A NOTE ON K-THEORY AND TRIANGULATED CATEGORIES

MARCO SCHLICHTING

ABSTRACT. We provide an example of two closed model categories having equivalent homotopy cat-
egories but different Waldhausen K-theories. We also show that there cannot exist a functor from
small triangulated categories to spaces which recovers Quillen’s K-theory for exact categories and which
satisfies localization.

INTRODUCTION

0.1. In [TT90] Thomason and Trobaugh showed that an exact functor of complicial biWaldhausen
categories which induces an equivalence of homotopy categories also induces an equivalence of K-theory
spaces. In particular, an exact functor between exact categories inducing an equivalence between the
associated bounded derived categories also induces an equivalence of K-theory spaces. Thomason then
asked whether two Waldhausen categories having equivalent homotopy categories also have the same
K-groups.

It was commonly believed that K-theory can not be defined directly from its homotopy category. In
[Nee92], Neeman showed there cannot be a functor from triangulated categories to spaces which recovers
Waldhausen’s K-theory. However, the above question remained open. Jeff Smith suggested looking at
an example involving Morava K-theory. But to my knowledge this has never been carried out (in print).
We give a fairly simple example which proves that the answer to Thomason’s question is no.

Several people, as for instance Jens Franke and Amnon Neeman, asked whether there is a functor IK
from small triangulated categories to spaces satisfying some very natural axioms so that it deserves the
name K-theory. If £ is a small exact category we write K (&) for the Quillen K-theory space QQE of £.
The two axioms we feel are most natural are the following.

1) Agreement: For £ a small exact category let Dy(€) its bounded derived category. Then there is
a homotopy equivalence K (&) ~ IK(Dy(£)).

2) Localization: Let A — B — C be an exact sequence of triangulated categories, i.e., A is equivalent
to the full triangulated subcategory of B whose objects are sent to 0 in C and C is the localization
of B with respect to maps whose cone is isomorphic to an object of 4. Then there is a homotopy
fibration

K(A) - K(B) - K(C).
We show in proposition 2.2 that a functor satisfying agreement and localization cannot exist (see also
remark 2.3).

0.2. Before we come to our example we introduce the following notation. Let C be a Frobenius category,
i.e., a category having enough projectives and injectives, and whose projectives and injectives coincide.
Write C for the stable category of C, i.e., the category obtained from C by identifying two morphisms if
their difference factors through a projective-injective object. This is a triangulated category (see section
9 of [Hap87] or [Kel96] for details).

If C is abelian, we define a morphism in C to be a weak equivalence if it is a stable isomorphism, i.e., its
image in the stable category is an isomorphism. Define a morphism in C to be a cofibration if it is a
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monomorphism. Define a morphism in C to be a fibration if it is an epimorphism. It is well known that
this makes C into a closed model category in the sense of Quillen ([Qui67]) whose homotopy category is
equivalent to its stable category (see theorem 2.2.12 [Hov99] for the category of modules over a Frobenius
ring). We write mC for this model category in order to distinguish it from the abelian category C.

0.3. Here are the two model categories. Choose your favorite prime number p # 2. Let R be the
ring Z/ple]/e? or Z/p*. We write M(R) for the category of finitely generated R-modules. Then M(R)
is an abelian Frobenius category. In proposition 1.4 we show that the associated stable categories are
equivalent as triangulated categories. Hence the two model categories mM(R), R = Z/ple]/e?, Z[p?,
have equivalent homotopy categories.

We write K(mC) for the Waldhausen K-theory (see [Wal85]) of the category with cofibrations and
weak equivalences mC (forgetting the fibrations). Proposition 1.7 shows that the Waldhausen K-theories
of mM(R), R = Z/ple]/e?, Z/p?, differ. This relies on the calculations of [EF82] and [ALPS85]. In fact,
the groups K4(mM(R)) are different for the two rings. Hence the answer to Thomason’s question.

Our calculations also show that the existence of a functor from small triangulated categories to spaces
satisfying agreement and localization contradicts the results of [EF82] and [ALPS85]. This is done in
proposition 2.2.

Nevertheless, the question whether two exact categories having equivalent bounded derived categories
do have equivalent K-theories remains open.

1. THE TWO MODEL CATEGORIES AND THEIR K-THEORIES

1.1. Let k& be a field, and let M (k) be the category of finite dimensional vector spaces over k. We endow
M(k) with a trivial structure of a triangulated category as follows. The suspension functor is the identity
functor: ¥ = id. A triangle is distinguished if it is the direct sum of trivial triangles, i.e., triangles of

1
the form A4 —-> A 0 b+ A and rotations if it. It is straightforward to verify that this makes

M(k) into a triangulated category. Moreover, every structure of a triangulated category on M (k) for
which ¥ ~ id is equivalent to the above one.

1.2. Let k be a field. It is known that k[e]/e? is a Frobenius algebra. Hence the category M (k[e]/e?) of
finitely generated k[e]/e2-modules is a Frobenius category. The ring homomorphism k[e]/e? — k sending
¢ to 0 induces a fully faithful functor + : M(k) — M(k[e]/e?). Since every finitely generated k[e]/e?-
module is a direct sum of objects of M(k) and of a free module, we see that + induces an equivalence
of categories ¢ : M(k) — M(k[e]/e?). In order to calculate the suspension functor in M (k[e]/e?) we
choose for every object M in M(k) an injective hull M — E(M) in M(k[e]/€?). The suspension of M is
then E(M)/M. Multiplication by ¢ on E(M) induces a natural isomorphism E(M)/M 5 M. Tt follows
that the suspension is naturally equivalent to the identity functor. Hence, ¢ : M(k) = M (k[e]/e?) is an
equivalence of triangulated categories.

1.3. Let M(Z/p?) be the category of finitely generated Z/p?>-modules. The ring Z/p? is self injective
and every finitely generated Z/p?>-module is a submodule of a finitely generated free Z /p?>-module. Hence
M(Z/p?) is a Frobenius category. If we replace “multiplication by £” in 1.2 by “multiplication by p” then
the arguments of 1.2 carry over mutatis mutandis showing that the stable category M(Z/p?) is equivalent
as a triangulated category to M(Z/p).

Summarizing we have the following (certainly well known) proposition.

1.4 Proposition. The homotopy categories of mM(Z/p*) and mM(Z/ple]/e?) are both equivalent as
triangulated categories to M(Z/p).

1.5. Let R be the ring Z/p? or Z/ple]/e?. The categories mM(R) are biWaldhausen categories (see
1.2.4 [TT90] for a definition) which implies that the K-theory spaces of mM(R) and mM(R)°P are
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equivalent (the Waldhausen S.-constructions are isomorphic). That’s why taking K-theory with respect

to cofibrations or fibrations leads to the same result. The categories mM(R) both have natural cocylinder
me—m

objects since they have natural path objects: R[M]—=> M (recall that a finitely generated R-module

M is finite). They satisfy the dual of the cylinder axiom, saturation and extension axiom of [Wal85]. Let
P(R) be the category of finitely generated projective R-modules. The biWaldhausen categories P(R) and
M(R) have (by definition) isomorphisms as weak equivalences, admissible monomorphisms as cofibrations
and admissible epimorphismsas fibrations. Now the dual of theorem 1.6.4 of [Wal85] asserts that the
sequence
P(R) - M(R) - mM(R)
of biWaldhausen categories induces a homotopy fibration of K-theory spaces. Moreover Quillen’s dévissage
theorem [Qui73] shows that « : M(Z/p) - M(R) induces a K-theory equivalence. Hence there is a ho-
motopy fibration
K(R) - K(Z/p) - K(mM(R)).

1.6. Quillen’s calculation of K,(Z/p) (see [Qui72]) gives K4(Z/p) = 0 and K3(Z/p) = Z/(p*> — 1).
Hence there is an exact sequence

0 — K4y(mM(R)) = K3(R) = Z/(p* - 1).

On one hand, the calculations of [EF82] and [ALPS85] show that K3(Z/p*) = Z/p* & Z/(p* — 1).
Therefore, K4(mM(Z/p?)) contains a subgroup which is isomorphic to Z/p? (multiplication by p? is an
automorphism on Z/(p? — 1) but zero on Z/p?). On the other hand, the calculations in the two articles
also show that K3(Z/ple]/e?) = Z/p® Z/p® Z/(p* — 1). Therefore, K4(mM(Z/ple]/e?)) cannot have a
subgroup which is isomorphic to Z/p?.

Summarizing we have the following proposition.
1.7 Proposition. The Waldhausen K -theories of mM (Z/ple]/e®) and mM(Z/p*) are not equivalent.

1.8 Remark. Although the theorem 1.9.8 of [TT90] is written down only for “complicial biWaldhausen”
categories, its proof carries over to Frobenius categories with (co-) cylinder functor satisfying the (dual)
of the cylinder axiom. In fact, the proof becomes easier, since no calculus of fractions is involved.

2. NONEXISTENCE OF THE FUNCTOR IK

2.1. Suppose there were a functor K from small triangulated categories to spaces satisfying agreement
and localization. Keep the notations of 1.5. According to theorem 2.1 of [Ric89] (which works for
Frobenius categories, not only for those which arise from self-injective k-algebras), there is an exact
sequence of triangulated categories

Dy(P(R)) = Dy(M(R)) - M(R)

(see also [KV8T]). By agreement, localization and dévissage, it follows that there would be a homotopy
fibration

K(R) = K(Z/p) —» IK(M(R)).
Proceeding as in 1.6, we find a contradiction to the calculations of [EF82] and [ALPS85] because the
triangulated categories M(R) for R = Z/p?, Z/ple]/e?, are equivalent by 1.4.

Summarizing we have the following proposition.

2.2 Proposition. There is no functor from small triangulated categories to spaces satisfying agreement
and localization.

2.3 Remark. If we also want additivity (see 3) below) to hold then a weaker form of agreement, namely
1’), and localization lead to a contradiction as well.
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1’) Agreement on K;: Let £ be a small exact category. Then K;(€) = K1 (Dy(£)).
3) Additivity: Let F,G,H : S — T be three exact functors between triangulated categories such
that there is a natural exact triangle F' - G — H — X F then

0= K.(F) — K.(G) + K.(H) : K.(S) = K.(T).

There is no functor satisfying agreement on K1, localization and additivity. Suppose on the contrary that
a functor IK satisfying 1°), 2) and 3) exists. By additivity, and the fact that ¥ ~ id for the stable module
categories M(R), R = Z/p? or k[e]/e2, the groups IK.(M(R)) are 2-torsion. Agreement on K; implies
that Ky (P(R)) =Z/p®Z/(p—1) and K1 (M(R)) =Z/(p—1). So the map IK;(P(R)) — IK;(M(R))
sends the factor Z/p to zero. Using localization as before, we see that Z/p has to be 2-torsion which is
clearly wrong for p > 2.
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