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Abstract

We show that for every Lebesgue measurable function f : [0, 1] → R there exists a compact set C
of Hausdorff dimension 1/2 such that f is of bounded variation on C, and there exist compact sets
Cα of Hausdorff dimension 1−α such that f is Hölder-α on Cα (0 < α < 1). These answer questions
of M. Elekes, which were open even for continuous functions f . Our proof goes by defining a discrete
Hausdorff pre-measure on Z, solving the corresponding discrete problems, and then finding suitable
limit theorems.

1 Introduction

It was an unsolved problem for several years whether Hausdorff measures of different dimensions
can be Borel isomorphic or not. This problem is attributed to B. Weiss and popularized by D. Preiss
(see also [6]). Let B denote the Borel σ-algebra of R, and Hd denote the d-dimensional Hausdorff
measure; then the exact question reads as follows.

Question 1.1.

(i) Can the measure spaces (R,B,Hs) and (R,B,Ht) be isomorphic if s 6= t (s, t ∈ [0, 1])?

(ii) Let 0 < s < t < 1. Does there exist a Borel bijection f : R → R such that for every Borel set
B,

0 < Hs(B) < ∞ ⇐⇒ 0 < Ht(f(B)) < ∞?

The two parts are not equivalent but it is easy to see that the negative answer to (ii) implies the
negative answer to (i).

M. Elekes, aiming to solve this problem, raised the following question [4].

Question 1.2. Can we find for every Borel (or continuous, or typical1 continuous) function f :
[0, 1] → R a Borel set B of positive Hausdorff dimension such that f restricted to B is Hölder
continuous of exponent α? (0 < α ≤ 1).

How is this question related to the previous? Suppose that we have an answer to Question 1.2
so that for every Borel function f there exists a Borel set B of dimension β, such that f is Hölder-α
on B (for some fixed α). As it is well-known, this implies that f(B) has dimension at most β/α. It
is easy to see that this would answer (both parts of) Question 1.1 in the negative for those s and t
for which 0 < s < β < β/α < t < 1 holds.

According to a theorem of P. Humke and M. Laczkovich [5], a typical continuous function
f : [0, 1] → R is not monotone on any set of positive Hausdorff dimension. Since every function of
bounded variation is the sum of two monotone functions, this result motivated M. Elekes to raise
an analogue of Question 1.2.

Question 1.3. Can we find for every Borel (or continuous, or typical continuous) function f :
[0, 1] → R a Borel set B of positive Hausdorff dimension such that f restricted to B is of bounded
variation? Can we even find a set of dimension 1/2?

This problem is also circulated by D. Preiss, and a similar question was already asked by
P. Humke and M. Laczkovich, see also Z. Buczolich [1, 2].

M. Elekes proved in [4] that a typical continuous function f : [0, 1] → R is not of bounded
variation on any set of Hausdorff dimension larger than 1/2. Regarding Question 1.2 he also gave
an upper bound for the possible dimension by showing that for every 0 < α ≤ 1, a typical continuous
function is not Hölder-α on any set of dimension larger than 1 − α. However, no other result was
known so far regarding these questions.

Our goal here is to answer Question 1.3 and Question 1.2 in the strongest possible form.
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Theorem 1.4. Let f : [0, 1] → R be Lebesgue measurable. Then there exists a compact set C ⊂ [0, 1]
of Hausdorff dimension 1/2 such that f |C is of bounded variation.

Theorem 1.5. Let f : [0, 1] → R be Lebesgue measurable and 0 < α < 1. Then there exists a
compact set C ⊂ [0, 1] of Hausdorff dimension 1 − α such that f restricted to C is a Hölder-α
function.

As described above, the second theorem gives some partial results on the isomorphism problem
of Hausdorff measures (Question 1.1). However, recently this problem has been solved completely
by the present author [6]. The proof does not rely on Theorem 1.5, though the questions and work
of M. Elekes were definitely inspiring: In [6] it is proved that for every Borel measurable mapping
f : R → R for every d ∈ [0, 1] there exists a compact set C of dimension d such that f(C) is of
dimension at most d. The proof is based on a random construction, and it is very different from the
proofs of the present article.

We shall prove Theorem 1.4 and 1.5 parallelly. At first we shall define the discrete Hausdorff
pre-measure on Z (the integers) and prove some basic facts about it (§2). Using this, we will be
able to formalize and prove the corresponding problems in a discrete setting (Theorem 3.3 and 3.4)
in §3. Then in §4 we prove suitable limit theorems which together with Theorem 3.3 and 3.4 yield
the proof of Theorem 1.4 and 1.5. There is also a brief overview of the whole proof at the beginning
of §3. We mention some open questions and generalizations of Theorem 1.4 and 1.5 in §5.

Theorem 1.4 and 1.5 belong to the family of restriction theorems. The setting of a restriction
theorem usually is the following. Given some function f from some class X, one tries to find a large
set A so that f |A belongs to some other (nice) class Y . Here largeness usually means that A is
infinite, uncountable, perfect, not porous, or A is of positive measure or of second category. It is
interesting that for the above questions of M. Elekes, the proper notion of largeness is some specific
Hausdorff dimension. We refer the reader to the survey article of J. B. Brown [3] on restriction
theorems and to the references therein.

Definition 1.6. We say that the real function f is of bounded variation on the set A if f restricted
to A is a function of bounded variation. We say that the real function f is Hölder continuous of
exponent α (or briefly Hölder-α) on the set A if f |A is Hölder-α; that is, there exists a real number
B > 0 such that for every x, y ∈ A, |f(x) − f(y)| ≤ B|x − y|α.

Notation. We denote the set of nonnegative integers by N. We adopt the brief notation n =
{0, 1, 2, . . . , n − 1} for each n ∈ N as usual in set theory. However, n will always denote a positive
integer in this paper (unless otherwise stated).

Let Hs
∞(A) denote the s-dimensional Hausdorff pre-measure of the set A ⊂ R; that is,

Hs
∞(A) = inf{

∑∞

i=1(diam Ii)
s : A ⊂ ∪∞

i=1Ii}.

By dimension we always mean the Hausdorff dimension.
For x ∈ R, we denote by ⌈x⌉ the smallest integer which is not smaller than x.
If ∅ 6= A ⊂ R and f : A → R, we denote the total variation of f by Var f .
If ∅ 6= A ⊂ R and f : A → R, we say that f ∈ B-Hölderα if

∀x, y ∈ A |f(x) − f(y)| ≤ B|x − y|α.

Remark 1.7. Notice that if A ⊂ R and f : A → R is a given function, then there exists a function
g : R → R extending f (that is, g|A = f) such that the total variation of g and f are equal and
that f is Hölder-α if and only if g is Hölder-α (0 < α ≤ 1). (Given f , one can easily define g on the
closure of A, and then the linear extension works.) This yields that the following are equivalent for
every function f : [0, 1] → R and β ∈ [0, 1]:

(i) There exists a set A of dimension at least β so that f |A is of bounded variation;

(ii) There exists a function g : [0, 1] → R of bounded variation so that the set [f = g] (that is,
{x : f(x) = g(x)}) has dimension at least β;

and the same equivalence holds for the Hölder-α property. Thus Question 1.3 and 1.2 and Theo-
rem 1.4 and 1.5 could have also been formulated equivalently corresponding to (ii).

2 Discrete Hausdorff measure

We define the discrete Hausdorff pre-measure on the subsets of the integers Z. The covering sets
will be intervals I ⊂ Z, and here by interval we mean a set of finitely many consecutive integers.
By |I | we denote the number of elements of I .

Let d(X, Y ) denote the usual distance of X and Y (X, Y ⊂ R). If X or Y is empty, then we
define their distance to be ∞.

2



Definition 2.1. Let 0 < s ≤ 1. The discrete Hausdorff pre-measure of dimension s is the function
µs : P(Z) → [0,∞] defined by

µs(A) = min{
∑

I∈I

|I |s : I is a collection of intervals of Z such that A ⊂ ∪I}.

It is reasonable to call µs a pre-measure since it is subadditive:

Lemma 2.2. Let 0 < s ≤ 1 and A, B ⊂ Z. Then

µs(A ∪ B) ≤ µs(A) + µs(B).

We also have an inequality the other way around.

Lemma 2.3. Let 0 < s ≤ 1 and A, B ⊂ Z. Then

µs(A ∪ B) ≥ min
(

d(A,B)s, µs(A) + µs(B)
)

.

Proof. Consider a covering of A∪B with intervals of integers. If there is an interval of size at least
d(A,B) then the inequality clearly holds. Suppose that every interval has a size at most d(A,B).
Then each interval can intersect either A or B but not both, so we can divide up the covering into
two parts to cover A and to cover B, which corresponds to the case µs(A∪B) ≥ µs(A)+µs(B).

The following statement connects µs to the (real) Hausdorff pre-measure Hs
∞.

Lemma 2.4. Let 0 < s ≤ 1. For a set A ⊂ Z, let us define

A∗ def
= ∪i

{

[i, i + 1
2
] : i ∈ A

}

.

Then
Hs

∞(A∗) ≤ µs(A) ≤ 2s · Hs
∞(A∗).

Proof. We may suppose that A is finite (that is, bounded). The left hand side is immediately trivial
if we exchange each covering interval I ⊂ Z of A to the interval [min I, max I + 1].

It is well-known that it is enough to consider only finite coverings of A∗ with closed intervals
to calculate Hs

∞(A∗). Notice that we may suppose that the covering intervals are disjoint since
(a + b)s ≤ as + bs for every a, b ≥ 0. Hence we may also suppose that all the intervals covering A∗

are of the form [n, n + l + 1
2
] (with length l + 1

2
) for some integer n and l ∈ N. Hence one can cover

A with the corresponding intervals {n, n + 1, . . . , n + l} of size l + 1. Since (l + 1)s ≤ 2s(l + 1
2
)s for

every l ∈ N, we obtain the inequality.

Definition 2.5. Let A ⊂ Z. We say that a mapping ϕ : A → Z is non-contractive if |ϕ(x)−ϕ(y)| ≥
|x − y| for every x, y ∈ A.

We shall use the following observation many times in the followings.

Lemma 2.6. If ϕ : A → Z is non-contractive, then µs(ϕ(A)) ≥ µs(A).

The proof is left to the reader.

3 Discrete version

Before we start we would like to motivate the theorems and proofs of this section by giving an
informal overview of the proof of Theorem 1.4 and 1.5.

At first let us just consider the case of variations (that is, Theorem 1.4). So let f : [0, 1] → R be
measurable. Then f is continuous on some compact set of positive measure. Let us now just suppose
that f is continuous on the whole interval [0, 1], it will not make much difference. We would like
to prove that f possesses the property that there exists a set C ⊂ [0, 1] of large dimension so that
f |C has finite variation. A key observation is that this property (or at least a quantitative version
of this property) goes through uniform convergence. That is, if some (not necessarily continuous)
functions fn converge uniformly to f , and there exist compact sets Cn such that

Hs
∞(Cn) ≥ ε and Var fn|Cn

≤ B

for some ε > 0 and finite B, then there exists a compact set C such that

Hs
∞(C) ≥ ε and Var f |C ≤ B.

(Note that Hs
∞(C) > 0 implies that the dimension of C is at least s.) Hence it is enough to show

that this (quantitative) property holds for a dense family of functions. We choose the family of
those functions g which are piecewise constant on the intervals [ i

n
, i+1

n
) (i = 0, . . . , n − 1). But for

simplicity, we will rather deal with the discrete functions h : n → R related to g by h(i) = g( i
n
)

(i = 0, . . . , n − 1).
Now it is not difficult (using Lemma 2.4) to relate the two properties that
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(i) there exists a compact set C ⊂ [0, 1] such that Hs
∞(C) is large and Var g|C is small; and

(ii) there exists a set A ⊂ n such that µs(A) is large and Var h|A is small.

Thus we only need to show that statement (ii) (after properly formulated) holds for all n and
all functions h : n → R, when s = 1/2. (Unfortunately, we can show this for any fixed s < 1/2 only,
but this will be enough to prove Theorem 1.4.) In some sense, the proof will go by induction on n.
This statement is what we will formulate precisely and prove in this section.

Regarding Theorem 1.5, an analogous informal proof could be told, but one has to change phrases
like “small variation” to “Hölder-α with small constant”; that is, Var f |C ≤ B to f |C ∈ B-Hölderα.

3.1 Formalizing the discrete problem

In the following definitions n is a positive integer, B is a positive real, and s,α ∈ (0, 1].

Definition 3.1.

b(n, B, s) = min
f :n→[0,1]

max
A⊂n

{

µs(A) : Var f |A ≤ B
}

.

Definition 3.2.

cα(n, B, s) = min
f :n→[0,1]

max
A⊂n

{

µs(A) : f |A ∈ B-Hölderα
}

.

Notice that b and c are monotonic increasing in n and in B. Clearly b(n, B, s) ≥ 1 and
cα(n, B, s) ≥ 1 for all n, since the µs-measure of a single point is 1.

The discrete analogues of Theorems 1.4 and 1.5 are the following.

Theorem 3.3. For every 0 < s < 1/2 and B > 0,

inf
n≥1

b(n, B, s)

ns
> 0.

Theorem 3.4. Given any 0 < α < 1, for every 0 < s < 1 − α and B > 0,

inf
n≥1

cα(n, B/nα, s)

ns
> 0.

Note that the denominator ns is present because when we exchange a function g : [0, 1] → R

for the function h : n → R (as in the informal overview at the beginning of this section), there is a
scaling by a factor of n, and this changes s-dimensional measures by a factor of ns. Also note that
while variation does not change when exchanging g for h, the Hölder-α constant “B” does change
by a factor of nα. This explains the difference between the numerators in the theorems.

3.2 Bounded variation

We start with the proof of Theorem 3.3, because variation is slightly easier to handle than the
Hölder property. However, the two proofs are analogous. At first we state and prove two main
“induction steps”, and what remains, will be just calculations.

Lemma 3.5. Fix a positive integer K. Then for every s < 1/2 and B > 0

b(n, KB + K − 1, s) ≥ min
( (

n
4K

)s
, K · b(⌈ n

2K
⌉, B, s)

)

for every n ∈ N large enough (depending only on K).

Proof. Let us choose K intervals of integers I1, . . . , IK inside n = {0, 1, . . . , n−1} of size
⌈

n
2K

⌉

such
that the distance of every two of them is at least n

4K
; clearly this can be done if n is sufficiently

large (depending on K).
Fix any function f : n → [0, 1]. We have to find a set A ⊂ n of large µs-measure such that

Var f |A ≤ KB + K − 1. For each interval Ij , consider the function f |Ij
. Since |Ij | = ⌈ n

2K
⌉, by the

definition of b(⌈ n
2K

⌉, B, s) we can find a set Aj ⊂ Ij such that

Var f |Aj
≤ B and µs(Aj) ≥ b(⌈ n

2K
⌉, B, s).

Put A = ∪K
j=1Aj . Applying Lemma 2.3 inductively to the sets Aj we get

µs(A) ≥ min
( (

n
4K

)s
, K · b(⌈ n

2K
⌉, B, s)

)

. (1)

Since Var f |A ≤
∑K

j=1 Var f |Aj
+ (K − 1) ≤ KB + K − 1, (1) instantly gives Lemma 3.5.

Lemma 3.6. For each positive integer L,

b(n, B, s) ≥ b(⌈ n
L
⌉, BL, s).
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Proof. Fix any function f : n → [0, 1]. We have to find a set A ⊂ n such that Var f |A ≤ B and that
µs(A) ≥ b(⌈ n

L
⌉, BL, s). For each i ∈ L let

Si = {x ∈ n : i
L
≤ f(x) ≤ i+1

L
}.

There exists an i ∈ L such that |Si| ≥ ⌈ n
L
⌉; let S be a subset of this Si of size exactly |S| = ⌈ n

L
⌉.

Let ϕ : |S| → S be the enumeration of S; that is, ϕ is the monotonic increasing bijection from |S|
to S. Thus ϕ is a non-contractive mapping. Define g : |S| → [0, 1] by setting

g(x) = L ·
(

f(ϕ(x)) − i
L

)

. (2)

By the definition of b(|S|, BL, s), there exists a set T ⊂ |S| such that

µs(T ) ≥ b(|S|, BL, s) and Var g|T ≤ BL.

Using Lemma 2.6 and (2),

µs(ϕ(T )) ≥ µs(T ) ≥ b(|S|, BL, s) and Var f |ϕ(T ) = 1
L
· Var g|T ≤ B.

Thus A can be chosen as ϕ(T ), which proves this Lemma.

Proof of Theorem 3.3. We consider s < 1/2 to be fixed. Let K be a sufficiently large positive
integer, in fact, let K > 22sK2s hold. At first we will prove the Theorem for B = 2K − 1.

Let us apply Lemma 3.5 with B = 1. We obtain an N ∈ N such that for all n ≥ N ,

b(n, 2K − 1, s) ≥ min
( (

n
4K

)s
, K · b(⌈ n

2K
⌉, 1, s)

)

.

Now apply Lemma 3.6 for the right hand side with L = 2K − 1. We obtain

b(n, 2K − 1, s) ≥ min
( (

n
4K

)s
, K · b(⌈

⌈ n
2K

⌉

2K − 1
⌉, 2K − 1, s)

)

(n ≥ N).

Since b is monotonic increasing in its first coordinate,

b(n, 2K − 1, s) ≥ min
( (

n
4K

)s
, K · b(⌈ n

2K(2K−1)
⌉, 2K − 1, s)

)

(n ≥ N). (3)

Fix an arbitrary positive integer n0, and define the series

ni+1 = ⌈ ni

2K(2K−1)
⌉ (i ∈ N). (4)

Let j be the smallest nonnegative integer for which either

b(nj , 2K − 1, s) ≥
( nj

4K

)s

or nj ≤ N holds. Thus from (3) we obtain that

b(ni, 2K − 1, s) ≥ K · b(ni+1, 2K − 1, s) (0 ≤ i < j), (5)

and
b(nj , 2K − 1, s) ≥

( nj

4KN

)s
, (6)

since if nj ≤ N , then the right hand side is smaller than 1, which is a trivial lower bound. Thus
from (5) and (6) we get

b(n0, 2K − 1, s) ≥ Kj ·
( nj

4KN

)s
.

Using (4) we obtain the lower bound

b(n0, 2K − 1, s) ≥ Kj ·
( nj

4KN

)s
≥ Kj ·

(

1
4KN

)s
ns

0

(

1
2K(2K−1)

)js

=
(

1
4KN

)s
ns

0

(

K
2sKs(2K−1)s

)j
≥

(

1
4KN

)s
ns

0 (7)

provided that K
2sKs(2K−1)s > 1, which clearly holds since K was chosen so that K > 22sK2s holds.

Since n0 was arbitrary, from (7) we immediately obtain that

inf
n≥1

b(n, 2K − 1, s)

ns
≥

(

1
4KN

)s
> 0. (8)

Now let B > 0 be arbitrary. Let L ∈ N be so large that BL ≥ 2K − 1 holds. Using Lemma 3.6, the
fact that b is monotonic increasing in its second coordinate, and then (8),

inf
n≥1

b(n, B, s)

ns
≥ inf

n≥1

b(⌈ n
L
⌉, BL, s)

ns
≥ inf

n≥1

b(⌈ n
L
⌉, 2K − 1, s)

ns
≥ inf

n′≥1

b(n′, 2K − 1, s)

(n′L)s
> 0.
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3.3 Hölder-α

To prove Theorem 3.4, we also start with two “induction steps” (the analogues of Lemma 3.5 and
3.6).

Lemma 3.7. Fix a positive integer K. There exists an N ∈ N such that for every 0 < α ≤ 1,
0 < s < 1 and n ≥ N ,

cα(n, B, s) ≥ min
( (

n
4K

)s
, K · cα(⌈ n

2K
⌉, B, s)

)

if B ≥ 4K
nα .

Proof. Let us choose K intervals of integers I1, . . . , IK inside n = {0, 1, . . . , n−1} of size
⌈

n
2K

⌉

such
that the distance of every two of them is at least n

4K
; clearly this can be done if n is sufficiently

large (depending on K).
Fix any function f : n → [0, 1]. We have to find a set A ⊂ n of large µs-measure such that

f |A ∈ B-Hölderα. For each interval Ij , consider the function f |Ij
. Since |Ij | = ⌈ n

2K
⌉, by the

definition of cα(⌈ n
2K

⌉, B, s) we can find a set Aj ⊂ Ij such that

f |Aj
∈ B-Hölderα and µs(Aj) ≥ cα(⌈ n

2K
⌉, B, s).

Put A = ∪K
j=1Aj . Applying Lemma 2.3 inductively to the sets Aj we get

µs(A) ≥ min
( (

n
4K

)s
, K · cα(⌈ n

2K
⌉, B, s)

)

. (9)

It is easy to see that f |A ∈ B-Hölderα if 1 ≤ B ·
(

n
4K

)α
, which holds since 4K

nα ≤ B. Thus (9) gives
the proof.

Lemma 3.8. For each positive integer L,

cα(n, B, s) ≥ cα(⌈ n
L
⌉, BL, s).

Proof. Fix any function f : n → [0, 1]. We have to find a set A ⊂ n such that f |A ∈ B-Hölderα and
that µs(A) ≥ cα(⌈ n

L
⌉, BL, s). For each i ∈ L let

Si = {x ∈ n : i
L
≤ f(x) ≤ i+1

L
}.

There exists an i ∈ L such that |Si| ≥ ⌈ n
L
⌉; let S be a subset of this Si of size exactly |S| = ⌈ n

L
⌉.

Let ϕ : |S| → S be the enumeration of S; that is, ϕ is the monotonic increasing bijection from |S|
to S. Define g : |S| → [0, 1] by setting

g(x) = L ·
(

f(ϕ(x)) − i
L

)

. (10)

By the definition of cα(|S|, BL, s), there exists a set T ⊂ |S| such that

µs(T ) ≥ cα(|S|, BL, s) and g|T ∈ BL-Hölderα. (11)

Since ϕ is a non-contractive mapping, from Lemma 2.6, (11) and (10) we obtain that

µs(ϕ(T )) ≥ µs(T ) ≥ cα(|S|, BL, s) and f |ϕ(T ) ∈ B-Hölderα.

Thus A can be chosen as ϕ(T ), which proves this Lemma.

Proof of Theorem 3.4. We consider α and s < 1 − α to be fixed. Let K be a sufficiently large
positive integer. At first we shall prove the theorem for some B ≥ 4K.

Let us apply Lemma 3.7, we obtain an integer N such that for all n ≥ N we have

cα(n, B/nα, s) ≥ min
( (

n
4K

)s
, K · cα(⌈ n

2K
⌉, B/nα, s)

)

(12)

since B/nα ≥ 4K
nα holds as B ≥ 4K.

Let us choose an integer L such that

(2K)
α

1−α ≤ L ≤ 1
2
K

1−s
s (13)

holds (this can be done if K is sufficiently large since s < 1 − α). It is easy to check that the lower
bound implies

B

⌈ n
2KL

⌉α
≤

BL

nα
. (14)

Now apply Lemma 3.8 for the right hand side of (12), we obtain

cα(n, B/nα, s) ≥ min
( (

n
4K

)s
, K · cα(⌈⌈ n

2K
⌉ 1

L
⌉, BL/nα, s)

)

(n ≥ N).
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Since cα is monotonic increasing in its first and second coordinates, applying (14) we obtain

cα(n, B/nα, s) ≥ min
( (

n
4K

)s
, K · cα(⌈ n

2KL
⌉,

B

⌈ n
2KL

⌉α
, s)

)

(n ≥ N). (15)

Now let n0 be an arbitrary positive integer and define the sequence (ni) by

ni+1 = ⌈ ni

2KL
⌉ (i ∈ N). (16)

Let j be the smallest nonnegative integer for which either

cα(nj , B/nα
j , s) ≥

( nj

4K

)s

or nj ≤ N holds. Then from (15) we deduce that for all 0 ≤ i < j we have

cα(ni, B/nα
i , s) ≥ K · cα(ni+1, B/nα

i+1, s), (17)

and
cα(nj , B/nα

j , s) ≥
( nj

4KN

)s
, (18)

since if nj ≤ N , then the right hand side is smaller than 1, which is a trivial lower bound. From
(17), (18) and (16) we get

cα(n0, B/nα
0 , s) ≥ Kj

( nj

4KN

)s
≥ Kj

(

1
4KN

)s
ns

0

(

1
2KL

)js =
(

1
4KN

)s
ns

0

(

K
2sKsLs

)j
≥

(

1
4KN

)s
ns

0,

provided that K
2sKsLs ≥ 1, which is equivalent to L ≤ 1

2
K

1−s
s , which is the upper bound in (13).

Thus we have

inf
n≥1

cα(n, B/nα, s)

ns
≥

(

1
4KN

)s
> 0 (19)

for all B ≥ 4K.
Now let B > 0 be arbitrary and L be a positive integer so large that BL ≥ 4KLα holds. Using

Lemma 3.8 and the fact that cα is monotonic increasing in its second coordinate, and then (19),

inf
n≥1

cα(n, B/nα, s)

ns
≥ inf

n≥1

cα(⌈ n
L
⌉, BL/nα, s)

ns

≥ inf
n≥1

cα(⌈ n
L
⌉, 4K/

⌈

n
L

⌉α
, s)

ns
≥ inf

n′≥1

cα(n′, 4K/n′α, s)

(n′L)s
> 0.

4 The continuous case

4.1 Limit theorems

In the informal overview at the beginning of Section 3 a precise theorem about uniform convergence
was stated. We will not prove that theorem for two reasons. On the one hand, it is not sufficient
for us, because we also have to deal with functions f : [0, 1] → R which are not continuous, just
measurable. On the other hand, we do not need a theorem in this generality, it is more convenient
to prove a similar theorem only for some specific series fn.

Let K ⊂ R be compact, and let f : K → R be continuous. Let

Kn =
⋃

{[ i
n
, i+1

n
] : K ∩ [ i

n
, i+1

n
] 6= ∅, i ∈ Z},

and define fn : Kn → R by setting

fn(x) = f
(

min(K ∩ [ i
n
, i+1

n
])

)

where i is the largest integer for which x ∈ [ i
n
, i+1

n
] ⊂ Kn holds. Thus fn is piecewise constant on

the intervals [ i
n
, i+1

n
].

For X ⊂ R, let B(X, r) denote the r-neighborhood of the set X.

Lemma 4.1. Let 0 < s ≤ 1. Suppose that Cn ⊂ Kn are compact sets with Hs
∞(Cn) ≥ ε (n ∈ N)

for some ε > 0. Let C be an accumulation point of (Cn) in the Hausdorff metric. Then C ⊂ K and
Hs

∞(C) ≥ ε.

Proof. Since lim sup Kn = K, C ⊂ K is trivial. Suppose indirectly that Hs
∞(C) < ε. Then there

exists an r > 0 such that Hs
∞(B(C, r)) < ε also holds. There exists an n such that Cn ⊂ B(C, r)

(since C is an accumulation point), which contradicts the fact that Hs
∞(Cn) ≥ ε.
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Lemma 4.2. Suppose that Cn ⊂ Kn are compact sets such that Var fn|Cn
≤ B for some B ≥ 0.

Let C be an accumulation point of (Cn) in the Hausdorff metric. Then Var f |C ≤ B also holds.

Proof. Let nj be a sequence of integers such that Cnj
→ C in the Hausdorff metric. Let x1 <

x2 < . . . < xk be points in C. Let ε > 0 be arbitrary. There exist an n = nj and δ > 0 such that
C ⊂ B(Cn, δ) and |f(x) − f(y)| < ε if |x − y| < δ + 1

n
(x, y ∈ K).

Let yi ∈ Cn be such that |xi − yi| < δ (i = 1, . . . , k) and y1 ≤ y2 ≤ · · · ≤ yk. By the definition
of fn, there exist zi ∈ K such that fn(yi) = f(zi) and |zi − yi| ≤

1
n

(i = 1, . . . , k).
Since |zi − xi| < δ + 1

n
, we have |f(zi) − f(xi)| < ε. Using that Var fn|Cn

≤ B, we have

B ≥
k−1
∑

i=1

|fn(yi) − fn(yi+1)| =
k−1
∑

i=1

|f(zi) − f(zi+1)|,

and thus
k−1
∑

i=1

|f(xi) − f(xi+1)| ≤ B + 2kε.

This holds for all ε > 0, thus the total variation of f |C is also at most B.

Lemma 4.3. Let 0 < α ≤ 1 and B > 0. Suppose that Cn ⊂ Kn are compact sets such that
fn|Cn

∈ B-Hölderα. Let C be an accumulation point of (Cn) in the Hausdorff metric. Then
f |C ∈ B-Hölderα.

Proof. Let nj be a sequence of integers such that Cnj
→ C in the Hausdorff metric. Let x1, x2 ∈ C,

x1 6= x2. Let ε > 0 be arbitrary. There exist an n = nj and 0 < δ < ε such that C ⊂ B(Cn, δ) and
|f(x) − f(y)| < ε if |x − y| < δ + 1

n
(x, y ∈ K).

Let yi ∈ Cn be such that |xi − yi| < δ (i = 1, 2). By the definition of fn, there exists zi ∈ K
such that fn(yi) = f(zi) and |zi − yi| ≤

1
n

(i = 1, 2).
Since |zi − xi| < δ + 1

n
, we have |f(zi) − f(xi)| < ε. Because fn|Cn

∈ B-Hölderα, we have

|f(z1) − f(z2)| = |fn(y1) − fn(y2)| ≤ B|y1 − y2|
α,

thus
|f(x1) − f(x2)| ≤ 2ε + B|y1 − y2|

α

and
|f(x1) − f(x2)| ≤ 2ε + B|x1 − x2|

α + B(2ε)α.

Since this holds for all ε > 0, we obtain that f |C ∈ B-Hölderα.

We remark that the sets Cn in the previous Lemmas are all contained in a compact interval,
hence the sequence (Cn) has an accumulation point in the Hausdorff metric.

4.2 Proof of the main theorems

Let us denote the Lebesgue measure by λ.

Proposition 4.4. Let K ⊂ [0, 1] be a compact set of positive Lebesgue measure, f : K → R be
continuous, and let s < 1/2, B > 0. There exists a compact set C ⊂ [0, 1] of Hausdorff dimension
at least s such that Var f |C ≤ B.

Proposition 4.5. Let K ⊂ [0, 1] be a compact set of positive Lebesgue measure, f : K → R be
continuous, and let 0 < α < 1, s < 1 − α and B > 0. There exists a compact set C ⊂ [0, 1] of
Hausdorff dimension at least s such that f |C ∈ B-Hölderα.

Proof of Proposition 4.4. We may suppose without loss of generality that f(K) ⊂ [0, 1]. Let Kn

and fn be defined as above.
Let λn = n · λ(Kn). Then

Kn = [ϕn(0)
n

, ϕn(0)+1
n

] ∪ . . . ∪ [ϕn(λn−1)
n

, ϕn(λn−1)+1
n

]

for some integers ϕn(0) < ϕn(1) < . . . < ϕn(λn − 1). Note that ϕn : λn → N is a non-contractive
mapping. Define the function gn : λn → [0, 1] by setting

gn(k) = fn(ϕn(k)
n

) (k ∈ λn). (20)

Let us apply Theorem 3.3 for the functions gn (for every positive integer n). We obtain some ε > 0
and subsets An ⊂ λn such that µs(An) ≥ λs

nε ≥ λ(K)snsε and Var gn|An
≤ B.
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Let Cn = n−1 · (ϕn(An))∗ (see then definition of ∗ in Lemma 2.4), thus Cn ⊂ Kn. It is easy to
see that we have Var fn|Cn

= Var gn|An
≤ B. From Lemma 2.4 we get

Hs
∞(Cn) = n−sHs

∞((ϕn(An))∗) ≥ n−s2−sµs(ϕn(An)),

and since ϕn is a non-contractive mapping we get from Lemma 2.6 that

Hs
∞(Cn) ≥ n−s2−sµs(An) ≥ n−s2−sλ(K)snsε = λ(K)s2−sε.

Now choose an accumulation point C of (Cn). We immediately see from Lemma 4.1 that C ⊂ K,
Hs

∞(C) ≥ λ(K)s2−sε > 0, thus the Hausdorff dimension of C is at least s; and from Lemma 4.2 we
get that Var f |C ≤ B.

Proof of Proposition 4.5. We only sketch this proof since it is analogous to the proof of Proposi-
tion 4.4. The only minor difficulty here is in deducing the Hölder constant “B” of fn|Cn

from the
Hölder constant of gn|An

.
Define the functions ϕn : λn → N and gn : λn → [0, 1] the same way as above. Now apply

Theorem 3.4 to obtain some ε > 0 and subsets An ⊂ λn with the properties that µs(An) ≥ λs
nε ≥

λ(K)snsε and gn|An
∈ B/nα-Hölderα.

Let Cn = n−1 · (ϕn(An))∗ ⊂ Kn. From Lemma 2.4 we immediately see that

Hs
∞(Cn) ≥ n−s2−sµs(An) ≥ n−s2−sλ(K)snsε = λ(K)s2−sε.

On the other hand, we have

Lemma 4.6. fn|Cn
∈ B2α-Hölderα.

Proof. Let x, y ∈ Cn be arbitrary. Then nx, ny ∈ (ϕn(An))∗; that is, there exist i, j ∈ An such that

nx ∈ [ϕn(i), ϕn(i) + 1/2] (21)

and that
ny ∈ [ϕn(j), ϕn(j) + 1/2]. (22)

We have chosen An so that the inequality |gn(i)−gn(j)| ≤ B/nα · |i−j|α holds. Using the definition
of gn (see (20)) and that ϕn is non-contractive,

|fn(ϕn(i)
n

) − fn(ϕn(j)
n

)| = |gn(i) − gn(j)| ≤ B/nα · |i − j|α ≤ B/nα · |ϕn(i) − ϕn(j)|α.

From the definition of fn (see the beginning of the section), the left hand side is just |fn(x)−fn(y)|.
Thus, using (21) and (22), we obtain

|fn(x) − fn(y)| ≤ B/nα · |ϕn(i) − ϕn(j)|α ≤ B/nα · |2(nx − ny)|α = B2α|x − y|α.

Now choose an accumulation point C of (Cn). From Lemma 4.1 we deduce that C ⊂ K,
Hs

∞(C) ≥ λ(K)s2−sε > 0 (thus C has Hausdorff dimension at least s), and from Lemma 4.3 we
get that f |C ∈ B2α-Hölderα. This finishes the proof (though we obtained a Hölder constant B2α

instead of B).

Now we are ready to prove the main theorems.

Proof of Theorem 1.4. There exists a compact set K ⊂ [0, 1] of positive Lebesgue measure such that
f |K is continuous. We may suppose that every non-empty intersection of K with an open interval
has positive Lebesgue measure, since we may remove those non-empty intersections from K which
are of Lebesgue measure zero (and we need to remove only countably many). Therefore we will be
able to use Proposition 4.4 not only in K, but in any non-empty portion of K.

Let x ∈ K, and let xn ց x be a strictly decreasing sequence in K converging fast enough to
ensure

∞
∑

n=1

sup
y∈[x,xn]

|f(y) − f(x)| ≤ 1.

For each positive integer n, let us apply Proposition 4.4 for the function f restricted to K ∩
[x2n+2, x2n] to obtain a compact set Cn ⊂ K ∩ [x2n+2, x2n] of dimension at least 1/2 − 1/n such
that Var f |Cn ≤ 2−n. Let C be the closure of ∪nCn (which is ∪nCn ∪{x}). Thus C is of dimension
at least 1/2 and Var f |C ≤ 1 +

∑

n 2−n = 2.
We may choose a compact subset of C of dimension exactly 1/2 (see e.g. [7]), which finishes the

proof.
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Proof of Theorem 1.5. Suppose that K has the same property as in the previous proof; that is,
every non-empty intersection of K with an open interval has positive Lebesgue measure. Let us
apply Proposition 4.5 for some 0 < s < 1 − α to obtain a compact set C′ of dimension at least
s such that f |C′ ∈ 1-Hölderα. Choose a strictly decreasing sequence (xn) in C′. Thus f is also
Hölder-α with constant 1 on the series (xn). For each positive integer n, let εn > 0 be very small.
Now for each positive integer n apply Proposition 4.5 for f restricted to K ∩ [xn − εn, xn + εn]
to obtain a compact set Cn ⊂ K ∩ [xn − εn, xn + εn] of dimension at least 1 − α − 1/n such that
f |Cn ∈ 1-Hölderα. Let C be the closure of ∪nCn. Thus C is of dimension at least 1 − α. It is clear
that if the numbers εn are chosen to be small enough, then C = ∪nCn ∪ {lim xn}, and from the
continuity of f , that f |C ∈ 2-Hölderα.

Again, we may choose a compact subset of C of dimension exactly 1 − α, which finishes the
proof.

5 Generalizations and open questions

Definition 5.1. The β-variation of a function f : A → R (or f : A → R
m) is defined as

sup
{

n−1
∑

i=1

|f(xi+1) − f(xi)|
β : x1 < x2 < . . . < xn, xi ∈ A

}

.

In an exactly similar manner as we proved Theorem 3.3 and Theorem 1.4 one can generalize
these theorems for bounded β-variations instead of bounded 1-variation.

Theorem 5.2. Let f : [0, 1] → R be Lebesgue measurable, β > 0. There exists a compact set C of
Hausdorff dimension β

1+β
such that f has finite β-variation on C.

This result is sharp, since the methods of M. Elekes in [4] can also be generalized to show that
a typical continuous function has infinite β-variation on any set of dimension larger than β

1+β
.

Using standard techniques it is straightforward to generalize Theorem 5.2 and Theorem 1.5 to
higher dimensional Euclidean spaces. (Namely, one can exploit the fact that it is possible to map
a ‘large portion’ of R to a ‘large portion’ of R

n by a Hölder-1/n mapping so that its inverse is
Hölder-n.)

Theorem 5.3. Let f : R → R
m be Lebesgue measurable, β > 0. There exists a compact set C of

Hausdorff dimension β

m+β
such that f has finite β-variation on C.

Theorem 5.4. Let f : R
n → R

m be Lebesgue measurable and let 0 < α < n
m

. There exists a
compact set C of Hausdorff dimension n − mα such that f is Hölder-α on C.

These theorems (the stated dimensions) are again sharp, for all β, m and n.
We have shown that every R → R Borel function is of bounded variation on some compact set of

Hausdorff dimension 1/2. However, we do not know anything about the possible (1/2-dimensional)
Hausdorff measure of such sets.

Question 5.5. Can we find for every Borel function f : [0, 1] → R a Borel set B of positive
1/2-dimensional Hausdorff measure such that f restricted to B is of bounded variation?

Question 5.6. Does there exist a Borel function f : [0, 1] → R such that if f is of bounded variation
on some Borel set B, then B has zero/finite/σ-finite 1/2-dimensional Hausdorff measure?

The analogous questions for the Hölder-α property are also open.

Acknowledgment. The author is grateful to D. Fremlin, M. Laczkovich and D. Preiss for pointing
out that there is no need to use ultrafilters to obtain the necessary limit theorems in Section 4, thus
enabling the simplification of the proof.
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[6] A. Máthé, Hausdorff measures of different dimensions are not Borel isomorphic, Israel J. Math.
164 (2008), no. 1, 285–302.

[7] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press,
(1995).

11


