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Abstract

We construct a compact set C of Hausdorff dimension zero so that cof(N ) many trans-
lates of C cover the real line. Hence it is consistent with ZFC that less than continuum
many translates of a zero dimensional compact set can cover the real line. This answers a
question of Dan Mauldin.

1 Introduction

Given a set A ⊂ R, how many of its translates are needed to cover the real line? It is clear
that if A is of Lebesgue measure zero or if A is of the first Baire category, then countable
many translates are not enough. Therefore if we assume the continuum hypothesis, then
for these kind of sets clearly we need continuum many translates to cover the real line.

Gary Gruenhage showed that it is not possible to cover R with less than continuum
many translates of the standard middle-third Cantor set. (This is a proof in ZFC, without
any extra set theoretic assumptions.) He then raised the following question (see also [2]
and [3]):

Is it consistent that there exist a compact set of Lebesgue measure zero and less than
continuum many of its translates that cover R?

Since this was unsolved for some time, Dan Mauldin asked whether at least the compact
sets of Hausdorff dimension less than 1 possess the property that less than continuum many
of their translates are not enough to cover R. Udayan Darji and Tamás Keleti [2] showed
in a beautiful simple proof that this is indeed true for compact sets of packing dimension
less than 1.

Márton Elekes and Juris Steprāns solved the question of Gruenhage [3]. They showed
that R can be covered by cof(N ) many translates of some compact set of measure zero
of Erdős and Kakutani. Here cof(N ) is the so-called cofinality invariant of Lebesgue null
sets, and it is consistent that cof(N ) is less than continuum (see e.g. [1]).

In this note we answer Dan Mauldin’s question in the negative. We present a compact
set C of Hausdorff dimension zero so that R can be covered by cof(N ) many translates
of C (Theorem 2.2). Thus it is consistent with ZFC that R can be covered by less than
continuum many translates of some compact set of Hausdorff dimension zero.

We remark here that if we do not restrict ourselves to compact sets then the previous
statement is clear: If A is a residual subset of R, and B ⊂ R is a set of the second Baire
category, then clearly A + B = R. Let us choose A to be a residual Gδ set of Hausdorff
dimension zero (e.g. the set of Liouville numbers). It is consistent that there exists a set
of the second Baire category consisting of less than continuum many points (see e.g. [1]),
that set should be chosen as B. Therefore it is consistent that R can be covered by less
than continuum many translates of a zero dimensional Gδ set.

In the next section we review how it is possible to write R as a union of cof(N ) many
“small” compact sets and we state our main results. These are then proved in the third
section.
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Notation and definitions. We denote the cofinality invariant of Lebesgue null sets
by cof(N ), which is the smallest cardinal κ for which there exist κ many null sets so that
every null set is contained in one of them.

We denote the d-dimensional Hausdorff pre-measure of a set A ⊂ R by Hd
∞(A), defined

as

Hd
∞(A) = inf{

∞
∑

i=1

(diam Ii)
d : A ⊂ ∪∞

i=1Ii}.

The Hausdorff dimension of A is then defined as inf{d > 0 : Hd
∞(A) = 0}.

We denote the set of real numbers by R and the set of integers by Z.

2 Covering R with small sets

Let ω denote the first infinite ordinal, that is, ω = {0, 1, 2, . . .}. Let f : ω \ {0} → ω \ {0, 1}.
A set of the form S =

∏∞

n=1 An, where each An is of size at most f(n), is called an f -slalom

(by
∏

we mean the direct product of sets). It is known that if lim f(n) = ∞, then ωω can
be covered by cof(N ) many f -slaloms (Gruenhage and Levy [4, Theorem 2.12.] and [5],
see also Bartoszyński and Judah [1]).

Hence it is clear that if we fix two functions f, g : ω\{0} → ω\{0, 1} where lim g(n) = ∞,
then every f -slalom can be covered by cof(N ) many g-slaloms. We describe below how it is
possible to use this fact to cover the real line with cof(N ) many “small” compact sets (here
we follow Elekes and Steprāns [3]). So let us take the f -slalom T =

∏∞

n=1{0, 1, . . . , f(n)−1},
and let us cover it by cof(N ) many g-slaloms Sα (α < cof(N )). We may suppose without
loss of generality that each Sα is contained in T ; that is, they are of the form

∏∞

n=1 An

where An ⊂ {0, 1, . . . , f(n) − 1} and |An| ≤ g(n) for each n. Then

[0, 1] = {
∞
∑

n=1

sn

f(1)f(2) . . . f(n)
: (sn)∞n=1 ∈ T }.

(It is worth thinking of sn as digits of a numeral system with “increasing base” correspond-
ing to the series f(n).) For a slalom S ⊂ T define

S∗ = {
∞
∑

n=1

sn

f(1)f(2) . . . f(n)
: (sn)∞n=1 ∈ S}, (1)

or equivalently, when S =
∏∞

n=1 An,

S∗ = (

∞
∏

n=1

An)∗ =
1

f(1)
A1 +

1

f(1)f(2)
A2 +

1

f(1)f(2)f(3)
A3 + . . . . (2)

(This infinite Minkowski sum is well-defined, and as S∗ is a continuous image of the compact
space

∏

An, it is compact. For later reference note that (
∏∞

n=1 An)∗ makes sense even if,
say, An ⊂ {0, 1, . . . , 2f(n) − 1}.)

Since the slaloms Sα cover T , the compact sets S∗
α (α < cof(N )) cover the unit interval.

These sets S∗
α are small if g is much smaller than f . That is, as it is easy to see, the Hausdorff

dimension of the sets S∗
α is at most

lim inf
n→∞

log(g(1) . . . g(n))

log(f(1) . . . f(n))
,

which can be zero if we choose g and f accordingly. Thus [0, 1] (and also of course R) can
be covered by cof(N ) many compact sets of Hausdorff dimension zero. However, our point
here is to find one compact set of Hausdorff dimension zero so that R can be covered by
cof(N ) many translates of this compact set. What we will do is to find a compact set C
of Hausdorff dimension zero so that for every g-slalom S ⊂ T , a translate of C will cover
S∗. Then clearly R can be covered by cof(N ) many translates of C.

We will choose g to be (say) g(n) = n + 1, the function f will be determined implicitly
by the construction.
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Theorem 2.1. Let g(n) = n+1. There exists a compact set C of Hausdorff dimension zero

and a function f : ω \{0} → ω \{0, 1} so that for every g-slalom S ⊂
∏∞

n=1{0, 1, . . . , f(n)−
1}, S∗ can be covered by a translate of C.

We prove this theorem in the next section. As it was shown above, this theorem imme-
diately yields our main result.

Theorem 2.2. There exists a compact set C of Hausdorff dimension zero so that R can

be covered by cof(N ) many translates of C.

3 Construction

Before we prove Theorem 2.1, we outline the construction of the set C in an informal
way. So we need to construct a (small) set C so that every (very small) set S∗ ⊂ [0, 1]
can be covered by a translate of C. First we will find compact sets Kn ⊂ [0, 2] (each of
which is a union of finitely many intervals) with arbitrarily small Hausdorff pre-measure
(of arbitrarily small dimension) so that every (n+1)-point set B ⊂ [0, 1] can be covered by
a translate of Kn. Then to this set Kn we associate a large positive integer f(n) and a set
An ⊂ {0, 1, . . . , 2f(n)− 1} with the property that every set Bn ⊂ {0, 1, . . . , f(n)− 1} with
|Bn| ≤ n + 1 can be covered by a translate of An. Setting g(n) = n + 1, this yields that for
every g-slalom

∏

Bn the set (
∏

Bn)∗ (as defined by (2)) can be covered by a translate of
(
∏

An)∗. Finally, we show that (
∏

An)∗ is of dimension zero using the fact that the sets
Kn can be chosen to be “arbitrarily small”. Therefore we can let C to be (

∏

An)∗.

Lemma 3.1. For every d, δ > 0 and for every positive integer n there exist a compact set

Kn ⊂ [0, 2] and some εn > 0 so that Hd
∞(Kn) < δ holds and that for every set B ⊂ [0, 1]

with |B| = n + 1 there exists some t ∈ R for which B + [t, t + εn] ⊂ Kn holds.

Proof. We prove this lemma by induction on n. We start with the case n = 1.
Let a, b > 0, let

K1 = [0, a] ∪
(

[0, 2] ∩ ∪i∈Z[ia, ia + b]
)

.

It is easy to check that if B ⊂ [0, 1], |B| = 2, then there exists some t ∈ R so that
B + t ⊂ K1. Moreover, we have some freedom in choosing t; that is, there exists some
ε1 > 0 independent of B such that B + [t, t + ε1] ⊂ K1 for some t (in fact, ε1 can be chosen
to be b). The set K1 can be covered by an interval of length a and at most 2/a+1 intervals
of length b, thus Hd

∞(K1) ≤ ad + (2/a + 1)bd. Therefore if we choose a small enough, and
then b small enough, Hd

∞(K1) can be arbitrarily small.
Now let us suppose that the lemma holds for some n, we prove it for n + 1. So if we

want a set Kn+1 with Hd
∞(Kn) < δ for some d and δ, let us start with choosing a set Kn

with Hd
∞(Kn) < δ/2 and an εn > 0 so that for every set B ⊂ [0, 1] with |B| = n + 1 we

have B + [t, t + εn] ⊂ Kn for some t.
Now let 0 < b < εn/2 be so small that (2/εn + 1)(2b)d < δ/2. Let

Kn+1 = Kn ∪
(

[0, 2] ∩ ∪i∈Z[iεn − b, iεn + b]
)

.

Then we have Hd
∞(Kn+1) < δ.

Let B ⊂ [0, 1] and |B| = n + 2. We show that B can be translated into the set
Kn+1. First let x be some element of B which is not the smallest or the largest one. Let
B′ = B \ {x}. Then there exists some t′ so that B′ + [t′, t′ + εn] ⊂ Kn. It is easy to check
that there exists some t so that [t, t+ b] ⊂ [t′, t′ +εn] and x+[t, t+ b] ⊂ Kn+1. Then clearly
B + [t, t + b] ⊂ Kn+1. Thus εn+1 can be chosen to be b.

Let us fix some K1 and ε1 (so that the statement of Lemma 3.1 holds) with H1
∞(K1) < 1.

Then let us fix some K2 and ε2 so that H
1/2
∞ (K2) < 100−1ε1. If K1, . . . , Kn and ε1, . . . , εn

are already fixed, then let us fix Kn+1 and εn+1 so that the statement of Lemma 3.1 holds
with

H1/(n+1)
∞ (Kn+1) < 100−nε1ε2 . . . εn. (3)

The choice of these bounds will be clear only later.
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To each of these sets Kn and εn we associate a set An ⊂ Z and some f(n) ∈ ω in the
following way. Let f(n) be a positive integer so that

5

εn
< f(n) <

10

εn
(4)

holds. Let
An = {i ∈ Z : [ i

f(n) ,
i+4
f(n) ] ⊂ Kn} ⊂ {0, 1, . . . , 2f(n)− 1}. (5)

(Note that this definition implies 1
f(n)An + [0, 4

f(n) ] ⊂ Kn, which we will use (only) in

Claim 3.4.)

Claim 3.2. If Bn ⊂ {0, 1, . . . , f(n)− 1} and |Bn| = n + 1, then there exists some u ∈ Z so

that Bn + u ⊂ An.

Proof. By Lemma 3.1 there exists some t so that Bn/f(n) + [t, t + εn] ⊂ Kn, thus Bn +
[tf(n), tf(n)+εnf(n)] ⊂ f(n)Kn. Using (4), the length of the interval [tf(n), tf(n)+εnf(n)]
is at least 5, so it has a subinterval of the form [u, u+4] with integer u. Thus Bn+[u, u+4] ⊂
f(n)Kn. Then Bn + u ⊂ An.

Let

C = (

∞
∏

n=1

An)∗ =
1

f(1)
A1 +

1

f(1)f(2)
A2 +

1

f(1)f(2)f(3)
A3 + . . . , (6)

thus C is compact, see our remark after definition (2).

Claim 3.3. Let g(n) = n+ 1. For every g-slalom S ⊂
∏∞

n=1{0, 1, . . . , f(n)− 1}, S∗ can be

covered by a translate of C.

Proof. Let Bn ⊂ {0, 1, . . . , f(n) − 1}, |Bn| ≤ n + 1 be arbitrary (n = 1, 2, . . .). Let S be
the g-slalom

∏

n≥1 Bn. Then by definition (2), we have

S∗ =
1

f(1)
B1 +

1

f(1)f(2)
B2 +

1

f(1)f(2)f(3)
B3 + . . . .

We can choose an integer un such that Bn + un ⊂ An by Claim 3.2. Then from (6),

S∗ +
u1

f(1)
+

u2

f(1)f(2)
+ . . . ⊂ C.

In order to finish the proof of Theorem 2.1, what is left is to show the following.

Claim 3.4. The Hausdorff dimension of C is zero.

Proof. For n ≥ 1 let

Cn =
1

f(1)f(2) . . . f(n)
An +

1

f(1)f(2) . . . f(n + 1)
An+1 + . . . . (7)

Thus C = C1 and C is the union of |A1||A2| . . . |An−1| many translated copies of Cn. First
we show that Cn lies in a small neighbourhood of the first term on the right hand side of
(7). For k ≥ 1 we have

sup
1

f(n)f(n + 1) . . . f(n + k)
An+k ≤

2

f(n)f(n + 1) . . . f(n + k − 1)
≤

2

f(n)2k−1
,

thus

sup f(1)f(2) . . . f(n − 1)Cn+1 ≤
∞
∑

k=1

2

f(n)2k−1
=

4

f(n)
,

and
f(1)f(2) . . . f(n − 1)Cn+1 ⊂ [0, 4

f(n) ]. (8)
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Since (7) implies Cn = 1
f(1)f(2)...f(n)An + Cn+1, using (8) we obtain

f(1)f(2) . . . f(n − 1)Cn ⊂
1

f(n)
An + [0, 4

f(n) ].

From the definition of An (5) we see that the right hand side is contained in Kn, thus

f(1)f(2) . . . f(n − 1)Cn ⊂ Kn.

Hence
Hd

∞(Cn) ≤ (f(1)f(2) . . . f(n − 1))−dHd
∞(Kn) ≤ Hd

∞(Kn).

As we have already mentioned, C is the union of |A1||A2| . . . |An−1| many translated
copies of Cn, therefore

H1/n
∞ (C) ≤ |A1||A2| . . . |An−1|H

1/n
∞ (Cn)

≤ |A1||A2| . . . |An−1|H
1/n
∞ (Kn) ≤ (2f(1))(2f(2)) . . . (2f(n − 1))H1/n

∞ (Kn).

Using (3) and the upper bound for f(n) in (4) we obtain

H1/n
∞ (C) ≤ 20n−1 1

ε1 . . . εn−1
100−(n−1)ε1 . . . εn−1 = 5−(n−1).

Thus for all d > 0 for all n > 1/d we have Hd
∞(C) ≤ H

1/n
∞ (C) ≤ 5−(n−1), therefore

Hd
∞(C) = 0. So the Hausdorff dimension of the set C is zero.
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