A nowhere convergent series of functions converging somewhere after every non-trivial change of signs

Abstract

We construct a sequence of continuous functions (h_{n}) on any given uncountable Polish space, such that $\sum h_{n}$ is divergent everywhere, but for any sign sequence $\left(\varepsilon_{n}\right) \in\{-1,+1\}^{\mathbb{N}}$ which contains infinitely many -1 and +1 the series $\sum \varepsilon_{n} h_{n}$ is convergent at at least one point. We can even have $h_{n} \rightarrow 0$, and if we take our given Polish space to be any uncountable closed subset of \mathbb{R}, we can require that every h_{n} be a polynomial. This strengthens a construction of Tamás Keleti and Tamás Mátrai.

1 Introduction

Let X be a topological space, $f_{n}: X \rightarrow \mathbb{R}, n \in \mathbb{N}$ be a sequence of continuous functions. One can ask about a condition on this sequence which guarantees that for a "typical" choice of signs $\varepsilon_{n}= \pm 1$ the series $\sum \varepsilon_{n} f_{n}$ diverges everywhere on X.

By "typical" choice of signs we mean that the set of the proper sign sequences is a residual (or dense G_{δ}) subset of $S=\{-1,+1\}^{\mathbb{N}}$. Here we consider S as a product of discrete topological spaces, which is clearly a Baire space. By \mathbb{N} we denote the set of the positive integers. By Polish space we mean complete separable metric space.

In [1, Theorem 4.1] for σ-compact X spaces a condition was given on the divergence of the partial sums of $\sum f_{n}$ implying that $\sum \varepsilon_{n} f_{n}$ diverges everywhere for a typical sign sequence $\left(\varepsilon_{n}\right) \in S$. Motivated by this result, S . Konyagin asked whether in case of compact metric spaces X, the pure fact that $\sum f_{n}$ diverges everywhere could imply that $\sum \varepsilon_{n} f_{n}$ diverges everywhere for a typical sign sequence. Tamás Keleti and Tamás Mátrai (see [2]) gave a negative answer to this question by

[^0]showing an example of a sequence of continuous functions $\left(f_{n}\right)$ on any uncountable Polish space, such that $\sum f_{n}$ is divergent everywhere, but for a typical sign sequence $\left(\varepsilon_{n}\right) \in S$, the series $\sum \varepsilon_{n} f_{n}$ is convergent at at least one point.

This paper strengthens this construction by showing a sequence of continuous functions f_{n} such that $\sum f_{n}$ is divergent everywhere but for every sign sequence $\left(\varepsilon_{n}\right) \in S_{0}=\left\{\left(\varepsilon_{n}^{\prime}\right) \in S \mid\left(\varepsilon_{n}^{\prime}\right)\right.$ contains infinitely many -1 and +1$\}$, the series $\sum \varepsilon_{n} f_{n}$ is convergent at at least one point. Clearly S_{0} is the largest subset of S for which this could be true.

We will also construct an other series of continuous functions with the same properties which satisfies even that $f_{n} \rightarrow 0$. Providing that the uncountable Polish space is \mathbb{R} (or a closed subset of \mathbb{R}) we can require every f_{n} to be a polynomial, see Remark 1 .

2 The example

Theorem 1. ${ }^{1}$ Let P be an uncountable Polish space. There exists a sequence of continuous functions $h_{n}: P \rightarrow \mathbb{R}$ such that $\sum h_{n}$ diverges everywhere on P, but for any $\left(\varepsilon_{n}\right) \in\{-1,+1\}^{\mathbb{N}}$ sign sequence containing infinitely many -1 and +1 digits $\sum \varepsilon_{n} h_{n}$ converges at at least one point of P.

Proof. At first we define continuous functions $f_{n}: S=\{-1,+1\}^{\mathbb{N}} \rightarrow$ $[-1,+1]$ such that $\sum_{n} f_{n}$ is divergent everywhere, but for any $\left(\varepsilon_{n}\right) \in$ $S_{0}=\left\{\left(\varepsilon_{n}^{\prime}\right) \in S \mid\left(\varepsilon_{n}^{\prime}\right)\right.$ contains infinitely many -1 and +1$\}$ the series $\sum \varepsilon_{n} f_{n}$ is convergent at at least one point, in fact, at $\left(\varepsilon_{n}\right)$.

Consider a fix $x \in S$ as the sequence of the -1 and +1 digits. Divide this sequence into blocks of type $A A A \ldots A B$ (where A and B stand for -1 and +1 in some order), with the property of containing at least one A and containing exactly one B at the end. We start the division in the beginning of the sequence. Occasionally we make one infinite block of type $A A A \ldots$. Thus, the division is well defined.

For example,

$$
-1+1 \boxed{-1-1-1+1}+1+1-1,+1-1, - 1 + 1 \longdiv { + 1 + 1 + 1 \ldots }
$$

Let n be a positive integer. We are going to define the real number $f_{n}(x)$. Suppose that the $n^{t h}$ digit of x is in the $k^{t h}$ block of x and this digit is the $i^{\text {th }}$ number in this block. Denote the size of the $k^{\text {th }}$ block by l. (Thus $1 \leq i \leq l$ and $l \geq 2$.)

If l is even, then let $f_{n}(x)=\frac{(-1)^{i+1}}{k}$ if $1 \leq i \leq l-1$ and let $f_{n}(x)=$ $\frac{+1}{k}$ if $i=l$.

[^1]If l is odd, then let $f_{n}(x)=\frac{(-1)^{i+1}}{k}$ if $1 \leq i \leq l-2$, let $f_{n}(x)=0$ if $i=l-1$ and let $f_{n}(x)=\frac{+1}{k}$ if $i=l$.

If $l=\infty$, then let $f_{n}(x)=\frac{(-1)^{i+1}}{k}$.
For example (writing $f_{n}(x)$ below the $n^{t h}$ digit of x),

-1+1	-1-1-1+1	+1+1-1	+1-1	-1+1	+1+1+1...
$\frac{71}{1} \frac{71}{1}$	$\frac{+1}{2} \frac{-1}{2} \frac{+1}{2} \frac{+1}{2}$	$\frac{ \pm 1}{3}$ 0 $\frac{+1}{3}$	$\frac{+1}{4} \frac{+1}{4}$	$\frac{+1}{5} \frac{+1}{5}$	$\frac{+1}{6} \frac{-1}{6} \frac{71}{6} \cdots$

Claim 1. The function f_{n} is an $S \rightarrow[-1,+1]$ continuous function for every $n \in \mathbb{N}$.

Proof. It is easy to see that $f_{n}(x)$ depends only on the first $n+1$ digits of x. This implies continuity.

Claim 2. The series $\sum f_{n}(x)$ is divergent for every $x \in S$.
Proof. For a fixed x consider those positive integers n for which the $n^{t h}$ digits of x are in the fixed $k^{t h}$ block. For these n the sum of $f_{n}(x)$ equals to $2 / k$ if this block is finite. Hence $\sum_{n \in \mathbb{N}} f_{n}(x)=\infty$ if x has infinitely many blocks. Otherwise x has an infinite block so the terms of the series $\sum_{n \in \mathbb{N}} f_{n}(x)$ are not converging to 0 .

Claim 3. For every $\left(\varepsilon_{n}\right) \in S_{0}$ there exists $x \in S$ for which $\sum \varepsilon_{n} f_{n}(x)$ is convergent, namely $x=\left(\varepsilon_{n}\right)$.

Proof. The sequence $x=\left(\varepsilon_{n}\right) \in S_{0}$ has only blocks of finite size. Consider those positive integers n for which the $n^{\text {th }}$ digits of x are in the same fixed block. For these n the sum of $\varepsilon_{n} f_{n}(x)$ is exactly zero. The sequence of partial sums converges to 0 , hence the series $\sum \varepsilon_{n} f_{n}(x)$ is convergent.

It is well known (see [3, Corollary 6.5]) that P contains a homeomorphic copy of the Cantor set, denote it by C. Clearly S is homeomorphic to the Cantor set, let φ be a $C \rightarrow S$ homeomorphism. Let $g_{n}: P \rightarrow[-1,+1]$ be a continuous extension of $f_{n} \circ \varphi: C \rightarrow[-1,+1]$ for every n. On P let $h_{n}(p)=g_{n}(p)+n \cdot d(p, C)$, where $d(p, C)$ denotes the distance of p from the closed set C. Clearly for $p \notin C$ the series $\sum h_{n}(p)$ diverges. On C we have $h_{n}=f_{n} \circ \varphi$, hence by Claim 2 and Claim 3 we obtain that (h_{n}) satisfies all required properties.

Theorem 2. Requiring that $h_{n} \rightarrow 0$, Theorem 1 remains true.

Proof. Just like in the proof of Theorem 1, at first we define functions f_{n} on S. Let $x \in S$ be fixed. Consider the same blocks. Suppose that the $k^{t h}$ block is finite and contains the $a^{t h},(a+1)^{t h}, \ldots, b^{t h}$ digits of x $(a, b \in \mathbb{N}, b-a \geq 2)$. Define $f_{a}(x), f_{a+1}(x), \ldots, f_{b}(x)$ to be respectively

$$
\frac{+1}{k} \frac{-1}{2 k} \frac{-1}{2 k} \frac{+1}{3 k} \frac{+1}{3 k} \frac{+1}{3 k} \cdots \underbrace{\frac{+1}{(2 m+1) k} \cdots \frac{+1}{(2 m+1) k}}_{2 m+1} \underbrace{00 \ldots 0}_{<4 m+5} \frac{+1}{k}
$$

where the number of zeros is less than $4 m+5$ and maybe there are no zeros at all. This properly defines the value of $m(m \in\{0,1,2, \ldots\})$. Note that $\sum_{n=a}^{b} f_{n}(x)=\frac{2}{k}$ and if $x=\left(\varepsilon_{n}\right) \in S_{0}$ then $\sum_{n=a}^{b} \varepsilon_{n} f_{n}(x)=$ 0 .

If the $k^{\text {th }}$ block is infinite and contains the $a^{t h},(a+1)^{t h}, \ldots$ digits of x then define $f_{a}(x), f_{a+1}(x), \ldots$ to be respectively

$$
\frac{+1}{k} \frac{-1}{2 k} \frac{-1}{2 k} \frac{+1}{3 k} \frac{+1}{3 k} \frac{+1}{3 k} \frac{-1}{4 k} \frac{-1}{4 k} \frac{-1}{4 k} \frac{-1}{4 k} \ldots
$$

Note that $\sum_{n=a}^{\infty} f_{n}(x)$ diverges.
One can easily check that $f_{n}(x)$ depends only on the first $2 n+2$ digits of x, so these functions are continuous. It is clear that Claim 2 and Claim 3 also hold for this sequence of functions f_{n}, and $-1 \leq f_{n} \leq+1$ for every $n \in \mathbb{N}$. Define φ and g_{n} the same way as in the proof of Theorem 1. We modify the definition of function h_{n}, put

$$
h_{n}(p)=(\max (1-d(p, C), 0))^{n} g_{n}(p)+\frac{d(p, C)}{n} .
$$

If $p \notin C$ then $h_{n}(p) \sim \frac{1}{n}$, hence $\sum h_{n}(p)$ diverges and $h_{n}(p) \rightarrow 0$. For $p \in C$ we have $h_{n}(p)=f_{n} \circ \varphi(p)$. Hence by Claim 2 and Claim 3 we obtain that (h_{n}) satisfies all required properties.

Remark 1. Let P be an uncountable closed subset of \mathbb{R} (hence P is a Polish space). There exists a sequence of polynomials $p_{n}: P \rightarrow \mathbb{R}$ such that $p_{n} \rightarrow 0$ and $\sum p_{n}$ diverges everywhere on P, but for any sign sequence $\left(\varepsilon_{n}\right) \in\{-1,+1\}^{\mathbb{N}}$ containing infinitely many -1 and +1 , the series $\sum \varepsilon_{n} p_{n}$ converges at at least one point of P.

Proof. Consider the continuous functions h_{n} given by Theorem 2 for P. Let p_{n} be a polynomial on \mathbb{R} for which $\left|p_{n}(x)-h_{n}(x)\right| \leq \frac{1}{n^{2}}$ for every $x \in P \bigcap[-n, n]$. Clearly $p_{n}(x) \rightarrow 0$ for every $x \in P$. Since the series $\sum \frac{1}{n^{2}}$ converges, for every $\left(\varepsilon_{n}\right) \in S$ the series $\sum \varepsilon_{n} p_{n}$ converges if and only if $\sum \varepsilon_{n} h_{n}$ converges. This completes the proof.

References

[1] F. Bayart, S. V. Konyagin, H. Queffélec, Convergence almost everywhere and divergence everywhere of Taylor and Dirichlet series, Real Analysis Exchange 29 (2003/04), no. 2, 557-586.
[2] T. Keleti, T. Mátrai, A nowhere convergent series of functions which is somewhere convergent after a typical change of signs, Real Analysis Exchange 29 (2003/04), no. 2, 891-894.
[3] A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag New York, 1995.

[^0]: Mathematical Reviews subject classification: 40A30

[^1]: ${ }^{1}$ Independently from the author, Gergely Zábrádi gave almost the same construction on \mathbb{R} at the same time.

