9. For every strict kernel (S,F , µ,⊳,W ) such that (S,F , µ) is atomless, there

is a kernel ([0, 1],B, λ,<,U) and an inclusion f : (S,F , µ,⊳) → ([0, 1],B, λ,<) such that

W is equal to the pull-back Uf almost everywhere.

Since f in Theorem 1.9 is measure preserving, we necessarily have that t(P,U) = t(P,W )

for every poset P , that is, U and W represent the same poset limit. Thus Theorem 1.7

follows from Theorems 1.6 and 1.9.

The notion of a pull-back plays an important role in the theory of graphons. Hopefully,

our Theorem 1.9 will be generally useful when studying poset kernels. For example, if the

studied kernel property behaves well with respect to taking pull-backs, then one can operate

with the function U that satisfies Theorem 1.9 instead of the 5-tuple (S,F , µ,⊳,W ).

Given an ordered probability space (S,F , µ,⊳), the indicator function I⊳ of the order

relation ⊳ is clearly a strict kernel on it. Thus Theorem 1.9 has the following direct corollary.

Theorem 1.10. Every atomless ordered probability space (S,F , µ,⊳) can be included into

([0, 1],B, λ,<). �

Theorem 1.10 can be viewed as a measure theoretic analogue of the statement that every

poset can be totally ordered. While extending this to infinite partially ordered sets is an easy

application of Zorn’s lemma, the main content of Theorem 1.10 is that this total ordering

can be done in a “measurable” way. Interestingly, the limit of totally ordered increasing

posets happens to be our universal target space ([0, 1],B, λ,<) with the indicator function

I< as its kernel.

This paper is organised as follows. Section 2 describes the measure theory notation

that we frequently use. Section 3 presents some auxiliary analytic lemmas, thus making

the flow of argument in the later sections smoother. Although Theorem 1.10 is a direct

consequence of Theorem 1.9, we prove it first in Section 4. Then, in Section 5, we show how

Theorem 4.1 (a version of Theorem 1.10) implies Theorem 1.9. Our Regularity Lemma for

posets is stated and proved in (combinatorial) Section 6 which can be read independently

of the other sections. We show how this Regularity Lemma gives an alternative proof of

Theorem 1.7 in Section 7. Finally, Section 8 contains some concluding remarks, including

examples that certain strengthenings of our results are not possible.
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2. Measure theory notation

Let us give some notation that we are going to use frequently. We do not define many

standard concepts of measure theory but refer the reader to Bogachev’s book [2] whose

notation we generally follow. We try to provide sufficient references and explanations so

that this paper is accessible to combinatorialists who do not have a strong background in

measure theory.

Let N = {1, 2, . . . } and R be the sets of respectively natural and real numbers. When we

consider a subset of R, typically the unit interval [0, 1], we will denote the σ-algebra of its

Borel subsets by B and the Lebesgue measure by λ. For a family X of sets, let σ(X ) denote

the σ-algebra generated by X . Let IX denote the indicator function of a set X (that is,

IX(x) is 1 if x ∈ X and 0 otherwise).

Let (S,F , µ) be a probability space. As it is standard in measure theory, a real-valued

function f on S is called F-measurable if it is (F ,B)-measurable. We denote by Fµ the

completion of F with respect to the measure µ.

We say that a property holds (F , µ)-almost everywhere (and abbreviate this to (F , µ)-

a.e.) if the set of points of S where it fails belongs to Fµ and has µ-measure zero. When

the underlying measure space is understood, we just write “a.e.” In some rare cases when

we consider more than one σ-algebra on the same set, the bare term “a.e.” refers to the

largest σ-algebra.

We call two sets or two functions equivalent (and use the symbol ∼) if they coincide a.e.

The Fréchet-Nikodym distance between two sets A,B ∈ Fµ is µ(A△ B); it is in general a

pseudo-metric (it satisfies the Triangle Inequality but may evaluate to 0 for A 6= B). The

space (S,F , µ) is called separable if F has a countable subset which is dense with respect

to the Fréchet-Nikodym distance.

Let A ⊆ F be another σ-algebra and let f be an integrable real-valued function on

(S,F , µ). The conditional expectation E(f |A) is the set of all A-measurable functions

g : S → R such that for every bounded A-measurable function h : S → R we have

(8)

∫
h(x)g(x) dµ(x) =

∫
h(x)f(x) dµ(x).

As it is well-known, every two functions in E(f |A) are equivalent and it is enough to

check (8) for {0, 1}-valued h only, i.e. that

(9)

∫

A

g(x) dµ(x) =

∫

A

f(x) dµ(x) for all A ∈ A.

We refer the reader to [2, Section 10.1.1] for some basic properties of conditional expectation.

We may treat E(f |A) as a single function (rather as a set of functions), when the studied

property does not depend on the choice of a representative.
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Let (S′,F ′, µ′) be another probability space. A map f : S → S′ is measure preserving if

f is (F ,F ′)-measurable and, for every A ∈ F ′, we have µ(f−1(A)) = µ′(A). The products

of σ-algebras and measures are denoted by F ⊗ F ′ and µ ⊗ µ′. We use the shorthand

F ⊗̄F ′ for (F ⊗F ′)µ⊗µ′ , the completion of F ⊗F ′ with respect to µ⊗µ′. We will be using

Fubini’s theorem ([2, Theorem 3.4.4]) very frequently, often without explicitly mentioning

it. Let us stress that one has to be careful when dealing with products of σ-algebras and

measures. For example, the product of two complete measure spaces is not complete in

general. Also, see Exercises 44–45, 49–51, and 55 in [2, Section 3.10] for counterexamples

to some “plausible” statements related to Fubini’s theorem.

Let us give some kernel-specific definitions (when the underlying ordered probability

space (S,F , µ,⊳) is understood). For A ⊆ S, let Ac := S \A denote the complement of A.

For X ∈ F ⊗ F , we define

(10) µ⊳(X) :=

∫

X

I⊳(a, b) dµ(a) dµ(b).

For a 2-variable function W : S2 → R and y ∈ S, the slice function Wy : S → R is

defined by Wy(x) := W (x, y). We call W : S × S → [0, 1] an almost (poset) kernel if

W is F ⊗̄F-measurable and the kernel axioms (2) and (3) hold for a.e. triple (x, y, z) in

(S,F , µ)3.

Although our Theorem 1.9 takes a kernel W as input and then produces another kernel

U , we have to deal with almost kernels at intermediate stages of the proof. (For example,

the pull-back Uf in Theorem 1.9 is generally an almost kernel.)

3. Auxiliary analytic lemmas

Here we present some auxiliary results that we will need later.

Janson [11] proved that one can transform an almost kernel (S,B, λ,⊳,W ) with S ⊆ R

into a kernel (S,B, λ,⊳′,W ′) with W ′ ∼ W and some ⊳′. We show that in the special case

of the unit interval with the standard order, one can also keep the order relation intact.

Lemma 3.1. Let ([0, 1],B, λ,<,U) be an almost kernel. Then there is U ′ ∼ U such that

([0, 1],B, λ,<,U ′) is a kernel.

Proof. First, we choose a B ⊗ B-measurable function U0 ∼ U ; it exists by [2, Proposi-

tion 2.1.11]. Then we proceed in a similar fashion as is done by Janson [11, Pages 547–548],

so we will be rather brief. We refer the reader to [2, Section 5] for the definitions and basic

properties of Lebesgue and density points.

We define U1 : [0, 1]
2 → [0, 1] by U1(x, y) := U0(x, y) if (x, y) ∈ [0, 1]2 is a Lebesgue

point of U0. Next, if (x, y) is a density point of the set {(x, y) : U0(x, y) = 1}, then let

U1(x, y) := 1. (Recall that a density point need not belong to the set itself.) For all other

pairs (x, y) ∈ [0, 1]2, we define U1(x, y) := 0. Note that U1 ∼ U0 and U1 is still Borel.
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We claim that U1 is a kernel on ([0, 1],B, λ,<). Suppose that U1(x, y) > 0. Then for every

sufficiently small ε > 0, we have U0(x
′, y′) > 0 for most points (x′, y′) ∈ (x ± ε) × (y ± ε),

where (x ± ε) denotes the intersection of the open interval (x − ε, x + ε) with [0, 1]. In

particular, x′ < y′ for most of these pairs and therefore x < y.

Now suppose that U1(x, y) > 0 and U1(y, z) > 0. Then for every sufficiently small ε > 0,

we have U0(x
′, y′) > 0 for most points (x′, y′) ∈ (x ± ε) × (y ± ε) and U0(y

′, z′) > 0 for

most points (y′, z′) ∈ (y ± ε) × (z ± ε). This implies that we have U0(x
′, z′) = 1 for most

points (x′, z′) ∈ (x ± ε) × (z ± ε). Thus (x, z) is a density point of {(x, y) : U0(x, y) = 1}

and therefore U1(x, z) = 1, as required. �

Lemma 3.2 (Borgs, Chayes, and Lovász [3, Lemma 3.4]). Let (S,F) and (S′,F ′) be mea-

surable spaces, and let W : S × S′ → R be a bounded F ⊗ F ′-measurable function. Then

there exist countably generated σ-algebras F0 ⊆ F and F ′
0 ⊆ F ′ such that W is F0 ⊗ F ′

0-

measurable. �

Lemma 3.3. Let f : S → S′ be an inclusion of ordered probability spaces (S,F , µ,⊳) and

(S′,F ′, µ′,⊳′). Let W be a kernel on S such that W ∼ E(W |A ⊗ A), where A := f−1(F ′).

Then there is an almost kernel U on (S′,F ′, µ′,⊳′) with W ∼ Uf .

Proof. We construct U following the argument of Borgs, Chayes, and Lovász [3, Lemma 3.1]

rather closely.

Define a function ν from F ′ ×F ′ := {A×B | A,B ∈ F ′} to R by

ν(A×B) :=

∫

f−1(A)×f−1(B)
W (x, y) dµ(x) dµ(y), A,B ∈ F ′.

This is a countably additive function on the semialgebra F ′ × F ′ which uniquely extends

to a measure ν on F ′ ⊗F ′ by [2, Proposition 1.3.10]. It is easy to see that this measure ν

is absolutely continuous with respect to µ′ ⊗ µ′. Hence, the Radon-Nikodym derivative

U :=
dν

d(µ′ ⊗ µ′)

exists ([2, Theorem 3.2.2]). Namely, U is a µ′ ⊗ µ′-integrable function such that for every

X ∈ F ′ ⊗F ′ we have ν(X) =
∫
X
U d(µ′ ⊗ µ′).

The last identity implies (given that f is measure preserving and that 0 ≤ W ≤ 1) that

the set

{(x, y) ∈ S′ × S′ : U(x, y) > 1 or U(x, y) < 0}

has measure zero. By changing U on a null set, we can assume that U is F ′⊗F ′-measurable

(see [2, Proposition 2.1.11]) and that the values of U belong to [0, 1]. In particular, the

pull-back Uf is A⊗A-measurable. Moreover, for any Y ∈ A⊗ A, say Y = (f × f)−1(X),

we have that

(11)

∫

Y

Uf d(µ⊗ µ) =

∫

X

U d(µ′ ⊗ µ′) =

∫

Y

W d(µ⊗ µ).
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By (9), we conclude that Uf ∈ E(W |A⊗A). Thus Uf is a.e. equal to W by the assumption

of the lemma.

Let us verify that U is an almost kernel. First, consider the set

X := {(x, y) ∈ S′ × S′ : x 6⊳′ y, U(x, y) > 0} ∈ F ′ ⊗F ′

of points where the first kernel axiom (2) fails for U . By (11), the integral of U over X is

the same as the integral of W over Y := (f × f)−1(X). Since f is an inclusion, we have

µ⊳(Y ) = 0, where µ⊳ is defined by (10). Since W is a kernel, it is zero a.e. on Y . It follows

that X has measure zero, that is, U satisfies (2) a.e.

Define u(x, y, z) := U(x, y)U(y, z) (1 − U(x, z)). Since Uf ∼ W and W is a kernel, we

have uf ∼ 0. Since f is measure-preserving, we have
∫
u =

∫
uf = 0. The non-negativity

of u implies that u ∼ 0, that is, U satisfies (3) a.e. �

Remark 3.4. The conditional expectation of a kernel need not be an almost kernel. For

example, let S := {a, b, c, d} with F := 2S and µ being the uniform measure. Let A ⊆ F

be obtained by “gluing” b and c together. Let a ⊳ b and c ⊳ d be all order relations

and let W := I⊳. Then any U ∈ E(W |A ⊗ A) satisfies U(a, b) = 1/2, U(b, d) = 1/2, and

U(a, d) = 0 and cannot be an almost kernel. Also, pull-backs do not preserve (almost)

kernels in general: for example, consider the pull-back of I< with respect to the identity

inclusion of ([0, 1],B, λ, ∅) into ([0, 1],B, λ,<).

Lemma 3.5. Let (S,F , µ) be a probability space. Let A ⊆ F be another σ-algebra such

that (S,A, µ) is separable. Let W : S2 → R be a bounded F ⊗ F-measurable function. Let

g ∈ E(W |A ⊗ F). Then, for a.e. y ∈ S, we have that gy ∼ E(Wy|A).

Proof. By definition, g is A ⊗ F-measurable. It follows by [2, Proposition 3.3.2] that the

slice function gy is A-measurable for every y ∈ S.

Fix A ∈ A. By the definition of conditional expectation, we have that
∫
A×B

g =
∫
A×B

W

for every B ∈ F . Likewise,

(12)

∫

A

E(Wy|A) =

∫

A

Wy, for every y ∈ S.

By Fubini’s theorem, the latter function is integrable as a function of y. Moreover,
∫

B

(∫

A

Wy(x) dµ(x)

)
dµ(y) =

∫

A×B

W =

∫

A×B

g =

∫

B

(∫

A

gy(x) dµ(x)

)
dµ(y).

Since B ∈ F was arbitrary, [2, Corollary 2.5.4] gives that
∫
A
Wy =

∫
A
gy for a.e. y. Let us

remove all exceptional points y when A runs over a dense countable subset {A1, A2, . . . } ⊆ A

in (S,A, µ) as well as those y for which ‖gy‖∞ > ‖W‖∞ or ‖Wy‖∞ > ‖W‖∞. It is easy to

see that the remaining set Y has measure 1.

Fix any y ∈ Y . For every A ∈ A we have that
∣∣∣∣
∫

A

Wy −

∫

A

gy

∣∣∣∣ ≤
∣∣∣∣
∫

A

Wy −

∫

Ai

Wy

∣∣∣∣+
∣∣∣∣
∫

A

gy −

∫

Ai

gy

∣∣∣∣ ≤ 4 ‖W‖∞ µ(A△Ai).
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Since the right-hand side can be made arbitrarily small by choosing a suitable Ai, we

conclude that
∫
A
Wy =

∫
A
gy. Since A ∈ A was arbitrary and both E(Wy|A) and gy are

A-measurable, they coincide a.e. by (12). The lemma is proved as µ(S \ Y ) = 0. �

4. Proof of Theorem 1.10

Let (S,F , µ,⊳) be given. Lemma 3.2, when applied to the indicator function I⊳, returns

two countably generated σ-algebras F0,F
′
0 ⊆ F . Let F ′ := σ(F0 ∪ F ′

0) be the σ-algebra

on S generated by F0 ∪ F ′
0. By enlarging a set of generators of F ′ by adding a countably

many elements of F , we can additionally make (S,F ′, µ) atomless.

Clearly, if we prove Theorem 1.10 for this new space (S,F ′, µ,⊳), then the same inclusion

f will work for the original one (as F ′ ⊆ F). Thus, without loss of generality, let us assume

that F is countably generated. It easily follows (see e.g. Exercise 1.12.102 and its hint

in [2]) that (S,F , µ) is separable. Thus it is enough to prove the following theorem (whose

last claim will be needed later in Section 5).

Theorem 4.1. Let (S,F , µ,⊳) be an ordered probability space such that (S,F , µ) is atom-

less and separable. Then there is an inclusion f : (S,F , µ,⊳) → ([0, 1],B, λ,<) such that

every set A ∈ F with µ⊳(A×Ac) = 0 belongs to (f−1(B))µ, the completion of f−1(B) with

respect to the measure µ.

So we prove Theorem 4.1 now.

Claim 1. Let B ∈ F with µ(B) > 0. Then there exists A ∈ F such that µ⊳(A×Ac) = 0,

µ(B ∩A) > 0, and µ(B ∩Ac) > 0.

Proof of Claim. Let ⊲x := {y ∈ S : y ⊲ x} ∈ F be the strict upper shadow of x ∈ S and

let

B′ := {x ∈ B : µ(B ∩⊲x) > 0}.

First, suppose that µ(B′) > 0. Clearly, µ⊳(B
′ × B′) ≤ µ(B′)2/2. By Fubini’s theorem,

there is x ∈ B′ with µ(B′ ∩⊲x) ≤ µ(B′)/2. Clearly, A := ⊲x has the required properties.

If µ(B′) = 0, then µ⊳(B ×B) = 0 by Fubini’s theorem. Since F is atomless, it contains

A′ ⊆ B with 0 < µ(A′ ∩ B) < µ(B). The function a(x) := µ
(
{y ∈ A′ : y ⊳ x}

)
is

F-measurable by [2, Corollary 3.3.3]. The set X := {x ∈ S : a(x) > 0} ∈ F is clearly

up-closed with respect to ⊳ and it intersects B in a set of measure 0 by Fubini’s theorem.

It is easy to see that A := A′ ∪X satisfies the claim. �

Let

T := {A ∈ F : 0 < µ(A) < 1, µ⊳(A×Ac) = 0}.

By Claim 1, T is non-empty and, moreover, infinite. Since (S,F , µ) is separable, we can

choose a countable subset {A1, A2, . . .} ⊆ T which is dense in T with respect to the Fréchet-

Nikodym distance.
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We define f so that it satisfies the following properties:

(13)

f(Ac
1) ⊆ [0, µ(Ac

1)],

f(A1) ⊆ [µ(Ac
1), 1],

f(Ac
1 ∩Ac

2) ⊆ [0, µ(Ac
1 ∩Ac

2)],

f(Ac
1 ∩A2) ⊆ [µ(Ac

1 ∩Ac
2), µ(A

c
1)],

f(A1 ∩Ac
2) ⊆ [µ(Ac

1), µ(A
c
1) + µ(A1 ∩Ac

2)],

f(A1 ∩A2) ⊆ [µ(Ac
1) + µ(A1 ∩Ac

2), 1],

and so on. Specifically, for a (finite or infinite) binary sequence b = (b1, b2, . . . ), let

Ab :=
⋂

{Ac
i : bi = 0} ∩

⋂
{Ai : bi = 1},

Sb := Ab ∪
⋃

{Ab1,...,bi−1,0 : bi = 1} =
⋃

{Ab′ : b′ ≤lex b},

where ≤lex denotes the lexicographical order (which we apply only to two binary sequences

of the same length). Next, for x ∈ S define b(x) := (b1(x), b2(x), . . .) ∈ {0, 1}N by bi = IAi

for i ∈ N. Thus b(x) is the unique infinite sequence with x ∈ Ab(x). Finally, we define

f(x) := µ(Sb(x)).

Claim 2. The function f is F-measurable.

Proof of Claim. The function (x, y) 7→ I≤lex
(b(x),b(y)) is F⊗F-measurable: the pre-image

of 0 is

∪i∈N ∪b1,...,bi−1

(
Ab1,...,bi−1,1 ×Ab1,...,bi−1,0

)
∈ F ⊗ F .

Thus f(x) =
∫
Ilex(b(y),b(x)) dµ(y) is F-measurable by [2, Corollary 3.3.3]. �

Claim 3. For every a ∈ [0, 1] and every infinite b, both sets f−1(a) and Ab belong to F

and have µ-measure zero.

Proof of Claim. We have f−1(a) ∈ F by Claim 2 and Ab ∈ F because each Ai is in F .

Each of f−1(a) and Ab is a null set because otherwise some Ai would cut it into two parts

of positive measure, which is clearly impossible. �

Claim 4. Let |b| denote the length of the sequence b. Then

lim
n→∞

sup
|b|=n

µ(Ab) = 0.

Proof of Claim. Assume to the contrary this lim sup is ε > 0. Then, by König’s lemma,

there exists an infinite sequence b = (b1, b2, . . .) such that µ(Ab1,...,bn) ≥ ε for every n.

(Note that Ab1,...,bn ⊇ Ab1,...,bn+1
.) As Ab = ∩∞

n=1Ab1,...,bn , we conclude that µ(Ab) ≥ ε > 0,

contradicting Claim 3. �

Claim 5. The set {µ(Sb) : |b| is finite} is dense in [0, 1].
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Proof of Claim. Consider the binary sequences of length n. Notice that, for any finite b,

µ(Sb) =
∑

b′≤lexb

µ(Ab′),

µ(S1,1,...,1) = 1, and that µ(S0,0,...,0) = µ(A0,0,...0) (which tends to 0 by Claim 3). Let

b
′ ≤lex b

′′ be two sequences of length n which are consecutive in ≤lex. Then

µ(Sb′′)− µ(Sb′) = µ(Ab′′) ≤ sup
|b|=n

µ(Ab).

Combining this with Claim 4 gives the statement. �

Claim 6. The function f is measure preserving.

Proof of Claim. Claim 5 implies that the intervals [0, µ(Sb)], where b runs over finite binary

sequences, generate the Borel σ-algebra. Thus is enough to show that for every finite b

we have µ
(
f−1( [0, a] )

)
= a, where a := µ(Sb). The latter identity follows from the fact

that the symmetric difference of Sb and f−1 ( [0, a] ) is a subset of f−1(a) and therefore has

measure zero by Claim 3. �

The set Y := {(x, y) ∈ S2 : x ⊳ y, f(x) > f(y)} is a subset of ∪∞
i=1(Ai × Ac

i ) ∈ F ⊗ F .

But the latter set has µ⊗µ-measure zero by the definition of Ai’s. Thus Y also has measure

zero. Next, consider the set Y0 := {(x, y) ∈ S2 : f(x) = f(y)}. Since f is F-measurable, we

have Y0 ∈ F ⊗F . Every slice of Y0 has measure zero by Claim 3. By Fubini’s theorem, Y0

has itself measure zero. We conclude that f is an inclusion.

Finally, take an arbitrary A ∈ F with µ⊳(A × Ac) = 0. For every i ∈ N there is a

set Ani
∈ T such that µ(Ani

△A) < 2−i. Since Ani
△ f−1(X) ⊆ f−1(Y ), where X is a

finite union of intervals and Y is the set of their endpoints, we have by Claim 3 that Ani
is

(f−1(B))µ-measurable. This implies that A is (f−1(B))µ-measurable: indeed, for

(14) A′ := lim sup
i→∞

Ani
=

∞⋂

k=1

∞⋃

j=k

Anj
∈ (f−1(B))µ

we have µ(A′△A) = 0. This finishes the proof of Theorem 4.1 (and Theorem 1.10).

5. Proof of Theorem 1.9

As in Theorem 1.10, we can assume that F is separable. Apply Theorem 4.1 to (S,F ,

µ,⊳) to obtain an inclusion f : S → [0, 1]. As we will see later, the same f will work in The-

orem 1.9. (Thus, rather interestingly, f can be chosen independently of W in Theorem 1.9

if F is separable.) Let

A := (f−1(B))µ.

Since f is F-measurable, we have that A ⊆ Fµ.

We would like to apply Lemma 3.3. In order to do so, we have to verify first that

W ∼ E(W |A ⊗ A). (Note that E(W |A ⊗ A) ∼ E(W |f−1(B)⊗ f−1(B)).)
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Claim 1. For every y, the slice function Wy is A-measurable.

Proof of Claim. Fix any a ∈ [0, 1]. For every y ∈ S, the set

A := W−1
y ( (a, 1] ) = {x ∈ S : W (x, y) > a}

is in F . Since W is a strict kernel, we have µ⊳(A
c × A) = 0 for every y. By the second

part of Theorem 4.1, A ∈ F belongs in fact to A. Since intervals (a, 1] generate the Borel

σ-algebra, the claim follows. �

Thus W and E(W |A ⊗ Fµ) are both F ⊗̄F-measurable. (Note that F ⊗̄ F = Fµ ⊗̄ Fµ.)

Also their y-slices are equivalent for a.e. y by Lemma 3.5. By Fubini’s theorem, the subset

of S2 where these two functions differ has µ ⊗ µ-measure zero. In other words, W is

A ⊗̄F-measurable and, by symmetry, F ⊗̄A-measurable.

Claim 2.

W ∼ E(W |A ⊗ A).

Proof of Claim. We follow the argument of Borgs, Chayes, and Lovász [3, Section 3.3.5].

Let W̃ ∈ E(W |A ⊗ A). It is enough to prove that for every A,B ∈ F ,
∫

A×B

W =

∫

A×B

W̃ .

Take any gA ∈ E(IA|A) and let

UA(y) :=

∫

A

W (x, y) dµ(x) =

∫
W (x, y)IA(x) dµ(x),

VA(x) :=

∫
W (x, y)gA(y) dµ(y).

Clearly, gA is A-measurable. Since W is F ⊗̄A-measurable (as it was noted after Claim 1),

UA is A-measurable by Fubini’s theorem. Similarly, VA is also A-measurable. Repeatedly

using Fubini’s theorem and (8), we get
∫

A×B

W (x, y) dµ(x) dµ(y) =

∫
UA(y)IB(y) dµ(y) =

∫
UA(y)gB(y) dµ(y) =

∫
W (x, y)IA(x)gB(y) dµ(x) dµ(y) =

∫
VB(x)IA(x) dµ(x) =

∫
VB(x)gA(x) dµ(x) =

∫
W (x, y)gA(x)gB(y) dµ(x) dµ(y) =

∫
W̃ (x, y)gA(x)gB(y) dµ(x) dµ(y).

Observe that gA(x)gB(y) is a conditional expectation of IA(x)IB(y) with respect to A⊗A

while W̃ is measurable in this σ-algebra. Thus we can replace gA(x)gB(y) by IA(x)IB(y)

in the last integral, obtaining
∫
A×B

W̃ as desired. �
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Thus all assumptions of Lemma 3.3 are satisfied and we obtain that W ∼ Uf for some

almost kernel U on ([0, 1],B, λ,<). By Lemma 3.1, we can change U on a null set so that

([0, 1],B, λ,<,U) is a kernel. Clearly, the equivalence W ∼ Uf is not affected by this. This

finishes the proof of Theorem 1.9.

6. A finite Szemerédi-type Regularity Lemma for posets

In this section we prove a Szemerédi-type Regularity Lemma for posets, Theorem 6.1.

(See Proemel, Steger, and Taraz [16] and Patel [15] for other versions.) We then show in

Section 7 that this result can be used to answer Janson’s question.

Suppose that (P,≺) is a poset. For two disjoint sets X,Y ⊆ P we write X ⊀ Y if there

are no x ∈ X and y ∈ Y such that x ≺ y. An (ordered) partition P = (V1, . . . , Vk) of the

ground set P is a poset partition if

(15) Vi ⊀ Vj , for all 1 ≤ j < i ≤ k.

In other words, every ≺-relation that involves vertices from two different parts goes “for-

ward”. We refer to members of P as clusters. Let us say that R is a poset refinement of

P if R is a poset partition that refines P (that is, for each X ∈ R there exists Y ∈ P

such that X ⊆ Y ). The restriction of P to X ⊆ P is P|X = (V1 ∩ X, . . . , Vk ∩ X). (For

notational convenience, we allow empty parts.)

Let G = GP,≺ be an (undirected) graph on the vertex set P with edge set

E(G) := { {x, y} : x ≺ y or y ≺ x }.

Clearly, if we know G and a poset partition P, then we can reconstruct ≺ except for pairs

lying inside a part. The main idea behind our Regularity Lemma is to find a poset partition

of P that is regular with respect to G.

The following definitions apply to A,B ⊆ P . The density of the pair (A,B) is

d(A,B) :=
e(A,B)

|A| |B|
:=

{(x, y) ∈ A×B : x ≺ y}|

|A| |B|
, if A,B 6= ∅,

and d(A,B) := 0 otherwise. The pair (A,B) is called ε-regular if |d(A,B) − d(X,Y )| < ε

for each X ⊆ A and Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B|. When we will apply the

definition of ε-regularity to (A,B), it will always be the case that B ⊀ A (and we obtain

the standard graph definition). Also, let

q(A,B) :=
|A| |B|

|P |2
d2(A,B).
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For disjoint sets V1, . . . , Vk, U1, . . . , Um ⊆ P , we define

q( (V1, . . . , Vk), (U1, . . . , Um) ) :=
k∑

i=1

m∑

j=1

q(Vi, Uj),

q( (V1, . . . , Vk) ) :=
∑

i<j

q(Vi, Vj).

The function q is called the index and is crucial in the proof of the original Regularity

Lemma. Also, let Iε( (V1, . . . , Vk) ) be the set of pairs (i, j) such that i < j and (Vi, Vj) is

not ε-regular.

The sizes of the clusters in our Regularity Lemma can vary vastly (at least in our proof).

This is why our next definition is slightly different from the standard one. A poset partition

P = (V1, . . . , Vk) of P is ε-regular if each |Vi| ≤ max(ε|P |, 1) and

∑

(i,j)∈Iε(P)

|Vi| |Vj | ≤ ε

(
|P |

2

)
.

Theorem 6.1 (Regularity Lemma for Posets). For each ε > 0 there exists a number M

such that the following holds. For each poset (P,≺) with a poset partition P such that

|P| ≤ 1/ε, there exists a poset refinement R of P which is ε-regular and has at most M

parts.

Remark 6.2. It is important for our later application in Section 7 that there is no garbage

cluster in our partition.

We prove Theorem 6.1 by following Szemerédi’s original proof of the Regularity Lemma

for graphs [20] (a more accessible reference is for example [7, Section 7.4]). The basic idea

is that if a current partition P is not ε-regular then we can refine it so that q(P) increases

by at least δ, where δ > 0 depends on ε only. Since q is always between 0 and 1, we reach

an ε-regular partition in at most 1/δ refinements. The following “pumping-up” lemma

estimates by how much we can increase q by subdividing one irregular pair (A,B).

Lemma 6.3. Suppose that (P,≺) is a poset and A,B ⊆ P are disjoint nonempty sets. If

B ⊀ A and (A,B) is not ε-regular, then there are partitions A = Z1 ∪Z2 and B = Z3 ∪Z4

such that Z2 ⊀ Z1, Z4 ⊀ Z3, and

(16) q( (Z1, Z2), (Z3, Z4) ) ≥ q(A,B) + ε4
|A| |B|

n2
.

Proof. Let d := d(A,B). Consider a witness of irregularity (X,Y ) of the pair (A,B).

Assume without loss of generality that d(X,Y ) ≥ d+ ε.

Iteratively, repeat the following as long as possible: replace some x ∈ X by some y ∈ A\X

with y ≺ x. Clearly, this operation preserves the size of X and cannot decrease d(X,Y ).

Also, we have to stop at some point. Let Z1 be the final X and let Z2 := A \ Z1.
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Similarly, replace Y ⊆ B by an up-closed subset Z4 ⊆ B such that |Z4| = |Y | and

d(Z1, Z4) ≥ d(Z1, Y ) ≥ d+ ε. Let Z3 := B \ Z4.

Of course, we have that Z2 ⊀ Z1 and Z4 ⊀ Z3. Also, (Z1, Z4) witnesses that the pair

(A,B) is not ε-regular. Now, (16) follows from the proof of Lemma 7.4.3 in [7]. �

Proof of Theorem 6.1. Let s := ⌈4/ε5⌉, k0 := ⌈2/ε⌉, and inductively for t = 0, . . . , s− 1, let

kt+1 := kt 2
kt−1. We claim that M = ks suffices.

Suppose that n > 1/ε for otherwise we can let R be a partition into singletons.

Initially, let R0 be an arbitrary poset refinement of P such that |R0| ≤ k0 and each part

has at most εn vertices.

Iteratively, for t = 0, 1, . . . , we repeat the following procedure. Let Rt = (V1, . . . , Vk).

If Rt is ε-regular then we stop and output Rt; so suppose otherwise. Let R′ := Rt. We

modify R′ by using another (embedded) iterative procedure. Namely, in turn for each

(i, j) ∈ Iε(Rt), we take the partitions Vi = Z1ij ∪ Z2ij and Vj = Z3ij ∪ Z4ij returned by

Lemma 6.3 and replace every X ∈ R′ by X ∩ Z1ij , . . . ,X ∩ Z4ij , with these four parts

coming in the specified order. Clearly, R′ is still a poset partition. Once we have processed

all elements of Iε(Rt), we let Rt+1 := R′.

In order to estimate how q changes, let us re-write

(17) q(Rt+1)− q(Rt) =
∑

1≤i<j≤k

(
q(Rt+1|Vi

,Rt+1|Vj
)− q(Vi, Vj)

)
.

We can estimate each summand corresponding to (i, j) ∈ Iε(Rt) by passing from q(Vi, Vj)

first to q( (Z1ij , Z2ij), (Z3ij , Z4ij) ) and then to q(Rt+1|Vi
,Rt+1|Vj

). The first step increases

q as specified by Lemma 6.3. The second step has non-negative effect by [7, Lemma 7.4.2].

Each other term in the right-hand side of (17) is non-negative, again by [7, Lemma 7.4.2].

Since Rt is not ε-regular, we conclude that

(18) q(Rt+1)− q(Rt) ≥
ε4

n2

∑

(i,j)∈Iε(Rt)

|Vi| |Vj | >
ε4

n2
ε

(
n

2

)
≥

ε5

4
.

We have that q(P) ≤ 1 for any partition P (while trivially q(P) ≥ 0), see e.g. [7,

Page 174]. By (18), we repeat the iteration procedure at most s times before we reach an

ε-regular poset partition. As each part of Rt is split into at most 2|Rt|−1 parts, we have

that |Rt+1| ≤ |Rt| 2
|Rt|−1. Thus the final partition has at most M parts, as required. �

If we do not know ≺ but know an ε-regular partition R = (V1, . . . , Vk) and the densities

between all pairs of parts, then we can still derive various information about the poset P .

For example, given two subsets S, T ⊆ P , one would expect to see approximately

e′(S, T ) :=
∑

i<j

d(Vi, Vj) |Vi ∩ S| |Vj ∩ T |

directed arcs from S to T . Indeed, this is the case for posets.
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Lemma 6.4. Given the above assumptions, we have

(19) |e(S, T ) − e′(S, T )| ≤ 3ε

(
|P |

2

)
.

Proof. Let n := |P |. Assuming the worst-case scenario, the edges inside a part or inside a

non-ε-regular pair contribute at most ε
(
n
2

)
+ ε

(
n
2

)
to the left-hand side of (19). For every

ε-regular pair (Vi, Vj) with i < j, we have
∣∣∣ e(Vi ∩ S, Vj ∩ T )− d(Vi, Vj) |Vi ∩ S| |Vj ∩ T |

∣∣∣ ≤ ε|Vi| |Vj |.

Indeed, if |S∩Vi| |T∩Vj| ≤ ε|Vi| |Vj |, then we are trivially done; otherwise both S and T take

more than ε-proportion of respectively Vi and Vj and the bound follows by the ε-regularity

of (Vi, Vj). Thus the aggregate contribution of ε-regular pairs to (19) is at most ε
(
n
2

)
. �

7. An alternative proof of Theorem 1.7

Let {(Pn,≺n)}n∈N be a convergent sequence of posets. We have to construct a kernel

([0, 1],B, λ,<,U) such that for every poset P we have

(20) t(P,U) = lim
n→∞

t(P,Pn).

We construct U following closely the analogous construction of Lovász and Szegedy [13,

Theorem 2.4] (see also [14, Theorem 5.1]). In brief, the proof proceeds by finding a 1
k
-regular

partition Pn,k of Pn with the number of parts bounded by a function of k only. Then we

construct a step-function Wn,k : [0, 1]2 → [0, 1] that encodes the part ratios and densities

of Pk,n. Since the “complexity” of Wn,k is bounded by a function of k, a diagonalisation

process gives a subsequence {Pni
}i∈N such that, for every k, we have Wn,k → Uk a.e. for

some Uk : [0, 1]2 → [0, 1]. Additionally, when we choose our partitions Pk,n, we can assume

that they are nested for each n. This allows us to write Uk−1 as a conditional expectation

of Uk and conclude that {Uk}k∈N converges to some U a.e. Finally, we need to apply

Lemma 3.1 to tranform an almost kernel U into a kernel.

Let us give more details. Letm1 = 1 and inductively for k = 2, 3, . . . let mk be sufficiently

large such that every poset partition with at most mk−1 parts admits a 1
k
-regular poset

refinement with mk parts. Such a number exists by Theorem 6.1. (Recall that we allow

empty parts.) For each n ∈ N, let Pn,1 := (Pn) be the trivial partition and then inductively

for k = 2, 3, . . . let

(21) Pn,k = (Vn,k,1, . . . , Vn,k,mk
)

be a 1
k
-regular poset partition of (Pn,≺n) that refines Pn,k−1. This nestedness allows us

for each n, to choose a total ordering ≺′
n of (Pn,≺n) which is compatible with every poset

partition Pn,k (that is, Vn,k,i ⊀
′
n Vn,k,j whenever i > j). By relabelling, let us assume that

Pn = {1, . . . , |Pn|} and ≺′
n is the standard order.



POSET LIMITS CAN BE TOTALLY ORDERED 17

Already at this point, it makes sense to start operating with functions. Let Wn : [0, 1]2 →

{0, 1} be the step-function that encodes the ≺n-relation in the obvious way: Wn is constant

on [ i−1
v
, i
v
) × [ j−1

v
, j
v
), where v := |Pn|, and assumes value 1 there if and only if i ≺n j. It

is easy to see that

t(P,Pn) = t(P,Wn), for every poset P

where we view Wn as a kernel on ([0, 1],B, λ,<).

Let P ′
n,k = (V ′

n,k,1, . . . , V
′
n,k,mk

) be the partition of [0, 1] into consecutive intervals cor-

responding to (21). (Thus, for example, λ(V ′
n,k,i) = |Vn,k,i|/|Pn|.) Let Wn,k be the step-

function on P ′
n,k × P ′

n,k, whose steps correspond to the parts of Pn,k and whose values

correspond to densities between parts. We can write this more compactly as

Wn,k ∼ E(Wn|σ(P
′
n,k)),

a conditional expectation of Wn with respect to the (finite) σ-algebra generated by P ′
n,k.

Since σ(P ′
n,1) ⊆ σ(P ′

n,2) ⊆ . . . , we have

Wn,k ∼ E(Wn,k+1|σ(P
′
n,k)), k ≥ 1,

which translates into the combinatorially obvious fact that the densities of Pn,k can be

obtained by averaging over the densities in the finer partition Pn,k+1.

Since each Wn,k can be described by specifying part sizes and densities (which involves

at most mk +
(
mk

2

)
reals in [0, 1]), the standard diagonalisation process gives a subsequence

{ni}i∈N such that these parameters converge for every k. Thus Wni,k → Uk a.e. for some

step-function Uk with mk steps that are intervals and are ordered as P ′
k = (V ′

k,1, . . . , V
′
k,mk

).

Since {Pn}n∈N is convergent, passing to a subsequence does not affect (20); thus we can

assume that {Wn,k}n∈N itself a.e. converges to Uk. Clearly, σ(P
′
1) ⊆ σ(P ′

2) ⊆ . . . a.e. and

Uk ∼ E(Uk+1|σ(P
′
k)).

Thus, by the Martingale Convergence Theorem (see e.g. [2, Theorem 10.3.3]), Uk → U a.e.

for some U : [0, 1]2 → [0, 1].

The obtained function U , as the a.e. pointwise limit of Borel functions, is Borel a.e.

Clearly, the kernel axioms hold for ([0, 1],B, λ, U) for all inputs that do not require the

evaluation of U on a point of

X :=
{
(x, y) ∈ [0, 1]2 : Uk(x, y) 6→ U(x, y) or ∃ k Wn,k(x, y) 6→ Uk(x, y)

}
,

the set where some convergence fails. Since X has measure zero, U is an almost kernel. By

applying Lemma 3.1, we can assume that U is a kernel.

It remains to show that (20) holds. The cut-norm of a bounded measurable function

W : [0, 1]2 → R is defined by

(22) ‖W‖� = sup
S,T∈B

∣∣∣∣
∫

S×T

W (x, y) dλ(x) dλ(y)

∣∣∣∣ .
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Claim 1. ‖Wn −Wn,k‖� ≤ 5
2k for any k, n ∈ N.

Proof of Claim. Let W := Wn − Wn,k. Assume that v := |Pn| > k for otherwise there is

nothing do to as W = 0.

Observe that, up to an additive error 1
v
, it is enough to consider those S and T in (22)

that are unions of intervals Vi := [ i−1
v
, i
v
) for i ∈ [v]. Indeed, fix any S, T ∈ B with, say,∫

S×T
W ≥ 0 and take i ∈ [v] one by one. If we modify S and T inside Vi, then the integral

of W over
(
(Vi × V c

i ) ∪ (V c
i × Vi)

)
∩ (S × T )

is a linear function of λ(Vi ∩ S) and λ(Vi ∩ T ). Thus we can make each of these to belong

to {0, 1/v} without decreasing the above contribution. Updating S and T accordingly, we

decrease
∫
S×T

W by at most
∫
Vi×Vi

|W | ≤ 1/v2. When we have iteratively processed all

i ∈ [v], both S and T have the desired form.

Thus, by (19), we obtain the required:

‖W‖� ≤
3

k

(
v

2

)
1

v2
+

1

v
≤

3

2k
+

1

k
=

5

2k
.

�

Now, we are ready to verify (20). Take any poset (P,≺) and ε > 0. Let m := e(GP,≺)

be the number of pairs in ≺.

Since we deal with bounded measurable functions, all convergences also hold in the ℓ1-

space on ([0, 1]2,B, λ) by [2, Theorem 2.2.3]. Thus there is k ≥ 15m
2ε such that ‖U −Uk‖1 ≤

ε
3m and, fixing this k, there is n0 such that ‖Uk − Wn,k‖1 ≤ ε

3m for all n ≥ n0. Clearly,

‖f‖� ≤ ‖f‖1 for any integrable f . Thus, by the Triangle Inequality and Claim 1, we have

that for all n ≥ n0

‖U −Wn‖� ≤ ‖U − Uk‖� + ‖Uk −Wn,k‖� + ‖Wn,k −Wn‖�

≤ ‖U − Uk‖1 + ‖Uk −Wn,k‖1 +
5

2k
≤

ε

m
.

By [11, Lemma 6.4], we have that |t(P,U)− t(P,Wn)| ≤ m ‖U −Wn‖� ≤ ε. Since ε and P

were arbitrary, (20) follows.

Summarising, ([0, 1],B, λ,<,U) is a kernel that establishes Theorem 1.7.

Remark 7.1. An alternative way to proving that the densities of F in Wn and Wn,k are

close is to adopt the Counting Lemma (see e.g. [18, Theorem 5]) to our settings. We do

not see any principal difficulties here but we expect that the error term would be larger.

Remark 7.2. In the above proof it is not generally true that ‖Wn − Wn,k‖1 is small for

sufficiently large k: for example, Wn,k may be strictly between 0 and 1 on a set of positive

measure (while Wn is always {0, 1}-valued).
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8. Concluding remarks

There are two natural ways to extend the definition of convergence to the case when

the poset orders do not tend to infinity. One is to just use (1). Another, adopted by

Janson [11, Definition 3.2], is to say that {Pn}n∈N with |Pn| 6→ ∞ is convergent if the

sequence is eventually constant (up to isomorphism). The choice of which one to use (or

none) is more a matter of convenience. For example, this choice may depend on whether we

want the “limits” of (P,P, . . . ) and (P (1), P (2), . . . ) to be the same or not. Here the blow-up

P (k) of P is obtained by cloning each vertex of P k times; obviously, t(Q,P ) = t(Q,P (k))

for every poset Q. Since all results stated in the Introduction can be trivially reduced to

the case |Pn| → ∞ by blowing posets up, we decided to use Definition 1.1.

Of course, the assumption that (S,F , µ) is atomless is necessary in Theorems 1.9 and

1.10. This assumption can be removed if we are allowed to modify ([0, 1],B, λ,<) by shifting

positive measure to a some countable subset X ⊆ [0, 1], where X depends on (S,F , µ,⊳).

However, we believe that the versions presented in the Introduction are neater.

We cannot require in Theorems 1.9 and 1.10 that f preserves every relation (i.e. that

the set in (7) is empty) as the following example demonstrates. Let S := [0, 1) with the

Lebesgue measure λ on the Borel σ-algebra B. Fix an irrational number τ . Let T : S → S

map x to x+ τ (mod 1). If we view S as a circle, then T is an aperiodic rotation. Define

x ⊳ y if there is k ∈ N with y = T k(x). The constructed relation ⊳ is a Borel subset

of S2 (of measure zero). Let us suppose on the contrary that there is an inclusion f :

(S,B, λ,⊳) → ([0, 1],B, λ,<) such that the set in (7) is empty. Let A := f−1( [0, 12 ] ). Since

A is a down-closed set with respect to <, we have that T−1(A) ⊆ A. Since T is measure

preserving, we conclude that T−1(A) ∼ A. However, this contradicts the well-known fact

(see e.g. [2, Example 10.9.9]) that T is ergodic. Alternatively, let B := ∩∞
k=1T

−k(A). Then

B is a measurable set such that T−1(B) = B (exactly) and µ(B) = 1/2 (by σ-additivity).

The same applies to Bc. By taking density points x and y of B and Bc respectively and a

sequence of k such that T k(x) → y, one readily arrives at the desired contradiction.

Also, the assumption that W is strict in Theorem 1.9 is needed. For example, take [0, 1]2

with the Legesgue measure on the Borel sets and let (x, y) ⊳ (x′, y′) if x < x′. Let, for

example, W ((x, y), (x′, y′)) be y′ if x′ > x + 1/2 and 0 otherwise. It is easy to see that

every inclusion of this ordered probability space into the unit interval is a.e. equal to the

projection onto the first coordinate. However, W ((x, y), (x′, y′)) is essentially non-constant

on (x, x′)-slices for x′ > 1/2 + x and thus cannot be equivalent to some pull-back.
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