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Abstract

We show that Hausdorff measures of different dimensions are not Borel isomorphic; that is, the
measure spaces (R, B, Hs) and (R, B, Ht) are not isomorphic if s 6= t, s, t ∈ [0, 1], where B is the
σ-algebra of Borel subsets of R and Hd is the d-dimensional Hausdorff measure. This answers a
question of B. Weiss and D. Preiss.

To prove our result, we apply a random construction and show that for every Borel function
f : R → R and for every d ∈ [0, 1] there exists a compact set C of Hausdorff dimension d such that
f(C) has Hausdorff dimension ≤ d.

We also prove this statement in a more general form: If A ⊂ R
n is Borel and f : A→ R

m is Borel
measurable, then for every d ∈ [0, 1] there exists a Borel set B ⊂ A such that dimB = d ·dimA and
dim f(B) ≤ d · dim f(A).

1 Introduction

The question whether Hausdorff measures of different dimensions are Borel isomorphic or not, has
been around for several years. This problem is attributed to B. Weiss and D. Preiss, see also [5].
Let Hd denote the d-dimensional Hausdorff measure and let B denote the σ-algebra of Borel subsets
of R.

Theorem 1.1. For every 0 ≤ d1 < d2 ≤ 1 the measure spaces (R, B, Hd1 ) and (R, B, Hd2) are not
isomorphic. Moreover, there does not exist a Borel bijection f : R → R such that for any Borel set
B ⊂ R

0 < Hd1(B) < ∞ ⇐⇒ 0 < Hd2(f(B)) <∞. (1)

The analogous theorem in R
n holds, too (see Theorem 5.7).

On the other hand, M. Elekes [1] has proved that the continuum hypothesis implies that the
measure spaces (R, MHs , Hs) and (R, MHt , Ht) are isomorphic whenever s, t ∈ (0, 1), where MHd

is the σ-algebra of measurable sets with respect to Hd.
In the same article, M. Elekes suggests a method to give a partial solution to the Borel isomor-

phism problem (Theorem 1.1) and asks the following question.

Question 1. Fix 0 < α < 1. Is it true that every Borel function f : R → R is Hlder continuous of
exponent α on a set Hf of Hausdorff dimension 1 − α?

The author of the present article has answered Question 1 in the positive [2].
It is easy to see that the positive answer implies that t ≤ s

1−s
whenever the s-dimensional and

the t-dimensional Hausdorff measures are Borel isomorphic. Unfortunately this approach does not
seem to lead to Theorem 1.1 in its whole generality. Note that 1−α is the best we can have for the
dimension of Hf , since a typical continuous function is not Hlder continuous of exponent α on any
set of dimension larger than 1 − α, as shown by M. Elekes in [1].

Let dimH denote the Hausdorff dimension of the set H .

Theorem 1.2. Let f : R → R be Borel (or Lebesgue) measurable. For every 0 ≤ d ≤ 1 there exists
a compact set C ⊂ R such that dimC = d and dim f(C) ≤ d.
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Theorem 1.2 clearly implies Theorem 1.1: Let f be Borel measurable and choose a d for which
d1 < d < d2. By applying Theorem 1.2 we get a compact set C of dimension d with dim f(C) ≤ d.
Since d1 < d, there exists a Borel subset B of C for which 0 < Hd1 (B) < ∞ (see e.g. [3]). Now
f(B) ⊂ f(C), so it has dimension at most d, which implies that Hd2(f(B)) = 0. So f cannot be an
isomorphism of the measure spaces (R, B, Hd1 ) and (R, B, Hd2), and cannot satisfy (1).

To prove Theorem 1.2 it is clearly enough to show the following.

Theorem 1.3. Suppose that K is a compact set of positive Lebesgue measure and f : K → R is
continuous. For every 0 ≤ d ≤ 1 there exists a compact set C ⊂ K of Hausdorff dimension d such
that f(C) has Hausdorff dimension at most d.

The sketch of the proof is the following. We define a large class of random constructions such
that each of them gives a Cantor set F of dimension at most d almost surely (Section 3). Then,
for the given K and f , we choose a random construction of this class which gives a set F for which
F ⊂ f(K) and dim f−1(F ) ≥ d almost surely. This will imply the theorem with a simple additional
argument (Section 4).

As it can be expected, Theorem 1.2 has the following generalisation (proved in Section 5).

Theorem 1.4. Let A ⊂ R
n be a Borel set and f : A → R

m Borel measurable. Then for every
0 ≤ d ≤ 1 there exists a Borel set B ⊂ A such that dimB = d · dimA and dim f(B) ≤ d · dim f(A).

Notation. Let λ denote the one dimensional Lebesgue measure. For a (Borel) measure µ let It(µ)
denote the t-dimensional energy of µ; that is, It(µ) =

∫∫

|x− y|−t dµ(x) dµ(y). For Borel measures
µk (k ∈ N) and µ, µk → µ denotes that µk weakly converges to µ. Let suppµ denote the support
of the measure µ.

We denote by N the set of non-negative integers. We identify each natural number with the set
of its predecessors: n = {0, 1, . . . , n− 1}.

By diamH we mean the diameter of the set H . Let Hs
∞ denote the s-dimensional Hausdorff

pre-measure; that is, for any H ⊂ R

Hs
∞(H) = inf

{

∑

n∈N

(diam In)s : {In}n∈N is a sequence of intervals and H ⊂ ∪n∈NIn

}

.

2 Preliminaries

We start with some (probably well-known) statements which we shall use in the sequel.

Lemma 2.1. Suppose that µ and µk (k ∈ N) are probability measures on R such that µk → µ.
Then µk × µk → µ× µ.

Proof. We have to show that for every compactly supported continuous function h : R
2 → R,

∫

R2 h d(µk × µk) →
∫

R2 h d(µ × µ). Clearly it is enough to show this for a dense subset of the
compactly supported continuous functions. It is well known that functions of the form

n
∑

i=1

fi(x)gi(y) (f, g : R → R continuous functions with compact support)

are dense, so it is enough to check that

∫

R2

f(x)g(y)d(µk × µk) →

∫

R2

f(x)g(y)d(µ× µ).

By Fubini,
∫

R2

f(x)g(y)d(µk × µk) =

∫

R

f(x) dµk(x)

∫

R

g(y)dµk(y)

which tends to
∫

R

f(x) dµ(x)

∫

R

g(y)dµ(y) =

∫

R

f(x)g(y)d(µ× µ)

as k → ∞, using µk → µ and Fubini again.

Lemma 2.2. Suppose that µk (k ∈ N) are probability measures on R with support in [−R,R] for
some R > 0. If µk → µ then It(µ) ≤ lim inf It(µk).

Proof. Let φ be a compactly supported continuous function on the plane which equals 1 on the
square [−R,R]2 and for which 0 ≤ φ(x, y) ≤ 1 everywhere. For each positive integer i define
hi : R

2 → R by setting
hi(x, y) = φ(x, y) · min(|x− y|−t, i).
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Using Lemma 2.1 we have
∫

hi(x, y) dµ dµ = lim
k

∫

hi(x, y) dµk dµk ≤ lim inf
k→∞

∫

|x− y|−t dµk dµk = lim inf
k→∞

It(µk).

The support of µ× µ is in [−R,R]2 since the support of µk is in [−R,R] for all k, so we have

lim
i→∞

∫

hi(x, y) dµ(x) dµ(y) =

∫

|x− y|−t dµ(x) dµ(y) = It(µ).

Thus It(µ) ≤ lim infk→∞ It(µk).

Lemma 2.3. Let 0 < t < 1, H be a compact set in R and I = [0, λ(H)] an interval. Then
∫

H

∫

H

|x− y|−t dλ(x)dλ(y) ≤

∫

I

∫

I

|x− y|−t dλ(x) dλ(y) = ctλ(H)2−t

where ct is a constant depending only on t.

Proof. Let ϕ : H → [0, λ(H)] be the following function:

ϕ(h) = λ
(

(−∞, h] ∩H
)

.

Using first the fact that ϕ is a contraction and then that it is a measure preserving transformation
between λ|H and λ|I , we obtain

∫

H

∫

H

|x− y|−t dλ(x) dλ(y) ≤

∫

H

∫

H

|ϕ(x) − ϕ(y)|−t dλ(x) dλ(y)

=

∫

I

∫

I

|x− y|−t dλ(x) dλ(y) =

∫

[0,1]

∫

[0,1]

|λ(H)x′ − λ(H)y′|−t λ(H)2 dλ(x′) dλ(y′)

= λ(H)2−t

∫

[0,1]

∫

[0,1]

|x′ − y′|−t dλ(x′) dλ(y′) = ctλ(H)2−t

where ct is finite if t < 1.

3 Random construction and upper estimate

Let M ≥ 3 and m be integers with 2 ≤ m ≤M − 1. Let

M<ω = {(i0, i1, . . . , in−1) : n ∈ N, ij ∈ {0, 1, . . . ,M − 1} = M}.

We will consider M<ω as a set of multi-indices and also as the M -adic tree with root ∅, where every
node has M children. For an i ∈M<ω let |i| denote the length of the multi-index; that is, the level
of the node i.

Definition 1. A representation of M<ω is a mapping φ which maps each node i to a non-trivial
compact interval φ(i) ⊂ R such that

• for every node i and its children ij (j ∈M) we have φ(ij) ⊂ φ(i), and

• for every two distinct j, j′ ∈M , φ(ij) and φ(ij′) can have at most one point in common.

Now we shall choose a “random m-adic subtree” S of M<ω in the following way. Let Xi

(i ∈ M<ω) be independent random variables with uniform distributions over the set of m-element
subsets of M . That is, for each set T ⊂ {0, 1, . . . ,M − 1} of m elements

P(Xi = T ) =
1
(

M
m

) .

Define the random subtree as

S = {(i0, i1, . . . , in−1) ∈M
<ω : ij ∈ X(i0,i1,...,ij−1) for every 0 ≤ j ≤ n− 1}.

So ∅ ∈ S, and for each i ∈ S exactly m children of i are in S. It is easy to see that

|{i ∈ S : |i| = n}| = mn

for every n ∈ N.
Given a representation φ of M<ω, consider the closed sets Fi = φ(i) (i ∈M<ω) and the random

closed sets
Fn = ∪{Fi : i ∈ S, |i| = n} (n ∈ N).

Then F∅ = F 0 ⊃ F 1 ⊃ F 2 ⊃ · · · . Put

F =
⋂

n

Fn.

We can consider F as the image of the random m-adic subtree S.
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Proposition 3.1. For any representation of M<ω, the random closed set F defined above has
Hausdorff dimension at most log m

log M
almost surely.

Proof. Let 1 > s > log m
log M

be arbitrary and q = m
Ms , thus q < 1. We cover Fn with those intervals

Fi, for which |i| = n and i ∈ S. For any i of length n we have

P(i ∈ S) =
(m

M

)n

,

hence
E
(

∑

|i|=n
i∈S

(diamFi)
s
)

=
(m

M

)n ∑

|i|=n

(diamFi)
s.

Since the intervals Fi (|i| = n) are almost disjoint (two of them can only have one point in common),
∑

|i|=n diamFi ≤ D
def
= diamF∅. Thus, applying Jensen’s inequality to the concave function x 7→ xs,

we obtain
(m

M

)n ∑

|i|=n

(diamFi)
s ≤

(m

M

)n

Mn

(

D

Mn

)s

= Ds
( m

Ms

)n

= Dsqn.

Therefore
E
(

Hs
∞(F )

)

≤ E
(

Hs
∞(Fn)

)

≤ E
(

∑

|i|=n
i∈S

(diamFi)
s) ≤ Dsqn.

Since this is true for every n, we get that

E
(

Hs
∞(F )

)

= 0,

thus Hs
∞(F ) = 0 almost surely, so Hs(F ) = 0 almost surely. Because s > log m

log M
can be chosen

arbitrarily, the dimension of F is at most log m
log M

almost surely.

4 Lower estimate

Proof of Theorem 1.3. If there exists an y ∈ f(K) for which f−1(y) is of positive measure, then we
can choose a compact set C ⊂ f−1(y) of arbitrary Hausdorff dimension d (0 ≤ d ≤ 1), and clearly
f(C) = {y} has Hausdorff dimension at most d. Thus we may assume that for every y ∈ f(K) the
set f−1(y) has Lebesgue measure zero. Without loss of generality we may suppose that λ(K) = 1.

Now we define the particular representation of M<ω which is adequate for our needs. All the
endpoints of the intervals φ(i) (i ∈ M<ω) will be contained in f(K). We define φ(∅) to be the
smallest interval which contains f(K). If an interval is already defined, then its M subintervals (its
children) are chosen such that their preimages (with respect to f) have equal Lebesgue measure: 1

M

times the Lebesgue measure of the preimage of the interval. Now we give a more precise definition.
Define ψ : f(K) → R as

ψ(x) = λ({z ∈ K : f(z) ≤ x}).

Since the inverse image of any point in f(K) has measure zero, this is a continuous increasing
function, and its image is the interval [0, λ(K)].

For an i ∈M<ω let

yi
1 = max

{

y ∈ f(K) : ψ(y) =

|i|
∑

j=1

ij−1

M j

}

,

yi
2 = min

{

y ∈ f(K) : ψ(y) =
1

M |i|
+

|i|
∑

j=1

ij−1

M j

}

.

Let Fi = φ(i) = [yi
1, y

i
2]. It is obvious from the definition that

F(i0,...,ik−1) ⊃
M−1
⋃

j=0

F(i0,...,ik−1,j),

λ(f−1(Fi)) = λ({z ∈ K : f(z) ∈ Fi}) =
1

M |i|

and that φ is a representation of M<ω.
Now let S be a random m-adic subtree of M<ω, and define the random closed sets

Fn = ∪{Fi : i ∈ S, |i| = n} (n ∈ N),
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F =
⋂

n∈N

Fn

the same way as before. From Proposition 3.1, F has Hausdorff dimension at most log m
log M

almost

surely. Hence F cannot contain an interval, and since all the intervals φ(i) (i ∈ M<ω) have their
endpoints in f(K), F ⊂ f(K) almost surely.

Let Gi = f−1(Fi), G
n = f−1(Fn) and G = f−1(F ) be (random) compact sets in K. Then we

also have
Gn = ∪{Gi : i ∈ S, |i| = n} (n ∈ N)

and
G =

⋂

n∈N

Gn.

We claim that G has Hausdorff dimension at least log m
log M

almost surely. The key point in our

construction was that λ(Gi) = 1

M|i| , and we also know that λ(Gi ∩ Gi′) = 0 provided that i 6= i′

and |i| = |i′|. Note that λ(Gk) =
(

m
M

)k
.

We define random Borel measures µk on R by

µk(H) = λ(H ∩Gk) ·

(

M

m

)k

,

or equivalently,

µk =

(

M

m

)k

· λ|Gk (k ∈ N). (2)

Hence µk is a probability measure with support Gk ⊂ K.
Let 0 < t < log m

log M
be fixed. We would like to give an upper bound for the expected value of

the t-energy of µk. To do this at first we need to calculate some basic probability. We know that

P(i ∈ S) =
(

m
M

)|i|
for every i ∈ M<ω. How much is P(i ∈ S, i′ ∈ S) if |i| = |i′| = k? Let i ∧ i′

denote the nearest common ancestor of i and i′ in the tree M<ω, and let l = l(i, i′) = |i ∧ i|; that
is, l is the largest integer for which i0 = i′0, i1 = i′1, . . . , il−1 = i′l−1 hold (0 ≤ l ≤ k).

P(i ∈ S, i′ ∈ S) = P

(

(ij ∈ X(i0,...,ij−1) for every 0 ≤ j ≤ l − 1)

and (il, i
′
l ∈ X(i0,...,il−1))

and (ij ∈ X(i0,...,ij−1) for every l + 1 ≤ j ≤ k − 1),

and (i′j ∈ X(i′
0
,...,i′

j−1
) for every l + 1 ≤ j ≤ k − 1)

)

.

The random variables Xi are independent, so this probability is

=
(m

M

)l m(m− 1)

M(M − 1)

(m

M

)k−l−1 (m

M

)k−l−1

=
(m

M

)2k−l−1 m− 1

M − 1
≤
(m

M

)2k−l

(3)

provided that l < k, that is, i 6= i′, but the upper estimate clearly holds in the case i = i′ (l = k) as
well.

By (2), for any i of length k we have

µk|Gi
=

{
(

M
m

)k
· λ|Gi

if i ∈ S
0 if i 6∈ S.

(4)

Applying first that suppµk = Gk is contained in ∪|i|=kGi, and then (4) and (3),

E It(µk) = E

(
∫∫

|x− y|−t dµk(x) dµk(y)

)

= E





∑

|i|=|i′|=k

∫

Gi

∫

Gi′

|x− y|−t dµk(x) dµk(y)



 =

=
∑

|i|=|i′|=k

E

(

∫

Gi

∫

Gi′

|x− y|−t dµk(x) dµk(y)

)

=

=
∑

|i|=|i′|=k

P(i ∈ S, i′ ∈ S)

∫

Gi

∫

Gi′

|x− y|−t

(

M

m

)k (
M

m

)k

dλ(x) dλ(y) =

≤
∑

|i|=|i′|=k

(m

M

)2k−l(i,i′)
(

M

m

)2k ∫

Gi

∫

Gi′

|x− y|−t dλ(x) dλ(y) =
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=
∑

|i|=|i′|=k

(

M

m

)l(i,i′) ∫

Gi

∫

G
i′

|x− y|−t dλ(x) dλ(y). (5)

We denoted the nearest common ancestor of i and i′ by i ∧ i′, let us also use the brief notation
h ≤ i ∧ i′ if h is a common ancestor of i and i′. Starting with (5) and then applying Lemma 2.3,

E It(µk) ≤
∑

|i|=|i′|=k

(

M

m

)l(i,i′) ∫

Gi

∫

Gi′

|x− y|−t dλ(x) dλ(y)

=

k
∑

l=0

(

M

m

)l
∑

h
|h|=l

∑

i,i′

h=i∧i′

|i|=|i′|=k

∫

Gi

∫

Gi′

|x− y|−t dλ(x) dλ(y)

≤
k
∑

l=0

(

M

m

)l
∑

h
|h|=l

∑

i,i′

h≤i∧i′

|i|=|i′|=k

∫

Gi

∫

Gi′

|x− y|−t dλ(x) dλ(y)

=

k
∑

l=0

(

M

m

)l
∑

h
|h|=l

∫

Gh

∫

Gh

|x− y|−t dλ(x) dλ(y)

≤
k
∑

l=0

(

M

m

)l
∑

h
|h|=l

ctλ(Gh)2−t =

k
∑

l=0

(

M

m

)l
∑

h
|h|=l

ct

(

1

M l

)2−t

=

k
∑

l=0

(

M

m

)l

M lct

(

1

M l

)2−t

=

k
∑

l=0

ct

(

M t

m

)l

≤
∞
∑

l=0

ct

(

M t

m

)l
def
= c(t,M,m),

where c(t,M,m) is finite whenever Mt

m
< 1, that is, t < log m

log M
.

By Fatou’s lemma,

E lim inf
k→∞

It(µk) ≤ lim inf
k→∞

E It(µk) ≤ c(t,M,m),

thus lim infk→∞ It(µk) is almost surely finite.
Since the probability measures µk are supported on the same compact set K, every sequence of

them has a weakly convergent subsequence. So we can choose a sequence of integers kj such that

lim
j→∞

It(µkj
) = lim inf

k→∞
It(µk)

and that µkj
is weakly convergent. Let µ = limj→∞ µkj

.

Since suppµkj
= Gkj and G0 ⊃ G1 ⊃ G2 ⊃ · · · , the weak limit µ is supported on

⋂

j G
kj = G.

Applying Lemma 2.2,
It(µ) ≤ lim inf

j→∞
It(µkj

) = lim inf
k→∞

It(µk),

which is almost surely finite. Therefore the compact set G almost surely carries a measure µ with
finite t-energy, for any t < log m

log M
. Thus the Hausdorff dimension of the set G is at least log m

log M
almost

surely.
By Proposition 3.1, almost surely both of the inequalities dimF ≤ log m

log M
and dimG ≥ log m

log M

hold. Hence there exists a compact set G ⊂ K such that dimG ≥ log m
log M

and dim f(G) ≤ log m
log M

.
For d = 0 or d = 1 the statement of the theorem is trivial, so let 0 < d < 1 be arbitrary. Let

E =

{

logm

logM
: M ≥ 3, 2 ≤ m ≤M − 1

}

,

this is a countable dense set in (0, 1). We constructed compact sets Ge for every e ∈ E such that
Ge is of dimension at least e and f(Ge) is of dimension at most e. Let G = ∪e<dGe. Clearly G
is a Borel set of dimension at least d, and f(G) = ∪e<df(Ge) is of dimension at most d. It is well
known that G contains compact subsets Cn of dimension at least d− 1

n
, and clearly we can require

that Cn have diameter at most 1
n
. Let C be the closure of ∪nCn, then C \ ∪nCn is at most one

point. Thus C ⊂ K, dimC = d, and clearly dim f(C) ≤ d for the compact set C, which proves the
theorem.
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5 Generalisation of Theorem 1.2

In this section we shall prove Theorem 1.4. Our first step is to extend Theorem 1.2 in the following
way:

Claim 5.1. Let f : [0, 1] → R be a Borel function. For every 0 ≤ d ≤ 1 there exists a compact set
C ⊂ R such that dimC = d and dim f(C) ≤ d · dim f([0, 1]).

This is a strengthening of Theorem 1.2 if the image set of f has dimension smaller than 1. To
prove Claim 5.1, it is clearly enough to show the following:

Claim 5.2. Suppose that K ⊂ R is a compact set of positive Lebesgue measure and f : K → R

is continuous. For every 0 ≤ d ≤ 1 there exists a compact set C ⊂ K such that dimC = d and
dim f(C) ≤ d · dim f(K).

To prove this claim we modify the upper estimate we presented in Section 3.

Definition 2. Let φ be a representation of M<ω. The support of this representation is the set

Kφ =
∞
⋂

k=0

⋃

{φ(i) : i ∈M<ω, |i| = k},

and the dimension of the representation is the dimension of Kφ.

Recall that if S is a random m-adic subtree of M<ω, then we define the random set

F =

∞
⋂

k=0

⋃

{φ(i) : i ∈ S, |i| = k}.

Proposition 5.3. For any representation of M<ω of dimension β, the random closed set F defined
above has Hausdorff dimension at most log m

log M
· β almost surely.

Proof. The case β = 1 is already proved in Proposition 3.1, so we may assume that β < 1 and
thus Kφ (the support of the representation) is a nowhere dense compact and perfect set. Hence
considering any infinite branch in M<ω, the diameter of the corresponding intervals tends to zero.

It is easy to see that for each i ∈M<ω,

P(i 6∈ S and φ(i) ∩ F 6= ∅) = 0,

thus

P(φ(i) ∩ F 6= ∅) = P(i ∈ S) =
(m

M

)|i|

. (6)

Fix any β < t < 1. Since Ht(Kφ) = 0, for any ε > 0 we can choose a finite collection of disjoint
open intervals I covering Kφ such that

∑

I∈I(diam I)t < ε, and that each interval I ∈ I intersects
Kφ.

Fix an I ∈ I temporarily. Consider the longest multi-index i ∈M<ω for which φ(i) ⊃ I ∩Kφ.
At first let us suppose that i has a child iI for which φ(iI) ⊂ I . Set lI = |i|, thus |iI | = lI + 1.

From (6) we obtain

P(I ∩ F 6= ∅) ≤ P(φ(i) ∩ F 6= ∅) =
(m

M

)lI
.

Now suppose that i has no child iI for which φ(iI) ⊂ I . Then it is easy to check that i has two
children i1 and i2 such that

I ∩Kφ ⊂ φ(i1) ∪ φ(i2) and φ(ij) ∩ I ∩Kφ 6= ∅ (j = 1, 2). (7)

Let i′′j be one of the nearest descendants of ij for which φ(i′′j ) ⊂ I holds (j = 1, 2). Let i′j be the
parent of i′′j (j = 1, 2). It is easy to see that

φ(ij) ∩ I ∩Kφ = φ(i′j) ∩ I ∩Kφ (j = 1, 2), (8)

since otherwise we have φ(i′j) ⊂ I or φ(h) ⊂ I for a sibling h of i′j , contradicting the choice of i′′j .
By (7) and (8) we obtain

I ∩Kφ ⊂ φ(i′1) ∪ φ(i′2). (9)

Set lI = min(|i′1|, |i
′
2|), and let iI be i′′j (j = 1 or 2) such that |iI | = lI + 1. From (9) and (6) we

obtain that

P
(

I ∩ F 6= ∅
)

≤ P
(

φ(i′1) ∩ F 6= ∅ or φ(i′2) ∩ F 6= ∅
)

≤
(m

M

)|i′
1
|

+
(m

M

)|i′
2
|

≤ 2
(m

M

)lI
.
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Thus, for all I ∈ I, we defined lI ∈ N and iI of length lI + 1 such that ∅ 6= φ(iI) ⊂ I and

P(I ∩ F 6= ∅) ≤ 2
(m

M

)lI
. (10)

Since the intervals I ∈ I are disjoint, the nodes iI form an anti-chain in M<ω; that is, none of them
is an ancestor of any other. Thus

∑

I∈I

1

M |iI |
≤ 1,

hence
∑

I∈I

1

M lI
≤M. (11)

Let s = log m
log M

· t, hence s < t and mt/s = M . Now cover the random set F ⊂ Kφ with those
intervals I ∈ I which intersect F . By (10),

E(Hs
∞(F )) ≤

∑

I∈I

P(I ∩ F 6= ∅) · (diam I)s ≤
∑

I∈I

2
(m

M

)lI
· (diam I)s

= 2c
∑

I∈I

(

mlI ·t/s · (diam I)t
)s/t

cM lI
, (12)

where we choose c so that
∑

I∈I
1

cMlI
= 1 holds, hence c ≤M by (11). Applying Jensen’s inequality

to the concave function x 7→ xs/t and using mt/s = M we have

2c
∑

I∈I

(

mlI ·t/s · (diam I)t
)s/t

cM lI
≤ 2c

(

∑

I∈I

mlI ·t/s · (diam I)t

c ·M lI

)s/t

= 2c

(

∑

I∈I

1

c
· (diam I)t

)s/t

= 2c1−s/t

(

∑

I∈I

(diam I)t

)s/t

≤ 2M

(

∑

I∈I

(diam I)t

)s/t

≤ 2Mεs/t ≤ 2Mε. (13)

Because ε was arbitrarily small, by (12) and (13) we obtain that E(Hs
∞(F )) = 0 for every s > β· log m

log M
,

since β < t < 1 was arbitrary. This implies that the dimension of F is at most β · log m
log M

almost
surely.

Proof of Claim 5.2. In the proof of Theorem 1.3 in Section 4 we used a representation φ which had
its support in f(K). So that proof with Proposition 5.3 (instead of Proposition 3.1) instantly gives
a compact set C ⊂ K of Hausdorff dimension d such that f(C) has Hausdorff dimension at most
d · dim f(K) (instead of d).

Claim 5.4. Let A ⊂ R be compact, f : A → R Borel, dimA > 0, and 0 < s < dimA. For every
0 ≤ d ≤ 1 there exists a Borel set B ⊂ A such that

dimB ≥ d · s and dim f(B) ≤ d · dim f(A).

Proof. It is well-known (see e.g. [3]) that for every s < dimA there exist a probability measure ν
with supp ν ⊂ A and a positive constant c such that for every x, y ∈ A we have

ν([x, y]) ≤ c |x− y|s . (14)

Let us define the continuous function ψ : A→ [0, 1] and the Borel function χ : [0, 1] → A by setting

ψ(x) = ν
(

(−∞, x]
)

,

χ(y) = min{x : ψ(x) = y}.

Thus ψ ◦χ is the identity of [0, 1]. It is easy to check that (14) implies that for every set H ⊂ [0, 1],

dimχ(H) ≥ s · dimH. (15)

Apply Claim 5.1 to the Borel function f ◦ χ : [0, 1] → R. We get that for every 0 ≤ d ≤ 1 there
exists a compact set C ⊂ [0, 1] such that

dimC = d and dim f(χ(C)) ≤ d · dim f(A).

Put B = χ(C). (This is a Borel set, since B = ψ−1(C) ∩ {x ∈ A : χ(ψ(x)) = x}.) Applying (15),

dimB ≥ d · s and dim f(B) ≤ d · dim f(A),

which proves the claim.
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Claim 5.5. Let A ⊂ R be a Borel set and let f : A→ R be Borel. For every 0 ≤ d ≤ 1 there exists
a Borel set B ⊂ A such that dimB = d · dimA and dim f(B) ≤ d · dim f(A).

Proof. We may suppose that dimA > 0. For every sufficiently large positive integer n choose a
compact set An ⊂ A of dimension ≥ dimA− 1

n
, and apply Claim 5.4 to An and s = dimA− 2

n
> 0.

We obtain a Borel set Bn ⊂ An for which

dimBn ≥ d · (dimA− 2
n
) and dim f(Bn) ≤ d · dim f(An) ≤ d · dim f(A).

Now any Borel subset of ∪nBn of dimension d · dimA is an appropriate choice for B.

Lemma 5.6. For each positive integer n there exists a Borel set Bn ⊂ R and a Borel bijection
pn : Bn → R

n such that for every set H ⊂ Bn we have

dim pn(H) = n · dimH,

moreover, for every 0 ≤ d ≤ 1 and H ⊂ Bn,

0 < Hd(H) <∞ ⇐⇒ 0 < Hd·n(pn(H)) <∞.

Proof. For x ∈ R let dk(x) ∈ {0, 1, . . . , 9} (k ∈ Z) denote the digits of x in the decimal number
system; that is,

x =
∑

k∈Z

dk(x) · 10k,

where dk(x) = 0 if k ≥ k0 for some k0, and lim infk→∞ d−k(x) 6= 9. Let

Bn = {x ∈ R : ∀ j ∈ {0, 1, . . . , n− 1} lim inf
i→∞

dj−ni(x) 6= 9},

pj
n(x) =

∑

i∈Z

dj+ni(x) · 10
i (j ∈ {0, 1, . . . , n− 1})

and
pn(x) = (p0

n(x), p1
n(x), . . . , pn−1

n (x)).

Hence pn is a Borel bijection between Bn and R
n. It is easy to check that pn satisfies all the

requirements, see [4, Theorem 49] and its proof for a hint.

Proof of Theorem 1.4. Suppose that A ⊂ R
n is a Borel set and f : A → R

m is Borel measurable.
Let d ∈ [0, 1] be arbitrary. Let pn and pm be as in Lemma 5.6. Applying Claim 5.5 to the Borel set
p−1

n (A) ⊂ R and Borel mapping

p−1
m ◦ f ◦ pn|p−1

n (A)
: p−1

n (A) → p−1
m (f(A))

we obtain a Borel set B ⊂ p−1
n (A) such that

dimB = d · dim p−1
n (A) and dim p−1

m ◦ f ◦ pn(B) ≤ d · dim p−1
m (f(A)).

Using Lemma 5.6 four times we get that

dim pn(B) = d · dim(A) and dim f(pn(B)) ≤ d · dim f(A)

hold for the Borel set pn(B) ⊂ A.

Let Bn denote the σ-algebra of Borel subsets of R
n. Lemma 5.6 implies that the generalisation

of Theorem 1.1 in R
n holds.

Theorem 5.7. For every 0 ≤ d1 < d2 ≤ n the measure spaces (Rn, Bn, H
d1) and (Rn, Bn, H

d2)
are not isomorphic. Moreover, there does not exist a Borel bijection f : R

n → R
n such that for any

Borel set B ⊂ R
n

0 < Hd1(B) < ∞ ⇐⇒ 0 < Hd2(f(B)) <∞.
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