A NOTE ON K-THEORY AND TRIANGULATED CATEGORIES

MARCO SCHLICHTING

ABSTRACT. We provide an example of two closed model categories having equivalent homotopy categories but different Waldhausen K-theories. We also show that there cannot exist a functor from small triangulated categories to spaces which recovers Quillen's K-theory for exact categories and which satisfies localization.

Introduction

0.1. In [TT90] Thomason and Trobaugh showed that an exact functor of complicial biWaldhausen categories which induces an equivalence of homotopy categories also induces an equivalence of K-theory spaces. In particular, an exact functor between exact categories inducing an equivalence between the associated bounded derived categories also induces an equivalence of K-theory spaces. Thomason then asked whether two Waldhausen categories having equivalent homotopy categories also have the same K-groups.

It was commonly believed that K-theory can not be defined directly from its homotopy category. In [Nee92], Neeman showed there cannot be a functor from triangulated categories to spaces which recovers Waldhausen's K-theory. However, the above question remained open. Jeff Smith suggested looking at an example involving Morava K-theory. But to my knowledge this has never been carried out (in print). We give a fairly simple example which proves that the answer to Thomason's question is no.

Several people, as for instance Jens Franke and Amnon Neeman, asked whether there is a functor $I\!\!K$ from small triangulated categories to spaces satisfying some very natural axioms so that it deserves the name K-theory. If $\mathcal E$ is a small exact category we write $K(\mathcal E)$ for the Quillen K-theory space $\Omega Q \mathcal E$ of $\mathcal E$. The two axioms we feel are most natural are the following.

- 1) Agreement: For \mathcal{E} a small exact category let $D_b(\mathcal{E})$ its bounded derived category. Then there is a homotopy equivalence $K(\mathcal{E}) \simeq I\!\!K(D_b(\mathcal{E}))$.
- 2) Localization: Let $\mathcal{A} \to \mathcal{B} \to \mathcal{C}$ be an exact sequence of triangulated categories, i.e., \mathcal{A} is equivalent to the full triangulated subcategory of \mathcal{B} whose objects are sent to 0 in \mathcal{C} and \mathcal{C} is the localization of \mathcal{B} with respect to maps whose cone is isomorphic to an object of \mathcal{A} . Then there is a homotopy fibration

$$I\!\!K(A) \to I\!\!K(B) \to K(C)$$
.

We show in proposition 2.2 that a functor satisfying agreement and localization cannot exist (see also remark 2.3).

0.2. Before we come to our example we introduce the following notation. Let \mathcal{C} be a Frobenius category, i.e., a category having enough projectives and injectives, and whose projectives and injectives coincide. Write $\underline{\mathcal{C}}$ for the stable category of \mathcal{C} , i.e., the category obtained from \mathcal{C} by identifying two morphisms if their difference factors through a projective-injective object. This is a triangulated category (see section 9 of [Hap87] or [Kel96] for details).

If C is abelian, we define a morphism in C to be a weak equivalence if it is a stable isomorphism, *i.e.*, its image in the stable category is an isomorphism. Define a morphism in C to be a cofibration if it is a

Date: February 15, 2001.

Key words and phrases. algebraic K-theory, triangulated categories.

monomorphism. Define a morphism in \mathcal{C} to be a fibration if it is an epimorphism. It is well known that this makes \mathcal{C} into a closed model category in the sense of Quillen ([Qui67]) whose homotopy category is equivalent to its stable category (see theorem 2.2.12 [Hov99] for the category of modules over a Frobenius ring). We write $m\mathcal{C}$ for this model category in order to distinguish it from the abelian category \mathcal{C} .

0.3. Here are the two model categories. Choose your favorite prime number $p \neq 2$. Let R be the ring $\mathbb{Z}/p[\varepsilon]/\varepsilon^2$ or \mathbb{Z}/p^2 . We write $\mathcal{M}(R)$ for the category of finitely generated R-modules. Then $\mathcal{M}(R)$ is an abelian Frobenius category. In proposition 1.4 we show that the associated stable categories are equivalent as triangulated categories. Hence the two model categories $m\mathcal{M}(R)$, $R = \mathbb{Z}/p[\varepsilon]/\varepsilon^2$, \mathbb{Z}/p^2 , have equivalent homotopy categories.

We write $K(m\mathcal{C})$ for the Waldhausen K-theory (see [Wal85]) of the category with cofibrations and weak equivalences $m\mathcal{C}$ (forgetting the fibrations). Proposition 1.7 shows that the Waldhausen K-theories of $m\mathcal{M}(R)$, $R = \mathbb{Z}/p[\varepsilon]/\varepsilon^2$, \mathbb{Z}/p^2 , differ. This relies on the calculations of [EF82] and [ALPS85]. In fact, the groups $K_4(m\mathcal{M}(R))$ are different for the two rings. Hence the answer to Thomason's question.

Our calculations also show that the existence of a functor from small triangulated categories to spaces satisfying agreement and localization contradicts the results of [EF82] and [ALPS85]. This is done in proposition 2.2.

Nevertheless, the question whether two exact categories having equivalent bounded derived categories do have equivalent K-theories remains open.

1. The two model categories and their K-theories

- 1.1. Let k be a field, and let $\mathcal{M}(k)$ be the category of finite dimensional vector spaces over k. We endow $\mathcal{M}(k)$ with a trivial structure of a triangulated category as follows. The suspension functor is the identity functor: $\Sigma = id$. A triangle is distinguished if it is the direct sum of trivial triangles, *i.e.*, triangles of the form $A \xrightarrow{1} A \longrightarrow 0 \xrightarrow{[+1]} A$ and rotations if it. It is straightforward to verify that this makes $\mathcal{M}(k)$ into a triangulated category. Moreover, every structure of a triangulated category on $\mathcal{M}(k)$ for which $\Sigma \simeq id$ is equivalent to the above one.
- 1.2. Let k be a field. It is known that $k[\varepsilon]/\varepsilon^2$ is a Frobenius algebra. Hence the category $\mathcal{M}(k[\varepsilon]/\varepsilon^2)$ of finitely generated $k[\varepsilon]/\varepsilon^2$ -modules is a Frobenius category. The ring homomorphism $k[\varepsilon]/\varepsilon^2 \to k$ sending ε to 0 induces a fully faithful functor $\iota: \mathcal{M}(k) \to \mathcal{M}(k[\varepsilon]/\varepsilon^2)$. Since every finitely generated $k[\varepsilon]/\varepsilon^2$ -module is a direct sum of objects of $\mathcal{M}(k)$ and of a free module, we see that ι induces an equivalence of categories $\iota: \mathcal{M}(k) \to \underline{\mathcal{M}(k[\varepsilon]/\varepsilon^2)}$. In order to calculate the suspension functor in $\underline{\mathcal{M}(k[\varepsilon]/\varepsilon^2)}$ we choose for every object M in M(k) an injective hull $M \hookrightarrow E(M)$ in $M(k[\varepsilon]/\varepsilon^2)$. The suspension of M is then E(M)/M. Multiplication by ε on E(M) induces a natural isomorphism $E(M)/M \overset{\sim}{\to} M$. It follows that the suspension is naturally equivalent to the identity functor. Hence, $\iota: \mathcal{M}(k) \to \underline{\mathcal{M}(k[\varepsilon]/\varepsilon^2)}$ is an equivalence of triangulated categories.
- 1.3. Let $\mathcal{M}(\mathbb{Z}/p^2)$ be the category of finitely generated \mathbb{Z}/p^2 -modules. The ring \mathbb{Z}/p^2 is self injective and every finitely generated \mathbb{Z}/p^2 -module is a submodule of a finitely generated free \mathbb{Z}/p^2 -module. Hence $\mathcal{M}(\mathbb{Z}/p^2)$ is a Frobenius category. If we replace "multiplication by ε " in 1.2 by "multiplication by p" then the arguments of 1.2 carry over *mutatis mutandis* showing that the stable category $\mathcal{M}(\mathbb{Z}/p^2)$ is equivalent as a triangulated category to $\mathcal{M}(\mathbb{Z}/p)$.

Summarizing we have the following (certainly well known) proposition.

- **1.4 Proposition.** The homotopy categories of $m\mathcal{M}(\mathbb{Z}/p^2)$ and $m\mathcal{M}(\mathbb{Z}/p[\varepsilon]/\varepsilon^2)$ are both equivalent as triangulated categories to $\mathcal{M}(\mathbb{Z}/p)$.
- **1.5.** Let R be the ring \mathbb{Z}/p^2 or $\mathbb{Z}/p[\varepsilon]/\varepsilon^2$. The categories $m\mathcal{M}(R)$ are biWaldhausen categories (see 1.2.4 [TT90] for a definition) which implies that the K-theory spaces of $m\mathcal{M}(R)$ and $m\mathcal{M}(R)^{op}$ are

equivalent (the Waldhausen S-constructions are isomorphic). That's why taking K-theory with respect to cofibrations or fibrations leads to the same result. The categories $m\mathcal{M}(R)$ both have natural cocylinder objects since they have natural path objects: $R[M] \xrightarrow{m \mapsto m} M$ (recall that a finitely generated R-module M is finite). They satisfy the dual of the cylinder axiom, saturation and extension axiom of [Wal85]. Let $\mathcal{P}(R)$ be the category of finitely generated projective R-modules. The biWaldhausen categories $\mathcal{P}(R)$ and $\mathcal{M}(R)$ have (by definition) isomorphisms as weak equivalences, admissible monomorphisms as cofibrations and admissible epimorphisms as fibrations. Now the dual of theorem 1.6.4 of [Wal85] asserts that the sequence

$$\mathcal{P}(R) \to \mathcal{M}(R) \to m\mathcal{M}(R)$$

of biWaldhausen categories induces a homotopy fibration of K-theory spaces. Moreover Quillen's $d\acute{e}vissage$ theorem [Qui73] shows that $\iota: \mathcal{M}(\mathbb{Z}/p) \to \mathcal{M}(R)$ induces a K-theory equivalence. Hence there is a homotopy fibration

$$K(R) \to K(\mathbb{Z}/p) \to K(m\mathcal{M}(R)).$$

1.6. Quillen's calculation of $K_n(\mathbb{Z}/p)$ (see [Qui72]) gives $K_4(\mathbb{Z}/p) = 0$ and $K_3(\mathbb{Z}/p) = \mathbb{Z}/(p^2 - 1)$. Hence there is an exact sequence

$$0 \to K_4(m\mathcal{M}(R)) \to K_3(R) \to \mathbb{Z}/(p^2-1).$$

On one hand, the calculations of [EF82] and [ALPS85] show that $K_3(\mathbb{Z}/p^2) = \mathbb{Z}/p^2 \oplus \mathbb{Z}/(p^2-1)$. Therefore, $K_4(m\mathcal{M}(\mathbb{Z}/p^2))$ contains a subgroup which is isomorphic to \mathbb{Z}/p^2 (multiplication by p^2 is an automorphism on $\mathbb{Z}/(p^2-1)$ but zero on \mathbb{Z}/p^2). On the other hand, the calculations in the two articles also show that $K_3(\mathbb{Z}/p[\varepsilon]/\varepsilon^2) = \mathbb{Z}/p \oplus \mathbb{Z}/p \oplus \mathbb{Z}/p \oplus \mathbb{Z}/(p^2-1)$. Therefore, $K_4(m\mathcal{M}(\mathbb{Z}/p[\varepsilon]/\varepsilon^2))$ cannot have a subgroup which is isomorphic to \mathbb{Z}/p^2 .

Summarizing we have the following proposition.

- **1.7 Proposition.** The Waldhausen K-theories of $m\mathcal{M}(\mathbb{Z}/p[\varepsilon]/\varepsilon^2)$ and $m\mathcal{M}(\mathbb{Z}/p^2)$ are not equivalent.
- 1.8 Remark. Although the theorem 1.9.8 of [TT90] is written down only for "complicial biWaldhausen" categories, its proof carries over to Frobenius categories with (co-) cylinder functor satisfying the (dual) of the cylinder axiom. In fact, the proof becomes easier, since no calculus of fractions is involved.
 - 2. Nonexistence of the functor $I\!\!K$
- **2.1.** Suppose there were a functor IK from small triangulated categories to spaces satisfying agreement and localization. Keep the notations of 1.5. According to theorem 2.1 of [Ric89] (which works for Frobenius categories, not only for those which arise from self-injective k-algebras), there is an exact sequence of triangulated categories

$$D_b(\mathcal{P}(R)) \to D_b(\mathcal{M}(R)) \to \mathcal{M}(R)$$

(see also [KV87]). By agreement, localization and $d\acute{e}vissage$, it follows that there would be a homotopy fibration

$$K(R) \to K(\mathbb{Z}/p) \to I\!\!K(\mathcal{M}(R)).$$

Proceeding as in 1.6, we find a contradiction to the calculations of [EF82] and [ALPS85] because the triangulated categories $\mathcal{M}(R)$ for $R = \mathbb{Z}/p^2$, $\mathbb{Z}/p[\varepsilon]/\varepsilon^2$, are equivalent by 1.4.

Summarizing we have the following proposition.

- **2.2 Proposition.** There is no functor from small triangulated categories to spaces satisfying agreement and localization.
- **2.3 Remark.** If we also want additivity (see 3) below) to hold then a weaker form of agreement, namely 1'), and localization lead to a contradiction as well.

- 1') Agreement on K_1 : Let \mathcal{E} be a small exact category. Then $K_1(\mathcal{E}) \stackrel{\sim}{=} I\!\!K_1(D_b(\mathcal{E}))$.
- 3) Additivity: Let $F, G, H : \mathcal{S} \to \mathcal{T}$ be three exact functors between triangulated categories such that there is a natural exact triangle $F \to G \to H \to \Sigma F$ then

$$0 = I\!\!K_*(F) - I\!\!K_*(G) + I\!\!K_*(H) : I\!\!K_*(S) \to K_*(T).$$

There is no functor satisfying agreement on K_1 , localization and additivity. Suppose on the contrary that a functor $I\!\!K$ satisfying 1'), 2) and 3) exists. By additivity, and the fact that $\Sigma \simeq id$ for the stable module categories M(R), $R = \mathbb{Z}/p^2$ or $k[\varepsilon]/\varepsilon^2$, the groups $I\!\!K_*(M(R))$ are 2-torsion. Agreement on K_1 implies that $I\!\!K_1(\mathcal{P}(R)) = \mathbb{Z}/p \oplus \mathbb{Z}/(p-1)$ and $I\!\!K_1(\mathcal{M}(R)) = \mathbb{Z}/(p-1)$. So the map $I\!\!K_1(\mathcal{P}(R)) \to I\!\!K_1(\mathcal{M}(R))$ sends the factor \mathbb{Z}/p to zero. Using localization as before, we see that \mathbb{Z}/p has to be 2-torsion which is clearly wrong for p > 2.

ACKNOWLEDGMENTS

I would like to thank Dan Grayson for the discussions I had with him, Amnon Neeman for stimulating my interest in these questions and for pointing out to me that the calculations of section 1 imply the results of section 2.

References

- [ALPS85] Janet E. Aisbett, Emilio Lluis-Puebla, and Victor Snaith. On $K_*(\mathbb{Z}/n)$ and $K_*(\mathbf{f}_q[t]/(t^2))$. Mem. Amer. Math. Soc., 57(329):vi+200, 1985. With an appendix by Christophe Soulé.
- [EF82] Leonard Evens and Eric M. Friedlander. On $K_*(\mathbb{Z}/p^2\mathbb{Z})$ and related homology groups. Trans. Amer. Math. Soc., $270(1):1-46,\ 1982.$
- [Hap87] Dieter Happel. On the derived category of a finite-dimensional algebra. Comment. Math. Helv., 62(3):339–389,
- [Hov99] Mark Hovey. Model categories. American Mathematical Society, Providence, RI, 1999.
- [Kel96] Bernhard Keller. Derived categories and their uses. In Handbook of algebra, Vol. 1, pages 671-701. North-Holland, Amsterdam. 1996.
- [KV87] Bernhard Keller and Dieter Vossieck. Sous les catégories dérivées. C. R. Acad. Sci. Paris Sér. I Math., 305(6):225–228, 1987
- [Nee92] Amnon Neeman. Stable homotopy as a triangulated functor. Invent. Math., 109(1):17-40, 1992.
- [Qui67] Daniel G. Quillen. Homotopical algebra. Springer-Verlag, Berlin, 1967. Lecture Notes in Mathematics, No. 43.
- [Qui72] Daniel Quillen. On the cohomology and K-theory of the general linear groups over a finite field. Ann. of Math. (2), 96:552-586, 1972.
- [Qui73] Daniel Quillen. Higher algebraic K-theory. I. pages 85-147. Lecture Notes in Math., Vol. 341, 1973.
- [Ric89] Jeremy Rickard. Derived categories and stable equivalence. J. Pure Appl. Algebra, 61(3):303-317, 1989.
- [TT90] R. W. Thomason and Thomas Trobaugh. Higher algebraic K-theory of schemes and of derived categories. In The Grothendieck Festschrift, Vol. III, pages 247-435. Birkhäuser Boston, Boston, MA, 1990.
- [Wal85] Friedhelm Waldhausen. Algebraic K-theory of spaces. In Algebraic and geometric topology (New Brunswick, N.J., 1983), pages 318-419. Springer, Berlin, 1985.

MARCO SCHLICHTING, 309 ALTGELD HALL, 1409 WEST GREEN STREET, URBANA, IL 61801 $E\text{-}mail\ address$: mschlich@math.uiuc.edu