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ABSTRACT. We show that the idempotent completion of a triangulated category has a natural structure of
a triangulated category. The idempotent completion of the bounded derived category of an exact category
gives the derived category of the idempotent completion. In particular, the derived category of an idempotent
complete exact category is idempotent complete.

Introduction

Our article intends to close a literature gap by providing a proof that the idempotent completion (also
called pseudo-abelian hull or karoubianisation) of a triangulated category is naturally a triangulated
category (Theorem 1.5).

The question of idempotent completing triangulated categories arises in the construction of the derived
category of mixed motives ([4, part I, chapter I definition 2.1.6]). In loc.cit part IT chapter II 2.4, Levine
proves our theorem for certain derived categories.

The second author’s motivation for the article lies in the observation that for a ring R the unbounded
derived category D(R) = D(P(R)) in the sense of [5] of the category P(R) of finitely generated projective
R-modules is idempotent complete iff K 1(R) = 0. In fact, K 1(R) is the Grothendieck group of the
idempotent completion of D(R) as a triangulated category wherefore we need to know that the idempotent
completion of a triangulated category has a natural triangulation.

An advantage of idempotent complete triangulated categories over arbitrary ones is that whenever
they occur as a full triangulated subcategory of a triangulated category they are épaisse in the latter
category (see Rickard’s criterion [6, proposition 1.3]).

Many natural triangulated categories are idempotent complete as are for instance the derived cat-
egories of perfect complexes over a quasi-separated, quasi-compact scheme (see for example [8]). We
add another example by proving in Theorem 2.8 that the bounded derived category of an idempotent
complete exact category is idempotent complete. This has been established in the split exact (additive)
case in [2]. However, the quotient of an idempotent complete triangulated category by an idempotent
complete full (hence épaisse) triangulated subcategory leads in general out of the category of idempotent
complete triangulated categories. By theorem 1.5, the latter category can be idempotent completed into
a triangulated category.

1. IDEMPOTENT COMPLETION OF ARBITRARY TRIANGULATED CATEGORIES.

1.1. Definition. An additive category K is said to be idempotent complete if any idempotent e : A — A,
e? = e, defines a splitting of A:
A =TIm(e) @ Ker(e).
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1.2. Definition. Let K be an additive category. The idempotent completion of K is the category K
defined as follows. Objects of K are pairs (A, e) where A is an object of K and e : A — A is an
idempotent. A morphism in K from (4,e) to (B, f) is a morphism « : A — B in K such that

ae=fa=a.
The assignment A — (A, 1) defines a functor ¢ from K to K. The following result is well-known.

1.3. Proposition. The category K is additive, the functor . : K — K is additive and K is idempotent
complete. Moreover, if L is an additive idempotent complete category and if F' : K — L is an additive
functor, then, up to natural equivalence, F' factors in a unique way through ¢ : K — K.

1.4. Remark. The functor ¢ is fully faithful and we shall hereafter think of K as a full subcategory
of K. We will write “A € K” to mean A is isomorphic to an object of K.

1.5. Theorem. Let K be a triangulated category. Then K is triangulated in such o way that 1 : K — K
is exact and in such a way that for any exract functor F : K — L, where L is a idempotent complete
triangulated category, F factors in a unique way, up to natural equivalence, through K, that is: there
ezists an ezact functor F : K — L such that F = F o1 and any other such factorization of F is naturally
equivalent to F'.

1.6. Definition. Let K be a triangulated category. Let us denote by T' : K — K its translation functor.
Define T : K — K by T(A,e) = (T(A),T(e)). Clearly Tot=10T.
Define a triangle in K

) a-2%p- o Tor

to be ezact when there exist objects A’, B',C" of K such that the following triangle is isomorphic in K
to the image under ¢ of an exact triangle of K :

a 0 0 80 0 ~ 0 0
0 1 0 0 01 0 0 0
0 0 0 0 0 0 0 01
A AT Y (C")—>BeAoB —>CodB o —>TAoTA)a '

That is, A is exact if it comes from K, up to trivial factors: the above triangle is obtained from A by
adding the three trivial triangles:

A 0T, 0—>B B —>0 ad T(C)—=0—>C —>C.

1.7. Theorem. With the above collection of ezact triangles, K is a triangulated category.

1.8. Proof. We have to check the four axioms of [9, Chap. II, Definition 1.1.1, pp.93-94].

(TR1). Any triangle isomorphic to an exact triangle is exact directly from the definition. If A is an
object of K, there exists A’ such that A® A’ € K (namely, if A = (B, e) take A’ = (B,1 —e) and check

that A @ A’ = «(B)). Then exactness of A @ A’ L, A A ——=0——>T(A)@T(A") in K insures

exactness of A 1 A—>0—>T(A) in K, by definition. We still have to check that any morphism
fits into an exact triangle. )
Let a: A — B be a morphism in K. Let A’ and B’ be such that A¢ A’ € K and B® B' € K. Let

(1) A0 A —>Bop YD 2. T4 A)
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a 0
00
commutative square into a morphism of exact triangles in K :

be an exact triangle in K, where a = ( ) Now, using (TR3) in K, we complete the following left

AGBAI_a)B@BIi)D&)T(A@AI)

o) 6oy 160

A@A'TB@B'TD?T(A@A')

/N
O =

Of course, p? also makes the above diagram commute and so the difference h := p? — p has trivial square:
h? =0.

This is quite classical but let us remind the proof to our reader: from ha; = (p? — p)a; = 0, we can
factor h through ay, i.e. there exists h : T(A @ A') — D such that h = hay and then h? = hayh =0
since az h = as (p> — p) = 0.

Applying the trick of lifting idempotents, we set

g=p+h—2ph.

Observe that p and h commute. From h? = 0, we get ¢> = p?> + 2ph — 4p*> h and then replacing p? by
p+h, we have ¢> = p+ h+2ph —4ph = g, using again h? = 0. Clearly, g can replace p in the above
diagram, since ha; = 0 and as h = 0. By our computation, ¢ is an idempotent.

Now, let C = (D,q) and C' = (D,1 — gq). Using the isomorphism D ~ C' & C', the above diagram
(with ¢ instead of p) becomes:

A@A'4G>B@B’4b>0@c’4c>T(A®A')
(1 0) (1 0) (1 0) (1 0)
0 0 0 0 0 0 00

A@A’—G>B@B’4b>0®0’—c>T(A@A’)

where b and ¢ are necessarily (for the above diagram to commute) of the form:
_ (B 0 _(m O
b_<0 3, and c=1{y v )

Let us now compare the two following exact triangles in K :

Apd —% >BeB —2 >Coc— S >TAe4)

) T I

O—>B®B'—1>B@B’—>O
and use (TR3) in K to find the above morphism, and in particular a morphism € : C" = B' in K such
that € 2 = Idp:. Using the idempotent completeness of K, we have
C'=B'®E

because B’ ~ Im(fs€) and where E = Ker(32¢€) = Im(1 — B2 ¢€). In this decomposition, the morphism
7o : C' = B'® E — T(A") becomes 7o = (0 §) because y232 = 0 and this for a unique morphism
d : E - T(A’). Putting all this together, the exact triangle (1) becomes :

Bi 0

a 0 0 1 v 0 0
00 0 O 0 0 ¢

(2) A A ——>BoB ——>CeB oE—>T(A) & T(A).
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Now, similarly, use again (TR3) in K to construct:

Ag A 0 )®T(A") B S TA) e T(A"
sl LR e
01 [ 01
Y\x o
A®A'——>BoB ——>CoB o E——>T(A) o T(4")
GO () (% o)
0 0 0 1 0 0 ¢
0 0
and in particular a morphism ¢ : T(A') — E such that § ¢ = Idy(4,). As before, we decompose
E=TAYeF
where F' = Ker( ) = Im(1 — 6), using the construction of K. Our exact triangle in K becomes now :
B 0
0 1
(a 0) 0 0 (’yl 00 0)
0 0 0 0 0 01O
3) ApA'——>BaeB —>CoB oTA)OF T(A) & T(A")

Now, it is easy to conclude that F' = 0. For this, consider the endomorphism of the above triangle, given

by :
1000
((10)(10)0100)
0 1)°\0 1)°{0 0 1 0/
0 00O

The reader should check that this is an endomorphism. Now, since the two first one are isomorphisms,
so is the third, that is 0 : F' — F' is an isomorphism.
Triangle (3), with F' removed, is a particular case of definition 6. Therefore the following triangle is
exact in K :
4A-%. B B c N T(A).

(TR?2) is direct from the definition.

(TR3). Consider a commutative (left) square and exact triangles in K :

A B c T(A)
la iﬂ lT(a)
X —>Y —> 72— T(X)

By definition 1.6, there exists A’, B',C", X',Y", Z" in K such that the following triangles are exact in K :

a 0 0 b 0 0 c 0 0
01 0 0 0 1 0 0 0
0 0 0 0 0 O 0 01
A AT Y(C)——BopA @B —FCopB o —>TA)dTA)a '
)

a 0 0 80 0 ) T(a) 0 0
0 0 0 000 3« 0 1 0
00 0 00 0 | 0 0 0

\
XoX oT Y(Z)—=YaoX oY ——=ZoY ez —=TX)oT(X) o 2

z 0 O y 0 0 z 0 0
010 0 01 0 00
0 00 0 00 0 01

Applying (TR3) for K, we find the above morphism and in particular the morphism « : C — Z which
can be easily verified to fit in a morphism of triangles: (a, 3,7).
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So far, we have established that K is a pre-triangulated category, in the sense that it satisfies all the
azioms but the octahedron aziom (TR4).
Before establishing the octahedron axiom, we need a couple of lemmas.

1.9. Lemma. Let L be a pre-triangulated category. Then the direct sum of two exact triangles is exact.

Confer [9, Corollary 1.2.5] the proof of which does not use the octahedron. O
1.10. Lemma. Let L be a pre-triangulated category. Suppose that the following triangle is exact:

u 0 v 0 w 0
0 o 0 o 0 w
ApA—— BB ———— > CoC —————=TA)aTA)
1 1 !

then A —2>B >0 -2 T(A) and A’ Yep-Ysor Y T(A") are exact.

1.11. Proof of lemma 10. Let us choose exact triangles over u and u':

! ! !
A-—t-p-T.p_ Y4 and A s p T Y
and let us use (TR3) to construct a morphism f:C — D:
(u 0 ) (v O) (w 0 )
0 0 v 0 o
Ao A BoB —>CaoC —=T(A) oT(4)
|
l l 51(f 9) |t1 o)
Y
A U B z D v T(A)

such that fv = z and y f = w (just ignore g). Similarly, we construct a morphism f’ : C' — D’ such
that f'v' = 2’ and ' f' = w'. Now, the direct sum of the two exact triangles over u and u' respectively
is exact (Lemma 9). Therefore we have a morphism of exact triangles in L:

G GH Gy

B ———>CaC —=T(A) o T(4)

H | [ H

ApA'! — BB —DaeD' ——=T
(u 0) <x 0) (w 0)
0 o 0 2 0 o

The “5-lemma” holds as soon as we have a pre-triangulated category and therefore f and f’ are iso-
morphisms. But then, the candidate triangles of the lemma are isomorphic to the ones we chose at the
beginning of the proof, respectively with the isomorphisms (Id4,Idp, f) and (Id4/,Idp, f'). O

(TR4) - Octahedron. Let u : X - Y and v : Y — Z be two composable morphisms. Let w =vou
and chose exact triangles on u, v and w in K :

(1) x sy My 2o r(x)
(

(2) ‘>z 1% T

I~<
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Choose A, B and C in K such that X @A € K,Y®B € K and Z® C € K. Add to (1) the trivial

triangles A 0 T(A) 1 T(A) and 0 B 1 B 0 to obtain the following triangle:

u 0 0 u, 0 0
0 0 0 0 0 1

(4) X@A—)Y@B—>UEBB@T(A)—>T(X)GBT(A).

O = O

Observe that the first morphism of (4) is in K and therefore fits into an exact triangle of K which is,
via ¢, an exact triangle of K. Those two triangles are isomorphic since K is pre-triangulated. Therefore,
(4) is isomorphic to an exact triangle of K.

Similarly, the two following triangles are isomorphic to exact triangles of K :

(5 o) (5 5 1)

G) YeB——7 s700——2 sVaeCaoT(B) — > T(Y) & T(B)

w 0 0 wy 0 0O
0 0 0 0 01

6) X9gA——>70C——>WaCoTA) ———>T(X)aT(A).

co S
oo

O = O

Let us put them in an octahedron:
— See (7), Figure —

that can be completed by f and g because it is true in K, which is plain triangulated and then transported
by isomorphism to our octahedron. The 0’s and 1’s appearing in f and g come from the commutativities
required by the octahedron axiom. Moreover, we have:
(8) grwi = v
(9) w2 f1 = Uy
(10) f1 Uy =w v
(11) V291 = T(U) w2 -
From the relation g f = 0 we obtain:
(12) g1 fo+92=0
(13) g3 i+ f3=0
(14) g3 fo+ fa+94 = 0.

We shall now use the following endomorphism of W & C' @ T'(A)

1 0 —f
c=|g3s 1 g4
0 0 1

as presented in figure (7), in order to modify our octahedron. Direct computation gives:

1 0 f 10 0 (100
=93 1 falo=10 1 gsfotgatfu] = (0 1 0
0 0 1 0 0 1 0 0 1
and similarly
1 0 f 10 0 100
o-\—-g3 1 fi]=10 1 gafotfat+g Wlo 1 0
0 0 1 0 0 1 0 0 1
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which implies that ¢ is an automorphism with inverse:

1 0 f2
(15) o= -gs 1 fu
0 0 1

Let us modify up to isomorphism the foreground triangle of figure (7) by using this automorphism o
to obtain the following candidate triangle:

(16) (““5)”2 ; ?)

-1
of 99 vecerd — " Yrmyerm e

U®BaT(A) — =W o CaT(A)

which by its construction is isomorphic to an exact triangle of K. We compute directly

1 0 —fs f0 /o 0 0 fi 00
of=193 1 g« |-|fs O fa)l=19sfi+fs 0 gsfo+fa+gs|]=10 00
0 0 1 0 0 1 0 0 1 0 01

by (13) and (14). Similarly, we have:

as) [ 9 0 g0 1 0 fo g1 O g1 fo+ 9o g1 0 0
o' =193 1 gu]|- (=935 1 fu|]=10 1 gsfotfatga|=]0 10
0O 0 O 0 0 1 0 0 0 0O 0 O

by (12) and (14). Putting all this together, we obtain the following picture in K :

A
v
(%1
v V2 v w w1
\ \
w
u Twn;;:;x L —w
/
U

in which all commutativities to be an octahedron are satisfied (use relations 8,9,10,11). The only point
is to check that the triangle

U w V TU)

is exact. But this is immediate from the exact triangle (16), the explicit computations of o f and go~!

and from definition 1.6. O

1.12. Remark. It is easy to check that if K was satisfying the enriched version of the octahedron axiom
described in [1, Remark 1.1.13, p. 25-26], then so does K. This is left to the reader.
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1.13. Proof of theorem 1.5. This is now an easy consequence. Clearly, by construction of the trian-
gulation on K, the functor ¢ : K — K is exact. Existence and uniqueness of the factorization comes from
the additive case and we are left with proving that F' is exact.

Let A be an exact triangle in K. By definition 1.6, there exist (trivial) exact triangles Ay, Ay, As,
(which are necessarily mapped by F to trivial exact triangles of L), and an exact triangle A’ in K such
that

A~ ADA & A D A;

in K. Applying F', which is additive, to this isomorphism we obtain an isomorphism in L and the left
hand side is F'(A’) which is exact by hypothesis. It suffices to apply lemma 1.10 to the right hand side
to obtain that F'(A) is exact which is the claim. O

2. DERIVED CATEGORIES OF IDEMPOTENT COMPLETE EXACT CATEGORIES.

The fact that the localization of certain triangulated categories (e.g. perfect complexes) are not idem-
potent complete forced Thomason in [8] to introduce negative K-theory of schemes. It is therefore an
important problem to decide whether a given triangulated category is idempotent complete or not (see
also our introduction). The content of this section is to prove that the bounded derived category of an
idempotent complete exact category is idempotent complete. For instance, the bounded derived category
of an abelian category is idempotent complete (See Corollary 2.10).

2.1. Background. For the basic notion of exact categories and their derived categories, the reader is
referred to Keller [3] or to Neeman [5]. Let us recall shortly what we will need hereafter.

(1) An ezact category is an additive category £ with a collection of ezact sequences {E— F — G}
where the first morphisms E — F appearing in those exact sequences are called admissible mono-
morphisms and the second ones admissible epimorphisms. They have to satisfy a couple of very
natural axioms:

(1) If E~— F - @ is an exact sequence of £, then E— F is a kernel of F -G and F -G is a
cokernel of £ — F.

(2) Any split sequence E — E® F — F (with usual maps) is exact. Any sequence isomorphic
to an exact sequence is exact.

(3) Admissible monomorphisms are closed under composition and push-out along any mor-
phism. Admissible epimorphisms are closed under composition and pullback along any
morphism.

The additional “obscure” axiom invoked by Quillen in the original version is known to be su-
perfluous. In order to avoid set theoretical difficulties we suppose our exact categories to be
small.

(2) Any exact category £ can be embedded as a full subcategory in an abelian category A in such a
way that a sequence in & is exact iff it is exact in A. If £ is idempotent complete (or even less),
this embedding can be chosen in a way that any map in £ which becomes an epimorphism in A
was already an admissible epimorphism in £. For further details we refer the reader to appendix
A of [8].

(3) For an exact category &, we let Ky(E) resp. K4 (€) be the category whose objects are bounded
resp. bounded below complexes with homological indexing and whose morphisms are chain maps
up to chain homotopy. These are triangulated categories. An acyclic complex is a complex E,
whose differentials decompose as

dn
E, E,_,
% %:
F,

bn Qn
in such a way that F,,— E,_ —»an—1 is an exact sequence of £ for all n € Z. A map of

chain complexes is a quasi-isomorphism if its cone is homotopy equivalent to an acyclic complex.
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The full subcategory of Kp(E) resp. K, (£) consisting of acyclic complexes is a full triangulated
subcategory of Ky(E) resp. K+ (&) (see [5, lemma 1.1]). The bounded derived category Dy, (E) resp.
bounded below derived category Dy (€) of £ is the quotient of the triangulated category Kp(E) resp.
K+ (&) by the full triangulated subcategory of acyclic complexes, i.e. it is the localization of Kp(E)
resp. of K4 (&) with respect to quasi-isomorphisms. The respective localizations are obtained by
a calculus of fractions. Furthermore, Dy, (€) is a full triangulated subcategory of D (€).

If the exact category £ is idempotent complete then a complex FE, is acyclic iff it has trivial
homology computed in the ambient abelian category of 2.1 (2), a quasi-isomorphism is a chain
map whose cone is acyclic, the triangulated subcategories of acyclic complexes are isomorphism
closed and épaisses (see [5, lemma 1.2]), and the set of quasi-isomorphisms is saturated.

2.2. Lemma. Let K be a small triangulated category. If Ko(f{) =0 then K is idempotent complete.

2.3. Proof. This follows easily from Landsburg’s criterion ([7, theorem 2.4]) identifying the objects of
a triangulated category which give the same class in Ky, see also [7, theorem 2.1]. O

2.4. Lemma. Let £ be an exact category. The derived category of bounded below complexes D () is
idempotent complete.

—~—

2.5. Proof. By the previous lemma, we only have to check that K¢(Dy(£)) = 0. The functor

S=@T*:D,(€) = Dy(€)

k>0

is well defined on bounded below complexes and chain maps. It passes to the derived category and

prolongs to a functor S : D4 (€) — D4 (£). There is a natural equivalence T? o S @ id ~ S. Since the
functor T2 induces the identity on K, it follows that Ko(S) + Ko(id) = Ko(S), so Ko(id) = 0, hence

Ko(D4(€)) =0. This is a variant of the usual “Eilenberg swindle”. O

2.6. Lemma. Let £ be an idempotent complete exact category.

(1) Let M =--- > E, Iy By —-+- bea (not necessarily bounded) acyclic complex. Then d,, has
a kernel in & for all n € Z and the truncation

o<n(M)=---—0—ker(d,) — E, — Ep 1 —---
is a complex in € which is quasi-isomorphic to M by the natural map M — o<, (M).

(2) Lets: L — N be a morphism of complexes of £. Suppose that s is a quasi-isomorphism. Suppose
further that one of L or N is bounded above. Call the other one X, then X has the following
property : for some ng € Z all its boundary maps d,, have a kernel in € for n > ngy. In particular,
O<noX 15 a compler in £ and the natural chain map X — 0<,, X 45 a quasi-isomorphism.

2.7. Proof. (1). This follows from the definition of M acyclic, see 2.1. (3).

(2). Apply (1) to the mapping cone of s which is acyclic by idempotent completeness of £ (see 2.1.
(3)) and observe that for n big enough the boundary of this mapping cone is the boundary of the one of
the two complexes which is not supposed bounded above. For the last statement use the description of
quasi-isomorphisms for idempotent complete exact categories given in 2.1. (3). O

2.8. Theorem. Let £ be an idempotent complete exact category. Then Dy (&) is idempotent complete.
2.9. Proof. Since £ is idempotent complete, there exists a embedding & — A as described in point 2.1,
part (2).

Let (M, p) be a bounded complex equipped with an idempotent p = p? : M — M in Dy,(€). By lemma,
2.2, there exist two bounded below complexes P,Q € D4 (£) and an isomorphism in D, (&)

f - M3PaQ
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such that p becomes ((1) g) on P & (). The isomorphism f can be represented by a fraction of quasi-
isomorphism :

M—>R<"-P&Q
for some bounded below complex R = ---— R, %Rn_l —---. Here we use that the set of quasi-

isomorphisms is saturated (see 2.1. (3)). Applying lemma 2.6 (2) to M, R and s we have that kerd,, € £
for n greater or equal than some ng € Z. Now apply the same lemma to P & @, o<y, (R) and the quasi-
isomorphism P®Q = R = <y, (R). This proves that for n big enough, the kernel of the boundary map
of P® (@ isin £. But in the abelian category A, this kernel is the sum of the corresponding kernels in P
and . Since & is idempotent complete, it forces both of them to be in £.

Put P and Q to be the corresponding truncations. Then we have an isomorphism

M~PaQ
. . . . 10 s~ . .
in Dy (&) which carries the idempotent p to 0 o)°m P®Q, due to the functoriality of the truncations

described above. O
2.10. Corollary. Let A be an abelian category. Then Dy(A) is idempotent complete.

2.11. Proof. An abelian category is idempotent complete. O

——

2.12. Corollary. Let £ be an ezact category. Then Dy (E) = Dy (£).

2.13. Proof. The inclusion of exact categories & C & induces a full inclusion of triangulated categories

Dy () C Dy(€). Tt is easily seen that every object of Dy,(€) is a direct summand of an object of Dy,(€).
The corollary then follows from theorem 2.8. |
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