DELOOPING THE K-THEORY OF EXACT CATEGORIES

MARCO SCHLICHTING

ABSTRACT. We generalize, from additive categories to exact categories, the concept of “Karoubi filtra-
tion” and the associated homotopy fibration in algebraic K-theory. As an application, we construct for
any idempotent complete exact category £ an exact category S& such that K (&) ~ QK(SE).

INTRODUCTION

In [Qui73] Quillen defined higher algebraic K-groups of an exact category £ as homotopy groups of a
topological space K(£) = Q|QE|. It turned out that K (&) is an infinite loop space (see for instance
[Seg74], [May72], [Wal85]). Since then K-theory has been regarded as taking values in (—1-connected)
spectra rather than spaces.

As far as the K-theory of rings is concerned (for additive categories see [PW89]), Wagoner [Wag72]
gave another proof of the infinite loop space structure by showing BGL(R)* x K¢(R) ~ QBGL(SR)*
where SR is the suspension ring of R. The spectrum {K (R), K(SR), K(S?R), ...} obtained in this way
is non-connective, in general, and has as negative homotopy groups the negative K-groups introduced by
Bass [Bas68] and Karoubi [Kar70].

The purpose of this article is to generalize the above results to exact categories. We construct for any
exact category £ an exact category SE, called the suspension of £, such that the K-theory space K (&)
of the idempotent completion £ of £ has the same homotopy type as QK (SE). This answers part of
problem 5 of the Lake Louise Problem Session [JS89].

We obtain an Q-spectrum IK (€) by setting K (€), = K(SnE). Its positive homotopy groups are the
Quillen K-groups of £. Its negative homotopy groups are the negative K-groups of the exact category
& as defined in [Sch]. They coincide with Bass’ negative K-groups of a ring R [Bas68] when & is the
category of finitely generated projective R modules; with Karoubi’s negative K-groups [Kar70] when &
is a split exact category; with Thomason’s negative K-groups [TT90] of a quasi-compact and separated
scheme X which admits an ample family of line bundles when £ is the exact category of vector bundles
of finite rank over X [Sch, 7.1].

In section 1 we introduce the concept of “left s-filtering” and “right s-filtering” (Definitions 1.3, 1.5).
These are conditions on an exact subcategory A of an exact category U which enable us to construct
a quotient exact category U/ A (Proposition 1.16). Our concept is a generalization of the concept of
“Karoubi filtration” [Kar70], [PW89], [CP97].

In section 2, we show that if A is an idempotent complete, right (or left) s-filtering subcategory of an
exact category U, then there is a homotopy fibration of K-theory spaces (Theorem 2.1)

K(A) » KU) » KU/ A).

The homotopy fibration is also induced by an exact sequence of triangulated categories (Proposition 2.6)
which implies that the homotopy fibration extends to a homotopy fibration of non-connective IK-theory
spectra (Theorem 2.10)

KA - KU) - KU/A),
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incorporating negative K-groups as defined in [Sch].

In section 3, we construct for any (idempotent complete) exact category &, a left s-filtering embedding
E C FE& of € into an exact category FE such that K(FE) and K (FE) are contractible (Lemma 3.2).
Defining the suspension S€ to be the quotient exact category FE/E (Definition 3.3), we obtain homotopy
equivalences K (&) ~ QK (SE) when £ is idempotent complete, and K (£) ~ QIK () in general (Theorem
3.4).

1. FILTERING SUBCATEGORIES AND QUOTIENT EXACT CATEGORIES

1.1. Ezact categories. We recall from [Kel96, 4] the definition of an exact category. A sequence
X =Y — Z in an additive category is called an ezact pairif X — Y isa kernel forY — Z, and Y —» Z
is a cokernel for X — Y. In an exact pair, the map X — Y is called inflation, and the map ¥ — Z is
called deflation. An ezact category is an additive category equipped with a class of exact pairs, called
conflations, satisfying the axioms Ex0-Ex2°P below.

Ex0 The identity morphism of the zero object is a deflation.
Ex1l A composition of two deflations is a deflation.

Ex1°? A composition of two inflations is an inflation.

Ex2 The pull-back of a deflation exists and is a deflation.
Ex2°?  The push-out of an inflation exists and is an inflation.

These axioms are equivalent to Quillen’s original axioms in [Qui73] (cf. [Kel90, appendix]). In [Qui73] in-
flations were called admissible monomorphisms deflations were called admissible epimorphisms deflations,
and conflations were called short exact sequences.

Let U be an exact category, and let A C U be an extension closed full subcategory. Unless otherwise
stated, A will then be equipped with the induced exact structure. It is the exact category with conflations
those sequences in .4 which are also conflations in &/. One checks that A, equipped with this class of
conflations, satisfies the axioms for an exact category.

1.2. The embedding & C Lexf. Let £ be a small exact category and let Lexf be the category of
left exact additive functors from £°P to < ab >, the category of abelian groups. We identify £ with
the representable functors via the Yoneda embedding. The category Lex& is a Grothendieck abelian
category with Ob& as generating set of small objects. The Yoneda embedding & — Lex& is exact, reflects
conflations, and is closed under extensions.

If £ is idempotent complete, then the inclusion & C Lex& is also closed under kernels of surjections.
In particular, given two composable maps f, g in £, if f o g is a deflation in £ then so is f.

For details we refer the reader to [Kel90, Appendix A], [TT90, Appendix A].

1.3 Definition. Let U be an exact category, and let A C U be an extentsion closed full subcategory.
Then the inclusion A C U is called right filtering, and A is called right filtering in U, if

(1) A is closed under taking admissible subobjects and admissible quotients in U/ and if
(2) every map U — A from an object U of U to an object A of A factors through an object B of A
such that the arrow U — B is a deflation:

U—" 54

N

31 B.
The inclusion A C U is called left filtering if A°P is right filtering in /°P.

1.4 Remark. Condition (2) already implies that A C U is closed under taking admissible subobjects.
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1.5 Definition. Let U be an exact category, and let .4 C U be an extension closed full subcategory.
An inflation A — U from an object A of A to an object U of U is called special if there is a deflation
U — B to an object B of A such that the composition A — B is an inflation.

The inclusion A C U is called right s-filtering if it is right filtering and if every inflation A — U from
an object A of A to an object U of U is special:

(1.6) A" >y

N\

31 B.
The category A is called left s-filtering in U if A°P is right s-filtering in U/°P.

1.7 Ezxample. Let A be a Serre subcategory of an abelian category U. Then A is right and left filtering
inl.

1.8 Ezample. Any filtering subcategory in the sense of Karoubi [Kar70] or Pedersen-Weibel [PW89] is
left and right s-filtering. This is because split inflations (and split deflations) fit into a diagram 1.6 (dual
of 1.6) as we can take A = B.

1.9 Ezample. Let R be a noetherian ring. Then the category of left R-modules of finite type is a
left s-filtering subcategory of the category of all left R-modules. The filtering property is clear as the
inclusion is Serre. For a surjective map U — M to a finitely generated module M, we lift a finite set of
generators for M to U. This generates a finitely generated submodule of U which still surjects onto M.

1.10 Ezample. (compare [Gra76, p. 233], [Car80]). Let R be a ring with unit, and let S C R be a
multiplicative set of central non zero divisors in R. Let Hg(R) be the exact category of finitely presented
S-torsion left R-modules of projective dimension at most 1. It is an extension closed full subcategory
of the category of all left R-modules, and we therefore consider it as an exact category (1.1). Let
PL(R) be the full subcategory of R-modules whose objects M fit into an exact sequence of R modules
0— P — M — H — 0 with P finitely projective and H € Hg(R) One checks that P1(R) is closed under
extensions in the category of all left R-modules. This gives P! (R) the structure of an exact category. Of
course, Hgs(R) C P'(R), and we claim that Hg(R) is right s-filtering in P! (R).

Proof. Let M — T be a map from an object M of P!(R) to an object T of Hs(R). There is a finitely
generated projective module Py which contains a finitely generated projective module P; with quotient
Py /Py isomorphic to T. Furthermore, M has a finitely generated projective submodule P with quotient
M/P in Hg(R). Since P is projective, the induced map P — T lifts to Py. Then X = P xp, P, is
a subobject of P. Since ST'R is flat over R, the quotient P/X is an S-torsion R-module which, as
a quotient of P, is finitely generated. Hence there is an s € S with s(P/X) = 0. This means that
X = P xp, P; contains sP. The R-modules sP is isomorphic to P by the injectivity of the multiplication
with s and is therefore finitely generated and projective. The quotient M /sP is an object of Hg(R) since,
by the snake lemma, it is an extension of P/sP and M/P. The map M — T factors through M/sP.
This proves the right filtering condition. Given a P'(R)-inflation T — M, its cokernel M' = M/T lies
in P1(R) and contains therefore a finitely generated projective R-submodule P such that the quotient
M'/P lies in Hg(R). The inclusion P C M’ lifts to an inclusion P C M whose cokernel M/P is an
extension of T' and M'/P, and hence lies in Hg(R). The diagram involving T', M and M /P shows that
the inflation T' — M is special. d

The quotient category P'(R)/Hs(R) as defined in 1.14 is equivalent to the category of finitely gen-
erated projective S~!R-modules which are localizations of finitely generated projective R modules (ex-
ercise!). The inclusion R—proj C P(R) satisfies resolution, and thus induces a K-theory equivalence.
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Theorem 2.10 yields the well-known long exact sequence for i € Z [Gra76], [Car80]

1.11 Ezample. Let £ be an exact category. In section 3 we construct a left s-filtering embedding £ C FE
into an exact category FE whose K-theory space is contractible.

1.12 Definition. Let U be a small exact category and A C U an extension closed full subcategory. A
U-morphism is called a weak isomorphism if it is a (finite) composition of inflations with cokernel in A
and deflations with kernel in A. We write ¥ 4y for the set of weak isomorphisms.

1.13 Lemma. If A is left filtering in U, then the set of weak isomorphisms ¥ gcy admits a calculus
of left fractions. Dually, if A is right filtering in U then the set of weak isomorphisms X 4cy admits a
calculus of right fractions.

Proof. We will prove the lemma in the left filtering case. We have to verify conditions a)-d) of [GZ67,
1.2.2, p.12]. By definition, all identity morphisms are in ¥ 47, and the set of weak isomorphisms is closed
under composition. Given a diagram X’ & X 5 Y with s € ¥ 4y, we have to show the existence of a

diagram X' L € Y acy such that u's = tu. Proceeding by induction, we only have to
show the claim for s an inflation with cokernel in 4 and for s a deflation with kernel in 4. In the first
case we take the pushout of s along u. In the second case, the map from the kernel of s to Y factors
through an admissible subobject A € A of Y (1.3). We set Y/ = Y/A and «/, t the induced maps. For
condition d), we have to show that given a diagram X' 3 X Ly withs € © Acu and fs = 0, there
saY 5Y' ey Acu with tf = 0. Again it suffices to proof the claim for s an inflation with cokernel
in A and for s a deflation with kernel in A. In the first case, f factors through X/X' € A. The map

X/X" = Y factors through an admissible subobject A € A of Y (1.3). We set Y’/ = Y/A and ¢ the
induced map Y — Y'. By construction, we have tf = 0. In the second case, f is already zero. O

1.14 Definition. Let A be an extension closed full subcategory of a small exact category U. We write
U/ A for the category U [E;tlcu] which is obtained from U by formally inverting the weak isomorphisms.
By Lemma 1.13, if A is left filtering (right filtering) in U, then U/ A is obtained from U by a calculus of
left fractions (right fractions).

1.15 Definition. Let A be left or right s-filtering in ¢/. A sequence X - Y — Z in U/ A is called a
conflation if it is isomorphic to the image, under the localization functor & — U/ A, of a conflation of U.

1.16 Proposition. Let A be left or right s-filtering in U. Then the category U] A, equipped with the
set of conflations defined in 1.15, is an exact category. Moreover, exact functors from U vanishing on A
correspond bijectively to exact functors from U [ A.

The proof of Proposition 1.16 will occupy the rest of the section. For part 4 of the next lemma we
introduce the following notation. Let 4 be an exact category. We write E(A) for the exact category of
conflations in 4. Objects are conflations in A and maps are commutative diagrams of conflations in A.
We have three functors E(A) — A which are evaluation at kernel, evaluation at extension and evaluation
at cokernel. A sequence of conflations is a conflation in E(A) if and only if all three evaluations yield
conflations in A.

1.17 Lemma. Let A be an idempotent complete exact category which is right s-filtering in U.

(1) Let « : A — B be an A-morphism such that there is a U-morphism ¢ : X — A with ao ¢ a
deflation. Then « is a deflation.

(2) For any diagram X>——>Y <——~Z of inflations with cokernel in A, there is a diagram of
inflations X <%<W>%> Z with cokernel in A such that ut = sv.



DELOOPING THE K-THEORY OF EXACT CATEGORIES 5

(3) For any weak isomorphism s there is an inflation i with cokernel in A such that s oi is also an
an inflation with cokernel in A.

(4) E(A) is right s-filtering in E(U).

(5) For any diagram X>——>Y <——~<Z of inflations with coker(s) in A, there is a diagram of
inflations X <—<W>——>Z with coker(t) in A such that ut = sv.

(6) The set of weak isomorphisms X ocy is saturated, i.e., any U-morphism whose image in U[A is
an isomorphism lies in X a4y -

(7) If in a map f = (fo, f1, f2) of conflations in U, two of the three arrows are weak isomorphisms,
then so is the third.

Proof. For (1), let W be the pull-back of a o ¢ along a, and write 7 : W — X and ¢ : W — A for the
other two maps in the pull-back diagram. The map «a has a kernel in the idempotent completion of U
(1.2) which is also a kernel for . The map ¢ : X — A induces a map s : X — W such that ros =1x
and go s = ¢. The image of the idempotent u := 1y — sr of W is a kernel of r. So we have to show
that im (u) is in A. By the right filtering property 1.3, we can write gou as yop with p: W — C a
deflation and C in A. Let i : ker(p) — W be a kernel for p. Then woi = 0 since W is a pullback and
rouoi=r7r(ly —sr)i =0and gouoi = yopoi = 0. Therefore, there is a ¢t : C — W such that
top = u. Since A is idempotent complete, the idempotent p o u o ¢t of C' has image in 4. The map
ut :im (powot) — im (u) has inverse pu. Thus im (u) is in A.

For (2), the cokernels p: Y - Y/X of uand r : Y — Y/Z of s have targets Y/X and Y/Z in A.
The map (p,r) : Y = Y/X @ Y/Z factors by the right filtering property (1.3) as (p,r) = (a,7) o ¢ with
g :Y — B a deflation and B in A. By (1), a and ~ are deflations. Let W be a kernel for q. Then the
deflations « and « induce the inflations ¢t and v of the diagram whose cokernels are the kernels of a and
~ and lie therefore in A.

For (3), the weak isomorphism s is a composition of inflations with cokernel in A and deflations with
kernel in 4. We show the assertion by induction on the number of morphisms of such a decomposition of
s. Using (2), we see that it suffices to prove 3 for s : X — Y a deflation with kernel in A. Let [: A - X
be a kernel of s. Then A is an object of A. Since A is right s-filtered in U, [ is a special inflation. So
there are an inflation j : A — B and a deflation p : X — B such that pol = j. Let ¢ : B — C denote
a cokernel of j, let r : Y — C denote the map induced by p and let i : U — X be a kernel for p. Then
by the snake lemma r is a deflation and soi : U — Y is a kernel for r and therefore an inflation with
cokernel C' € A.

To prove (4), we first show that any diagram By [/ —%> A, with By and 4 in A and By — U
an inflation can be completed into a commutative diagram

(1.18) By——>U

v

B, —5>A1

with By in A, By — B; an inflation and U — B; a deflation. Since i is special, there is a deflation
q : U — C with target in A such that ¢ o ¢ is an inflation. By the filtering property, we can write
(¢,a) : U = C @ A; as the composition of a deflation p : U — B; and a map (¢,) : By — C @ A;. The
map p o is an inflation since copoi = qoiis and A is idempotent complete (1.2).

Next we verify that E(A) is right filtering in E(U/). Let f = (fo, f1, f2) be a map from the conflation
(Ux,ax) = (Xo = X1 = X2) € E(U) to the conflation (ja,qa) = (Ag = A1 = As) € E(A). By the right
filtering property (1.3) we can write fo as g o rg such that ro : Xo — By is a deflation with target in A.
Let U be a push-out of jx along rg and let i : By — U and 7 : X; — U be the induced maps. The map i
is an inflation and 7 is a deflation. The universal property of push-outs gives a map « : U — A; making
all possible diagrams commute. By the previous paragraph we find By, p and 3 as in diagram (1.18). The
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morphism jpg := poi is an inflation. Let ¢g : By — Bs be a cokernel for jg so that (jg,¢s) = (Bo, B1, Bs2)
is a conflation in A. Then we have induced maps 2 : Bo — As and 72 : X5 — Bs. The map ry is a
deflation, by the snake lemma applied to the map (1p,,p,r2) of conflations. Thus r = (rg,po 7,r2) is a
deflation in E(U) and f = (8o, 8,82) or.

It remains to show that inflations [ = (lo,l1,12) in E(U) from (ja,q4) = (Ao = A1 = As) € E(A) to
(Gu,qu) = (Ug = Uy = Us) € E(U) are special. Since [y is special in U, there is a deflation py : Uy — By
such that pg o [y is an inflation. Let C' be the push-out of pgly along j4 and let V be the push-out of pg
along jiy. The induced map C' — V is an inflation since it is the push-out of the inflation UyLis, A1 — Uy
along Uylia, A1 — C. Since C — V is special in U, we find a deflation V' — B; such that the composition
C — B is an inflation. Write p; the composition U; — B; and p, : Uy — By = By /By for the induced
map on quotients. Then p = (pg, p1,p2) is a deflation in E(I/) such that pol is an inflation in E(A).

We show (5). By (4), the map in E(U) from (X - Y = Y/X) € E(U) to (1,0) =(Y/Z - Y/Z —
0) € E(A) can be written as the composition of a deflation (pg, p1,p2) with target A = (A9 — A1 — As)
in B(A) and amap A —» (Y/Z - Y/Z - 0) in E(A). Let t : W — X be a kernel for py, and let
v : W — Z be the induced map on kernels. The map ¢ is an inflation with cokernel 4y in 4. The map v
is an inflation as it is the composition of the inflation W = ker(py) — ker(p;) (p is a deflation in E(U))
and ker(p;) — Z. The last map is an inflation because in the diagram ¥ — A; — Y/Z, all maps are
deflations by construction and (1).

We prove (6). We claim that any idempotent p : U — U in U which becomes zero in U [E;lcu]
possesses an image lying in A. Since p is zero in U [E;llcu] there is an inflation 7 with cokernel in A such
that poi = 0 by (3) and Lemma 1.13. Let ¢ : U — A be a cokernel for i. We have A € A. There is a
map s : A = U such that p = soq. The map g o po s is an idempotent of A whose image is isomorphic
to the image of p. Since A is idempotent complete, im (p) exists and is in A.

Let f: X — Y be a U-map which becomes an isomorphism in U/ /A, and let gs~! be an inverse to f
with s : Z — Y a weak isomorphism and g : Z — X. We have to show that f € ¥ 4. By the calculus
of right fractions and (3) we can assume that s is an inflation with cokernel in A and fog = s in /. Since
s is an inflation, the push-out U of the diagram X &£ Z35YexistsinU. Callt: X 5 Uand h:Y - U
the induced maps. The map f induces a retraction r : U — Y of h such that f = r ot. Since h and r
are isomorphisms in U /A, the idempotent p = 1 — hr is zero in U/.A. By the previous paragraph, it has
an image in A. It follows that r is isomorphic to the canonical projection ¥ @ im (p) — Y, and hence
r € Xacy- As f =rotand tis an inflation with cokernel coker(s) in A we are done.

It remains to show (7). Let (fo, f1, f2) : (Xo = X1 = X3) = (Yo = Y1 = ¥5) be a map of conflations
in Y. Every map of conflations is a composition of maps of conflations with fo = id or fy = id. By (6)
we can thus assume fo = id or fo = id.

Suppose fy and fo are weak isomorphisms. If fy = i¢d then f; is a pull-back of f;, and thus is a weak
isomorphism. If fo = id then f; is a push-out of f;, and thus is a weak isomorphism.

Suppose fo and f; are weak isomorphisms. By (3), (2) and (6) we can assume fy and f; to be inflations
with cokernel in A. The map f, factors over Y; / Xg. As a push-out of f;, Xo — Y7 /X is an inflation with
cokernel in 4. The map Y7 /Xy — Y5 is a deflation with kernel coker(fy) € A by the snake lemma applied
to the map of conflations from Xo — Y7 — Y1 /X to Yo — Y1 — V5. Thus f is a weak isomorphism.

Finally, suppose f; and f, are weak isomorphisms. We can assume fo = id. We claim that if a
composition g o h of maps in U is a deflation with h a weak isomorphism, then g is a deflation, and the
maps on kernels is also a weak isomorphism. This will finish the proof. It suffices to show the claim in
two cases, namely when h is an inflation with cokernel in A and in the case when h is a deflation with
kernel in 4. In both case, we only have to show that g is a deflation since the map on kernels will then
be a weak isomorphism by the snake lemma. In the first case, the kernel of g in Lex!/ is en extension of
ker(gh) and coker(h). Since U C Lext{ is closed under extensions, we have ker(g) € U and g is a deflation
in U. In the second case, we have to show that ker(h) — ker(gh) is an inflation in ¢{. More generally,
we show that if a composition aob: A — X of maps in U with A € A is an inflation, then b is also
an inflation. Since A — X is special, we can assume X in A. By the right filtering property and by
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the assumption of A being idempotent complete, we can further assume that a is a deflation. But then
coker(b) is en extension of ker(a) and coker(ab) in Lex!/. Thus coker(b) is in U. O

Proof of Proposition 1.16. We will give the proof when A is idempotent complete. The general case
follows from Lemma 1.20 below.
First we show that & — U/ A sends a push-out along an inflation to a cocartesian square. Let

(1.19) gl x- iy

be a diagram in ¢/ with ¢ an inflation, and let g : Y — T, h: Z — T be maps in U such that gi = hf

]

holds in U/ A. Using 1.17 (3) and (5), we see that there is a diagram Z’ L x' %y in ¢ with ¢’ an
inflation and a map (z,z,y) from this diagram to the diagram (1.19) above such that gyi’ = hzf' and
such that z, y and z are inflations with cokernel in A (we can take z = idz and y = idy). Then the
map between the push-outs of the two diagrams is a weak isomorphism by 1.17 (7). Using the calculus
of fractions with respect to inflations with cokernel in 4, this shows the existence part for the push-out
of (1.19) to be cocartesian in U/ A. For the uniqueness part, given a U-map (by the calculus of fractions
we can restrict to U-maps) from the U-pushout of (1.19) to some object T" which is U/ A-trivial on YV
and Z. Using the calculus of fractions with respect to inflations with cokernel in .4 and 1.17 (5), we find
another push-out diagram along an inflation which maps to the push-out diagram obtained from (1.19)
via point-wise weak isomorphisms, such that the new push-out maps U-trivially to 7. As the map on
push-outs is a weak isomorphism (1.17 (7)), this shows the uniqueness part. Thus & — U/A sends a
push-out along an inflation to a cocartesian square.

Moreover, a calculus of right fractions, and hence & — U/ A, preserves all cartesian squares. It follows
that conflations in U/ /A are exact pairs.

We check the axioms Ex0-Ex2°P of 1.1. Axiom ExO0 is obvious.

For Ex1, we have to show that 8 ots~! o« is, up to fractions, a deflation if & and § are deflations in
U and s,t are weak isomorphisms. We can assume s and ¢ to be inflations with cokernel in A (1.17 (3)).
Taking the pullback of a along s, we can assume s = 1. Let t : X — Y and let i : ker(8) = Y be a
kernel for §:Y — Z. By Lemma 1.17 (5), there are an inflation r : U — ker(3) with cokernel in A and
an inflation j : U — X such that ir = tj. Write p : X — X/U for a cokernel of j and u : X/U — Z for
the map induced by ¢. The map u is a weak isomorphism (1.17 (7)), and p o « is a deflation.

Inflations are closed under composition in ¢//.A. This follows from the calculus of right fractions w.r.t.
inflations with cokernel in A and 1.17 (5). Thus Ex1°? holds.

Any diagram (1.19) in ¢ /A with ¢ an inflation in U/ /A is isomorphic to the image of a diagram (1.19)
in U with ¢ an inflation in «. As U — U /A preserves such push-out diagrams, the push-out of an inflation
in U/ A exists and is an inflation, thus Ex2°? holds. The dual argument shows that Ex2 also holds. O

Let U be an exact category and A C U a full extension closed subcategory. Then the idempotent
completion A of A is a full extension closed subcategory of i, and we write YA C U for the full
subcategory of objects U € U for which there is an object A € A with U @ A € U. It is immediate to see
that 2/ is extension closed in ¢{. This makes {/ into an exact category.

1.20 Lemma. IfACU is ~r'z'gh75~(lefvf) s-filtering, then A C UA is also right (left) s-filtering. Moreover,
the induced functor U/ A — UA| A is an equivalence ofycateg~ories. Under this equivalence, a sequence in
U] A is a conflation if and only if it is a conflation in U] A.

Proof. Left to the reader. O

2. A HOMOTOPY FIBRATION

Let € be an exact category. We denote by K (£) the Quillen K-theory space Q|QE| of £ [Qui73]. Recall
[Wal85, 1.9] that it is homotopy equivalent to Waldhausen’s K-theory space QiS.E].
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2.1 Theorem. Let A be an idempotent complete right s-filtering subcategory of an exact category U.
Then the sequence of exact categories A — U — U | A induces a homotopy fibration of K -theory spaces

K(A) » KU) > KUJA).

Proof. For any exact functor f : A — B between categories with cofibrations and weak equivalences,
Waldhausen constructs a simplicial category with cofibrations and weak equivalences S.(f : A — B) and
a homotopy fibration [Wal85, 1.5.5]

(2.2) wS.B— wS.S.(f: A— B) - wS.S.A.

In our application f is the inclusion A C U of an idempotent complete right s-filtering subcategory .4
of an exact category U and w is the set of isomorphisms. We write i instead of w. Then S.(A C U) is
a simplicial exact category for which S;(A C U) is equivalent to the exact category whose objects are

~ ~

Uy ) of inflations with cokernel in A (labeled as >—=> ).

sequences U = ( Up>—=> T
Morphisms are commutative diagrams in ¢. A sequence U — V — W in S,(A C U) is a conflation if
and only if it is pointwise a conflation, i.e.,if U; — V; — W; is a conflation in i/ for 0 < i < q.

2.3 Lemma. The quotient map U — U/ A induces a homotopy equivalence
iS.5.(ACcU) —»iS.5.(0cU/A).

Assuming the lemma for a moment, we finish the proof of Theorem 2.1 as follows. We have a commu-
tative diagram

iS.A iSU iS.8.(ACU)

l i*

iSUJA —==iS.5.(0 C U/A)

in which the first horizontal line is the homotopy fibration (2.2). The map iS.U/A — iS.5.(0 CU/A) is
a homotopy equivalence (for instance by appealing again to 2.2), and ¢S.S.(A C U) — iS.5.(0 CU/A) is
a homotopy equivalence by Lemma, 2.3.

Proof of Lemma 2.3. We will use that the order doesn’t matter when realizing multi-simplicial sets and
that a map of simplicial categories is a homotopy equivalence if it is degree-wise a homotopy equivalence.
Let C be a small category, and let w be a set of morphisms in C closed under composition and containing
all isomorphisms. We write wC for the category which has the same objects as C and where a morphism
is a C-morphism lying in w. Moreover, we write N;”C for the category whose objects are sequences
Co - Ci = --- = Cp of maps lying in w and whose morphisms are commutative diagrams in C.
The usual face and degeneracy maps for nerves give p — N;"C the structure of a simplicial category.
If we consider wC as a constant simplicial category, then the canonical map of simplicial categories
wC — wN¥°C, given by C — (C “4o4d 4 C) on objects, is a homotopy equivalence, since it is
degree-wise an equivalence of categories.

Let A be an idempotent complete right s-filtering exact subcategory of . We write w, for the set
of inflations in S,U with cokernel in S,A. The category iS,S,(A C U) is equivalent to iNg” SU. By
realizing in different orders, we see that for fixed p, the simplicial categories iN” Sl and w,Ni°S,U
have isomorphic realizations. As pointed out before, w, S — w,N*°S,U is a homotopy equivalence of
simplicial categories. The same applies to the trivial (right s-filtering) inclusion 0 C ¢ /A. So the lemma
is proven once we see that for every p the functor f, : w,SpU — iS,(U/A) is a homotopy equivalence. If
A is idempotent complete, then S, A4 is also idempotent complete. Moreover, if A C U is right s-filtering,
so are S, A — S,U for all n € N. For n = 0 both categories are trivial, for n = 1 this is the hypothesis,
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for n = 2 this is 1.17 (4), for n > 3 the argument is similar to n = 2, and we omit the details. Thus it
suffices to prove that f = f; : wild — i(U/A) is a homotopy equivalence. For every object X of i(U//A),
the category (f J X) is non-empty since U and U/A have the same objects. The category (f | X) is
cofiltered by 1.17 (3) and the calculus of fractions. Thus (f | X) is contractible. So Quillen’s Theorem
A [Qui73] applies, and f; is a homotopy equivalence. d

We will give a different proof of Theorem 2.1 which also includes negative K-groups.

Let £ be an exact category. The category Ch®(€) of bounded chain complexes (X*,d%) in & is an
exact category in which a sequence of chain complexes X* — Y* — Z* is a conflation if it is a conflation
in each degree, i.e.,if X™ — Y™ — Z" is a conflation in £ for all n € Z.

2.4 Lemma. Let A be an idempotent complete right s-filtering subcategory of an exact category U.
Then Chb(A) is right s-filtering in Ch®(U) and the induced exact functor Ch®(U)/Ch®(A) — Ch®(U/.A)
is an equivalence of exact categories.

Proof. The proof follows from the calculus of fractions and Lemma 1.17. We omit the details. |

2.5. Let & be an exact category, and let D’(€) be its bounded derived category. It is the category of
bounded chain complexes in £ localized with respect to chain maps whose cones are homotopy equivalent
to an acyclic complex [Kel96]. Recall that a complex (E*,d*) is acyclic if the differentials d* admit
factorizations B! — Z*1 — Et! guch that Z* — E* — Z! is a conflation in £ for all i € Z. The
category D®(€) is a triangulated category. A chain complex is zero in D®(€) if and only if it is a direct
factor in Ch®(€) of an acyclic chain complex (exercise!). For more details we refer the reader to [Kel96].

In the special case of an additive category U and a right and left s-filtering subcategory A the following
Proposition is implicit in [CP97].

2.6 Proposition. Let A be an idempotent complete right s-filtering subcategory of an exact category U.
Then in the sequence of bounded derived categories

(2.7) D(A) —» D) — D*(U/A),

the first functor is fully faithful, D(A) is épaisse in D®(U), the composition of the two functors is
trivial, and the induced functor from the Verdier quotient D®({)/D®(A) to D*(UU/A) is an equivalence of
categories.

Proof. Since every inflation from an object of A to an object of U is special, condition C2 of [Kel96, 12.1]
is fulfilled, and thus the functor D®(A) — D®(U) is fully faithful. The category D’(A) is idempotent
complete because A is idempotent complete [BSO1]. In particular, D*(A) is closed under taking direct
factors in D®(U), hence D®(A) is épaisse in D®(U) [Ric89, 1.3]. By Lemma 2.4 and definition 1.14,
Chb(U/A) is a localization of Ch®(U{). Tt follows that D®(U/A) is a localization of D®(U). Therefore, it
remains to show that every a chain complex
U* - 0 UO d° Ul d' R "~ Un 0

of ChP(U), which is zero in D®(U/.A), is isomorphic in D®(U) to a chain complex of ChP(A).

We first treat the case when U* € Ch®(U) is acyclic in Ch®(U/A). We will construct a sequence of
chain complexes and chain maps

~ ~ ~ ~

(2.8) U* = Up =—<V§ —=>Up <<y Ur <= <V* 0

n

where >~*> denotes an inflation of chain complexes with cokernel in Ch®(A) and —=> a quasi-
isomorphism in Ch®(U). If we have constructed (2.8), then U* is isomorphic in D°(lf) to an object of
Chb(A).

Let f : X — Y be a map in & which becomes an inflation in ¢//.A. Then there are {-inflations X' — X
and Y — Y’ with cokernel in A such that the composition X’ — Y is an inflation in /. This follows
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from 1.17 (3). By the right filtering property and 1.17 (1), the map X’ — Y is an inflation in /. Thus
for any U-map f: X — Y which is an inflation in U/ A, there is a U-inflation X' — X with cokernel in
A such that X' — Y is an inflation in .

We apply this argument to d° : U° — U' which is a U/ A-inflation because U* is U/ A-acyclic. We
obtain a U-inflation ¢ : V90>"=—> /9 such that d° o a is an inflation in &. Let Vj be the chain complex

000{ 1 n—1
VE)* : 0 Vo d Ut d Lo U 0.
The map
0 1 n—1
U*: 0 UO d Ul d .. d uUnr 0
*I . |
0o 1 n—1
VO* : 0 Vo d o Ut d ... 4 Un 0
is an inflation of chain complexes with cokernel in Ch®(A). Let U; be the chain complex
71 2 3 n—1
0 R Ul/v(] ! U2 d U3 d e d Un 0
where d! is the map which is induced by d' on the quotient U! /VO. Then the map of chain complexes
Vi 0 Vo d%a Ut d! 5 & U @#_ dr! n 0
l l i 71 H 2 H 3 m—1 ‘
Uy : O—>0—>U1/V0 dl U2 d U3 d ... U 0

is a quasi-isomorphism since it is a deflation with contractible kernel. Now Uy is a shorter chain complex
than U* which is also acyclic in Ch®(U//.A). We repeat the construction to obtain (2.8).

We treat the general case. Let U be a chain complex in I which is zero in D®(U//.A). Then there is an
acyclic chain complex X in I/ /A which contains U as a direct factor in Ch?(U/.A). It follows from Lemma
2.4, that Ch®(U) — Chb(Ud/A) is essentially surjective on objects. Thus we can assume X to be a chain
complex in Y which is acyclic in ¢/ /A. By the previous paragraph, X is isomorphic in D®(U/) to an object
of D*(A). Using Lemma 2.4, the calculus of fractions and Lemma 1.17 (3) applied to Ch®(A) c Chb(U),
we can express the fact that U is a direct factor of X in Ch®(U/A) by the existence of the following
commutative diagram in Ch® (/)

R X
{ ]

U———W.

Since X is zero in the Verdier quotient D®(U/)/D®(A), and since inflations of chain complexes in U
with cokernel in Ch?(A) are isomorphisms in the Verdier quotient, it follows that U, V, W are zero in
D(U)/D(A). As Db(A) is épaisse, this means that U is isomorphic in D?(U) to an object of D*(A). O

2.9. For £ an exact category, we have constructed in [Sch] a spectrum IK(€) such that m; K () are
Quillen’s K-groups K;(€) of € for i > 0, mIK (€) is K of the idempotent completion of £, and m; IK (£)
are the negative K-groups of £ for ¢ < 0. We write IK;(€) for mIK(E).

2.10 Theorem. Let A be an idempotent complete right s-filtering subcategory of an exact category U.
Then the sequence of exact categories A — U — U [ A induces a homotopy fibration of spectra
K(A) - KU) - KU/A).
In particular, there is a long exact sequence of abelian groups for i € Z
e KG(A) - K (U) - K (UJA) = K1 (A) = K (U) — -
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Proof. Tt follows from Proposition 2.6 that (2.7) is exact in the sense of [Sch, 1.1]. The Theorem is a
consequence of [Sch, 11.10, 11.13]. For ¢ > 0 the long exact sequence also follows from Theorem 2.1 or
from Proposition 2.6 and [TT90]. O

3. THE SUSPENSION OF AN EXACT CATEGORY

3.1. Countable envelopes. Let £ be an idempotent complete exact category. We will construct a left
s-filtering embedding & C FE with K(FE) and IK(FE) contractible (3.2).

Let FE€ be the countable envelope of £ [Kel90, Appendix B] (denoted by £~ in loc.cit). We review
definitions and basic properties from loc.cit. It is an exact category whose objects are sequences Ag <
Ay — Ay — ... of inflations in £. The morphism set from a sequence A, to B, is lim; colim; homg (4;, Bj).
The functor colim : FE — Lexf which sends a sequence A, to colim;A; is fully faithful and extension
closed and thus induces an exact structure on FE& by declaring a sequence in FE to be a conflation if it is
a conflation in Lex€. It turns out that a sequence in FE is a conflation iff it is isomorphic to the maps of
sequences A, = B, — C, with A; - B; — C; a conflation in £. Therefore, the exact structure does not
depend on the embedding & — Lex& and F defines a functor from exact categories to exact categories.

Colimits of sequences of inflations in FE& exist in FE and are exact. In particular, F€ has exact,
countable direct sums.

There is a fully faithful exact functor £ — F& which sends an object X of £ to the constant sequence

X4 x % x ¥ ... The functor is fully faithful, exact and reflects exactness because & — Lex& and
colim : FE€ — Lex€ are fully faithful, exact and reflect exactness.

3.2 Lemma. Let & be an idempotent complete exact category. The fully faithful exact functor € — FE
makes & into a left s-filtering subcategory of FE. Moreover, K(FE) and IK(FE) are contractible.

Proof. Given objects X of £ andY = (Yp = Y7 — Y5 < ---) of FE, by the definition of maps in FE,
any morphism from X to Y factors over some Y;. The sequence V; - Y — (V;11/Y; & Yii2/Y; —
Yirs/Yi = ---) is exact in Lex& and thus is a conflation in FE. It follows that £ C FE is left filtering.

Given objects X of £ and Y of FE as above, and given a surjection Y = colimY; — X in LexE. The
object X is small in Lex&, that is hom (X, colimU;) = colim hom(X, U;) for filtered colimits. This implies
that there is a Y; such that the composition Y; = Y = colimY; — X is still surjective. As £ is idempotent
complete, the embedding £ C Lex¢ is closed under kernels of surjections. Thus the surjection Y; — X is
a deflation in £. As pointed out before, the map Y; — Y is an inflation in F€. Therefore, any deflation
Y — X from an object of FE€ to an object of £ is special.

The inclusion & — F¢& is closed under taking admissible quotient objects because of the left filtering
property. The inclusion is also closed under taking admissible subobjects because it is closed under
taking admissible quotient objects and because the inclusion £ C Lex& is closed under taking kernels of
surjections.

The space K (FE) and the spectrum IK (FE) are contractible because FE has countable exact coprod-
ucts.

O

3.3 Definition. Let £ be an exact category, and let £~'~ be its idempotent completion. We define the
suspension SE of £ to be the quotient exact category (FE)/E.

3.4 Theorem. Let & be an exact category. Then there is a homotopy equivalence of spectra
K(&) ~ QK (S¢).
In particular, the negative K-groups of £ satisfy IK_,(E) = Ko(%) forn > 0.
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If £ is an idempotent complete exact category, then there is a homotopy equivalence of K-theory spaces
K(&) ~ QK(S¢).

Proof. We have IK(E) ~ IK(E) [Sch]. So we can assume in both cases that £ is idempotent complete.
Since K(FE) and IK(FE) are contractible, the Theorem follows from Lemma 3.2 and Theorem 2.10 (or

Theorem 2.1 for the second part). The “in particular” follows from the fact that Ky(E) = Ko(E€) for any
exact category &. O
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