
Can we assign the Borel hulls in a monotoneway?Márton Elekes∗ and András Máthé†Mar
h 20, 2007Abstra
tA hull of A ⊂ R is a set H 
ontaining A su
h that λ(H ∩I) = λ(A∩I)for every Lebesgue measurable set I . We investigate all four versions ofthe following problem. Does there exist a monotone (wrt. in
lusion) mapthat assigns a Borel/Gδ hull to every negligible/measurable subset of R?Three versions turn out to be independent of ZFC (the usual Zermelo-Fraenkel axioms with the Axiom of Choi
e), while in the fourth 
ase weonly prove that the nonexisten
e of a monotone Gδ hull operation for allmeasurable sets is 
onsistent. It remains open whether existen
e here isalso 
onsistent. We also answer a question of Z. Gyenes and D. Pálvölgyiwhi
h asks if monotone hulls 
an be de�ned for every 
hain (wrt. in
lusion)of measurable sets. We also 
omment on the problem of hulls of all subsetsof R.1 Introdu
tionNotation 1.1 Let us denote by N ,L,B and Gδ the 
lass of Lebesgue negligible,Lebesgue measurable, Borel and Gδ subsets of R, respe
tively. Let λ stand forLebesgue (outer) measure.De�nition 1.2 A set H ⊂ R is a hull of A ⊂ R, if A ⊂ H and λ(H ∩ I) =
λ(A ∩ I) for every Lebesgue measurable set I.Clearly, every set has a Borel, even a Gδ hull.De�nition 1.3 Let D and H be two sub
lasses of P(R) (usually D is N or L,and H is B or Gδ). If there exists a map ϕ : D → H su
h that
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1. ϕ(D) is a hull of D for every D ∈ D2. D ⊂ D′ implies ϕ(D) ⊂ ϕ(D′)then we say that a monotone H hull operation on D exists.The four questions we address in this paper are the following.Question 1.4 Let D be either N or L, and let H be either B or Gδ. Does thereexist a monotone H hull operation on D?Remark 1.5 1. The problem was originally motivated by the followingquestion of Z. Gyenes and D. Pálvölgyi [3℄. Suppose that C ⊂ L is a
hain of sets, i.e. for every C,C′ ∈ C either C ⊂ C′ or C′ ⊂ C holds. Doesthere exist a monotone B/Gδ hull operation on C?2. Another motivation for our set of problems is that it seems to be very
losely related to the theory of so 
alled liftings. A map l : L → L is
alled a lifting if it preserves ∅, �nite unions and 
omplement, moreover,it is 
onstant on the equivalen
e 
lasses de�ned in Lemma 3.5 and also itmaps ea
h equivalen
e 
lass to one of its members. Note that liftings are
learly monotone. For a survey of this theory see the 
hapter by Strauss,Ma
heras and Musiaª in [5℄, or the 
hapter by Fremlin in [4℄. Note thatthe existen
e of Borel liftings is known to be independent of ZFC, but theexisten
e of a lifting with range in a �xed Borel 
lass is not known to be
onsistent.We also remark that liftings are usually 
onsidered as l∗ : L/N → L or
l∗ : P(R)/N → L maps.3. In light of the theory of liftings it is natural to ask if a monotone Borel/Gδhull operation on P(R) (i.e. all subsets of R) 
an be de�ned. We will seein Se
tion 3 that this is a
tually equivalent to the existen
e of a monotoneBorel/Gδ hull operation on L.4. We remark here that throughout this paper R 
ould be repla
ed by Rn, ormore generally, by an un
ountable Polish spa
e endowed with a nonzero
ontinuous σ-�nite Borel measure. (The arguments using the densitytopology 
an be got around using that for su
h measures there existsa measure preserving Borel isomorphism with a subinterval of R [6℄.)The paper is organised as follows. First, in the next se
tion we settle theindependen
e of the existen
e of a monotone Borel/Gδ hull on N . The 
onsis-ten
y of the nonexisten
e immediately yields the 
onsisten
y of the nonexisten
eof a monotone Borel/Gδ hull on L. Then, in Se
tion 3, we prove that under CHthere is a monotone Borel hull on L, and prove partial results 
on
erning Gδhulls. We 
on
lude the paper by 
olle
ting the open questions in Se
tion 4.2



2 Monotone hulls for nullsetsRe
all that non(N ) = min{|H | : H ⊂ R, H /∈ N}, where |H | denotes 
ardinal-ity. In the sequel the 
ardinal κ is identi�ed with its initial ordinal, i.e. with thesmallest ordinal of 
ardinality κ, and also every ordinal is identi�ed with theset of smaller ordinals. For the standard set theory notation and te
hniques weuse here see e.g. [8℄ and [1℄.Theorem 2.1 In a model obtained by adding ω2 Cohen reals to a model satisfy-ing the Continuum Hypothesis (CH) there is no monotone Borel hull operationon N .Proof. We need two well-known fa
ts. Firstly, non(N ) = ω2 in this model [1℄.Se
ondly, in this model there is no stri
tly in
reasing (wrt. in
lusion) sequen
eof Borel sets of length ω2 (this is proved in [7℄, see also [2℄).Assume that ϕ : N → B is a monotone hull operation. Choose H = {xα :
α < non(N )} /∈ N , and 
onsider ϕ({xβ : β < α}) for α < non(N ). This is anin
reasing ω2 long sequen
e of Borel sets, whi
h 
annot stabilise, sin
e then Hwould be 
ontained in a nullset. But then we 
an sele
t a stri
tly in
reasingsubsequen
e of length ω2, a 
ontradi
tion. �The following is immediate.Corollary 2.2 Under the same assumption there exists no monotone Gδ hulloperation on N .Remark 2.3 We will see in Remark 3.14 that the length ω2 is optimal in thesense that all shorter 
hains have monotone Gδ hulls.Re
all that add(N ) = min{|F| : F ⊂ N ,

⋃

F /∈ N} and cof(N ) = min{|F| :
F ⊂ N , ∀N ∈ N ∃F ∈ F su
h that N ⊂ F}, and also that add(N ) = cof(N )is 
onsistent [1℄ (note that e.g. CH implies this equality).Theorem 2.4 Assume add(N ) = cof(N ). Then there exists a monotone Gδhull operation on N .Proof. Let {Nα : α < cof(N )} be a 
o�nal family in N , that is, ∀N ∈ N ∃α <
cof(N ) su
h that N ⊂ Nα. For every α < cof(N ) de�ne, using trans�nitere
ursion, Aα = a Gδ hull of (∪β<αAβ ∪ Nα). Clearly, {Aα : α < cof(N )}is a 
o�nal in
reasing sequen
e of Gδ sets. Now, for every N ∈ N de�ne
ϕ(N) = AαN

, where αN is the minimal index so that H ⊂ AαN
. It is easy tosee that ϕ : N → Gδ is a monotone hull operation. �The following is again immediate.Corollary 2.5 Under the same assumption there exists a monotone Borel hulloperation on N . 3



3 Monotone hulls for all setsFirst we note (Statement 3.2 below) that the title of this se
tion is justi�ed, asthere is no di�eren
e between working with measurable sets or arbitrary sets.We need a well-known lemma �rst. Re
all that the density topology 
onsistsof those measurable sets that have Lebesgue density 1 at ea
h of their points(see e.g. [9℄). Closure in this topology is denoted by Hd.Lemma 3.1 H
d is a hull of H for every H ⊂ R.Proof. Assume that λ(H ∩ I) < λ(H

d
∩ I) for some I ∈ L. As Hd

∈ L, thisimplies that there exists L ∈ L with λ(L) > 0 su
h that L ⊂ H
d
\ H . Set

L0 = {x ∈ L : x is a density point of L}. By the Lebesgue Density Theorem
L \ L0 ∈ N , whi
h easily implies that L0 6= ∅ is open in the density topology.But L0 ⊂ H

d is disjoint from H , a 
ontradi
tion. �Statement 3.2 The existen
e of a monotone Borel/Gδ hull operation on P(R)is equivalent to the existen
e of a monotone Borel/Gδ hull operation on L.Proof. On the one hand, the restri
tion to L of a monotone hull operation on
P(R) is itself a monotone hull operation.On the other hand, by the previous lemma there exists a monotone hulloperation ψ : P(R) → L. Hen
e if ϕ is a monotone hull operation on L then
ϕ ◦ ψ is a monotone hull operation on P(R). �Theorem 2.1 immediately implies the following.Corollary 3.3 In a model obtained by adding ω2 Cohen reals to a model satis-fying CH there is no monotone Borel or Gδ hull operation on L.Now we turn to the positive results.Theorem 3.4 Assume CH. Then there is a monotone Borel hull operation on
L. Before we prove this theorem we need a few lemmas. In 
ase H = B the �rstone is a spe
ial 
ase of a well-known result about Borel liftings, but there areno su
h results in 
ase of Gδ.Let us denote by A∆B the symmetri
 di�eren
e of A and B.Lemma 3.5 (CH) There exists a monotone map ψ : L → Gδ so that
λ(M∆ψ(M)) = 0 for every M ∈ L and so that λ(M∆M ′) = 0 implies
ψ(M) = ψ(M ′) for every M,M ′ ∈ L.Proof. Let us say that M,M ′ ∈ L are equivalent, if λ(M∆M ′) = 0. Denoteby [M ] the equivalen
e 
lass of M and by L/N the set of 
lasses. We say that
[M1] ≤ [M2] if there are M ′

1 ∈ [M1] and M ′
2 ∈ [M2] su
h that M ′

1 ⊂M ′
2.4



It is su�
ient to de�ne Ψ : L/N → Gδ so that [M ] ≤ [M ′] implies Ψ([M ]) ⊂
Ψ([M ′]) for every M,M ′ ∈ L, and so that Ψ([M ]) ∈ [M ] for every M ∈ L.Enumerate L/N as {[Mα] : α < ω1}. For every α < ω1 de�ne

Ψ([Mα]) =
⋂

β<α
[Mβ ]≥[Mα]

Ψ([Mβ ]) ∩
(a Gδ hull of ⋃

γ<α
[Mγ ]≤[Mα]

Ψ([Mγ ]) ∪Mα

)

.It is not hard to 
he
k that this is a Gδ set so that [Mγ ] ≤ [Mα] ≤ [Mβ]implies Ψ([Mγ ]) ⊂ Ψ([Mα]) ⊂ Ψ([Mβ]), and so that Ψ([Mα]) ∈ [Mα], hen
e the
onstru
tion works. �Remark 3.6 1. A
tually we will not use the fa
t that ψ is 
onstant on theequivalen
e 
lasses.2. We do not know if CH is needed in this lemma.The following lemma is the only result we 
an prove for B but not for Gδ.Lemma 3.7 (CH) There exists a monotone hull operation ϕ : N → B so that1. ϕ(N ∪N ′) ⊂ ϕ(N) ∪ ϕ(N ′) for every N,N ′ ∈ N (subadditivity),2. ⋃

{ϕ(N) : N ⊂ B,N ∈ N} \B ∈ N for every B ∈ B.Proof. Let {Aα : α < ω1} and αN be as in Theorem 2.4 (note that add(N ) =
cof(N ) = ω1 under CH ). Set A∗

α = Aα \ ∪β<αAβ . Enumerate B as {Bα : α <
ω1} and for every α < ω1 de�ne the 
ountable set

Bα = {∪ni=0Bβi
: n ∈ N, βi < α (0 ≤ i ≤ n)}.Note that every Bα is 
losed under �nite unions.Now de�ne

ϕ(N) =
⋃

α≤αN

(

A∗
α ∩

⋂

B∈Bα

N∩A∗

α⊂B

B
)

.This is 
learly a disjoint union. It is easy to see that ϕ is a monotone Borel hulloperation (note that ϕ(N) ⊂ AαN
).For every α < ω1 de�ne ϕα(N) = A∗

α ∩ ϕ(N) (N ∈ N ). In order to 
he
ksubadditivity, let N,N ′ ∈ N . We may assume αN ≤ αN ′ , so 
learly αN∪N ′ =
αN ′ . It su�
es to 
he
k that ea
h ϕα is subadditive. If α > αN then a
tually
ϕα(N ∪N ′) = ϕα(N ′), so we are done. Suppose now α ≤ αN . Let x ∈ A∗

α sothat x /∈ ϕ(N) ∪ϕ(N ′). Then there exist B ⊃ N ∩A∗
α and B′ ⊃ N ′ ∩A∗

α in Bαso that x /∈ B,B′. But then B ∪ B′ ∈ Bα witnesses that x /∈ ϕ(N ∪ N ′) sin
e
x /∈ B ∪B′ ⊃ (N ∪N ′) ∩A∗

α.Finally, to prove 2 it is su�
ient to show that N ⊂ Bα implies ϕ(N) \Bα ⊂
Aα for every N ∈ N and α < ω1. So let x ∈ ϕβ(N) for some β > α. We have toshow x ∈ Bα. But this simply follows from the de�nition of ϕ sin
e Bα ∈ Bβ.
� 5



Lemma 3.8 Let H be either B or Gδ. Assume that there exists a monotonemap ψ : L → H so that λ(M∆ψ(M)) = 0 for every M ∈ L and also that thereexists a monotone hull operation ϕ : N → H so that1. ϕ(N ∪N ′) ⊂ ϕ(N) ∪ ϕ(N ′) for every N,N ′ ∈ N ,2. ⋃

{ϕ(N) : N ⊂ H,N ∈ N} \H ∈ N for every H ∈ H.Then ϕ 
an be extended to a monotone hull operation ϕ∗ : L → H.Proof. We may assume that ψ(N) = ∅ for every N ∈ N (by rede�ning ψ on
N to be 
onstant ∅, if ne
essary).De�ne

ϕ∗(M) = ψ
(

M
)

∪ ϕ
(

M \ ψ(M)
)

∪ ϕ
(

⋃

N⊂ψ(M)
∅6=N∈N

ϕ(N) \ ψ(M)
)

.Clearly ϕ∗(M) ∈ H. As the union of �rst two terms 
ontains M , we obtain
M ⊂ ϕ∗(M). Moreover, ϕ∗(M) is a hull of M , sin
e the �rst term is equivalentto M and the last two terms are nullsets. It is also easy to see that ϕ∗ extends
ϕ. We still have to 
he
k monotoni
ity of ϕ∗. First we prove

N ′ ∈ N , M ′ ∈ L, N ′ ⊂ ψ(M ′) ⇒ ϕ(N ′) ⊂ ϕ∗(M ′). (1)Indeed, the 
ase N ′ = ∅ is trivial to 
he
k, otherwise
ϕ(N ′) ⊂

⋃

N⊂ψ(M ′)
∅6=N∈N

ϕ(N) ⊂
(

⋃

N⊂ψ(M ′)
∅6=N∈N

ϕ(N) \ ψ(M ′)
)

∪ ψ(M ′) ⊂

⊂ ϕ
(

⋃

N⊂ψ(M ′)
∅6=N∈N

ϕ(N) \ ψ(M ′)
)

∪ ψ(M ′) ⊂ ϕ∗(M ′),whi
h proves (1).Let nowM ⊂M ′ be arbitrary elements of L. We need to show that all threeterms of ϕ∗(M) are in ϕ∗(M ′).Firstly, ψ(M) ⊂ ψ(M ′).Se
ondly, de�ne N ′ =
(

M \ ψ(M)
)

∩ ψ(M ′). Using the subadditivity of ϕand then (1) we obtain
ϕ
(

M \ ψ(M)
)

⊂ ϕ
(

(

M \ ψ(M)
)

∩ ψ(M ′)
)

∪ ϕ
(

(

M \ ψ(M)
)

\ ψ(M ′)
)

⊂

⊂ ϕ
(

N ′
)

∪ ϕ
(

M ′ \ ψ(M ′)
)

⊂ ϕ∗(M ′).Thirdly, let
N ′ =

(

⋃

N⊂ψ(M)
∅6=N∈N

ϕ(N) \ ψ(M)
)

∩ ψ(M ′).6



Using the subadditivity of ϕ and then (1) we obtain
ϕ
(

⋃

N⊂ψ(M)
∅6=N∈N

ϕ(N) \ ψ(M)
)

⊂

⊂ ϕ
(

(

⋃

N⊂ψ(M)
∅6=N∈N

ϕ(N)\ψ(M)
)

∩ψ(M ′)
)

∪ϕ
(

(

⋃

N⊂ψ(M)
∅6=N∈N

ϕ(N)\ψ(M)
)

\ψ(M ′)
)

⊂

⊂ ϕ(N ′) ∪ ϕ
(

⋃

N⊂ψ(M ′)
∅6=N∈N

ϕ(N) \ ψ(M ′)
)

⊂ ϕ∗(M ′).This 
on
ludes the proof. �Now we prove Theorem 3.4.Proof. Lemma 3.5 and Lemma 3.7 show that in 
ase ofH = B the requirementsof Lemma 3.8 
an be satis�ed, so the proof of Theorem 3.4 is 
omplete. �Remark 3.9 1. We remark that subadditive monotone maps are a
tuallyadditive.2. The proof a
tually gives a monotone Fσδσ hull. However, we do not knowwhether a monotone Gδ hull operation on L exists (Question 4.5). Of
ourse, in light of the previous theorem, under CH, this is equivalent toassigning Gδ hulls only to the Borel (or Fσδσ) sets in a monotone way.Question 3.10 Is there a monotone Gδ hull operation on B? Or on Fσδσ? Oron any other �xed Borel 
lass e.g. Fσ? (Of 
ourse Gδ and the simpler ones arenot interesting.)Our next goal is to prove Theorem 3.11, the partial result we have 
on
erningmonotone Gδ hull operations on L. It shows that it is not possible to prove inZFC the nonexisten
e of Gδ hulls on L along the lines of Theorem 2.1, that is,only by 
onsidering long 
hains of sets.Theorem 3.11 Assume that there exists a monotone Gδ hull operation ψ on
N (whi
h follows e.g. from add(N ) = cof(N )). Let C ⊂ P(R) be a 
hain ofsets, that is, for every C,C′ ∈ C either C ⊂ C′ or C′ ⊂ C holds. Then thereexists a monotone Gδ hull operation on C.Proof. By Lemma 3.1 we may assume that C ⊂ L.We may also assume that C ⊂ [0, 1] for every C ∈ C, sin
e it is su�
ient to
onstru
t the hulls separately in every [n, n+ 1]. Partition C into the intervals
Ir = {C ∈ C : λ(C) = r}. Let R = {r ∈ [0, 1] : Ir 6= ∅}, and �x an element
Cr ∈ Ir for every r ∈ R. Well-order R as {rα : α < |R|}, and set Rα = {rβ :
β < α}.Now we de�ne ϕ(Crα

) by trans�nite re
ursion as follows. Fix two 
ountablesets R−
α ⊂ {r ∈ Rα : r < rα} and R+

α ⊂ {r ∈ Rα : r > rα} so that ∀r ∈ Rα,7



r < rα ∃r′ ∈ R−
α su
h that r ≤ r′ < rα, and similarly, ∀r ∈ Rα, r > rα ∃r′ ∈ R+

αsu
h that rα < r′ ≤ r. (Note that R−
α and R+

α may be singletons or even empty.)Set
ϕ(Crα

) =
[a Gδ hull of (

Crα
∪ ∪r∈R−

α
ϕ(Cr)

)]

∩ ∩r∈R+
α
ϕ(Cr).It is easy to see that this is a monotone Gδ hull operation on {Cr : r ∈ R}.We may assume that for the hull operation ψ we have ψ(∅) = ∅. Then we
an de�ne a monotone Gδ hull operation ϕt on It for ea
h t ∈ R as follows. Let

ϕt(C) = ϕ(Ct) ∪ ψ(C \ Ct) (C ∈ It).For ea
h t ∈ R �x a 
ountable set R++
t ⊂ {r ∈ R : r > t} so that ∀ r ∈ R,

r > t ∃r′ ∈ R++
t su
h that t < r′ ≤ r. Set

ϕ(C) = ϕt(C) ∩ ∩r∈R++
t
ϕ(Cr)for every C ∈ It and every t ∈ R. This is a proper de�nition sin
e for C = Ctthis is just an equality. It is easy to 
he
k that ϕ(C) is a Gδ hull of C and that

ϕ is monotone. �Finally, we prove in ZFC that rather long well-ordered 
hains have monotone
Gδ hulls.Lemma 3.12 Let ξ ≤ add(N ) and C = {Mα : α < ξ} ⊂ P(R) be su
h that
Mα ⊂Mβ for every α ≤ β < ξ. Then there exists a monotone Gδ hull operationon C.Proof. By Lemma 3.1 we may assume that C ⊂ L.By trans�nite re
ursion de�ne Aα to be a Gδ hull of the setMα∪∪β<α(Aβ \
Mα). Clearly every Aβ \Mα is a nullset, moreover there are |α| < add(N ) manyof them, hen
e Aα is a hull of Mα, too. �Re
all that κ+ is the su

essor 
ardinal of κ and also that every ξ < κ+ hasa 
o�nal (i.e. unbounded) subset of order type at most κ.Theorem 3.13 Let η < add(N )+ and C = {Mα : α < η} ⊂ P(R) be su
h that
Mα ⊂Mβ for every α ≤ β < η. Then there exists a monotone Gδ hull operationon C.Proof. By Lemma 3.1 we may assume that C ⊂ L.We prove this lemma by indu
tion on η. Fix a 
o�nal subset X ⊂ η oforder type ξ ≤ add(N ) and also a monotone Gδ hull operation ϕX : {Mα :
α ∈ X} → Gδ by the previous lemma. Every 
omplementary interval [β, γ) of
X (i.e. every interval that is maximal disjoint from X) is of order type < η,hen
e by the indu
tive assumption there exists a monotone Gδ hull operation
ϕ[β,γ) : {Mα : α ∈ [β, γ)} → Gδ. Also �x a measure zero Gδ hull H[β,γ) of
∪δ<β, δ∈X

(

ϕX(Mδ) \Mβ

). Now for every [β, γ) and every α ∈ [β, γ) de�ne
ϕ(Mα) =

(

H[β,γ) ∪ ϕ[β,γ)(Mα)
)

∩ ϕX(Mγ),8



and also de�ne ϕ(Mα) = ϕX(Mα) for every α ∈ X . It is then easy to see thatthis is a monotone Gδ hull operation on C. �Remark 3.14 As add(N ) ≥ ω1, we obtain that length ω2 of the 
hain in theproof of Theorem 2.1 was optimal.4 Con
luding remarks and open problemsNow we pose a few somewhat vague problems, some of whi
h may turn out tobe very easy.Question 4.1 It would be interesting to know what happens1. if we look at the 
ategory analogue of Question 1.4, that is, when N and
L are repla
ed by the �rst Baire 
ategory (=meager) sets and the sets withthe property of Baire.2. if we require that our monotone hulls be translation or isometry invariant.3. if we repla
e ⊂ by $ in Question 1.4, that is, we require that stri
t 
on-tainment is preserved.As for $-preserving hulls, let us note that the 
ase of L is easy.Statement 4.2 There is no $-preserving monotone Borel hull on L.Proof. Let C ⊂ R be the Cantor set and let B ⊂ C be a Bernstein subset [9℄,that is, a set su
h that B ∩ F 6= ∅ and B ∩ (C \ F ) 6= ∅ for every un
ountable
losed set F ⊂ C. Then C \A is 
ountable for every Borel set A 
ontaining B,as un
ountable Borel sets 
ontain un
ountable 
losed sets [6℄.Clearly, C \ B is un
ountable, so let {xα : α < ω1} be distin
t points ofthis set, then the stri
tly in
reasing 
hain Cα = (R \ C) ∪ B ∪ {xβ : β < α}
annot have a stri
tly monotone Borel hull ϕ, as already ϕ(C0) is of 
ountable
omplement in R. �But we do not know the answer to the 
ase of N .We now repeat the open questions of the paper for the sake of 
ompleteness.Question 4.3 Is there (in ZFC) a monotone map ψ : L → Gδ so that

λ(M∆ψ(M)) = 0 for everyM ∈ L? If yes, is there one su
h that λ(M∆M ′) = 0implies ψ(M) = ψ(M ′) for every M,M ′ ∈ L?Question 4.4 Is there a monotone Gδ hull operation on B? Or on Fσδσ? Oron any other �xed Borel 
lass e.g. Fσ? (Of 
ourse Gδ and the simpler ones arenot interesting.)Let us 
on
lude with the most important open question.9



Question 4.5 Is it possible to assign Gδ hulls to all (measurable) subsets of Rin a monotone way?A
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