
Can we assign the Borel hulls in a monotoneway?Márton Elekes∗ and András Máthé†Marh 20, 2007AbstratA hull of A ⊂ R is a set H ontaining A suh that λ(H ∩I) = λ(A∩I)for every Lebesgue measurable set I . We investigate all four versions ofthe following problem. Does there exist a monotone (wrt. inlusion) mapthat assigns a Borel/Gδ hull to every negligible/measurable subset of R?Three versions turn out to be independent of ZFC (the usual Zermelo-Fraenkel axioms with the Axiom of Choie), while in the fourth ase weonly prove that the nonexistene of a monotone Gδ hull operation for allmeasurable sets is onsistent. It remains open whether existene here isalso onsistent. We also answer a question of Z. Gyenes and D. Pálvölgyiwhih asks if monotone hulls an be de�ned for every hain (wrt. inlusion)of measurable sets. We also omment on the problem of hulls of all subsetsof R.1 IntrodutionNotation 1.1 Let us denote by N ,L,B and Gδ the lass of Lebesgue negligible,Lebesgue measurable, Borel and Gδ subsets of R, respetively. Let λ stand forLebesgue (outer) measure.De�nition 1.2 A set H ⊂ R is a hull of A ⊂ R, if A ⊂ H and λ(H ∩ I) =
λ(A ∩ I) for every Lebesgue measurable set I.Clearly, every set has a Borel, even a Gδ hull.De�nition 1.3 Let D and H be two sublasses of P(R) (usually D is N or L,and H is B or Gδ). If there exists a map ϕ : D → H suh that
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1. ϕ(D) is a hull of D for every D ∈ D2. D ⊂ D′ implies ϕ(D) ⊂ ϕ(D′)then we say that a monotone H hull operation on D exists.The four questions we address in this paper are the following.Question 1.4 Let D be either N or L, and let H be either B or Gδ. Does thereexist a monotone H hull operation on D?Remark 1.5 1. The problem was originally motivated by the followingquestion of Z. Gyenes and D. Pálvölgyi [3℄. Suppose that C ⊂ L is ahain of sets, i.e. for every C,C′ ∈ C either C ⊂ C′ or C′ ⊂ C holds. Doesthere exist a monotone B/Gδ hull operation on C?2. Another motivation for our set of problems is that it seems to be verylosely related to the theory of so alled liftings. A map l : L → L isalled a lifting if it preserves ∅, �nite unions and omplement, moreover,it is onstant on the equivalene lasses de�ned in Lemma 3.5 and also itmaps eah equivalene lass to one of its members. Note that liftings arelearly monotone. For a survey of this theory see the hapter by Strauss,Maheras and Musiaª in [5℄, or the hapter by Fremlin in [4℄. Note thatthe existene of Borel liftings is known to be independent of ZFC, but theexistene of a lifting with range in a �xed Borel lass is not known to beonsistent.We also remark that liftings are usually onsidered as l∗ : L/N → L or
l∗ : P(R)/N → L maps.3. In light of the theory of liftings it is natural to ask if a monotone Borel/Gδhull operation on P(R) (i.e. all subsets of R) an be de�ned. We will seein Setion 3 that this is atually equivalent to the existene of a monotoneBorel/Gδ hull operation on L.4. We remark here that throughout this paper R ould be replaed by Rn, ormore generally, by an unountable Polish spae endowed with a nonzeroontinuous σ-�nite Borel measure. (The arguments using the densitytopology an be got around using that for suh measures there existsa measure preserving Borel isomorphism with a subinterval of R [6℄.)The paper is organised as follows. First, in the next setion we settle theindependene of the existene of a monotone Borel/Gδ hull on N . The onsis-teny of the nonexistene immediately yields the onsisteny of the nonexisteneof a monotone Borel/Gδ hull on L. Then, in Setion 3, we prove that under CHthere is a monotone Borel hull on L, and prove partial results onerning Gδhulls. We onlude the paper by olleting the open questions in Setion 4.2



2 Monotone hulls for nullsetsReall that non(N ) = min{|H | : H ⊂ R, H /∈ N}, where |H | denotes ardinal-ity. In the sequel the ardinal κ is identi�ed with its initial ordinal, i.e. with thesmallest ordinal of ardinality κ, and also every ordinal is identi�ed with theset of smaller ordinals. For the standard set theory notation and tehniques weuse here see e.g. [8℄ and [1℄.Theorem 2.1 In a model obtained by adding ω2 Cohen reals to a model satisfy-ing the Continuum Hypothesis (CH) there is no monotone Borel hull operationon N .Proof. We need two well-known fats. Firstly, non(N ) = ω2 in this model [1℄.Seondly, in this model there is no stritly inreasing (wrt. inlusion) sequeneof Borel sets of length ω2 (this is proved in [7℄, see also [2℄).Assume that ϕ : N → B is a monotone hull operation. Choose H = {xα :
α < non(N )} /∈ N , and onsider ϕ({xβ : β < α}) for α < non(N ). This is aninreasing ω2 long sequene of Borel sets, whih annot stabilise, sine then Hwould be ontained in a nullset. But then we an selet a stritly inreasingsubsequene of length ω2, a ontradition. �The following is immediate.Corollary 2.2 Under the same assumption there exists no monotone Gδ hulloperation on N .Remark 2.3 We will see in Remark 3.14 that the length ω2 is optimal in thesense that all shorter hains have monotone Gδ hulls.Reall that add(N ) = min{|F| : F ⊂ N ,

⋃

F /∈ N} and cof(N ) = min{|F| :
F ⊂ N , ∀N ∈ N ∃F ∈ F suh that N ⊂ F}, and also that add(N ) = cof(N )is onsistent [1℄ (note that e.g. CH implies this equality).Theorem 2.4 Assume add(N ) = cof(N ). Then there exists a monotone Gδhull operation on N .Proof. Let {Nα : α < cof(N )} be a o�nal family in N , that is, ∀N ∈ N ∃α <
cof(N ) suh that N ⊂ Nα. For every α < cof(N ) de�ne, using trans�nitereursion, Aα = a Gδ hull of (∪β<αAβ ∪ Nα). Clearly, {Aα : α < cof(N )}is a o�nal inreasing sequene of Gδ sets. Now, for every N ∈ N de�ne
ϕ(N) = AαN

, where αN is the minimal index so that H ⊂ AαN
. It is easy tosee that ϕ : N → Gδ is a monotone hull operation. �The following is again immediate.Corollary 2.5 Under the same assumption there exists a monotone Borel hulloperation on N . 3



3 Monotone hulls for all setsFirst we note (Statement 3.2 below) that the title of this setion is justi�ed, asthere is no di�erene between working with measurable sets or arbitrary sets.We need a well-known lemma �rst. Reall that the density topology onsistsof those measurable sets that have Lebesgue density 1 at eah of their points(see e.g. [9℄). Closure in this topology is denoted by Hd.Lemma 3.1 H
d is a hull of H for every H ⊂ R.Proof. Assume that λ(H ∩ I) < λ(H

d
∩ I) for some I ∈ L. As Hd

∈ L, thisimplies that there exists L ∈ L with λ(L) > 0 suh that L ⊂ H
d
\ H . Set

L0 = {x ∈ L : x is a density point of L}. By the Lebesgue Density Theorem
L \ L0 ∈ N , whih easily implies that L0 6= ∅ is open in the density topology.But L0 ⊂ H

d is disjoint from H , a ontradition. �Statement 3.2 The existene of a monotone Borel/Gδ hull operation on P(R)is equivalent to the existene of a monotone Borel/Gδ hull operation on L.Proof. On the one hand, the restrition to L of a monotone hull operation on
P(R) is itself a monotone hull operation.On the other hand, by the previous lemma there exists a monotone hulloperation ψ : P(R) → L. Hene if ϕ is a monotone hull operation on L then
ϕ ◦ ψ is a monotone hull operation on P(R). �Theorem 2.1 immediately implies the following.Corollary 3.3 In a model obtained by adding ω2 Cohen reals to a model satis-fying CH there is no monotone Borel or Gδ hull operation on L.Now we turn to the positive results.Theorem 3.4 Assume CH. Then there is a monotone Borel hull operation on
L. Before we prove this theorem we need a few lemmas. In ase H = B the �rstone is a speial ase of a well-known result about Borel liftings, but there areno suh results in ase of Gδ.Let us denote by A∆B the symmetri di�erene of A and B.Lemma 3.5 (CH) There exists a monotone map ψ : L → Gδ so that
λ(M∆ψ(M)) = 0 for every M ∈ L and so that λ(M∆M ′) = 0 implies
ψ(M) = ψ(M ′) for every M,M ′ ∈ L.Proof. Let us say that M,M ′ ∈ L are equivalent, if λ(M∆M ′) = 0. Denoteby [M ] the equivalene lass of M and by L/N the set of lasses. We say that
[M1] ≤ [M2] if there are M ′

1 ∈ [M1] and M ′
2 ∈ [M2] suh that M ′

1 ⊂M ′
2.4



It is su�ient to de�ne Ψ : L/N → Gδ so that [M ] ≤ [M ′] implies Ψ([M ]) ⊂
Ψ([M ′]) for every M,M ′ ∈ L, and so that Ψ([M ]) ∈ [M ] for every M ∈ L.Enumerate L/N as {[Mα] : α < ω1}. For every α < ω1 de�ne

Ψ([Mα]) =
⋂

β<α
[Mβ ]≥[Mα]

Ψ([Mβ ]) ∩
(a Gδ hull of ⋃

γ<α
[Mγ ]≤[Mα]

Ψ([Mγ ]) ∪Mα

)

.It is not hard to hek that this is a Gδ set so that [Mγ ] ≤ [Mα] ≤ [Mβ]implies Ψ([Mγ ]) ⊂ Ψ([Mα]) ⊂ Ψ([Mβ]), and so that Ψ([Mα]) ∈ [Mα], hene theonstrution works. �Remark 3.6 1. Atually we will not use the fat that ψ is onstant on theequivalene lasses.2. We do not know if CH is needed in this lemma.The following lemma is the only result we an prove for B but not for Gδ.Lemma 3.7 (CH) There exists a monotone hull operation ϕ : N → B so that1. ϕ(N ∪N ′) ⊂ ϕ(N) ∪ ϕ(N ′) for every N,N ′ ∈ N (subadditivity),2. ⋃

{ϕ(N) : N ⊂ B,N ∈ N} \B ∈ N for every B ∈ B.Proof. Let {Aα : α < ω1} and αN be as in Theorem 2.4 (note that add(N ) =
cof(N ) = ω1 under CH ). Set A∗

α = Aα \ ∪β<αAβ . Enumerate B as {Bα : α <
ω1} and for every α < ω1 de�ne the ountable set

Bα = {∪ni=0Bβi
: n ∈ N, βi < α (0 ≤ i ≤ n)}.Note that every Bα is losed under �nite unions.Now de�ne

ϕ(N) =
⋃

α≤αN

(

A∗
α ∩

⋂

B∈Bα

N∩A∗

α⊂B

B
)

.This is learly a disjoint union. It is easy to see that ϕ is a monotone Borel hulloperation (note that ϕ(N) ⊂ AαN
).For every α < ω1 de�ne ϕα(N) = A∗

α ∩ ϕ(N) (N ∈ N ). In order to heksubadditivity, let N,N ′ ∈ N . We may assume αN ≤ αN ′ , so learly αN∪N ′ =
αN ′ . It su�es to hek that eah ϕα is subadditive. If α > αN then atually
ϕα(N ∪N ′) = ϕα(N ′), so we are done. Suppose now α ≤ αN . Let x ∈ A∗

α sothat x /∈ ϕ(N) ∪ϕ(N ′). Then there exist B ⊃ N ∩A∗
α and B′ ⊃ N ′ ∩A∗

α in Bαso that x /∈ B,B′. But then B ∪ B′ ∈ Bα witnesses that x /∈ ϕ(N ∪ N ′) sine
x /∈ B ∪B′ ⊃ (N ∪N ′) ∩A∗

α.Finally, to prove 2 it is su�ient to show that N ⊂ Bα implies ϕ(N) \Bα ⊂
Aα for every N ∈ N and α < ω1. So let x ∈ ϕβ(N) for some β > α. We have toshow x ∈ Bα. But this simply follows from the de�nition of ϕ sine Bα ∈ Bβ.
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Lemma 3.8 Let H be either B or Gδ. Assume that there exists a monotonemap ψ : L → H so that λ(M∆ψ(M)) = 0 for every M ∈ L and also that thereexists a monotone hull operation ϕ : N → H so that1. ϕ(N ∪N ′) ⊂ ϕ(N) ∪ ϕ(N ′) for every N,N ′ ∈ N ,2. ⋃

{ϕ(N) : N ⊂ H,N ∈ N} \H ∈ N for every H ∈ H.Then ϕ an be extended to a monotone hull operation ϕ∗ : L → H.Proof. We may assume that ψ(N) = ∅ for every N ∈ N (by rede�ning ψ on
N to be onstant ∅, if neessary).De�ne

ϕ∗(M) = ψ
(

M
)

∪ ϕ
(

M \ ψ(M)
)

∪ ϕ
(

⋃

N⊂ψ(M)
∅6=N∈N

ϕ(N) \ ψ(M)
)

.Clearly ϕ∗(M) ∈ H. As the union of �rst two terms ontains M , we obtain
M ⊂ ϕ∗(M). Moreover, ϕ∗(M) is a hull of M , sine the �rst term is equivalentto M and the last two terms are nullsets. It is also easy to see that ϕ∗ extends
ϕ. We still have to hek monotoniity of ϕ∗. First we prove

N ′ ∈ N , M ′ ∈ L, N ′ ⊂ ψ(M ′) ⇒ ϕ(N ′) ⊂ ϕ∗(M ′). (1)Indeed, the ase N ′ = ∅ is trivial to hek, otherwise
ϕ(N ′) ⊂

⋃

N⊂ψ(M ′)
∅6=N∈N

ϕ(N) ⊂
(

⋃

N⊂ψ(M ′)
∅6=N∈N

ϕ(N) \ ψ(M ′)
)

∪ ψ(M ′) ⊂

⊂ ϕ
(

⋃

N⊂ψ(M ′)
∅6=N∈N

ϕ(N) \ ψ(M ′)
)

∪ ψ(M ′) ⊂ ϕ∗(M ′),whih proves (1).Let nowM ⊂M ′ be arbitrary elements of L. We need to show that all threeterms of ϕ∗(M) are in ϕ∗(M ′).Firstly, ψ(M) ⊂ ψ(M ′).Seondly, de�ne N ′ =
(

M \ ψ(M)
)

∩ ψ(M ′). Using the subadditivity of ϕand then (1) we obtain
ϕ
(

M \ ψ(M)
)

⊂ ϕ
(

(

M \ ψ(M)
)

∩ ψ(M ′)
)

∪ ϕ
(

(

M \ ψ(M)
)

\ ψ(M ′)
)

⊂

⊂ ϕ
(

N ′
)

∪ ϕ
(

M ′ \ ψ(M ′)
)

⊂ ϕ∗(M ′).Thirdly, let
N ′ =

(

⋃

N⊂ψ(M)
∅6=N∈N

ϕ(N) \ ψ(M)
)

∩ ψ(M ′).6



Using the subadditivity of ϕ and then (1) we obtain
ϕ
(

⋃

N⊂ψ(M)
∅6=N∈N

ϕ(N) \ ψ(M)
)

⊂

⊂ ϕ
(

(

⋃

N⊂ψ(M)
∅6=N∈N

ϕ(N)\ψ(M)
)

∩ψ(M ′)
)

∪ϕ
(

(

⋃

N⊂ψ(M)
∅6=N∈N

ϕ(N)\ψ(M)
)

\ψ(M ′)
)

⊂

⊂ ϕ(N ′) ∪ ϕ
(

⋃

N⊂ψ(M ′)
∅6=N∈N

ϕ(N) \ ψ(M ′)
)

⊂ ϕ∗(M ′).This onludes the proof. �Now we prove Theorem 3.4.Proof. Lemma 3.5 and Lemma 3.7 show that in ase ofH = B the requirementsof Lemma 3.8 an be satis�ed, so the proof of Theorem 3.4 is omplete. �Remark 3.9 1. We remark that subadditive monotone maps are atuallyadditive.2. The proof atually gives a monotone Fσδσ hull. However, we do not knowwhether a monotone Gδ hull operation on L exists (Question 4.5). Ofourse, in light of the previous theorem, under CH, this is equivalent toassigning Gδ hulls only to the Borel (or Fσδσ) sets in a monotone way.Question 3.10 Is there a monotone Gδ hull operation on B? Or on Fσδσ? Oron any other �xed Borel lass e.g. Fσ? (Of ourse Gδ and the simpler ones arenot interesting.)Our next goal is to prove Theorem 3.11, the partial result we have onerningmonotone Gδ hull operations on L. It shows that it is not possible to prove inZFC the nonexistene of Gδ hulls on L along the lines of Theorem 2.1, that is,only by onsidering long hains of sets.Theorem 3.11 Assume that there exists a monotone Gδ hull operation ψ on
N (whih follows e.g. from add(N ) = cof(N )). Let C ⊂ P(R) be a hain ofsets, that is, for every C,C′ ∈ C either C ⊂ C′ or C′ ⊂ C holds. Then thereexists a monotone Gδ hull operation on C.Proof. By Lemma 3.1 we may assume that C ⊂ L.We may also assume that C ⊂ [0, 1] for every C ∈ C, sine it is su�ient toonstrut the hulls separately in every [n, n+ 1]. Partition C into the intervals
Ir = {C ∈ C : λ(C) = r}. Let R = {r ∈ [0, 1] : Ir 6= ∅}, and �x an element
Cr ∈ Ir for every r ∈ R. Well-order R as {rα : α < |R|}, and set Rα = {rβ :
β < α}.Now we de�ne ϕ(Crα

) by trans�nite reursion as follows. Fix two ountablesets R−
α ⊂ {r ∈ Rα : r < rα} and R+

α ⊂ {r ∈ Rα : r > rα} so that ∀r ∈ Rα,7



r < rα ∃r′ ∈ R−
α suh that r ≤ r′ < rα, and similarly, ∀r ∈ Rα, r > rα ∃r′ ∈ R+

αsuh that rα < r′ ≤ r. (Note that R−
α and R+

α may be singletons or even empty.)Set
ϕ(Crα

) =
[a Gδ hull of (

Crα
∪ ∪r∈R−

α
ϕ(Cr)

)]

∩ ∩r∈R+
α
ϕ(Cr).It is easy to see that this is a monotone Gδ hull operation on {Cr : r ∈ R}.We may assume that for the hull operation ψ we have ψ(∅) = ∅. Then wean de�ne a monotone Gδ hull operation ϕt on It for eah t ∈ R as follows. Let

ϕt(C) = ϕ(Ct) ∪ ψ(C \ Ct) (C ∈ It).For eah t ∈ R �x a ountable set R++
t ⊂ {r ∈ R : r > t} so that ∀ r ∈ R,

r > t ∃r′ ∈ R++
t suh that t < r′ ≤ r. Set

ϕ(C) = ϕt(C) ∩ ∩r∈R++
t
ϕ(Cr)for every C ∈ It and every t ∈ R. This is a proper de�nition sine for C = Ctthis is just an equality. It is easy to hek that ϕ(C) is a Gδ hull of C and that

ϕ is monotone. �Finally, we prove in ZFC that rather long well-ordered hains have monotone
Gδ hulls.Lemma 3.12 Let ξ ≤ add(N ) and C = {Mα : α < ξ} ⊂ P(R) be suh that
Mα ⊂Mβ for every α ≤ β < ξ. Then there exists a monotone Gδ hull operationon C.Proof. By Lemma 3.1 we may assume that C ⊂ L.By trans�nite reursion de�ne Aα to be a Gδ hull of the setMα∪∪β<α(Aβ \
Mα). Clearly every Aβ \Mα is a nullset, moreover there are |α| < add(N ) manyof them, hene Aα is a hull of Mα, too. �Reall that κ+ is the suessor ardinal of κ and also that every ξ < κ+ hasa o�nal (i.e. unbounded) subset of order type at most κ.Theorem 3.13 Let η < add(N )+ and C = {Mα : α < η} ⊂ P(R) be suh that
Mα ⊂Mβ for every α ≤ β < η. Then there exists a monotone Gδ hull operationon C.Proof. By Lemma 3.1 we may assume that C ⊂ L.We prove this lemma by indution on η. Fix a o�nal subset X ⊂ η oforder type ξ ≤ add(N ) and also a monotone Gδ hull operation ϕX : {Mα :
α ∈ X} → Gδ by the previous lemma. Every omplementary interval [β, γ) of
X (i.e. every interval that is maximal disjoint from X) is of order type < η,hene by the indutive assumption there exists a monotone Gδ hull operation
ϕ[β,γ) : {Mα : α ∈ [β, γ)} → Gδ. Also �x a measure zero Gδ hull H[β,γ) of
∪δ<β, δ∈X

(

ϕX(Mδ) \Mβ

). Now for every [β, γ) and every α ∈ [β, γ) de�ne
ϕ(Mα) =

(

H[β,γ) ∪ ϕ[β,γ)(Mα)
)

∩ ϕX(Mγ),8



and also de�ne ϕ(Mα) = ϕX(Mα) for every α ∈ X . It is then easy to see thatthis is a monotone Gδ hull operation on C. �Remark 3.14 As add(N ) ≥ ω1, we obtain that length ω2 of the hain in theproof of Theorem 2.1 was optimal.4 Conluding remarks and open problemsNow we pose a few somewhat vague problems, some of whih may turn out tobe very easy.Question 4.1 It would be interesting to know what happens1. if we look at the ategory analogue of Question 1.4, that is, when N and
L are replaed by the �rst Baire ategory (=meager) sets and the sets withthe property of Baire.2. if we require that our monotone hulls be translation or isometry invariant.3. if we replae ⊂ by $ in Question 1.4, that is, we require that strit on-tainment is preserved.As for $-preserving hulls, let us note that the ase of L is easy.Statement 4.2 There is no $-preserving monotone Borel hull on L.Proof. Let C ⊂ R be the Cantor set and let B ⊂ C be a Bernstein subset [9℄,that is, a set suh that B ∩ F 6= ∅ and B ∩ (C \ F ) 6= ∅ for every unountablelosed set F ⊂ C. Then C \A is ountable for every Borel set A ontaining B,as unountable Borel sets ontain unountable losed sets [6℄.Clearly, C \ B is unountable, so let {xα : α < ω1} be distint points ofthis set, then the stritly inreasing hain Cα = (R \ C) ∪ B ∪ {xβ : β < α}annot have a stritly monotone Borel hull ϕ, as already ϕ(C0) is of ountableomplement in R. �But we do not know the answer to the ase of N .We now repeat the open questions of the paper for the sake of ompleteness.Question 4.3 Is there (in ZFC) a monotone map ψ : L → Gδ so that

λ(M∆ψ(M)) = 0 for everyM ∈ L? If yes, is there one suh that λ(M∆M ′) = 0implies ψ(M) = ψ(M ′) for every M,M ′ ∈ L?Question 4.4 Is there a monotone Gδ hull operation on B? Or on Fσδσ? Oron any other �xed Borel lass e.g. Fσ? (Of ourse Gδ and the simpler ones arenot interesting.)Let us onlude with the most important open question.9
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