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Abstract We present an introduction (with a few proofs) to higher algebraic K-theory of
schemes based on the work of Quillen, Waldhausen, Thomason and others. Our emphasis is
on the application of triangulated category methods in algebraic K-theory.

1 Introduction

These are the expanded notes for a course taught by the author at the Sedano Winter School
on K-theory, January 23–26, 2007, in Sedano, Spain. The aim of the lectures was to give an
introduction to higher algebraic K-theory of schemes. I decided to give only a quick overview
of Quillen’s fundamental results [35,73], and then to focus on the more modern point of view
where structure theorems about derived categories of sheaves are used to compute higher
algebraic K-groups.

Besides reflecting my own taste, there are at least two other good reasons for this empha-
sis. First, there is an ever growing number of results in the literature about the structure of
triangulated categories. To name only a few of their authors, we refer the reader to the work
of Bondal, Kapranov, Orlov, Kuznetsov, Samarkhin, Keller, Thomason, Rouquier, Neeman,
Drinfeld, Toen, van den Bergh, Bridgeland, etc. ... The relevance for K-theory is that virtually
all results about derived categories translate into results about higher algebraic K-groups. The
link is provided by an abstract Localization Theorem due to Thomason and Waldhausen which
– omitting hypothesis – says that a “short exact sequence of triangulated categories gives rise
to a long exact sequence of algebraic K-groups”. The second reason for this emphasis is that an
analog of the Thomason–Waldhausen Localization Theorem also holds for many other (co-)
homology theories besides K-theory, among which Hochschild homology, (negative, periodic,
ordinary) cyclic homology [49], topological Hochschild (and cyclic) homology [2], triangu-
lar Witt groups [6] and higher Grothendieck–Witt groups [77]. All K-theory results that are
proved using triangulated category methods therefore have analogs in all these other (co-)
homology theories.
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Here is an overview of the contents of these notes. Sect. 2 is an introduction to Quillen’s
fundamental article [73]. Here the algebraic K-theory of exact categories is introduced via
Quillen’s Q-construction. We state some fundamental theorems, and we state/derive results
about the G-theory of noetherian schemes and the K-theory of smooth schemes. The proofs in
[73] are all elegant and very well-written, so there is no reason to repeat them here. The only
additions I have made are a hands-on proof of the fact that Quillen’s Q-construction gives the
correct K0-group, and a description of negative K-groups which is absent in Quillen’s work.

Section 3 is an introduction to algebraic K-theory from the point of view of triangulated
categories. In Sect. 3.1 we introduce the Grothendieck-group K0 of a triangulated category,
give examples and derive some properties which motivate the introduction of higher algebraic
K-groups. In Sect. 3.2 we introduce the K-theory space (and the non-connected IK-theory spec-
trum) of a complicial exact category with weak equivalences via Quillen’s Q-construction.
This avoids the use of the technically heavier S•-construction of Waldhausen [100]. We state
in Theorem 3.2.27 the abstract Localization Theorem mentioned above that makes the link
between exact sequences of triangulated categories and long exact sequences of algebraic
K-groups. In Sect. 3.3 we show that most of Quillen’s results in [73] – with the notable
exception of Dévissage – can be viewed as statements about derived categories, in view of
the Localization Theorem. In Sect. 3.4 we give a proof – based on Neeman’s theory of com-
pactly generated triangulated categories – of Thomason’s Mayer-Vietoris principle for quasi-
compact and separated schemes. In Sect. 3.5 we illustrate the use of triangulated categories in
the calculation of the K-theory of projective bundles and of blow-ups of schemes along regu-
larly embedded centers. We also refer the reader to results on derived categories of rings and
schemes which yield further calculations in K-theory.

Section 4 is a mere collection of statements of mostly recent results in algebraic K-theory
the proofs of which go beyond the methods explained in Sects. 2 and 3.

In Appendix A, Sects. 1 and 2 we assemble results from topology and the theory of tri-
angulated categories that are used throughout the text. In Appendix A, Sect. 3, we explain
the constructions and elementary properties of the derived functors we will need. Finally, we
give in Appendix A, Sect. 4, a proof of the fact that the derived category of complexes of
quasi-coherent sheaves (supported on a closed subset with quasi-compact open complement)
on a quasi-compact and separated scheme is compactly generated – a fact used in the proof of
Thomason’s Mayer-Vietoris principle in Sect. 3.4.

2 The K-Theory of Exact Categories

2.1 The Grothendieck Group of an Exact Category

2.1.1 Exact Categories

An exact category [73, Sect. 2] is an additive category E equipped with a family of sequences
of morphisms in E , called conflations (or admissible exact sequences),

X
i→ Y

p→ Z (1)

satisfying the properties (a)–(f) below. In a conflation (1), the map i is called inflation (or
admissible monomorphism) and may be depicted as �, and the map p is called deflation (or
admissible epimorphism) and may be depicted as �.
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(a) In a conflation (1), the map i is a kernel of p, and p is a cokernel of i.
(b) Conflations are closed under isomorphisms.
(c) Inflations are closed under compositions, and deflations are closed under compositions.

(d) Any diagram Z← X
i� Y with i an inflation can be completed to a cocartesian square

X �� i ��

��

Y

��
Z �� j �� W

with j an inflation.

(e) Dually, any diagram X→ Z
p
�Y with p a deflation can be completed to a cartesian square

W ��

q
����

Y

p
����

X �� Z

with q a deflation.
(f) The following sequence is a conflation

X

(
1
0

)

→ X⊕Y
(0 1 )→ Y.

Quillen lists another axiom [73, Sect. 2 Exact categories c)] which, however, follows from the
axioms listed above [46, Appendix]. For a detailed account of exact categories including the
solutions of some of the exercises below, we refer the reader to [17].

An additive functor between exact categories is called exact if it sends conflations to
conflations.

Let A , B be exact categories such that B ⊂A is a full subcategory. We say that B is a
fully exact subcategory of A if B is closed under extensions in A (that is, if in a conflation
(1) in A , X and Z are isomorphic to objects in B then Y is isomorphic to an object in B), and
if the inclusion B ⊂A preserves and detects conflations.

2.1.2 Examples

(a) Abelian categories are exact categories when equipped with the family of conflations (1)
where 0→ X → Y → Z→ 0 is a short exact sequence. Examples of abelian (thus exact)
categories are: the category R -Mod of all (left) R-modules where R is a ring; the category
R -mod of all finitely generated (left) R-modules where R is a noetherian ring; the category
OX -Mod (Qcoh(X)) of (quasi-coherent) OX -modules where X is a scheme; the category
Coh(X) of coherent OX -modules where X is a noetherian scheme.

(b) Let A be an exact category, and let B ⊂A be a full additive subcategory closed under
extensions in A . Call a sequence (1) in B a conflation if it is a conflation in A . One
checks that B equipped with this family of conflations is an exact category making B
into a fully exact subcategory of A . In particular, any extension closed subcategory of an
abelian category is canonically an exact category.
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(c) The category Proj(R) of finitely generated projective left R-modules is extension closed
in the category of all R-modules. Similarly, the category Vect(X) of vector bundles (that
is, locally free sheaves of finite rank) on a scheme X is extension closed in the category of
all OX -modules. In this way, we consider Proj(R) and Vect(X) as exact categories where
a sequence is a conflation if it is a conflation in its ambient abelian category.

(d) An additive category can be made into an exact category by declaring a sequence (1) to be
a conflation if it is isomorphic to a sequence of the form 2.1.1 (f). Such exact categories
are referred to as split exact categories.

(e) Let E be an exact category. We let ChE be the category of chain complexes in E . Objects
are sequences (A,d):

· · · → Ai−1 di−1→ Ai di→ Ai+1→ ···
of morphisms in E such that d ◦d = 0. A morphism f : (A,dA)→ (B,dB) is a collection of
morphisms f i : Ai→ Bi, i ∈Z, such that f ◦dA = dB ◦ f . A sequence (A,dA)→ (B,dB)→
(C,dC) of chain complexes is a conflation if Ai → Bi → Ci is a conflation in E for all
i ∈ Z. This makes ChE into an exact category.
The full subcategory Chb E ⊂ ChE of bounded chain complexes is a fully exact subcate-
gory, where a complex (A,dA) is bounded if Ai = 0 for i >> 0 and i << 0.

It turns out that the examples in Example 2.1.2 (b), (c) are typical as the following lemma
shows. The proof can be found in [94, Appendix A] and [46, Appendix A].

2.1.3 Lemma

Every small exact category can be embedded into an abelian category as a fully exact subca-
tegory.

2.1.4 Exercise

Use the axioms Sect. 2.1.1 (a)–(f) of an exact category or Lemma 2.1.3 above to show the
following (and their duals).

(a) A cartesian square as in Sect. 2.1.1 (e) with p a deflation is also cocartesian. Moreover, if
X → Z is an inflation, then W → Y is also an inflation.

(b) If the composition ab of two morphisms in an exact category is an inflation, and if b has a
cokernel, then b is also an inflation. This is Quillen’s redundant axiom [73, Sect. 2 Exact
categories c)].

(c) Given a composition pq of deflations p, q in E , then there is a conflation ker(q) �
ker(pq) � ker p in E .

2.1.5 Definition of K0

Let E be a small exact category. The Grothendieck group K0(E ) of E is the abelian group
freely generated by symbols [X ] for every object X of E modulo the relation

[Y ] = [X ]+ [Z] for every conflation X � Y � Z. (2)

An exact functor F : A →B between exact categories induces a homomorphism of abelian
groups F : K0(A )→ K0(B) via [X ] �→ [FX ].
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2.1.6 Remark

The conflation 0 � 0 � 0 implies that 0 = [0] in K0(E ). Let X
∼=→ Y be an isomorphism,

then we have a conflation 0 � X � Y , and thus [X ] = [Y ] in K0(E ). So K0(E ) is in fact
generated by isomorphism classes of objects in E . The split conflation 2.1.1 (f) implies that
[X⊕Y ] = [X ]+ [Y ].

2.1.7 Remark (K0 for Essentially Small Categories)

By Remark 2.1.6, isomorphic objects give rise to the same class in K0. It follows that we could
have defined K0(E ) as the group generated by isomorphism classes of objects in E modulo
the relation 2.1.5 (2). This definition makes sense for any essentially small (= equivalent to a
small) exact category. With this in mind, K0 is also defined for such categories.

2.1.8 Definition

The groups K0(R), K0(X), and G0(X) are the Grothendieck groups of the essentially small
exact categories Proj(R) of finitely generated projective R-modules where R is any ring, of the
category Vect(X) of vector bundles on a scheme X1, and of the category Coh(X) of coherent
OX -modules over a noetherian scheme X .

2.1.9 Examples

For commutative noetherian rings, there are isomorphisms

K0(Z)∼= Z,

K0(R)∼= Z where R is a local (not necessarily noetherian) ring,

K0(F)∼= Z where F is a field,

K0(A)∼= Z
n where dimA = 0 and n = #SpecA,

K0(R)∼= Z⊕Pic(R) where R is connected and dimR = 1,

K0(X)∼= Z⊕Pic(X) where X is a connected smooth projective curve.

The group Pic(R) is the Picard group of a commutative ring R, that is, the group of
isomorphism classes of rank 1 projective R-modules with tensor product ⊗R as group law.
The isomorphism in the second to last row is induced by the map K0(R)→ Z⊕Pic(R) sen-
ding a projective module P to its rank rkP ∈ Z and its highest non-vanishing exterior power
Λ rkPP ∈ Pic(R). Similarly for the last isomorphism.

Proof

The first three follow from the fact that any finitely generated projective module over a
commutative local ring or principal ideal domain R is free. So, in all these cases K0(R) = Z.

1 For this to be the correct K0-group, one has to make some assumptions about X such as
quasi-projective or separated regular noetherian. See Sect. 3.4.
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For the fourth isomorphism, in addition we use the decomposition of A into a product
A1× ...×An of Artinian local rings [3, Theorem 8.7] and the fact K0(R×S)∼= K0(R)×K0(S).
For the second to last isomorphism, the map K0(R)→Z⊕Pic(R) is surjective for any commu-
tative ring R. Injectivity for dimR = 1 follows from Serre’s theorem [84, Théorème 1] which
implies that a projective module P of rank r over a noetherian ring of Krull dimension d can
be written, up to isomorphism, as Q⊕Rr−d for some projective module Q of rank d provided
r ≥ d. For d = 1, this means that P∼= Rr−1⊕Λ rP.

For the last isomorphism, let x∈ X be a closed point with residue field k(x) and U = X−x
its open complement. Note that U is affine [41, IV Exercise 1.3]. Anticipating a little, we have
a map of short exact sequences

0 �� K0(k(x))

∼=
��

�� K0(X)

��

�� K0(U)

∼=
��

�� 0

0 �� Z �� Z⊕Pic(X) �� Z⊕Pic(U) �� 0

in which the left and right vertical maps are isomorphisms, by the cases proved above. The top
row is a special case of Quillen’s localization long exact sequence Theorem 2.3.7 (5) using the
fact that K0 = G0 for smooth varieties (Poincaré Duality Theorem 3.3.5), both of which can be
proved directly for G0 and K0 without the use of the machinery of higher K-theory. The second
row is the sum of the exact sequences 0→ 0→Z→Z→ 0 and 0→Z→Cl(X)→Cl(U)→ 0
[41, II Proposition 6.5] in view of the isomorphism Pic(X)∼= Cl(X) for smooth varieties [41,
II Corollary 6.16]. �

2.2 Quillen’s Q-Construction and Higher K-Theory

In order to define higher K-groups, one constructs a topological space K(E ) and defines the
K-groups Ki(E ) as the homotopy groups πiK(E ) of that space. The topological space K(E )
is the loop space of the classifying space (Sect. 2.2.2 and Appendix A, Sect. 3) of Quillen’s
Q-construction. We start with describing the Q-construction.

2.2.1 Quillen’s Q-Construction [73, Sect. 2]

Let E be a small exact category. We define a new category QE as follows. The objects of QE

are the objects of E . A map X →Y in QE is an equivalence class of data X
p

� W
i� Y where

p is a deflation and i an inflation. The datum (W, p, i) is equivalent to the datum (W ′, p′, i′)
if there is an isomorphism g : W →W ′ such that p = p′g and i = i′g. The composition of
(W, p, i) : X → Y and (V,q, j) : Y → Z in QE is the map X → Z represented by the datum
(U, pq̄, jī) where U is the pull-back of q along i as in the diagram

X W
p����

��
i

��

U
q̄����

��
ī

��
Y Vq

���� ��
j

�� Z

which exists by 2.1.1 (e). The map q̄ (and hence pq̄ by 2.1.1 (c)) is a deflation by 2.1.1 (e),
and the map ī (and hence jī) is an inflation by Exercise 2.1.4 (a). The universal property
of cartesian squares implies that composition is well-defined and associative (exercise!). The
identity map idX of an object X of QE is represented by the datum (X ,1,1).
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2.2.2 The Classifying Space of a Category

To any small category C , one associates a topological space BC called the classifying space of
C . This is a CW -complex constructed as follows (for the precise definition, see Appendix A,
Sect. 1.3).

• 0-cells are the objects of C .
• 1-cells are the non-identity morphisms attached to their source and target.
• 2-cells are the 2-simplices (see the figure below) corresponding to pairs ( f ,g) of

composable morphisms such that neither f nor g is an identity morphism.

C1

C2

C0

( f;g) : g f g

f

The edges f , g and g f which make up the boundary of the 2-simplex ( f ,g) are attached
to the 1-cells corresponding to f , g, and g f . In case g f = idC0 , the whole edge g f is
identified with the 0-cell corresponding to C0.

• 3-cells are the 3-simplices corresponding to triples C0
f0→C1

f1→C2
f2→C3 of composable

arrows such that none of the maps f0, f1, f2 is an identity morphism. They are attached
in a similar way as in the case of 2-cells, etc.

2.2.3 Exercise

Give the CW -structure of the classifying spaces BC where the category C is as follows.

(a) C is the category with 3 objects A, B, C. The hom sets between two objects of C contain at
most 1 element where the only non-identity maps are f : A→B, g : B→C and g f : A→C.

(b) C is the category with 2 objects A, B. The only non-identity maps are f : A→ B and
g : B→ A. They satisfy g f = 1A and f g = 1B.

Hint: the category in (a) is the category [2] given in Appendix A, Sect. 1.3. Both categories
have contractible classifying space by Lemma A.1.6.

Since we have a category QE , we have a topological space BQE . We make the classifying
space BQE of QE into a pointed topological space by choosing a 0-object of E as base-point.
Every object X in QE receives an arrow from 0, the map represented by the data (0,0,0X )
where 0X denotes the zero map 0 → X in E . In particular, the topological space BQE is
connected, that is, π0BQE = 0.

To an object X of E , we associate a loop lX = (0,0,0X )−1(X ,0,1) based at 0

lX : 0
(X ,0,1)

��

(0,0,0X )
��
X

in BQE by first “walking” along the arrow (X ,0,1) and then back along (0,0,0X ) in the
opposite direction of the arrow. This loop thus defines an element [lX ] in π1BQE .
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2.2.4 Proposition

The assignment which sends an object X to the loop lX induces a well-defined homomorphism
of abelian groups K0(E )→ π1BQE which is an isomorphism.

Proof

In order to see that the assignment [X ] �→ [lX ] yields a well defined group homomorphism
K0(E )→ π1BQE , we observe that we could have defined K0(E ) as the free group generated by

symbols [X ] for each X ∈ E , modulo the relation [Y ] = [X ][Z] for any conflation X
i� Y

p
� Z.

The commutativity is forced by axiom Sect. 2.1.1 (f). So, we have to check that the relation
[lY ] = [lX ][lZ] holds in π1BQE . The loops lX and lZ are homotopic to the loops

0
(X ,0,1)

��

(0,0,0X )
��
X

(X ,1,i) �� Y and 0
(Z,0,1)

��

(0,0,0Z )
��
Z

(Y,p,1) �� Y which are

0
(X ,0,i)

��
(0,0,0Y )

�� Y and 0
(Y,0,1)

��
(X ,0,i)

�� Y. Therefore,

[lX ][lZ] = [(0,0,0Y )−1(X ,0, i)][(X ,0, i)−1(Y,0,1)] = [(0,0,0Y )−1(Y,0,1)] = [lY ], and the map
K0(E )→ π1BQE is well-defined.

Now, we show that the map K0(E )→ π1BQE is surjective. By the Cellular Approxima-
tion Theorem [104, II Theorem 4.5], every loop in the CW-complex BQE is homotopic to
a loop with image in the 1-skeleton of BQE , that is, it is homotopic to a loop which tra-
vels along the arrows of QE . Therefore, every loop in BQE is homotopic to a concatenation
a±1

n a±1
n−1 · · ·a±1

2 a±1
1 of composable paths a±1

i in BQE where the ai’s are maps in QE , and a

(resp. a−1) means “walking in the positive (resp. negative) direction of the arrow a”. By inser-
ting trivial loops g ◦ g−1 with g = (A,0,1) : 0→ A, we see that the loop a±1

n a±1
n−1 · · ·a±1

2 a±1
1

represents the element

[a±1
n gn−1g−1

n−1a±1
n−1 · · ·g2g−1

2 a±1
2 g1g−1

1 a±1
1 ]

= [a±1
n gn−1] · [g−1

n−1a±1
n−1gn−2] · · · [g−1

2 a±1
2 g1] · [g−1

1 a±1
1 ]

in π1BQE where gi = (Ai,0,1) : 0→ Ai has target Ai which is the endpoint of the path a±1
i

and the starting point of a±1
i+1. Let (Ui,0, ji) : 0→ Xi be the composition ai ◦ (Yi,0,1) in QE

where Yi and Xi are the source and target of ai, respectively. Then we have [g−1
i+1a±1

i gi] =
[(Xi,0,1)−1(Ui,0, ji)]±1. This means that the group π1BQE is generated by loops of the form

0
(U,0, j)

		

(X ,0,1)



X .

In the following sequence of homotopies of loops

(X ,0,1)−1(U,0, j) ∼ (X ,0,1)−1(U,1, j)◦ (U,0,1)

∼ (X ,0,1)−1(U,1, j)◦ (0,0,0U )◦ (0,0,0U )−1(U,0,1)

∼ (X ,0,1)−1(0,0,0X )◦ (0,0,0U )−1(U,0,1)

= l−1
X ◦ lU ,
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the first and third homotopies follow from the identities (U,0, j) = (U,1, j) ◦ (U,0,1) and
(0,0,0X ) = (U,1, j)◦(0,0,0U ) in QE . Since [l−1

X ◦ lU ] = [lX ]−1[lU ] is in the image of the map
K0(E )→ π1BQE , we obtain surjectivity.

To show injectivity, we construct a map π1BQE → K0(E ) so that the composition
K0(E )→ K0(E ) is the identity. To this end, we introduce a little notation. For a group G,
we let G be the category with one object ∗ and Hom(∗,∗) = G. Recall from Appendix A,
Sect. 1.5 that πiBG = 0 for i �= 1 and π1BG = G where the isomorphism G→ π1BG sends an
element g ∈ G to the loop lg represented by the morphism g : ∗ → ∗. In order to obtain a map
π1BQE → K0(E ), we construct a functor F : QE → K0(E ). The functor sends an object X of
QE to the object ∗ of K0(E ). A map (W, p, i) : X→Y in QE is sent to the map represented by
the element [ker(p)] ∈ K0(E ). Using the notation of 2.2.1, we obtain F [(V,q, j)◦ (W, p, i)] =
F(U, pq̄, jī) = [ker(pq̄)] = [ker(q̄)] + [ker(p)] = [ker(q)] + [ker(p)] = F(V,q, j) ◦F(W, p, i)
since, by Exercise 2.1.4 (c), there is a conflation ker(q̄) � ker(pq̄) � ker(p) and ker(q̄) =
ker(q) by the universal property of pull-backs. So, F is a functor and it induces a map on fun-
damental groups of classifying spaces π1BQE → π1K0(E ) = K0(E ). It is easy to check that
the composition K0(E )→ K0(E ) is the identity. �

2.2.5 Definition of K(E )

Let E be a small exact category. The K-theory space of E is the pointed topological space

K(E ) = ΩBQE

with base point the constant loop based at 0 ∈ QE . The K-groups of E are the homotopy
groups Ki(E ) = πiK(E ) = πi+1BQE of the K-theory space of E . An exact functor E → E ′
induces a functor QE → QE ′ on Q-constructions, and thus, continuous maps BQE → BQE ′
and K(E )→ K(E ′) compatible with composition of exact functors. Therefore, the K-theory
space and the K-groups are functorial with respect to exact functors between small exact ca-
tegories. By Proposition 2.2.4, the group K0(E ) defined in this way coincides with the group
defined in Sect. 2.1.5.

2.2.6 Definition of K(R), K(X), G(X)

For a ring R and a scheme X , the K-theory spaces K(R) and K(X) are the K-theory spaces
associated with the exact categories Proj(R) of finitely generated projective R-modules and
Vect(X) of vector bundles on X2. For a noetherian scheme X , the G-theory space G(X) is the
K-theory space associated with the abelian category Coh(X) of coherent OX -modules.

2.2.7 Remark

There is actually a slight issue with the Definition 2.2.6. The categories Proj(R) and Vect(X)
have too many objects, so many that they do not form a set; the same is true for Coh(X).
But a topological space is a set with a topology. Already the 0-skeletons of BQProj(R) and
BQVect(X) – which are the collections of objects of Proj(R) and Vect(X) – are too large. To
get around this problem, one has to choose “small models” of Proj(R) and Vect(X) in order
to define the K-theory spaces of R and X . More precisely, one has to choose equivalences of

2 See footnote in Definition 2.1.8.
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exact categories ER � Proj(R) and EX � Vect(X) where ER and EX are small categories, i.e.,
categories which have a set of objects as opposed to a class of objects. This is possible because
Proj(R) and Vect(X) only have a set of isomorphism classes of objects (Exercise!). Given such
a choice of equivalence, one sets K(R) = K(ER) and K(X) = K(EX ). For any other choice of
equivalences E ′R � Proj(R) and E ′X � Vect(X) as above, there are equivalences ER � E ′R and
EX � E ′X compatible with the corresponding equivalences with Proj(R) and Vect(X) which
are unique up to equivalence of functors. It follows from Lemma A.1.6 that these equivalences
induce homotopy equivalences of K-theory spaces K(ER)�K(E ′R) and K(EX )�K(E ′X ) which
are unique up to homotopy. Usually, one avoids these issues by working in a fixed “universe”.

In order to reconcile the definition of K(R) given above with the plus-construction given
in Cortiñas’ lecture [21], we cite the following theorem of Quillen a proof of which can be
found in [35].

2.2.8 Theorem (Q = +)

There is a natural homotopy equivalence

BGL(R)+ �Ω0BQProj(R),

where Ω0 stands for the connected component of the constant loop in the full loop space. In
particular, there are natural isomorphisms for i≥ 1

πiBGL(R)+ ∼= πi+1BQProj(R).

Note that the space denoted by K(R) in Cortiñas’ lecture [21] is the connected component
of 0 of the space we here denote by K(R).

2.2.9 Warning

Some authors define K(R) to be K0(R)×BGL(R)+ as functors in R. Strictly speaking, this
is wrong: there is no zig–zag of homotopy equivalences between K0(R)× BGL(R)+ and
ΩBQProj(R) which is functorial in R.

The problem is not that the usual construction of BGL(R)+ involves choices when atta-
ching 2 and 3-cells. The plus-construction can be made functorial. For instance, Bousfield–
Kan’s Z-completion Z∞BGl(R) does the job by [10, I 5.5, V 3.3] (compare [10, VII 3.4]).
The problem is that one cannot write K(R) functorially as a product of K0(R) and BGL(R)+.
To explain this point, let R be any ring, Γ R be the cone ring of R (see Cortiñas’ lecture [21]),
and ΣR be the suspension ring of R which is the factor ring Γ R/M∞(R) of the cone ring by
the two-sided ideal M∞R of finite matrices. Let R̃ = Γ R×ΣR Γ R. The fibre product square of
(unital) rings defining R̃ induces commutative diagrams

K(R̃) ��

��

K(Γ R)

��

and

K0(R̃) ��

��

K0(Γ R)

��
K(Γ R) �� K(ΣR) K0(Γ R) �� K0(ΣR).

Using Quillen’s Q-construction, or other functorial versions of K-theory, one can show that
the left square is homotopy cartesian, and that there is a non-unital ring map R→ R̃ which
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induces isomorphisms in K-theory. If the K-theory space K(R) were the product K0(R)×
BGL(R)+ in a functorial way, the set K0(R) considered as a topological space with the discrete
topology would be a natural retract of K(R). Since the left-hand square in the diagram above
is homotopy cartesian, its retract, the right-hand square, would have to be homotopy cartesian
as well. This is absurd since K0(Γ R) = 0 for all rings R, and K0(R̃) = K0(R) �= 0 for most
rings.

2.3 Quillen’s Fundamental Theorems

In what follows we will simply cite several fundamental theorems of Quillen. Their proofs in
[73] are very readable and highly recommended.

2.3.1 Serre Subcategories and Exact Sequences of Abelian Categories

Let A be an abelian category. A Serre subcategory of A is a full subcategory B ⊂ A with
the property that for a conflation in A

M0 � M1 � M2, we have M1 ∈B ⇐⇒ M0 and M2 ∈B.

It is easy to see that a Serre subscategory B is itself an abelian category, and that the inclusion
B ⊂ A is fully exact. Given a Serre subcategory B ⊂ A , one can (up to set theoretical
issues which do not exist when A is small) construct the quotient abelian category A /B
which has the universal property of a quotient object in the category of exact categories. The
quotient abelian category A /B is equivalent to the localization A [S−1] of A with respect
to the class S of morphisms f in A for which ker( f ) and coker( f ) are isomorphic to objects
in B. The class S satisfies a calculus of fractions (Exercise!) and A [S−1] has a very explicit
description; see Appendix A, Sect. 2.6. We will call B→ A → A /B an exact sequence of
abelian categories. More details can be found in [29, 70].

The following two theorems are proved in [73, Sect. 5 Theorem 5] and [73, Sect. 5
Theorem 4].

2.3.2 Theorem (Quillen’s Localization Theorem)

Let A be a small abelian category, and let B⊂A be a Serre subcategory. Then the sequence
of topological spaces

BQ(B)→ BQ(A )→ BQ(A /B)

is a homotopy fibration (see Appendix A, Sect. 1.7 for a definition). In particular, there is a
long exact sequence of associated K-groups

· · · → Kn+1(A )→ Kn+1(A /B)→ Kn(B)→ Kn(A )→ Kn(A /B)→ ···
· · · → K0(A )→ K0(A /B)→ 0.
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2.3.3 Theorem (Dévissage)

Let A be a small abelian category, and B ⊂A be a full abelian subcategory such that the
inclusion B ⊂A is exact. Assume that every object A of A has a finite filtration

0 = A0 ⊂ A1 ⊂ ...⊂ An = A

such that the quotients Ai/Ai−1 are in B. Then the inclusion B ⊂ A induces a homotopy
equivalence

K(B) ∼→ K(A ).
In particular, it induces isomorphisms of K-groups Ki(B)∼= Ki(A ).

The following are two applications of Quillen’s Localization and Dévissage Theorems.

2.3.4 Nilpotent Extensions

Let X be a noetherian scheme and i : Z ↪→ X a closed subscheme corresponding to a nilpotent
sheaf of ideals I ⊂ OX . Assume In = 0. Then i∗ : Coh(Z)→ Coh(X) satisfies the hypothesis
of the Dévissage Theorem because Coh(Z) can be identified with the subcategory of those
coherent sheaves F on X for which IF = 0, and every sheaf F ∈ Coh(X) has a filtration
0 = InF ⊂ In−1F ⊂ ... ⊂ IF ⊂ F with quotients in Coh(Z). We conclude that i∗ induces a
homotopy equivalence G(Z)�G(X). In particular:

2.3.5 Theorem

For a noetherian scheme X, the closed immersion i : Xred ↪→ X induces a homotopy equiva-
lence of G-theory spaces

i∗ : G(Xred) ∼−→ G(X).

2.3.6 G-Theory Localization

Let X be a noetherian scheme, and j : U ⊂ X be an open subscheme with i : Z ⊂ X being
its closed complement X−U . Let CohZ(X)⊂ Coh(X) be the fully exact subcategory of those
coherent sheaves F on X which have support in Z, that is, for which F|U = 0. Then the sequence

CohZ(X)⊂ Coh(X)
j∗→ Coh(U) (3)

is an exact sequence of abelian categories (see Sect. 2.3.8 below). By Theorem 2.3.2, we obtain
a homotopy fibration K CohZ(X)→ K Coh(X)→ K Coh(Z) of K-theory spaces. For another
proof, see Theorem 3.3.2. The inclusion i∗ : Coh(Z) ⊂ CohZ(X) satisfies Dévissage (Exer-
cise!), so we have a homotopy equivalence K Coh(Z)� K CohZ(X). Put together, we obtain:

2.3.7 Theorem

Let X be a noetherian scheme, and j : U ⊂ X be an open subscheme with i : Z ⊂ X being its
closed complement X −U. Then the following sequence of spaces is a homotopy fibration

G(Z) i∗→ G(X)
j∗→ G(U). (4)

In particular, there is an associated long exact sequence of G-theory groups

· · ·Gi+1(U)→ Gi(Z)→ Gi(X)→ Gi(U)→ Gi−1(Z) · · · → G0(U)→ 0 (5)
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2.3.8 Proof that (3) is an Exact Sequence of Abelian Categories

As the “kernel” of the exact functor Coh(X) → Coh(U), the category CohZ(X) is
automatically a Serre subcategory of Coh(X). The composition CohZ(X)⊂Coh(X)→Coh(U)
is trivial. Therefore, we obtain an induced functor

Coh(X)/CohZ(X)→Coh(U) (6)

which we have to show is an equivalence.
The functor (6) is essentially surjective on objects. This is because for any F ∈ Coh(U),

the OX -module j∗F is quasi-coherent (X is noetherian). Therefore, j∗F is a filtered colimit
colimGi of its coherent sub-OX -modules Gi. Every ascending chain of subobjects of a
coherent sheaf eventually stops. Therefore, we must have j∗Gi ∼= j∗ j∗F = F for some i.

The functor (6) is full because for F,G ∈ Coh(X), any map f : j∗F → j∗G in Coh(U)
equals g|U ◦(t|U )−1 where t and g are maps in a diagram F

t←H
g→G of coherent OX -modules.

This diagram can be taken to be the pull-back in Qcoh(X) of the diagram F → j∗ j∗F →
j∗ j∗G← G with middle map j∗( f ) and outer two maps the unit of adjunction maps. The
object H is coherent as it is a quasi-coherent subsheaf of the coherent sheaf F ⊕G. The unit
of adjunction G→ j∗ j∗G is an isomorphism when restricted to U . Since j∗ is an exact functor
of abelian categories, the same is true for its pull back t : F→ H.

Finally, the functor (6) is faithful by the following argument. The “kernel category” of this
functor is trivial, by construction. This implies that the functor (6) is conservative, i.e., detects
isomorphisms. Now, let f : F → G be a map in Coh(X)/CohZ(X) such that j∗( f ) = 0. Then
ker( f )→ F and G→ coker( f ) are isomorphisms when restricted to U . Since the functor (6)
is conservative, these two maps are already isomorphisms in Coh(X)/CohZ(X) which means
that f = 0.

Since a fully faithful and essentially surjective functor is an equivalence, we are done. �

2.3.9 Theorem (Homotopy Invariance of G-Theory [73, Proposition 4.1])

Let X and P be noetherian schemes and f : P→ X be a flat map whose fibres are affine spaces
(for instance, a geometric vector bundle). Then

f ∗ : G(X) ∼→ G(P)

is a homotopy equivalence. In particular, Gi(X×A
1)∼= Gi(X).

2.3.10 K-Theory of Regular Schemes

Let X be a regular noetherian and separated scheme. Then the inclusion Vect(X) ⊂ Coh(X)
induces a homotopy equivalence K Vect(X)� K Coh(X), that is,

K(X) ∼−→ G(X)

(see the Poincaré Duality Theorem 3.3.5; classically it also follows from Quillen’s Resolu-
tion Theorem 2.3.12 below). Thus, Theorems 2.3.7 and 2.3.9 translate into theorems about
K(X) when X is regular, noetherian and separated. For instance, Theorem 2.3.9 together with
Poincaré Duality implies that the projection X×A

n→ X induces isomorphisms

Ki(X)
∼=−→ Ki(X×A

n)

whenever X is regular noetherian separated.
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Besides the results mentioned above, Quillen proves two fundamental theorems which are
also of interest: the Additivity Theorem [73, Sect. 3 Theorem 2 and Corollary 1] and the Reso-
lution Theorem [73, Sect. 4 Theorem 3]. Both are special cases of the Thomason–Waldhausen
Localization Theorem 3.2.23 which is stated below. We simply quote Quillen’s theorems here,
and in Sect. 3.3 we give a proof of them based on the Localization Theorem. However, we have
to mention that the Additivity Theorem is used in the proof of the Localization Theorem.

2.3.11 Theorem (Additivity [73, Sect. 3, Corollary 1])

Let E and E ′ be exact categories, and let

0→ F−1→ F0→ F1→ 0

be a sequence of exact functors Fi : E → E ′ such that F−1(A) � F0(A) � F1(A) is a conflation
for all objects A in E . Then the induced maps on K-groups satisfy

F0 = F−1 +F1 : Ki(E )→ Ki(E ′).

2.3.12 Theorem (Resolution [73, Sect. 4])

Let A ⊂B be a fully exact subcategory of an exact category B. Assume that

(a) if M−1 � M0 � M1 is a conflation in B with M0, M1 ∈A , then M−1 ∈A , and
(b) for every B ∈B there is an exact sequence

0→ An→ An−1→ ···A0→ B→ 0

with Ai ∈A .

Then the inclusion A ⊂B induces a homotopy equivalence of K-theory spaces

K(A ) ∼−→ K(B).

2.4 Negative K-Groups

Besides the positive K-groups, one can also define the negative K-groups Ki with i < 0. They
extend certain K0 exact sequences to the right (see Cortiñas’ lecture [21]). For rings and
additive (or split exact) categories they were introduced by Bass [7] and Karoubi [45]. The
treatment for exact categories below follows [81].

2.4.1 Idempotent Completion

Let A be an additive category, and B⊂A be a full additive subcategory. We call the inclusion
B⊂A cofinal, or equivalence up to factors if every object of A is a direct factor of an object
of B. If A and B are exact categories, we require moreover that the inclusion B ⊂ A is
fully exact, that is, the inclusion is extension closed, and it preserves and detects conflations.
As an example, the category of (finitely generated) free R-modules is cofinal in the category
of (finitely generated) projective R-modules.
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Given an additive category A , there is a “largest” category ˜A of A such that the inclusion
A ⊂ ˜A is cofinal. This is the idempotent completion ˜A of A . An additive category is called
idempotent complete if for every idempotent map p = p2 : A→ A, there is an isomorphism
A∼= X ⊕Y under which the map p corresponds to

(
1 0
0 0

)
: X ⊕Y → X ⊕Y . The objects of the

idempotent completion ˜A of A are pairs (A, p) with A an object of A and p = p2 : A→ A
an idempotent endomorphism. Maps (A, p)→ (B,q) in ˜A are maps f : A→ B in A such that
f p = f = q f . Composition is composition in A , and id(A,p) = p. Every idempotent q = q2 :

(A, p)→ (A, p) corresponds to
(

1 0
0 0

)
under the isomorphism (q, p−q) : (A,q)⊕ (A, p−q)∼=

(A, p). Therefore, the category ˜A is indeed idempotent complete. Furthermore, we have a
fully faithful embedding A ⊂ ˜A : A �→ (A,1) which is cofinal since the object (A, p) of ˜A is
a direct factor the object (A,1) of A .

If E is an exact category, its idempotent completion Ẽ becomes an exact category when
we declare a sequence in Ẽ to be a conflation if it is a retract (in the category of conflations)
of a conflation of E . For more details, see [94, Appendix A]. Note that the inclusion E ⊂ Ẽ is
indeed fully exact.

2.4.2 Proposition (Cofinality [36, Theorem 1.1])

Let A be an exact category and B ⊂A be a cofinal fully exact subcategory. Then the maps
Ki(B)→ Ki(A ) are isomorphisms for i > 0 and a monomorphism for i = 0. This holds in
particular for Ki(E )→ Ki(Ẽ ).

2.4.3 Negative K-Theory and the Spectrum IK(E )

To any exact category E , one can associate a new exact category SE (see Sect. 2.4.6), called
the suspension of E , such that there is a natural homotopy equivalence [81]

K(Ẽ ) ∼→ΩK(SE ). (7)

If E = Proj(R) one can take SE = Proj(ΣR) where ΣR is the suspension ring of R; see
Cortiñas’ lecture [21]) for the definition of ΣR.

One uses the suspension construction to slightly modify the definition of algebraic
K-theory in order to incorporate negative K-groups as follows. One sets IKi(E ) = Ki(E ) for

i≥ 1, IK0(E ) = K0(Ẽ ) and IKi(E ) = K0(S̃−iE ) for i < 0. Since Vect(X), Coh(X) and Proj(R)
are all idempotent complete, we have the equalities IK0 Vect(X) = K0 Vect(X) = K0(X),
IK0 Coh(X) = K0 Coh(X) = G0(X) and IK0 Proj(R) = K0 Proj(R) = K0(R). In these cases, we
have not changed the definition of K-theory; we have merely introduced “negative K-groups”
IKi for i < 0. For this reason, we may write Ki(X) and Ki(R) instead of IKi(X) and IKi(R) for
all i ∈ Z.

In a fancy language, one constructs a spectrum IK(E ) whose homotopy groups are the
groups IKi(E ) for i∈ Z. The n-th space of this spectrum is K(SnE ), and the structure maps are
given by (7). For terminology and basic properties of spectra, we refer the reader to Appendix
A, Sect. 1.8.

By Bass’ Fundamental Theorem stated in Theorem 3.5.3 below there is a split exact
sequence for i ∈ Z

0→ Ki(R)→ Ki(R[T ])⊕Ki(R[T−1])→ Ki(R[T,T−1])→ Ki−1(R)→ 0.

One can use this sequence to give a recursive definition of the negative K-groups Ki(R) for
i < 0, starting with the functor K0. This was Bass’ original definition.
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2.4.4 Remark

Although Quillen did not define negative K-groups of exact categories, all K-theory statements
in [73] and [35] extend to negative K-theory. The only exceptions are Quillen’s Localiza-
tion Theorem 2.3.2 and the Dévissage Theorem 2.3.3. To insure that these two theorems also
extend to negative K-theory, we need the abelian categories in question to be noetherian,
though it is conjectured that the noetherian hypothesis is unnecessary.

2.4.5 Remark

Not much is known about IKi(E ) when i < 0, even though we believe their calculations to
be easier than those of Ki(E ) when i ≥ 0. However, we do know the following. We have
Ki(R) = 0 for i < 0 when R is a regular noetherian ring [7]. We have IK−1(A ) = 0 for any
abelian category A [82, Theorem 6], and IKi(A ) = 0 for i < 0 when A is a noetherian
abelian category [82, Theorem 7]. In particular, K−1(R) = 0 for a regular coherent ring R,
and Ki(X) = 0 for i < 0 when X is any regular noetherian and separated scheme. In [19] it is
shown that Ki(X) = 0 for i <−d when X is a d-dimensional scheme essentially of finite type
over a field of characteristic 0, but K−d(X) = Hd

cdh(X ,Z) can be non-zero [75]. For finite-type
schemes over fields of positive characteristic, the same is true provided strong resolution of
singularities holds over the base field [30]. It is conjectured that Ki(ZG) = 0 for i <−1 when
G is a finitely presented group [42]. For results in this direction see [56].

2.4.6 Construction of the Suspension SE

Let E be an exact category. The countable envelope FE of E is an exact category whose
objects are sequences

A0 � A1 � A2 � ...

of inflations in E . The morphism set from a sequence A∗ to another sequence B∗ is

HomFE (A∗,B∗) = limi colim
j

HomE (Ai,B j).

A sequence in FE is a conflation iff it is isomorphic in FE to the sequence of maps of
sequences A∗ → B∗ → C∗ where Ai → Bi → Ci is a conflation in E for i ∈ N. Colimits of
sequences of inflations exist in FE , and are exact. In particular, FE has exact countable
direct sums. There is a fully faithful exact functor E →FE which sends an object X ∈ E to

the constant sequence X
1→X

1→X
1→··· . For details of the construction see [46, Appendix B]

where FE was denoted by E ∼.
The suspension SE of E is the quotient FE /E of the countable envelope FE by the

subcategory E . The quotient is taken in the category of small exact categories. The proof of
the existence of FE /E and an explicit description is given in [81]. By [81, Theorem 2.1 and
Lemma 3.2] the sequence E →FE → SE induces a homotopy fibration K(Ẽ )→ K(FE )→
K(SE ) of K-theory spaces. Since FE has exact countable direct sums, the total space K(FE )
of the fibration is contractible. This yields the homotopy equivalence Sect. 2.4.3 (7).
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3 Algebraic K-Theory and Triangulated Categories

3.1 The Grothendieck-Group of a Triangulated Category

Most calculations in the early days of K-theory were based on Quillen’s Localization Theorem
2.3.2 for abelian categories together with Dévissage Theorem 2.3.3. Unfortunately, not all
K-groups are (not even equivalent to) the K-groups of some abelian category, notably K(X)
where X is some singular variety. Also, there is no satisfactory generalization of Quillen’s
Localization Theorem to exact categories which would apply to all situations K-theorists had
in mind. This is where triangulated categories come in. They provide a flexible framework that
allows us to prove many results which cannot be proved with Quillen’s methods alone.

For the rest of this subsection, we will assume that the reader is familiar with Appendix A,
Sects. 2.1–2.7.

3.1.1 Definition of K0(T )

Let T be a small triangulated category. The Grothen-dieck-group K0(T ) of T is the abelian
group freely generated by symbols [X ] for every object X of T , modulo the relation [X ]+[Z]=
[Y ] for every distinguished triangle X → Y → Z→ T X in T .

3.1.2 Remark

As in Remark 2.1.6, we have [X ] = [Y ] if there is an isomorphism f : X ∼= Y in view of the

distinguished triangle X
f→ Y → 0→ T X . We also have [X ⊕Y ] = [X ] + [Y ] because there

is a distinguished triangle X → X ⊕Y → Y → T X which is the direct sum of the distingui-
shed triangles X → X → 0→ T X and 0→ Y → Y → 0. Moreover, the distinguished triangle
X → 0→ T X → T X shows that [T X ] = −[X ]. In particular, every element in K0(T ) can be
represented as [X ] for some object X in T .

One would like to relate the Grothendieck-group K0(E ) of an exact category E to the
Grothendieck-group of a triangulated category associated with E . This rôle is played by the
bounded derived category D b(E ) of E .

3.1.3 The Bounded Derived Category of an Exact Category

Let Chb E be the exact category of bounded chain complexes in E ; see Example 2.1.2 (e). Call
a bounded chain complex (A,d) in E strictly acyclic if every differential di : Ai→ Ai+1 can be
factored as Ai � Zi+1 � Ai+1 such that the sequence Zi � Ai � Zi+1 is a conflation in E for
all i ∈ Z. A bounded chain complex is called acyclic if it is homotopy equivalent to a strictly
acyclic chain complex. A map f : (A,d)→ (B,d) is called quasi-isomorphism if its cone C( f )
(see Appendix A, Sect. 2.5 for a definition) is acyclic.

As a category, the bounded derived category D b(E ) is the category

D b(E ) = [quis−1]Chb E

obtained from the category of bounded chain complexes Chb E by formally inverting the quasi-
isomorphisms. A more explicit description of D b(E ) is obtained as follows. Let K b(E )
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be the homotopy category of bounded chain complexes in E . Its objects are bounded chain
complexes in E , and maps are chain maps up to chain homotopy. With the same definitions
as in Appendix A, Sect. 2.5, the homotopy category K b(E ) is a triangulated category. Let
K b

ac(E )⊂K b(E ) be the full subcategory of acyclic chain complexes. The category K b
ac(E )

is closed under taking cones and shifts T and T−1 in K b(E ). Therefore, it is a full triangu-
lated subcategory of K b(E ). The bounded derived category of the exact category E is the
Verdier quotient K b(E )/K b

ac(E ).
It turns out that distinguished triangles in D b(E ) are precisely those triangles which are

isomorphic to the standard triangles constructed as follows. A conflation X
i� Y

p
� Z of chain

complexes in Chb E yields the standard distinguished triangle

X
i−→Y

p−→ Z
q◦s−1

−→ T X

in D b(E ) where s is the quasi-isomorphism C(i)→C(i)/C(idX ) ∼= Z, and q is the canonical
map C( f )→ T X as in Appendix A, Sect. 2.5. For more details, see [48].

3.1.4 Exercise

Let E be an exact category. Consider the objects of E as chain complexes concentrated in
degree zero. Show that the map K0(E )→ K0(D bE ) given by [X ] �→ [X ] is an isomorphism.
Hint: The inverse K0(D bE )→ K0(E ) is given by [A,d] �→ Σi(−1)i[Ai]. The point is to show
that this map is well-defined.

3.1.5 Definition

A sequence of triangulated categories A →B→ C is called exact if the composition sends
A to 0, if A →B is fully faithful and coincides (up to equivalence) with the subcategory
of those objects in B which are zero in C , and if the induced functor B/A → C from the
Verdier quotient B/A to C is an equivalence.

3.1.6 Exercise

Let A → B → C be an exact sequence of triangulated categories. Then the following
sequence of abelian groups is exact

K0(A )→ K0(B)→ K0(C )→ 0. (8)

Hint: Show that the map K0(C )→ coker(K0(A )→K0(B)) given by [C] �→ [B] is well-defined
where B ∈B is any object whose image in the category C is isomorphic to the object C.

How can we decide whether a sequence of exact categories induces an exact sequence of
bounded derived categories so that we could apply Exercise 3.1.6 and Theorems 3.2.23 and
3.2.27 below? For this, the following facts are often quite useful.
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3.1.7 Some Criteria and Facts

Let A →B be an exact functor between exact categories.

(a) If B is the localization Σ−1A of A with respect to a set of maps Σ which satisfies a
calculus of left (or right) fractions, then Chb B is the localization of Chb A with respect
to the set of maps which degree-wise belong to Σ . This set of maps also satisfies a calculus
of left (right) fractions, and therefore, D b(A )→ D b(B) is a localization. In particular,
D b(B) is the Verdier quotient of D b(A ) modulo the full triangulated subcategory of
objects which are zero in D b(B).

(b) Suppose that A is a fully exact subcategory of B. If for any inflation A � B in B with
A∈A there is a map B→ A′ with A′ ∈A such that the composition A→A′ is an inflation
in A , then the functor D b(A )→ D b(B) is fully faithful [48, 12.1].

(c) If A → B is a cofinal fully exact inclusion, then D bA → D bB is fully faithful and
cofinal. If E is an idempotent complete exact category, then its bounded derived category
D bE is also idempotent complete [16, Theorem 2.8].

(d) The bounded derived category D bE of an exact category E is generated (as a triangulated
category) by the objects of E (considered as complexes concentrated in degree zero) in
the sense that D bE is the smallest triangulated subcategory of D bE closed under isomor-
phisms which contains the objects of E (Exercise!).

We illustrate these facts by giving an example of a sequence of exact categories which
induces an exact sequence of bounded derived categories.

3.1.8 Example

Let R be a ring with unit, and let S ⊂ R be a multiplicative set of central non-zero-divisors
in R. Let HS(R) ⊂ R -Mod be the full subcategory of those left R-modules which are direct
factors of finitely presented S-torsion R-modules of projective dimension at most 1. This ca-
tegory is extension closed in the category of all left R-modules. We consider it as an exact
category where a sequence in HS(R) is a conflation if it is a conflation of R-modules. Let
P1(R) ⊂ R -Mod be the full subcategory of those left R-modules M which fit into an exact
sequence 0→ P→ M → H → 0 of R-modules where P is finitely generated projective and
H ∈ HS(R). The inclusion P1(R) ⊂ R -Mod is closed under extensions and we consider
P1(R) as a fully exact subcategory of R -Mod. Finally, let P ′(S−1R) ⊂ Proj(S−1R) be the
full additive subcategory of those finitely generated projective S−1R-modules which are loca-
lizations of finitely generated projective R-modules.

3.1.9 Lemma

The sequence HS(R)→P1(R)→P ′(S−1R) induces an exact sequence of associated boun-
ded derived categories. Moreover, the inclusion Proj(R) ⊂P1(R) induces an equivalence

D b Proj(R) �→ D bP1(R) of categories. In particular, there is an exact sequence of triangula-
ted categories

D bHS(R)→ D b Proj(R)→ D bP ′(S−1R). (9)

For instance, let R be a Dedekind domain and S ⊂ R be the set of non-zero elements in
R. Then S−1R = K is the field of fractions of R, the category P ′(S−1R) is the category of
finite dimensional K-vector spaces, and HS(R) is the category of finitely generated torsion
R-modules.
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Proof of Lemma 3.1.9

Let P1
0 (R) ⊂P1(R) be the full subcategory of those R-modules M which fit into an exact

sequence 0→ P→ M → H → 0 with P finitely generated projective, and H an S-torsion
R-module of projective dimension at most 1. The inclusion P1

0 (R) ⊂P1(R) is fully exact
and cofinal. By Sect. 3.1.7 (c), the induced triangle functor D bP1

0 (R)→ D bP1(R) is fully
faithful and cofinal. By the dual of Sect. 3.1.7 (b), the functor D b Proj(R)→D bP1

0 (R) is fully
faithful. By Sect. 3.1.7 (d), this functor is also essentially surjective (hence an equivalence)
since every object of P1

0 (R) has projective dimension at most 1. The category Proj(R) is
idempotent complete. By Sect. 3.1.7 (c), the same is true for D b Proj(R). It follows that the
cofinal inclusions D b Proj(R)⊂ D bP1

0 (R)⊂ D bP1(R) are all equivalences.
For any finitely generated projective R-modules P and Q, the natural map

S−1 HomR(P,Q) → HomS−1R(S−1P,S−1Q) is an isomorphism. Therefore, the category
P ′(S−1R) is obtained from Proj(R) by a calculus of right fractions with respect to the mul-
tiplication maps P→ P : x �→ sx for s ∈ S and P ∈ Proj(R). By Sect. 3.1.7 (a), the functor
Db Proj(R) ∼= DbP1(R)→ D bP ′(S−1R) is a localization, that is, D bP ′(S−1R) is the Ver-
dier quotient DbP1(R)/K where K ⊂ DbP1(R) is the full triangulated subcategory of
those objects which are zero in D bP ′(S−1R). The functor D bHS(R)→ D bP1(R) is fully
faithful by Sect. 3.1.7 (b), and it factors through K . We have to show that the full inclusion
D bHS(R) ⊂K is an equivalence, that is, we have to show that every object E in K is iso-
morphic to an object of D bHS(R). Since D b Proj(R) ∼= D bP1(R), we can assume that E is
a complex of projective R-modules. The acyclic complex S−1E is a bounded complex of pro-
jective S−1R-modules, and thus it is contractible. The degree-wise split inclusion i : E � CE
of E into its cone CE induces a map of contractible complexes S−1E � S−1CE which a for-
tiori is degree-wise split injective. A degree-wise split inclusion of contractible complexes
always has a retraction; see Example 3.2.6. Applied to the last map we obtain a retraction
r : S−1CE→ S−1E in Chb P ′(S−1R). We can write r as a right fraction ps−1

0 with p : CE→ E
a chain map and s0 : CE → CE : x �→ s0x the multiplication by s0 for some s0 ∈ S. After lo-
calization at S, we have 1 = ri = ps−1

0 i = s−1
0 pi, and thus, s0 = pi since the elements of S

are central. By the calculus of fractions, there is an s1 ∈ S such that p ◦ i ◦ s1 = s0s1. Since
the set S⊂ R consists of non-zero-divisors and since E consists of projective modules in each
degree, the morphism s : E→ E given by x �→ sx with s ∈ S is injective. Therefore, we obtain
a conflation of chain complexes of R-modules CE � E⊕CE/is1(E) � E/s0s1E where the
maps CE → E and CE/is1(E)→ E/s0s1E are induced by p and the other two maps are (up
to sign) the natural quotient maps. This shows that in D bP1(R) we have an isomorphism
E⊕CE/is1(E) ∼= E/s0s1E. In particular, the chain complex E is a direct factor of an object
of D bHS(R), namely of E/s0s1E. By Sect. 3.1.7 (c), the category D bHS(R) is idempotent
complete. Hence, the complex E must be in D bHS(R). �

Lemma 3.1.9 illustrates a slight inconvenience. The definition of the K-theory of S−1R
uses all finitely generated projective S−1R-modules and not only those lying in P ′(S−1R).
Therefore, one would like to replace D bP ′(S−1R) with D b Proj(S−1R) in Lemma 3.1.9, but
these two categories are not equivalent, in general. However, the inclusion D bP ′(S−1R) ⊂
D b Proj(S−1R) is an equivalence up to factors by Sect. 3.1.7 (c). This observation together
with Neeman’s Theorem 3.4.5 below motivates the following.

3.1.10 Definition

A sequence of triangulated categories A → B → C is exact up to factors if the composi-
tion is zero, the functor A →B is fully faithful, and the induced functor B/A → C is an
equivalence up to factors. (See Sect. 2.4.1 for the definition of “exact up to factors”.)
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In this situation, the inclusion A ⊂ A ′ of A into the full subcategory A ′ of B whose
objects are zero in C is also an equivalence up to factors [66, Lemma 2.1.33]. Thus, a sequence
A → B → C of triangulated categories is exact up to factors if, up to equivalences up to
factors, A is the kernel category of B→ C and C is the cokernel category of A →B.

3.1.11 Example

Keep the hypothesis and notation of Example 3.1.8. The sequence of triangulated categories

D bHS(R)→ D b Proj(R)→ D b Proj(S−1R)

is exact up to factors but not exact, in general.

3.1.12 Idempotent Completion of Triangulated Categories

A triangulated category A is, in particular, an additive category. So we can speak of its idem-
potent completion ˜A ; see Sect. 2.4.1. It turns out that ˜A can be equipped with the structure of
a triangulated category such that the inclusion A ⊂ ˜A is a triangle functor [16]. A sequence
in ˜A is a distinguished triangle if it is a direct factor of a distinguished triangle in A . Note
that the triangulated categories D b Vect(X), D b Coh(X) and D b Proj(R) are all idempotent
complete by Sect. 3.1.7 (c).

3.1.13 Exercise

(a) Let A ⊂B be a cofinal inclusion of triangulated categories. Show that the map K0(A )→
K0(B) is injective [91, Corollary 2.3].

(b) Let A →B→ C be a sequence of triangulated categories which is exact up to factors.
Then the following sequence of abelian groups is exact

K0( ˜A )→ K0(B̃)→ K0(C̃ ). (10)

3.1.14 Remark

The statement in Exercise 3.1.13 (a) is part of Thomason’s classification of dense subcate-
gories. Call a triangulated subcategory A ⊂B dense if A is closed under isomorphisms in
B and if the inclusion is cofinal. Thomason’s Theorem [91, Theorem 2.1] says that the map
which sends a dense subcategory A ⊂ B to the subgroup K0(A ) ⊂ K0(B) is a bijection
between the set of dense subcategories of B and the set of subgroups of K0(B).

We note that an object of B of the form A⊕A[1] is in every dense triangulated subcategory
of B since [A⊕A[1]] = [A]− [A] = 0 ∈ K0(B).

3.2 The Thomason–Waldhausen Localization Theorem

We would like to extend the exact sequence Exercise 3.1.6 (8) to the left, and the exact
sequence Exercise 3.1.13 (10) in both directions. However, there is no functor from trian-
gulated categories to spaces (or spectra) which does that and yields Quillen’s K-theory of an
exact category E when applied to D bE [80, Proposition 2.2]. This is the reason why we need
to introduce more structure.
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3.2.1 Notation

To abbreviate, we write Chb(Z) for the exact category of bounded chain complexes of finitely
generated free Z-modules; see Example 2.1.2 (e). A sequence here is a conflation if it splits in
each degree (that is, it is isomorphic in each degree to the sequence Sect. 2.1.1 (f)). There is a
symmetric monoidal tensor product

⊗ : Chb(Z)×Chb(Z)→ Chb(Z)

which extends the usual tensor product of free Z-modules. It is given by the formulas

(E⊗F)n =
⊕

i+ j=n

Ei⊗F j, d(x⊗y) = (dx)⊗y+(−1)|x|x⊗dy. (11)

where |x| denotes the degree of x. The unit of the tensor product is the chain complex
11 = Z · 1Z which is Z in degree 0 and 0 elsewhere. There are natural isomorphisms α :
A⊗ (B⊗C) ∼= (A⊗B)⊗C, λ : 11⊗A ∼= A and ρ : A⊗ 11 ∼= A such that certain pentagonal
and triangular diagrams commute and such that λ11 = ρ11; see [61, VII.1] and Definition 3.2.2
below. Formally, the sextuplet (Chb(Z),⊗,11,α,ρ,λ ) is a symmetric monoidal category.

Besides the chain complex 11, we have two other distinguished objects in Chb(Z). The
complex C = Z ·1C⊕Z ·η is concentrated in degrees 0 and −1 where it is the free Z-module
of rank 1 generated by 1C and η , respectively. The only non-trivial differential is dη = 1C .
In fact, C is a commutative differential graded Z-module with unique multiplication such that
1C is the unit in C. Furthermore, there is the complex T = Z ·ηT which is the free Z-module
generated by ηT in degree −1 and it is 0 elsewhere. Note that there is a short exact sequences
of chain complexes

0→ 11 � C � T → 0 : 1Z �→ 1C , (1C ,η) �→ (0,ηT ).

3.2.2 Definition

An exact category E is called complicial if it is equipped with a bi-exact tensor product

⊗ : Chb(Z)×E → E (12)

which is associative and unital in the sense that there are natural isomorphisms α : A⊗ (B⊗
X)∼= (A⊗B)⊗X and λ : 11⊗X ∼= X such that the pentagonal diagrams

A⊗ (B⊗ (C⊗X)) α ��

1⊗α
��

(A⊗B)⊗ (C⊗X) α �� ((A⊗B)⊗C)⊗X

α⊗1

��
A⊗ ((B⊗C)⊗X) α �� (A⊗ (B⊗C))⊗X

and triangular diagrams

A⊗ (11⊗X) α ��

1⊗λ �������������
(A⊗11)⊗X

ρ⊗1

��
A⊗X
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commute for all A,B,C ∈Chb(Z) and X ∈ E . In other words, a complicial exact category is an
exact category E equipped with a bi-exact action of the symmetric monoidal category Chb(Z)
on E ; see [35, p. 218] for actions of monoidal categories.

For an object X of E , we write CX and T X instead of C⊗X and T ⊗X . Note that there is
a functorial conflation X � CX � T X which is the tensor product of 11 � C � T with X . For
a morphism f : X →Y in E , we write C( f ) for the push-out of f along the inflation X � CX ,
and we call it the cone of f . As a push-out of an inflation, the morphism Y →C( f ) is also an
inflation with the same cokernel T X . This yields the conflation in E

Y � C( f ) � T X . (13)

3.2.3 Example

Let X be a scheme. The usual tensor product of vector bundles ⊗OX : Vect(X)×Vect(X)→
Vect(X) extends to a tensor product

⊗ : Chb Vect(X)×Chb Vect(X)−→ Chb Vect(X)

of bounded chain complexes of vector bundles defined by the same formula as in Sect. 3.2.1
(11). The structure map p : X → SpecZ associated with the unique ring map Z→ Γ (X ,OX)
induces a symmetric monoidal functor p∗ : Proj(Z)→ Vect(X) and thus an action

⊗ : Chb(Z)×Chb Vect(X) : (M,V ) �→ p∗M⊗V

which makes Chb Vect(X) into a complicial exact category.

3.2.4 Example

For any exact category E , the category Chb E of bounded chain complexes in E can be
made into a complicial exact category as follows. Write F(Z) for the category of finitely
generated free Z-modules where each module is equipped with a choice of a basis. So, we
have an equivalence Chb(Z) ∼= Chb F(Z). We define an associative and unital tensor product
F(Z)× E → E by Z

n⊗X = Xe1⊕ ...⊕Xen where Xei stands for a copy of X correspon-
ding the basis element ei of the based free module Z

n = Ze1⊕ ...⊕Zen. On maps, the tensor
product is defined by (ai j)⊗ f = (ai j f ). With the usual formulas for the tensor product of
chain complexes as in Sect. 3.2.1 (11), this tensor product extends to an associative, unital and
bi-exact pairing

⊗ : Chb(Z)×Chb E → Chb E

making the category of bounded chain complexes Chb E into a complicial exact category.

3.2.5 The Stable Category of a Complicial Exact Category

Let E be a complicial exact category. Call a conflation X � Y � Z in E a Frobenius confla-
tion if for every object U ∈ E the following holds: Every map X → CU extends to a map
Y →CU , and every map CU → Z lifts to a map CU → Y . It is shown in Lemma A.2.16 that
E together with the Frobenius conflations is a Frobenius exact category. That is, it is an exact
category which has enough injectives and enough projectives, and where injectives and pro-
jectives coincide; see Appendix A, Sect. 2.14. The injective-projective objects are precisely
the direct factors of objects of the form CU for U ∈ E . The stable category E of the complicial
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exact category E is, by definition, the stable category of the Frobenius exact category E ; see
Appendix A, Sect. 2.14. It has objects the objects of E , and maps are the homotopy classes of
maps in E where two maps f ,g : X → Y are homotopic if their difference factors through an
object of the form CU . As the stable category of a Frobenius exact category, the category E is
a triangulated category (Appendix A, Sect. 2.14). Distinguished triangles are those triangles
which are isomorphic in E to sequences of the form

X
f→Y →C( f )→ T X (14)

attached to any map f : X → Y in E and extended by the sequence (13).

3.2.6 Example

Continuing the Example 3.2.4, the complicial exact category Chb E of bounded chain com-
plexes of E has as associated stable category the homotopy category K bE of Sect. 3.1.3. This
is because contractible chain complexes are precisely the injective-projective objects for the
Frobenius exact structure of Chb E (Exercise!). See also Lemma A.2.16.

3.2.7 Definition

An exact category with weak equivalences is an exact category E together with a set w ⊂
MorE of morphisms in E . Morphisms in w are called weak equivalences. The set of weak
equivalences is required to contain all identity morphisms; to be closed under isomorphisms,
retracts, push-outs along inflations, pull-backs along deflations, composition; and to satisfy
the “two out of three” property for composition: if two of the three maps among a, b, ab are
weak equivalences, then so is the third.

3.2.8 Example

Let E be an exact category. The exact category Chb E of bounded chain complexes in E of
Example 2.1.2 (e) together with the set quis of quasi-isomorphisms as defined in Sect. 3.1.3 is
an exact category with weak equivalences.

3.2.9 Definition

An exact category with weak equivalences (E ,w) is complicial if E is complicial and if the
tensor product Definition 3.2.2 (12) preserves weak equivalences in both variables, that is, if
f is a homotopy equivalence in Chb(Z) and g is a weak equivalence in E , then f ⊗g is a weak
equivalence in E .

3.2.10 Example

The exact category with weak equivalences (Chb E ,quis) of Example 3.2.8 is complicial with
action by Chb(Z) as defined in Sect. 3.2.4.

Before we come to the definition of the K-theory space of a complicial exact category,
we introduce some notation. Let E = (E ,w) be a complicial exact category with weak equi-
valences. We write E w ⊂ E for the fully exact subcategory of those objects X in E for which
the map 0→ X is a weak equivalence.
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3.2.11 Exercise

Show that E w is closed under retracts in E . More precisely, let X be an object of E . Show that
if there are maps i : X→ A and p : A→ X with pi = 1X and A∈ E w then X ∈ E w. In particular,
objects of E which are isomorphic to objects of E w are in E w.

3.2.12 Definition of K(E ,w), K(E)

The algebraic K-theory space K(E) = K(E ,w) of a complicial exact category with weak
equivalences E = (E ,w) is the homotopy fibre of the map of pointed topological spaces
BQ(E w)→ BQ(E ) induced by the inclusion E w ⊂ E of exact categories. That is,

K(E) = K(E ,w) = F(g) where g : BQ(E w)→ BQ(E )

and where F(g) is the homotopy fibre of g as in Appendix A, Sect. 1.7. The higher algebraic
K-groups Ki(E) of E are the homotopy groups πiK(E) of the K-theory space of E for i≥ 0.

Exact functors preserving weak equivalences induce maps between algebraic K-theory
spaces of complicial exact categories with weak equivalences.

3.2.13 Remark

The K-theory space of an exact category with weak equivalences is usually defined using
Waldhausen’s S•-construction [100, p. 330, Definition]. A complicial exact category E =
(E ,w) has a “cylinder functor” in the sense of [100, Sect. 1.6] obtained as the tensor product
with the usual cylinder in Chb(Z) via the action of Chb(Z) on E . Theorem [100, 1.6.4] toge-
ther with [100, Sect. 1.9] then show that the K-theory space of any complicial exact category
with weak equivalences as defined in Definition 3.2.12 is equivalent to the one in [100].

3.2.14 Theorem [94, Theorem 1.11.7]

Let E be an exact category. The embedding of E into Chb E as degree-zero complexes induces
a homotopy equivalence

K(E )� K(Chb E ,quis).

3.2.15 The Triangulated Category T (E)

Let E = (E ,w) be a complicial exact category with weak equivalences. For objects X of E w

and A of Chb(Z), the object A⊗X is in E w because the map 0→ A⊗X is a weak equivalence
since it is the tensor product idA⊗ (0→ X) of two weak equivalences. It follows that we can
consider E w as a complicial exact category where the action by Chb(Z) is induced from the
action on E . For every object U ∈ E , the object CU is in E w because the map 0→ CU is a
weak equivalence as it is the a tensor product (0→C)⊗1U of two weak equivalences. More
generally, every retract of an object of the form CU is in E w by Exercise 3.2.11. Therefore, the
two Frobenius categories E and E w have the same injective-projective objects. It follows that
the inclusion E w ⊂ E induces a fully faithful triangle functor of associated stable categories
E w ⊂ E .
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3.2.16 Exercise

Show that E w is closed under retracts in E . More precisely, let X be an object of E . Show that
if there are maps i : X → A and p : A→ X in E with pi = 1X and A ∈ E w then X ∈ E w. In
particular, objects of E which are isomorphic in E to objects of E w are already in E w.

3.2.17 Definition

The triangulated category T (E) associated with a complicial exact category with weak
equivalences E = (E ,w) is the Verdier quotient

T (E) = E /E w

of the inclusion of triangulated stable categories E w ⊂ E . By construction, distinguished
triangles in T (E) are those triangles which are isomorphic in T (E) to triangles of the form
Sect. 3.2.5 (14).

One easily checks that the canonical functor E →T (E) : X �→ X induces an isomorphism
of categories

w−1E
∼=→ T (E).

Therefore, as a category, the triangulated category T (E ,w) of (E ,w) is obtained from E by
formally inverting the weak equivalences.

3.2.18 Exercise

Let (E ,w) be a complicial exact category with weak equivalences. Show that a morphism in
E which is an isomorphism in T (E ,w) is a weak equivalence. Hint: Show that (a) if in a
conflation X � Y � A the object A is in E w then X � Y is a weak equivalence, and (b) a
map f : X → Y is an isomorphism in T (E ,w) iff its cone C( f ) is in E w by Exercise 3.2.16.
Conclude using the conflation X � CX⊕Y � C( f ).

3.2.19 Remark

A conflation X
i� Y

p
� Z in a complicial exact category with weak equivalences (E,w) gives

rise to a distinguished triangle

X
i−→Y

p−→ Z −→ T X

in T (E ,w). By definition, this triangle is isomorphic to the standard distinguished triangle
Sect. 3.2.5 (14) via the quotient map C(i) � C(i)/CX ∼= Z which is weak equivalence in E
and an isomorphism in T (E ,w).

3.2.20 Example

For an exact category E , the triangulated category T (Chb E ,quis) associated with the com-
plicial exact category with weak equivalences (Chb E ,quis) of Example 3.2.10 is the usual
bounded derived category D bE of E as defined in Sect. 3.1.3.
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3.2.21 Example (DG Categories)

Let C be a dg-category ([50], or see Toen’s lecture [92]). There is a canonical embedding
C ⊂ C pretr of dg-categories of C into a “pretriangulated dg-category” C pretr associated with
C [12, Sect. 4.4]. It is obtained from C by formally adding iterated shifts and cones of objects
of C . The homotopy category Ho(C pretr) of C pretr is equivalent to the full triangulated
subcategory of the derived category D (C ) of dg C -modules which is generated by C . The
idempotent completion of Ho(C pretr) is equivalent to the triangulated category of compact
objects in D (C ) which is sometimes called the derived category of perfect C -modules, and it
is also equivalent to the homotopy category of the triangulated hull of C mentioned Toen’s
lecture [92].

Exercise: Show that C pretr and the triangulated hull of C can be made into complicial
exact categories with weak equivalences such that the associated triangulated categories are
the homotopy categories of C pretr and of the triangulated hull of C .

3.2.22 Proposition (Presentation of K0(E))

Let E = (E ,w) be a complicial exact category with weak equivalences. Then the map K0(E)→
K0(T (E)) : [X ] �→ [X ] is well-defined and an isomorphism of abelian groups.

Proof:

By Definition 3.2.12 and Proposition 2.2.4, the group K0(E) is the cokernel of the map
K0(E w)→ K0(E ). By Remark 3.2.19, conflations in E yield distinguished triangles in T (E).
Therefore, the map K0(E )→ K0(T (E)) given by [X ] �→ [X ] is well-defined. This map clearly
sends K0(E w) to zero. It follows that the map in the Proposition is also well-defined.

Now, we show that the inverse map K0(T (E))→ K0(E) defined by [X ] �→ [X ] is also
well-defined. We first observe that the existence of a weak equivalence f : X → Y implies
that [X ] = [Y ] in K0(E). This is because there is a conflation X � CX ⊕Y � C( f ) in E by
the definition of the mapping cone C( f ). The objects CX and C( f ) are in E w which implies
[X ] = [Y ] ∈ K0(E). More generally, any two objects which are isomorphic in T (E) give rise
to the same element in K0(E) because they are linked by a zigzag of weak equivalences by
Exercise 3.2.18 and the definition of T (E). Next, we observe that for every object X of E ,
the existence of the conflation X � CX � T X in E with CX ∈ E w shows that [X ] =−[T X ] in
K0(E). Finally, every distinguished triangle A→B→C→TA in T (E) is isomorphic in T (E)
to a triangle of the form Sect. 3.2.5 (14) where Y �C( f )� T X is a conflation in E . Therefore,
we have [A]− [B]+[C]= [X ]− [Y ]+[C( f )]= [X ]− [Y ]+[Y ]+[TX ] = [X ]− [Y ]+[Y ]− [X ] = 0
in K0(E), and the inverse map is well-defined. �

Now, we come to the theorem which extends the sequence Exercise 3.1.6 (8) to the left. It
is due to Thomason [94, 1.9.8., 1.8.2] based on the work of Waldhausen [100].

3.2.23 Theorem (Thomason–Waldhausen Localization, Connective Version)

Given a sequence A→ B→ C be of complicial exact categories with weak equivalences.
Assume that the associated sequence T A→T B→ T C of triangulated categories is exact.
Then the induced sequence of K-theory spaces

K(A)→ K(B)→ K(C)
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is a homotopy fibration. In particular, there is a long exact sequence of K-groups

· · · → Ki+1(C)→ Ki(A)→ Ki(B)→ Ki(C)→ Ki−1(A)→ ···
ending in K0(B)→ K0(C)→ 0.

The following special case of Theorem 3.2.23 which is important in itself is due to
Thomason [94, Theorem 1.9.8].

3.2.24 Theorem (Invariance Under Derived Equivalences)

Let A→ B be a functor of complicial exact categories with weak equivalences. Assume that
the associated functor of triangulated categories T A→ T B is an equivalence. Then the
induced map K(A)→ K(B) of K-theory spaces is a homotopy equivalence. In particular, it
induces isomorphisms Ki(A)∼= Ki(B) of K-groups for i≥ 0.

3.2.25 Example

Theorem 3.2.23 applied to Example 3.1.8 yields a homotopy fibration

K(HS(R))→ K(R)→ K(P ′(S−1R))

of K-theory spaces. As mentioned earlier, one would like to replace P ′(S−1R) with
Proj(S−1R) in the homotopy fibration and its associated long exact sequence of homotopy
groups. We can do so by the Cofinality Theorem 2.4.2, and we obtain a long exact sequence
of K-groups

· · · → Ki+1(S−1R)→ Ki(HS(R))→ Ki(R)→ Ki(S−1R)→ Ki(HS(R))→ ···
ending in · · · → K0(R)→ K0(S−1R). The last map K0(R)→ K0(S−1R), however, is not sur-
jective, in general. We have already introduced the negative K-groups of an exact category in
Sect. 2.4. They do indeed extend this exact sequence to the right. But this is best understood
in the framework of complicial exact categories with weak equivalences.

3.2.26 Negative K-Theory of Complicial Exact Categories

To any complicial exact category with weak equivalences E, one can associate a new compli-
cial exact category with weak equivalences SE, called the suspension of E, such that there is
a natural map

K(E)→ ΩK(SE) (15)

which is an isomorphism on πi for i≥ 1 and a monomorphism on π0 [82]; see the construction
in Sect. 3.2.33 below. In fact, K1(SE) = K0((T E)∼) where (T E)∼ denotes the idempotent
completion of T E. Moreover, the suspension functor sends sequences of complicial exact
categories with weak equivalences whose associated sequence of triangulated categories is
exact up to factors to sequences with that same property.

One uses the suspension construction to slightly modify the definition of algebraic
K-theory in order to incorporate negative K-groups as follows. One sets IKi(E) = Ki(E) for
i ≥ 1, IK0(E) = K0((T E)∼) and IKi(E) = K0((T S−iE)∼) for i < 0. As in the case of exact
categories in Sect. 2.4.3, one constructs a spectrum IK(E) whose homotopy groups are the
groups IKi(E) for i ∈ Z. The n-th space of this spectrum is K(SnE), and the structure maps are
given by (15).
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If the category T E is idempotent complete, then we may write Ki(E) instead of IKi(E)
for i ∈ Z. In this case, IKi(E) = Ki(E) for all i ≥ 0. Therefore, we have merely introduced
negative K-groups without changing the definition of IK0.

The following theorem extends the exact sequence Exercise 3.1.13 (10) in both directions.
For the definition of a homotopy fibration of spectra, see Appendix A, Sect. 1.8.

3.2.27 Theorem (Thomason–Waldhausen Localization, Non-Connective Version)

Let A→ B→ C be a sequence of complicial exact categories with weak equivalences such
that the associated sequence of triangulated categories T A→ T B→ T C is exact up to
factors. Then the sequence of K-theory spectra

IK(A)→ IK(B)→ IK(C)

is a homotopy fibration. In particular, there is a long exact sequence of K-groups for i ∈ Z

· · · → IKi+1(C)→ IKi(A)→ IKi(B)→ IKi(C)→ IKi−1(A)→ ···

3.2.28 Remark

Theorem 3.2.27 is proved in [82, Theorem 9] in view of the fact that for a complicial exact
category with weak equivalences (E ,w), the pair (E ,E w) is a “Frobenius pair” in the sense of
[82, Definition 5] when we equip E with the Frobenius exact structure.

3.2.29 Theorem (Invariance of IK-Theory Under Derived Equivalences)

If a functor A→ B of complicial exact categories with weak equivalences induces an equiva-
lence up to factors T A→T B of associated triangulated categories, then it induces a homo-
topy equivalence of IK-theory spectra IK(A) ∼→ IK(B) and isomorphisms IKi(A) ∼= IKi(B) of
IK-groups for i ∈ Z.

3.2.30 Agreement

Let E be an exact category and (Chb E ,quis) be the associated complicial exact category of
bounded chain complexes with quasi-isomorphisms as weak equivalences. There are natural
isomorphisms

IKi(Chb E ,quis)∼= IKi(E ) for i ∈ Z

between the IK-groups defined in Sect. 3.2.26 and those defined in Sect. 2.4.3. For i > 0, this
is Theorem 3.2.14. For i = 0, we have IK0(E ) = K0(Ẽ ) = K0(D b(Ẽ )) = K0(D b(E )∼) =
IK0(Chb E ,quis) by Exercise 3.1.4, Sect. 3.1.7 (c) and Proposition 3.2.22. For i < 0, this
follows from Theorem 3.2.27, from the case i = 0 above, from the fact that the sequence
E →FE → SE of Sect. 2.4.6 induces a sequence of associated triangulated categories which
is exact up to factors [81, Proposition 2.6, Lemma 3.2] and from the fact that FE has exact
countable sums which implies IKi(FE ) = 0 for all i ∈ Z.
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3.2.31 Example

From Example 3.1.11, we obtain a homotopy fibration of K-theory spectra

IK(HS(R))→ IK(R)→ IK(S−1R)

and an associated long exact sequence of K-groups

· · · → Ki+1(S−1R)→ Ki(HS(R))→ Ki(R)→ Ki(S−1R)→ Ki(HS(R))→ ···
for i ∈ Z. Here we wrote Ki instead of IKi since all exact categories in this example as well as
their bounded derived categories are idempotent complete.

3.2.32 IK-Theory of DG-Categories

The IK-theory IK(C ) of a dg-category C is the IK-theory associated with the complicial exact
category C pretr with weak equivalences the homotopy equivalences, that is, those maps which
are isomorphisms in DC . By construction, IK0(C ) is K0 of the triangulated category of com-
pact objects in DC . Instead of C pretr, we could have also used the triangulated hull of C in
the definition of IK(C ) because both dg-categories are derived equivalent up to factors.

By the Thomason–Waldhausen Localization Theorem 3.2.27, a sequence of dg categories
A →B→ C whose sequence DA → DB→ DC of derived categories of dg-modules is
exact induces a homotopy fibration of IK-theory spectra

IK(A )→ IK(B)→ IK(C ).

This is because the sequence T (A pretr) → T (Bpretr) → T (C pretr) of triangulated
categories whose idempotent completion is the sequence of compact objects associated with
DA → DB→ DC is exact up to factors by Neeman’s Theorem 3.4.5 (b) below.

3.2.33 Construction of the Suspension SE

Let E = (E ,w) be a complicial exact category with weak equivalences. Among others, this
means that E is an exact category, and we can construct its countable envelope FE as in
Sect. 2.4.6. The complicial structure on E extends to a complicial structure on FE by setting

A⊗ (E0 ↪→ E1 ↪→ E2 ↪→ ···) = (A⊗E0 ↪→ A⊗E1 ↪→ A⊗E2 ↪→ ···)
for A ∈ Chb(Z) and E∗ ∈FE . Call a map in FE a weak equivalence if its cone is a direct
factor of an object of F (E w). As usual, we write w for the set of weak equivalences in FE .
The pair FE = (FE ,w) defines a complicial exact category with weak equivalences. The
fully exact inclusion E →FE of exact categories of Sect. 2.4.6 defines a functor E→FE
of complicial exact categories with weak equivalences such that the induced functor T (E)→
T (FE) of associated triangulated categories is fully faithful.

Now, the suspension SE of E is the complicial exact category with weak equivalences
which has as underlying complicial exact category the countable envelope FE and as set
of weak equivalences those maps in FE which are isomorphisms in the Verdier quotient
T (FE)/T (E).
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3.2.34 Remark (Suspensions of DG-Categories)

If C is a dg-category, one can also define its suspension as ΣC = Σ ⊗Z C where Σ = ΣZ is
the suspension ring of Z as in Cortiñas’ lecture [21]. The resulting spectrum whose n-th space
is K((Σ nC )pretr) is equivalent to the spectrum IK(C ) as defined in Sect. 3.2.32. The reason is
that the sequence C → Γ ⊗C → Σ ⊗C induces a sequence of pretriangulated dg-categories
whose associated sequence of homotopy categories is exact up to factors. This follows from
[23] in view of the fact that the sequence of flat dg categories Z

pretr→Γ pretr→ Σ pretr induces
a sequence of homotopy categories which is exact up to factors. Moreover, IK(Γ ⊗C )� 0.

Sketch of the proof of Theorem 3.2.27

We first construct the map (15). For that, denote by E ′ ⊂FE the full subcategory of those
objects which are zero in T SE = T (FE)/T (E). The category E ′ inherits the structure of
a complicial exact category with weak equivalences from FE which we denote by E′. By
construction, the sequence E′ → FE→ SE induces an exact sequence of associated trian-
gulated categories, and hence, a homotopy fibration K(E′)→ K(FE)→ K(SE) of K-theory
spaces by the Thomason–Waldhausen Localization Theorem 3.2.23. Since FE has infinite
exact sums which preserve weak equivalences, we have K(FE)� 0. Therefore, we obtain a
homotopy equivalence K(E′) �→ΩK(SE). By construction of E ′, the inclusion E ⊂ E ′ induces
a cofinal triangle functor T E ⊂ T E′; see Appendix A, Sect. 2.7. By Thomason’s Cofinality
Theorem 3.2.35 below, the map K(E)→ K(E′) induces isomorphisms on πi for i > 0 and a
monomorphism on π0.

The main step in proving Theorem 3.2.27 consists in showing that for a sequence of
complicial exact categories with weak equivalences A→ B→ C where T A→ T B→ T C
is exact up to factors, the suspended sequence SA→ SB→ SC induces a sequence T SA→
T SB→ T SC of associated triangulated categories which is also exact up to factors. This is
proved in [82, Theorem 3] for complicial exact categories with weak equivalences whose exact
structure is the Frobenius exact structure. The proof for general exact structures is mutatis
mutandis the same.

3.2.35 Theorem (Cofinality [94, 1.10.1, 1.9.8])

Let A → B be a functor of complicial exact categories with weak equivalences such that
T A→T B is cofinal. Then Ki(A)→Ki(B) is an isomorphism for i≥ 1 and a monomorphism
for i = 0.

3.3 Quillen’s Fundamental Theorems Revisited

The results of this subsection are due to Quillen [73]. However, we give proofs based on the
Thomason–Waldhausen Localization Theorem. This has the advantage that the same results
hold for other cohomology theories such as Hochschild homology, (negative, periodic, ordi-
nary) cyclic homology, triangular Witt-groups, hermitian K-theory etc. where the analog of
the Thomason–Waldhausen Localization Theorem also holds.
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3.3.1 G-Theory Localization (Revisited)

It is not true that every exact sequence of abelian categories induces an exact sequence of
associated bounded derived categories. For a counter example, see [49, 1.15 Example (c)]
where the abelian categories are even noetherian and artinian. However, the exact sequence of
abelian categories Sect. 2.3.6 (3) which (together with Dévissage) gives rise to the G-theory
fibration Theorem 2.3.7 (4) does induce an exact sequence of triangulated categories. So, at
least in this case, we can apply the Thomason–Waldhausen Localization Theorem.

3.3.2 Theorem

Let X be a noetherian scheme, j : U ⊂ X be an open subscheme and Z = X−U be the closed
complement. Then the exact sequence of abelian categories Sect. 2.3.6 (3) induces an exact
sequence of triangulated categories

D b CohZ(X)→ D b Coh(X)
j∗→ D b Coh(U).

In particular, it induces a homotopy fibration in K-theory

K CohZ(X)→ K Coh(X)
j∗→ K Coh(U).

Proof [49, 1.15 Lemma and Example b)]:

Since the sequence Sect. 2.3.6 (3) is an exact sequence of abelian categories, the functor
Coh(X)→ Coh(U) is a localization by a calculus of fractions. By Sect. 3.1.7 (a), the functor
D b Coh(X)→D b Coh(U) is a localization of triangulated categories. Therefore, j∗ induces an
equivalence D b Coh(X)/D b

Z Coh(X)∼= D b Coh(U) where D b
Z Coh(X)⊂ D b Coh(X) denotes

the full triangulated subcategory of those complexes whose cohomology is supported in Z, or
equivalently, which are acyclic over U .

The functor D b CohZ(X)→ D b Coh(X) is fully faithful by an application of Sect. 3.1.7
(b). To check the hypothesis of Sect. 3.1.7 (b), let N � M be an inclusion of coherent OX -
modules with N ∈ CohZ(X). If I ⊂ OX denotes the ideal sheaf of the reduced subscheme
Zred ⊂ X associated with Z, then a coherent OX -module E has support in Z iff InE = 0 for
some n ∈N. By the Artin–Rees Lemma [3, Corollary 10.10] which also works for noetherian
schemes with the same proof, there is an integer c > 0 such that N ∩ InM = In−c(N ∩ IcM)
for n ≥ c. Since N has support in Z, the same is true for N ∩ IcM, and we find N ∩ InM =
In−c(N ∩ IcM) = 0 for n large enough. For such an n, the composition N ⊂ M→M/InM is
injective, and we have M/InM ∈ CohZ(X). Hence, the functor D b CohZ(X)→ D b

Z Coh(X) is
fully faithful. It is essentially surjective – hence an equivalence – since both categories are
generated as triangulated categories by CohZ(X) considered as complexes concentrated in
degree zero.

The homotopy fibration of K-theory spaces follows from the Thomason–Wald–hausen
Localization Theorem 3.2.23. �

3.3.3 Remark

The exact sequence of triangulated categories in Theorem 3.3.2 also induces a homotopy fibra-
tion of non-connective K-theory spectra IK CohZ(X)→ IK Coh(X)→ IK Coh(U) by Theorem
3.2.27. But this does not give us more information since the negative K-groups of noetherian
abelian categories such as CohZ(X), Coh(X) and Coh(U) are all trivial; see Remark 2.4.5.
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3.3.4 Dévissage

The Dévissage Theorem 2.3.3 does not follow from the Thomason–Waldhausen Localization
Theorem 3.2.27 since Dévissage does not hold for Hochschild homology [49, 1.11]. Yet
Theorem 3.2.27 holds when K-theory is replaced with Hochschild homology.

Recall that a noetherian scheme X is called regular if all its local rings OX ,x are regular
local rings for x ∈ X . For the definition and basic properties of regular local rings, see [3, 57,
102].

3.3.5 Theorem (Poincaré Duality, [73, Sect. 7.1])

Let X be a regular noetherian separated scheme. Then the fully exact inclusion Vect(X) ⊂
Coh(X) of vector bundles into coherent OX -modules induces an equivalence of triangulated
categories

D b Vect(X)∼= D b Coh(X).

In particular, it induces a homotopy equivalence K(X) ∼−→ G(X).

Proof:

We show below that every coherent sheaf F on X admits a surjective map V � F of
OX -modules where V is a vector bundle. This implies that the dual of criterion Sect. 3.1.7
(b) is satisfied, and we see that D b Vect(X)→ D b Coh(X) is fully faithful. The existence of
the surjection also implies that every coherent sheaf F admits a resolution

· · · →Vi→Vi−1→ ··· →V0→ F→ 0

by vector bundles Vi. By Serre’s Theorem [102, Theorem 4.4.16], [57, Theorem 19.2], for
every point x ∈ X , the stalk at x of the image Ei of the map Vi → Vi−1 is a free OX ,x-module
when i = dimOX ,x. Since Ei is coherent, there is an open neighborhood Ux of x over which the
sheaf Ei is free and i = dimOX ,x. Then Ei is locally free on Ux for all i≥ dimOX ,x. Since X is
quasi-compact, finitely many of the Ux’s suffice to cover X , and we see that Ei is locally free on
X for i� 0. The argument shows that we can truncate the resolution of F at some degree i� 0,
and we obtain a finite resolution of F by vector bundles. Since D b Coh(X) is generated by
complexes concentrated in degree 0, the last statement implies that D b Vect(X)→D b Coh(X)
is also essentially surjective, hence an equivalence. By Agreement and Invariance under deri-
ved equivalences (Theorems 3.2.24 and 3.2.14), we have K(X)� G(X).

To see the existence of a surjection V � F , we can assume that X is connected, hence
integral. The local rings OX ,x are regular noetherian, hence UFD’s. This implies that for any
closed Z ⊂ X of pure codimension 1, there is a line bundle L and a section s : OX →L such
that Z = X −Xs where Xs is the non-vanishing locus {x ∈ X | sx : OX ,x ∼= Lx} ⊂ X of s; see
[41, Propositions II 6.11, 6.13]. Since any proper closed subset of X is in such a Z, the open
subsets Xs indexed by pairs (L ,s) form a basis for the topology of X where L runs through
the line bundles of X and s ∈ Γ (X ,L ).

For a ∈ F(Xs), there is an integer n ≥ 0 such that a⊗ sn ∈ Γ (Xs,F ⊗L n) extends to a
global section of F⊗L n; see [41, Lemma 5.14]. This global section defines a map L −n→ F
of OX -modules such that a∈ F(Xs) is in the image of L −n(Xs)→ F(Xs). It follows that there
is a surjection

⊕
Li � F from a sum of line bundles Li to F . Since F is coherent and X is

quasi-compact, finitely many of the Li’s are sufficient to yield a surjection. �
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3.3.6 Additivity (Revisited)

Let E be an exact category, and let E(E ) denote the exact category of conflations in E .
Objects are conflations A � B � C in E , and maps are commutative diagrams of confla-
tions. A sequence of conflations is called exact if it is exact at the A, B and C-spots. We define
exact functors

λ : E → E(E ) : A �→ (A
1� A � 0)

ρ : E(E )→ E : (A � B � C) �→ A

L : E(E )→ E : (A � B � C) �→C

R : E → E(E ) : C �→ (0 � C
1� C).

Note that λ and L are left adjoint to ρ and R. The unit and counit of adjunctions induce natural
isomorphisms id

∼=→ ρλ and LR
∼=→ id and a functorial conflation λρ � id � RL.

3.3.7 Theorem (Additivity)

The sequence (λ ,L) of exact functors induces an exact sequence of triangulated categories

D bE → D bE(E )→ D bE .

The associated homotopy fibrations of K-theory spaces and spectra split via (ρ,R), and we
obtain homotopy equivalences

(ρ,L) : K(E(E )) ∼−→ K(E )×K(E ) and (ρ,L) : IK(E(E )) ∼−→ IK(E )× IK(E )

with inverses λ ⊕R.

Proof:

The functors ρ , λ , L and R are exact. Therefore, they induce triangle functors D bρ , D bλ ,
D bL and D bR on bounded derived categories. Moreover, D bλ and D bL are left adjoint to
D bρ and D bR. The unit and counit of adjunctions id

∼=→ D bρ ◦D bλ and D bL ◦D bR
∼=→ id

are isomorphisms. The natural conflation λρ � id � RL induces a functorial distinguished
triangle D bλ ◦D bρ→ id→D bR◦D bL→D bλ ◦D bρ[1]. By Appendix A, Exercise 2.8, this
implies that the sequence of triangulated categories in the theorem is exact. The statements
about K-theory follow from the Thomason–Waldhausen Localization Theorems 3.2.23 and
3.2.27. �

Proof of Additivity 2.3.11

The exact sequence of functors E → E ′ in Theorem 2.3.11 induces an exact functor F• : E →
E(E ′). Let M : E(E ′)→ E ′ denote the functor sending a conflation (A � B � C) to B. By
the Additivity Theorem 3.3.7, the composition of the functors

E(E ′) (ρ ,L)−→ E ′ ×E ′ λ⊕R−→ E(E ′)

induces a map on K-theory spaces and spectra which is homotopic to the identity functor.
Therefore, the two functors

A
F•−→ E(E ′) M−→ E ′ and A

F•−→ E(E ′) (ρ ,L)−→ E ′ ×E ′ λ⊕R−→ E(E ′) M−→ E ′

induce homotopic maps on K-theory spaces and spectra. But these two functors are F0 and
F−1⊕F1. �



Higher Algebraic K-Theory 201

3.3.8 Proposition (Resolution Revisited)

Under the hypothesis of the Resolution Theorem 2.3.12, the inclusion A ⊂ B of exact
categories induces an equivalence of triangulated categories

D b(A ) �−→ D b(B).

In particular, it induces homotopy equivalences of K-theory spaces and spectra

K(A ) ∼−→ K(B) and IK(A ) ∼−→ IK(B).

Proof:

The hypothesis Theorem 2.3.12 (a) and (b) imply that the dual of criterion Sect. 3.1.7
(b) is satisfied, and the functor D b(A ) → D b(B) is fully faithful. Finally, the hypothe-
sis Theorem 2.3.12 (b) implies that the triangle functor is also essentially surjective; see
Sect. 3.1.7 (d). �

3.4 Thomason’s Mayer-Vietoris Principle

Any reasonable cohomology theory for schemes should come with a Mayer–Vietoris long
exact sequence for open covers. For K-theory this means that for a scheme X =U ∪V covered
by two open subschemes U and V , we should have a long exact sequence of K-groups

· · · → Ki+1(U ∩V )→ Ki(X)→ Ki(U)⊕Ki(V )→ Ki(U ∩V )→ Ki−1(X)→ ···
for i ∈ Z. Surprisingly, the existence of such an exact sequence was only proved by Thomason
[94] about 20 years after the introduction of higher algebraic K-theory by Quillen. Here, the
use of derived categories is essential. For a regular noetherian separated scheme X , the exact
sequence also follows from Quillen’s Localization Theorem 2.3.7 together with Poincaré Dua-
lity Theorem 3.3.5. The purpose of this subsection is to explain the ideas that go into proving
Thomason’s Mayer-Vietoris exact sequence. Details of some proofs are given in Appendix A,
Sects. 3 and 4.

If we defined IK(X) naively as the K-theory IK Vect(X) of vector bundles, we would not
have such a long exact sequence, in general. For that reason, one has to use perfect com-
plexes instead of vector bundles in the definition of K-theory. For a quasi-projective scheme
or a regular noetherian separated scheme, this is the same as vector bundle K-theory; see
Proposition 3.4.8. Thomason proves the Mayer–Vietoris exact sequence for general quasi-
compact and quasi-separated schemes; see Remark 3.4.13. Here, we will only give definitions
and proofs for quasi-compact and separated schemes. This allows us to work with complexes
of quasi-coherent sheaves as opposed to complexes of OX -modules which have quasi-coherent
cohomology. This is easier and it is sufficient for most applications.

For the following, the reader is advised to be acquainted with the definitions and state-
ments in Appendix A, Sect. 3. For a quasi-compact and separated scheme X , we denote by
Qcoh(X) the category of quasi-coherent sheaves on X , by D Qcoh(X) its unbounded derived
category (see Appendix A, Sect. 3.1), and for a closed subset Z⊂ X we denote by D Z Qcoh(X)
the full subcategory of D Qcoh(X) of those complexes which are acyclic when restricted to
X−Z.
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3.4.1 Perfect Complexes

Let X be a quasi-compact and separated scheme. A complex (A,d) of quasi-coherent
OX -modules is called perfect if there is a covering X =

⋃
i∈I Ui of X by affine open sub-

schemes Ui ⊂ X such that the restriction of the complex (A,d)|Ui
to Ui is quasi-isomorphic to

a bounded complex of vector bundles for i ∈ I. The fact that this is independent of the cho-
sen affine cover follows from Appendix A, Sect. 4. Let Z ⊂ X be a closed subset of X with
quasi-compact open complement X−Z. We write PerfZ(X)⊂ ChQcoh(X) for the full subca-
tegory of perfect complexes on X which are acyclic over X −Z. The inclusion of categories
of complexes is extension closed, and we can consider PerfZ X as a fully exact subcategory
of the abelian category ChQcoh(X). As in Sect. 3.2.3, the ordinary tensor product of chain
complexes makes (PerfZ(X),quis) into a complicial exact category with weak equivalences.
It is customary to write D PerfZ(X) for T (PerfZ(X),quis) and Perf(X) for PerfX (X).

3.4.2 Definition

Let X be a quasi-compact and separated scheme, and let Z ⊂ X be a closed subset of X with
quasi-compact open complement X −Z. The K-theory spectrum of X with support in Z is the
IK-theory spectrum

IK(X on Z) = IK(PerfZ(X),quis)

of the complicial exact category (PerfZ(X),quis) as defined in Sect. 3.4.1. In case Z = X ,
we simply write IK(X) instead of IK(X on Z). It follows from Proposition 3.4.6 below that
the triangulated categories D PerfZ(X) are idempotent complete. Therefore, we may write
Ki(X on Z) instead of IKi(X on Z) for the K-groups of X with support in Z and i ∈ Z.

In order to be able to say anything about the K-theory of perfect complexes, we need to
understand, to a certain extend, the structure of the triangulated categories D PerfZ(X). Lemma
3.4.3 and Proposition 3.4.6 summarize what we will need to know.

3.4.3 Lemma

Let X be a quasi-compact and separated scheme and Z ⊂ X be a closed subset with quasi-
compact open complement j : U = X−Z ⊂ X.

(a) The following sequence of triangulated categories is exact

D Z Qcoh(X)→ D Qcoh(X)→ D Qcoh(U).

(b) Let g : V ⊂ X be a quasi-compact open subscheme such that Z ⊂V . Then the restriction
functor is an equivalence of triangulated categories

g∗ : D Z Qcoh(X) �−→ D Z Qcoh(V ).

Proof:

For (a), the restriction j∗ : D Qcoh(X)→ D Qcoh(U) has a right adjoint R j∗ : D Qcoh(U)→
D Qcoh(X) which for E ∈ D Qcoh(U) is R j∗E = j∗I where E ∼→ I is a K -injective resolu-
tion of E. The counit of adjunction j∗R j∗ → 1 is an isomorphism in D Qcoh(U) since for
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E ∈ D Qcoh(U) it is j∗R j∗E = j∗ j∗I
∼=→ I ∼← E. The claim now follows from general facts

about triangulated categories; see Exercise 2.8(a) in Appendix A.
For (b), note that the functor Rg∗ : D Qcoh(V )→ D Qcoh(X) sends D Z Qcoh(V ) into

D Z Qcoh(X). This follows from the Base-Change Lemma A.3.7 since for a complex E ∈
D Z Qcoh(V ), the lemma says (Rg∗E)|X−Z = Rḡ∗(E|V−Z) = 0 where ḡ : V −Z ⊂ X −Z. The
unit and counit of adjunction 1→Rg∗ ◦g∗ and g∗Rg∗ → 1 are isomorphisms in the triangulated
category of complexes supported in Z because for such complexes this statement only needs
to check when restricted to V where it trivially holds since Z ⊂V . �

The reason why Lemma 3.4.3 is so useful lies in the theory of compactly generated trian-
gulated categories and the fact that the categories D Z Qcoh(X) are indeed compactly generated
when X and X−Z are quasi-compact and separated. See 3.4.6 below.

3.4.4 Compactly Generated Triangulated Categories

References are [65] and [64]. Let A be a triangulated category in which all set indexed direct
sums exist. An object A of A is called compact if the canonical map

⊕
i∈I

Hom(A,Ei)→ Hom(A,
⊕
i∈I

Ei)

is an isomorphism for any set of objects Ei in A and i ∈ I. Let A c ⊂ A be the full subca-
tegory of compact objects. It is easy to see that A c is an idempotent complete triangulated
subcategory of A .

A set S of compact objects is said to generate A , or A is compactly generated (by S), if
for every object E ∈A we have

Hom(A,E) = 0 ∀A ∈ S =⇒ E = 0.

3.4.5 Theorem (Neeman [64])

(a) Let A be a compactly generated triangulated category with generating set S of compact
objects. Then A c is the smallest idempotent complete triangulated subcategory of A
containing S.

(b) Let R be a compactly generated triangulated category, S0 ⊂Rc be a set of compact ob-
jects closed under taking shifts. Let S ⊂R be the smallest full triangulated subcategory
closed under formation of coproducts in R which contains the set S0. Then S and R/S
are compactly generated triangulated categories with generating sets S0 and the image
of Rc in R/S . Moreover, the functor Rc/S c→R/S induces an equivalence between
the idempotent completion of Rc/S c and the category of compact objects in R/S .

The following proposition will be proved in Appendix A, Sect. 4.

3.4.6 Proposition

Let X be a quasi-compact and separated scheme, and let Z ⊂ X be a closed subset with quasi-
compact open complement U = X −Z. Then the triangulated category DZ Qcoh(X) is com-
pactly generated with category of compact objects the derived category of perfect complexes
D PerfZ(X).
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In many interesting cases, the K-theory of perfect complexes is equivalent to the K-theory
of vector bundles. This is the case for quasi-projective schemes and for regular noetherian
separated schemes both of which are examples of schemes with an ample family of line
bundles.

3.4.7 Schemes with an Ample Family of Line Bundles

A quasi-compact scheme X has an ample family of line bundles if there is a finite set L1, ...,Ln

of line bundles with global sections si ∈ Γ (X ,Li) such that the non-vanishing loci Xsi = {x ∈
X |si(x) �= 0} form an open affine cover of X . See [94, Definition 2.1], [85, II 2.2.4].

Any quasi-compact open (or closed) subscheme of a scheme with an ample family of line
bundles has itself an ample family of line bundles, namely the restriction of the ample family to
the open (or closed) subscheme. Any scheme which is quasi-projective over an affine scheme
has an ample line-bundle. A fortiori it has an ample family of line-bundles. Every separated
regular noetherian scheme has an ample family of line bundles. This was shown in the proof of
Poincaré Duality Theorem 3.3.5. For more on schemes with an ample family of line-bundles,
see [15, 85], [94, 2.1.2] and Appendix A, Sect. 4.2.

3.4.8 Proposition [94, Corollary 3.9]

Let X be a quasi-compact and separated scheme which has an ample family of line
bundles. Then the inclusion of bounded complexes of vector bundles into perfect complexes
Chb Vect(X) ⊂ Perf(X) induces an equivalence of triangulated categories D b Vect(X) ∼=
D Perf(X). In particular,

IK Vect(X)� IK(X).

Proof (see also Appendix A, Proposition 4.7 (a))

Since X has an ample family of line bundles, every quasi-coherent sheaf F on X admits a
surjective map

⊕
Li → F from a direct sum of line bundles to F . The argument is the same

as in the last paragraph in the proof of Theorem 3.3.5. This implies that the dual of criterion
Sect. 3.1.7 (b) is satisfied, and we have fully faithful functors D b Vect(X) ⊂ D b Qcoh(X) ⊂
D Qcoh(X). This also implies that the compact objects Vect(X) generate D Qcoh(X) as a
triangulated category with infinite sums. Since D b Vect(X) is idempotent complete [16], the
functor D b Vect(X) → D Perf(X) is an equivalence by Theorem 3.4.5 (a) and Proposition
3.4.6. �

3.4.9 Theorem (Localization)

Let X be a quasi-compact and separated scheme. Let U ⊂ X be a quasi-compact open sub-
scheme with closed complement Z = X −U. Then there is a homotopy fibration of IK-theory
spectra

IK(X on Z)−→ IK(X)−→ IK(U).

In particular, there is a long exact sequence of K-groups for i ∈ Z

· · · → Ki+1(U)→ Ki(X on Z)→ Ki(X)→ Ki(U)→ Ki−1(X on Z)→ ···
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Proof:

In view of the Thomason-Waldhausen Localization Theorem 3.2.27, we have to show that the
sequence of complicial exact categories with weak equivalences

(PerfZ(X),quis)→ (Perf(X),quis)→ (Perf(U),quis)

induces a sequence of associated triangulated categories

D PerfZ(X)→ D Perf(X)→ D Perf(U) (16)

which is exact up to factors. By Proposition 3.4.6, the sequence (16) is the sequence of ca-
tegories of compact objects associated with the exact sequence of triangulated categories in
Lemma 3.4.3 (a). The claim now follows from Neeman’s Theorem 3.4.5 (b). �

3.4.10 Theorem (Zariski Excision)

Let j : V ⊂ X be a quasi-compact open subscheme of a quasi-compact and separated scheme
X. Let Z ⊂ X be a closed subset with quasi-compact open complement such that Z ⊂V . Then
restriction of quasi-coherent sheaves induces a homotopy equivalence of IK-theory spectra

IK(X on Z) ∼−→ IK(V on Z).

In particular, there are isomorphisms of K-groups for all i ∈ Z

Ki(X on Z)
∼=−→ Ki(V on Z).

Proof:

By the Invariance Of K-theory Under Derived Equivalences Theorem 3.2.29, it suffices to
show that the functor of complicial exact categories with weak equivalences

(PerfZ(X),quis)→ (PerfZ(V ),quis)

induces an equivalence of associated triangulated categories. This follows from Lemma 3.4.3
(b) in view of Proposition 3.4.6. �

3.4.11 Remark

There is a more general excision result where open immersions are replaced with flat maps
[94, Theorem 7.1]. It is also a consequence of an equivalence of triangulated categories.

3.4.12 Theorem (Mayer–Vietoris for Open Covers)

Let X =U ∪V be a quasi-compact and separated scheme which is covered by two open quasi-
compact subschemes U and V . Then restriction of quasi-coherent sheaves induces a homotopy
cartesian square of IK-theory spectra
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IK(X) ��

��

IK(U)

��
IK(V ) �� IK(U ∩V ).

In particular, we obtain a long exact sequence of K-groups for i ∈ Z

· · · → Ki+1(U ∩V )→ Ki(X)→ Ki(U)⊕Ki(V )→ Ki(U ∩V )→ Ki−1(X)→ ···

Proof:

By the Localization Theorem 3.4.9, the horizontal homotopy fibres of the square are
IK(X on Z) and IK(V on Z) with Z = X−U =U−U∩V ⊂V . The claim follows from Zariski-
excision 3.4.10.

�

3.4.13 Remark (Separated Versus Quasi-Separated)

Thomason proves Theorems 3.4.9, 3.4.10 and 3.4.12 for quasi-compact and quasi-separated
schemes. A scheme X is quasi-separated if the intersection of any two quasi-compact open
subsets of X is quasi-compact. For instance, any scheme whose underlying topological space
is noetherian is quasi-separated. Of course, every separated scheme is quasi-separated.

In the generality of quasi-compact and quasi-separated schemes X one has to work
with perfect complexes of OX -modules rather than with perfect complexes of quasi-coherent
sheaves. The reason is that the Base-Change Lemma A.3.7 – which is used at several places
in the proofs of Lemma 3.4.3 (b) and Proposition 3.4.6 – does not hold for D Qcoh(X) when
X is quasi-compact and quasi-separated, in general.

Verdier gives a counter example in [85, II Appendice I]. He constructs a quasi-compact
and quasi-separated scheme Z (whose underlying topological space is even noetherian), a
covering Z = U ∪V of Z by open affine subschemes j : U = SpecA ↪→ Z and V , and an
injective A-module I such that for its associated sheaf Ĩ on U , the natural map

j∗ Ĩ = R jQcoh∗ Ĩ
�−→ R jMod∗ Ĩ (17)

is not a quasi- isomorphism where jQcoh∗ and jMod∗ are j∗ on the category of quasi-coherent
modules and OZ-modules, respectively. If R jQcoh∗ did satisfy the Base-Change Lemma, then
the map (17) would be a quasi- isomorphism on U and V hence a quasi- isomorphism on Z,
contradicting (17). Verdier also shows that for this scheme, the forgetful functor

D Qcoh(Z)→ D qc(OZ -Mod)

from the derived category of quasi-coherent modules to the derived category of complexes of
OZ-modules with quasi-coherent cohomology is not fully faithful. In particular, it is not an
equivalence contrary to the situation when Z is quasi-compact and separated [14, Corollary
5.5], [4, Proposition 1.3].
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3.5 Projective Bundle Theorem and Regular Blow-Ups

We will illustrate the use of triangulated categories in the calculation of higher algebraic
K-groups with two more examples: in the proof of the Projective Bundle Formula 3.5.1 and in
the (sketch of the) proof of the Blow-up Formula 3.5.4. There is, of course, much more to say
about triangulated categories in K-theory. For instance, Example 3.1.11 has been generalized
in [67] to stably flat non-commutative Cohn localizations R→ S−1R from which one can
derive Waldhausen’s calculations in [99]; see [74]. As another example, Swan’s calcula-
tion of the K-theory of a smooth quadric hypersurface Q ⊂ P

n
k [89] can be derived from

Kapranov’s description of D Perf(Q) given in [44]. For certain homogeneous spaces, see
[44, 52, 76]. After all, any statement about the structure of triangulated categories translates
into a statement about higher algebraic K-groups via the Thomason–Waldhausen Localization
Theorem 3.2.27.

3.5.1 Theorem (Projective Bundle Theorem [73, Sect. 8 Theorem 2.1])

Let X be a quasi-compact and separated scheme, and let E → X be a geometric vector bundle
over X of rank n+1. Let p : PE → X be the associated projective bundle with twisting sheaf
OE (1). Then we have an equivalence

n

∏
l=0

OE (−l)⊗Lp∗ :
n

∏
l=0

IK(X) ∼−→ IK(PE ).

For the proof we will need the following useful lemma which is a special case of
Proposition A.4.7 (a).

3.5.2 Lemma

Let X be a scheme with an ample line-bundle L. Then the category D b Vect(X) is generated –
as an idempotent complete triangulated category – by the set L⊗k of line-bundles for k < 0.

Proof of the Projective Bundle Theorem 3.5.1

By the Mayer–Vietoris Theorem 3.4.12, the question is local in X . Therefore, we may assume
that X = SpecA is affine and that p : PE → X is the canonical projection Proj(A[T0, ...,Tn]) =
P

n
A

p→ SpecA. In this case, X and PE have an ample line-bundle A and O(1), and their derived
categories of perfect complexes agree with the bounded derived categories of vector bundles
by Proposition 3.4.8. Since the twisting sheaf O(1) is ample, we can apply Lemma 3.5.2, and
we see that the triangulated category D Vect(Pn) is generated – as an idempotent complete
triangulated category – by the family of line bundles {OPn(−l)| l ≥ 0}. Consider the polyno-
mial ring S = A[T0, ...,Tn] as a graded ring with degTi = 1. The sequence T0, ...,Tn is a regular

sequence in S. Therefore, the Koszul complex
⊗n

i=0( S(−1) Ti→ S ) induces an exact sequence
of graded S-modules

0→ S(−n−1)→
n+1⊕

1

S(−n)→
(n+1

2 )⊕

1

S(−n+1)→ ··· →
n+1⊕

1

S(−1)→ S→ A→ 0.



208 Marco Schlichting

Taking associated sheaves, we obtain an exact sequence of vector bundles on P
n

A

0→ O(−n−1)→
n+1⊕

1

O(−n)→
(n+1

2 )⊕

1

O(−n+1)→ ··· →
n+1⊕

1

O(−1)→ OPn → 0.

This shows that D b Vect(Pn
A ) is generated as an idempotent complete triangulated category by

O(−n), ...,O(−1),OPn . For i ≤ j, let D b
[i, j] ⊂ D b Vect(Pn) be the full idempotent complete

triangulated subcategory generated by O(l) where i≤ l ≤ j. We have a filtration

0⊂D b
[0,0] ⊂D b

[−1,0] ⊂ ...⊂ D b
[−n,0] = D b Vect(Pn).

The unit of adjunction F → Rp∗Lp∗F is a quasi-isomorphism for F = A because A→
H0(Rp∗Lp∗A) = H0(Rp∗OPn) = H0(Pn,OPn) is an isomorphism and Hi(Pn,OPn) = 0 for
i �= 0 [38, Proposition III 2.1.12]. Since D b Proj(A) is generated as an idempotent complete
triangulated category by A, we see that the unit of adjunction F → Rp∗Lp∗F is a quasi-
isomorphism for all F ∈D b Proj(A). This implies that Lp∗ = p∗ : D b Proj(A)→ D b Vect(Pn)
is fully faithful and, hence, an equivalence onto its image D b

[0,0]. Since O(l) is an invertible

sheaf, we obtain equivalences O(−l)⊗Lp∗ : D b Proj(A)→ D b
[−l,−l].

By the calculation of the cohomology of the projective space P
n

A (loc.cit.), we have
H∗(Pn

A ,O(−k)) = 0 for k = 1, ...,n. Therefore, the homomorphism sets in D b Vect(Pn
A ) satisfy

Hom(O(− j)[r],O(−l)[s]) = Hs−r(Pn
A ,O(−l + j)) = 0

for 0≤ j < l ≤ n. This implies that the composition

D b
[−l,−l] ⊂D b

[−l,0]→ D b
[−l,0]/D b

[−l+1,0]

is an equivalence; see Exercise A.2.8 (b).
To finish the proof, we simply translate the statements about triangulated categories above

into statements about K-theory. For i≤ j, let Chb
[i, j] ⊂Chb Vect(Pn) be the full subcategory of

those chain complexes which lie in D b
[i, j]. Write w for the set of maps in Chb

[−l,0] which are

isomorphisms in the quotient triangulated category D b
[−l,0]/D b

[−l+1,0]. By construction, the
sequence

(Chb
[−l+1,0],quis)→ (Chb

[−l,0],quis)→ (Chb
[−l,0],w) (18)

induces an exact sequence of associated triangulated categories, and by Theorem 3.2.27, it
induces a homotopy fibration in IK-theory for l = 1, ...,n. We have seen that the composition

O(−l)⊗ p∗ : (Chb Proj(A),quis)→ (Chb
[−l,0],quis)→ (Chb

[−l,0],w)

induces an equivalence of associated triangulated categories. By Theorem 3.2.29, the compo-
sition induces an equivalence in IK-theory. It follows that the IK-theory fibration associated
with (18) splits, and we obtain a homotopy equivalence

(O(−l)⊗ p∗,1) : IK(A)× IK(Chb
[−l+1,0],quis) ∼−→ IK(Chb

[−l,0],quis)

for l = 1, ...,n. Since Chb
[−n,0] = Chb Vect(Pn

A ), this implies the theorem. �
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3.5.3 Theorem (Bass’ Fundamental Theorem)

Let X be a quasi-compact and separated scheme. Then there is a split exact sequence for all
n ∈ Z

0→ IKn(X)→ IKn(X [T ])⊕ IKn(X [T−1])→ IKn(X [T,T−1])→ IKn−1(X)→ 0.

Proof

The projective line P
1
X over X has a standard open covering given by X [T ] and X [T−1] with

intersection X [T,T−1]. Thomason’s Mayer-Vietoris Theorem 3.4.12 applied to this covering
yields a long exact sequence

→ IKn(P1
X )

β→ IKn(X [T ])⊕ IKn(X [T−1])→ IKn(X [T,T−1])→ IKn−1(P1
X )→

By the Projective Bundle Theorem 3.5.1, the group IKn(P1
X ) is IKn(X)⊕ IKn(X) with basis

[OP1 ] and [OP1(−1)]. Making a base-change, we can write IKn(P1
X ) as IKn(X)⊕ IKn(X) with

basis [OP1 ] and [OP1 ]− [OP1(−1)]. Since on X [T ] and on X [T−1] the two line-bundles OP1

and OP1(−1) are isomorphic, the map β in the long Mayer–Vietoris exact sequence above is
trivial on the direct summand K(X) corresponding to the base element [OP1 ]− [OP1(−1)]. The
map β is split injective on the other summand K(X) corresponding to the base element [OP1 ].
Therefore, the long Mayer–Vietoris exact sequence breaks up into shorter exact sequences.
These are the exact sequences in the theorem. The splitting of the map IKn(X [T,T−1])→
IKn−1(X) is given by the cup product with the element [T ] ∈ K1(Z[T,T−1]). �

The following theorem is due to Thomason [90]. For the (sketch of the) proof given below,
we follow [19, Sect. 1].

3.5.4 Theorem (Blow-Up Formula)

Let i : Y ⊂ X be a regular embedding of pure codimension d with X quasi-compact and
separated. Let p : X ′ → X be the blow-up of X along Y and j : Y ′ ⊂ X ′ the exceptional divisor.
Write q : Y ′ →Y for the induced map. Then the square of IK-theory spectra

IK(X) Li∗ ��

Lp∗

��

IK(Y )

Lq∗

��
IK(X ′)

L j∗
�� IK(Y ′)

is homotopy cartesian. Moreover, there is a homotopy equivalence

IK(X ′)� IK(X)×
d−1

∏
1

IK(Y ).
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Proof (sketch)

To simplify the argument, we note that the question as to whether the square of IK-theory
spectra is homotopy cartesian is local in X by Thomason’s Mayer-Vietoris Theorem 3.4.12.
Therefore, we can assume that X = SpecA and Y = SpecA/I are affine and that I ⊂ A is an
ideal generated by a regular sequence x1, ...,xd of length d. In this case, all schemes X , X ′,
Y , Y ′ have an ample line-bundle. By Proposition 3.4.8, the K-theory of perfect complexes on
X , X ′, Y , Y ′ agrees with the vector bundle K-theory on those schemes. Furthermore, the map
Y ′ →Y is the canonical projection P

d−1
Y →Y .

Let S =
⊕

i≥0 In. Then we have X ′ = ProjS and Y ′ = ProjS/IS. The exact sequence
0→ IS = S(1)→ S→ S/IS→ 0 of graded S-modules induces an exact sequence of sheaves
0→ OX ′(1)→ OX ′ → j∗OY ′ → 0 on X ′ and an associated distinguished triangle OX ′(1)→
OX ′ → R j∗OY ′ → OX ′(1)[1] in D b Vect(X ′). Restricted to Y ′, this triangle becomes the fol-
lowing distinguished triangle: OY ′(1)→ OY ′ → j∗R j∗OY ′ → OY ′(1)[1]. Since OY ′(1)→ OY ′

is the zero map (as Y ′ = P
d−1
Y ), we have an isomorphism j∗R j∗OY ′ ∼= OY ′ ⊕OY ′(1)[1] in

D b Vect(Y ′). This shows that L j∗ respects the filtration of triangulated subcategories

D 0
X ′ ⊂

L j∗

��

D 1
X ′ ⊂

L j∗

��

· · · ⊂ D d−1
X ′

=

L j∗

��

D b Vect(X ′)

D 0
Y ′ ⊂ D 1

Y ′ ⊂ · · · ⊂ D d−1
Y ′

= D b Vect(Y ′)

defined by setting D l
X ′ and D l

Y ′ to be the full idempotent complete triangulated subcategories
of D b Vect(X ′) and D b Vect(Y ′) generated by OX ′ and the complexes OX ′(−k)⊗R j∗OY ′ for
k = 1, ..., l in the first case, and by OY ′(−k) for k = 0, ..., l in the second case. The fact that
D d−1

Y ′ = D b Vect(Y ′) was shown in the proof of Theorem 3.5.1. A similar argument – using the
ampleness of OX ′(1) and the Koszul complex associated with the regular sequence x1, ...,xd ∈
S – shows that we have D d−1

X ′ = D b Vect(X ′). One checks that, on associated graded pieces,
L j∗ induces equivalences of triangulated categories for l = 1, ...,d−1

L j∗ : Dl
X ′/Dl−1

X ′
�−→ Dl

Y ′/Dl−1
Y ′ . (19)

A cohomology calculation shows that the units of adjunction E → Rp∗Lp∗E and F →
Rq∗Lq∗F are isomorphisms for E = OX and F = OY . Since X and Y are affine, the trian-
gulated categories D b Vect(X) and D b Vect(Y ) are generated (up to idempotent completion)
by OX and OY . Therefore, the units of adjunction E → Rp∗Lp∗E and F → Rq∗Lq∗F are iso-
morphisms for all E ∈ D b Vect(X) and F ∈ D b Vect(Y ). It follows that Lp∗ and Lq∗ are fully
faithful and induce equivalences onto their images

Lp∗ : D b Vect(X) �−→ D 0
X ′ and Lq∗ : D b Vect(Y ) �−→ D 0

Y ′ . (20)

This finishes the triangulated category background.
In order to prove the IK-theory statement, define categories Chl

X ′ ⊂ Chb Vect(X ′) and
Chl

Y ′ ⊂ Chb Vect(Y ′) as the fully exact complicial subcategories of those complexes which
lie in D l

X ′ and D l
Y ′ , respectively. Then T (Chl

X ′ ,quis) = D l
X ′ and T (Chl

Y ′ ,quis) = D l
Y ′ . The

functor j∗ respects the filtration of exact categories with weak equivalences
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(Ch0
X ′ ,quis) ⊂

j∗

��

(Ch1
X ′ ,quis) ⊂

j∗

��

... ⊂ (Chd−1
X ′ ,quis)

j∗

��
(Ch0

Y ′ ,quis) ⊂ (Ch1
Y ′ ,quis) ⊂ ... ⊂ (Chd−1

Y ′ ,quis).

(21)

If we denote by quisl the set of maps in Chl which are isomorphisms in D l/D l−1,
then T (Chl ,quisl) = D l/D l−1. By the Theorem on Invariance Of IK-theory Under Deri-
ved Equivalences 3.2.29, the equivalence (19) yields an equivalence of IK-theory spectra
j∗ : IK(Chl

X ′ ,quisl) �−→ IK(Chl
Y ′ ,quisl) for l = 1, ...,d − 1. The sequence (Chl−1,quis) →

(Chl ,quis) → (Chl ,quisl) induces a homotopy fibration of IK-theory spectra by the
Thomason–Waldhausen Localization Theorem 3.2.27. Therefore, all individual squares in (21)
induce homotopy cartesian squares of IK-theory spectra. As a composition of homotopy carte-
sian squares, the outer square also induces a homotopy cartesian squares of IK-theory spectra.
By (20), the outer square of (21) yields the IK-theory square in the theorem.

The formula for IK(X ′) in terms of IK(X) and IK(Y ) follows from the fact that Lp∗ :
IK(X)→ IK(X ′) is split injective with retraction given by Rp∗ and the fact that the cofibre
of Lp∗ is the cofibre of Lq∗ : IK(Y ) → IK(Y ′) which is given by the Projective Bundle
Theorem 3.5.1. �

4 Beyond Triangulated Categories

4.1 Statement of Results

Of course, not all results in algebraic K-theory can be obtained using triangulated category
methods. In this subsection we simply state some of these results. For more overviews on a
variety of topics in K-theory, we refer the reader to the K-theory handbook [24].

4.1.1 Brown–Gersten–Quillen Spectral Sequence [73]

Let X be a noetherian scheme, and write X p ⊂ X for the set of points of codimension p in X .
There is a filtration 0 ⊂ ... ⊂ Coh2(X) ⊂ Coh1(X) ⊂ Coh0(X) = Coh(X) of Coh(X) by the
Serre abelian subcategories Cohi(X) ⊂ Coh(X) of those coherent sheaves whose support has
codimension ≥ i. This filtration together with Quillen’s Localization and Dévissage Theorems
leads to the Brown–Gersten–Quillen (BGQ) spectral sequence

E p,q
1 =

⊕
x∈X p

K−p−q(k(x))⇒ G−p−q(X).

If X is regular and of finite type over a field, inspection of the differential d1 yields an isomor-
phism

E p,−p
2

∼= CHp(X)

where CHp(X) is the Chow-group of codimension p cycles modulo rational equivalence as
defined in [28].
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4.1.2 Gersten’s Conjecture and Bloch’s Formula

The Brown–Gersten–Quillen spectral sequence yields a complex

0→ Gn(X)→
⊕

x∈X 0

Kn(k(x))
d1→

⊕

x∈X 1

Kn−1(k(x))
d1→ ···

The Gersten conjecture says that this complex is exact for X = SpecR where R is a regular local
noetherian ring. The conjecture is proved in case R (is regular local noetherian and) contains a
field [69] building on the geometric case proved in [73]. For other examples of rings satisfying
the Gersten conjecture, see [86]. For K-theory with finite coefficients, Gersten’s conjecture
holds for the local rings of a smooth variety over a discrete valuation ring [32].

As a corollary, Quillen [73] obtains for a regular scheme X of finite type over a field a
calculation of the E2-term of the BGQ-spectral sequence as E p,q

2
∼= H p

Zar(X ,K−q,X ), and he
obtains Bloch’s formula

CHp(X)∼= H p
Zar(X ,Kp,X )

where Kp,X denotes the Zariski sheaf associated with the presheaf U �→ Kp(U).

4.1.3 Computation of K(Fq)

Quillen computed the K-groups of finite fields in [72]. They are given by the formulas
K0(Fq)∼= Z, K2n(Fq) = 0 for n > 0 and K2n−1(Fq)∼= Z/(qn−1)Z for n > 0.

4.1.4 The Motivic Spectral Sequence

Let X be a smooth scheme over a perfect field. Then there is a spectral sequence [27], [55]

E p,q
2 = H p−q

mot (X ,Z(−q))⇒ K−p−q(X)

where H p
mot(X ,Z(q)) denotes the motivic cohomology of X as defined in [62,98]. It is proved

in loc.cit. that this group is isomorphic to Bloch’s higher Chow group CHq(X ,2q− p) as
defined in [13]. Rationally, the spectral sequence collapses and yields an isomorphism [13,53]

Kn(X)Q
∼=

⊕
i

CHi(X ,n)Q.

4.1.5 Milnor K-Theory and the Bloch–Kato Conjecture

Let F be a commutative field. The Milnor K-theory KM∗ (F) of F is the graded ring generated
in degree 1 by symbols {a} for a ∈ F× a unit in F , modulo the relations {ab} = {a}+ {b}
and {c} · {1− c} = 0 for c �= 1. One easily computes KM

0 (F) = Z and KM
1 (F) = F×. Since

K1(F) = F×, since Quillen’s K-groups define a graded ring K∗(F) which is commutative in
the graded sense, and since the Steinberg relation {c} · {1−c} = 0 holds in K2(F), we obtain
a morphism KM∗ (F)→ K∗(F) of graded rings extending the isomorphisms in degrees 0 and 1
above. Matsumoto’s Theorem says that this map is also an isomorphism in degree 2, that is,
the map KM

2 (F)→ K2(F) is an isomorphism; see [59].
In a similarly way, the ring structure on motivic cohomology yields a map

KM
n (F)→ Hn

mot(F,Z(n))
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from Milnor K-theory to motivic cohomology. This map is an isomorphism for all n ∈ N and
any field F by results of Nesterenko–Suslin [68] and Totaro [93].

Let m = pν be a prime power with p different from the characteristic of F , and let Fs be a
separable closure of F . Then we have an exact sequence of Galois modules 1→ μm→ F×s

m→
F×s → 1 where μm denotes the group of m-th roots of unity. The first boundary map in the
associated long exact sequence of étale cohomology groups induces a map F× → H1

et(F,μm).
Using the multiplicative structure of étale cohomology, this map extends to a map of graded
rings KM∗ (F)→ H∗et(F,μ⊗∗m ) which induces the “norm residue homomorphism”

KM
n (F)/m→ Hn

et(F,μ⊗n
m ).

The Bloch–Kato conjecture [11] for the prime p says that this map is an isomorphism for all
n. The conjecture for m = 2ν was proved by Voevodsky [96], and proofs for m = pν odd have
been announced by Rost and Voevodsky.

As a consequence of the Bloch–Kato conjecture, Suslin and Voevodsky show in [88]
(see also [33]) that the natural map from motivic cohomology with finite coefficients to étale
cohomology is an isomorphism in a certain range:

Hi
mot(X ,Z/m( j))

∼=−→ Hi
et(X ,μ⊗ j

m ) for i≤ j and m = pν (22)

where X is a smooth scheme over a field F of characteristic �= p. For i = j +1, this map is still
injective. If charF = p, Geisser and Levine show in [32] that

Hi
mot(F,Z/pν ( j)) = 0 for i �= j and KM

n (F)/pν ∼= Kn(F,Z/pν).

4.1.6 Quillen–Lichtenbaum

The Bloch–Kato conjecture implies the Quillen–Lich–tenbaum conjecture. Let X be a smooth
quasi-projective scheme over the complex numbers C. A comparison of the motivic spectral
sequence 4.1.4 with the Atiyah–Hirzebruch spectral sequence converging to complex topolo-
gical K-theory using the isomorphisms (22) and Grothendieck’s isomorphism between étale
cohomology with finite coefficients and singular cohomology implies an isomorphism

Kalg
n (X ,Z/m)

∼=−→ Ktop
n (XC,Z/m) for n≥ dimX−1

between the algebraic K-theory with finite coefficients of X and the topological complex
K-theory of the analytic topological space XC of complex points associated with X ; see for
instance [71, Theorem 4.1]. For schemes over fields F other than the complex numbers, there
is an analogous isomorphism where topological K-theory is replaced with étale K-theory and
dimX with cdmX provided charF � m; see for instance [54, Corollary 13.3].

4.1.7 Computation of K(Z)

Modulo the Bloch–Kato conjecture for odd primes (which is announced as proven by Rost
and Voevodsky) and the Vandiver conjecture, the K-groups of Z for n≥ 2 are given as follows
[51, 60, 103]

n mod 8 1 2 3 4 5 6 7 0

Kn(Z) Z⊕Z/2 Z/2ck Z/2w2k 0 Z Z/ck Z/w2k 0
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where k is the integer part of 1 + n
4 , and the numbers ck and w2k are the numerator and

denominator of Bk
4k with Bk the k-th Bernoulli number. The Bk’s are the coefficients of the

power series
t

et −1
= 1− t

2
+

∞

∑
k=1

(−1)k+1Bk
t2k

(2k)!

The Vandiver is still wide open, though it seems to be hard to come by a counter example; see
[101, Remark on p. 159] for a discussion of the probability for finding such a counter example.
The Vandiver conjecture is only used in the calculation of K2m(Z). It is in fact equivalent to
K4m(Z) = 0 for all m > 0. In contrast, the calculation of K2m+1(Z) is independent of the
Vandiver conjecture but it does use the Bloch–Kato conjecture.

4.1.8 Cdh Descent [19]

The following is due to Häsemeyer [39]. Let k be a field of characteristic 0, and write Schk
for the category of separated schemes of finite type over k. Let F be a contravariant functor
from Schk to the category of spectra (or chain complexes of abelian groups). Let Y → X← X ′
be maps of schemes in Schk and Y ′ = Y ×X X ′ be the fibre product. Consider the following
square of spectra (or chain complexes)

F(X)

��

�� F(Y )

��
F(X ′) �� F(Y ′)

(23)

obtained by functoriality of F . Suppose that F satisfies the following.

(a) Nisnevich Descent. Let f : X ′ → X be an étale map and Y → X be an open immersion.
Assume that f induces an isomorphism f : (X ′ −Y ′)red

∼= (X −Y )red . Then the square
(23) is homotopy cartesian.

(b) Invariance under nilpotent extensions. The map Xred→X induces an equivalence F(X)�
F(Xred).

(c) Excision for ideals. Let f : R→ S be a map of commutative rings, I ⊂ R be an ideal
such that f : I→ f (I) is an isomorphism and f (I) is an ideal in S. Consider X = SpecR,
Y = SpecR/I, X ′ = SpecS, Y ′ = SpecS/ f (I) and the induced maps between them. Then
(23) is homotopy cartesian.

(d) Excision for blow-ups along regularly embedded centers. Let Y ⊂ X be a regular em-
bedding of pure codimension. A closed immersion is regular of pure codimension d if,
locally, its ideal sheaf is generated by a regular sequence of length d. Let X ′ be the blow-
up of X along Y and Y ′ ⊂ X ′ be the exceptional divisor. Then (23) is homotopy cartesian.

If a functor F satisfies (a)–(d), then the square (23) is homotopy cartesian for any abstract
blow-up square in Schk. A fibre square of schemes as above is called abstract blow-up if
Y ⊂ X is a closed immersion, X ′ → X is proper and X ′ −Y ′ → X−Y is an isomorphism.

A functor F is said to satisfy cdh-descent if it satisfies Nisnevich descent (see (a) above)
and if it sends abstract blow-up squares to homotopy cartesian squares. Thus, a functor for
which (a)–(d) hold satisfies cdh-descent for separated schemes of finite type over a field of
characteristic 0.
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Example (Infinitesimal K-theory [19])

By Remark 3.4.11, Theorems 3.2.27 and 3.5.4, IK-theory satisfies (a) and (d). But neither (b)
nor (c) hold for IK-theory. The same is true for cyclic homology and its variants since (a) and
(d) are formal consequences of the Localization Theorem 3.2.27. Therefore, the homotopy
fibre Kin f of the Chern character IK → HN from IK-theory to negative cyclic homology sa-
tisfies (a) and (d). By a theorem of Goodwillie [34], Kin f satisfies (b), and by a theorem of
Cortiñas [22], Kin f satisfies (c). Therefore, infinitesimal K-theory Kin f satisfies cdh-descent
in characteristic 0.

This was used in [19] to prove that Ki(X) = 0 for i < −d when X is a d-dimensional
scheme essentially of finite type over a field of characteristic 0. Moreover, we have K−d(X) =
Hd

cdh(X ,Z).

Examples

Cdh-descent in characteristic 0 also holds for homotopy K-theory KH [39], periodic cyclic
homology HP [19] and stabilized Witt groups [78].

4.1.9 Homotopy Invariance and Vorst’s Conjecture

Recall from Sect. 2.3.10 that algebraic K-theory is homotopy invariant for regular rings.
More precisely, if R is a commutative regular noetherian ring, then the inclusion of constant
polynomials R→ R[T1, ...,Tn] induces for all i ∈ Z an isomorphism on K-groups

Ki(R)
∼=−→ Ki(R[T1, ...,Tn). (24)

In fact, the converse – a (special case of a) conjecture of Vorst [97]– is true in the following
sense [20]. Let R be (a localization of) a ring of finite type over a field of characteristic zero.
If the map (24) is an isomorphism for all n ∈ N and all i ∈ Z (in fact i = 1+dim R suffices),
then R is a regular ring.

A Appendix

A.1 Background from Topology

In this appendix we recall the definition of a simplicial set and of a classifying space of a
category. Details can be found for instance in [25, 31, 58, 102]. We also recall in Sect. A.1.7,
the definition of a homotopy fibration and in Sect. A.1.8, the definition of a spectrum.

A.1.1 Simplicial Sets

Let Δ be the category whose objects are the ordered sets [n] = {0,1,2, ...,n} for n ≥ 0. A
morphism in this category is an order preserving map of sets. Composition in Δ is composition
of maps of sets. For i = 0, ...,n the unique order preserving injective maps di : [n− 1] →
[n] which leave out i are called face maps. For j = 0, ...,n− 1 the unique order preserving
surjective maps s j : [n]→ [n−1] for which the pre-image of j ∈ [n−1] contains two elements
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are called degeneracy maps. Every map in Δ is a composition of face and degeneracy maps.
Thus, Δ is generated by face and degeneracy maps modulo some relations which the reader
can find in the references cited above.

A simplicial set is a functor X : Δ op → Sets where Sets stands for the category of sets.
Thus, for every integer n ≥ 0 we are given a set Xn, and for every order preserving map
θ : [n]→ [m] we are given a map of sets θ ∗ : Xm→ Xn such that (θ ◦σ)∗ = (σ)∗ ◦ (θ )∗. Since
Δ is generated by face and degeneracy maps, it suffices to specify θ ∗ for face and degeneracy
maps and to check the relations alluded to above. A map of simplicial sets X →Y is a natural
transformation of functors.

A cosimplicial space is a functor Δ→ Top where Top stands for the category of compactly
generated Hausdorff topological spaces. A Hausdorff topological space is compactly genera-
ted if a subset is closed iff its intersection with every compact subset is closed in that compact
subset. Every compact Hausdorff space and every CW-complex is compactly generated. For
details, see [61, VIII.8], [104, I.4]. The standard cosimplicial space is the functor Δ∗ : Δ→Top
where

Δn = {(t0, ...,tn) ∈R
n | ti ≥ 0, t0 + · · ·tn = 1} ⊂ R

n

is equipped with the subspace topology coming from R
n.

An order preserving map θ : [n]→ [m] defines a continuous map

θ∗ : Δn→ Δm : (s0, ...,sn) �→ (t0, ...,tm) with ti = ∑
θ( j)=i

s j

such that (θ ◦σ)∗ = θ∗ ◦σ∗. The space Δn is homeomorphic to the usual n-dimensional ball
with boundary ∂Δn =

⋃
0≤i≤n(di)∗Δn−1 ⊂ Δn homeomorphic to the n−1-dimensional sphere.

The topological realization of a simplicial set X is the quotient topological space

|X |=
⊔

j≥0

Xj×Δ j/∼

where the equivalence relation ∼ is generated by (θ ∗x,t) = (x,θ∗t) for x ∈ Xj, t ∈ Δi and
θ : [i]→ [ j]. A simplex x ∈ Xn is called non-degenerate if x /∈ s∗jXn−1 for all j = 0, ...n− 1.

Write Xnd
n ⊂ Xn for the set of non-degenerate n-simplices. Let |X |n ⊂ |X | be the image of⊔

n≥ j≥0 Xj×Δ j in |X |. Note that |X |0 = X0. One checks that the square

Xnd
n ×∂Δn

� � ��

��

Xnd
n ×Δn

��
|X |n−1

� � �� |X |n
is cocartesian. Therefore, the space |X |n is obtained from |X |n−1 by attaching exactly one
n-cell Δn along its boundary ∂Δn for each non-degenerate n-simplex in X . In particular, |X |=⋃

n≥0 |X |n has the structure of a CW-complex.
If X and Y are simplicial sets, the product simplicial set X ×Y has n-simplices Xn×Yn

with structure maps given by θ ∗(x,y) = (θ ∗x,θ ∗y). A proof of the following proposition can
be found in [25, Proposition 4.3.15].

A.1.2 Proposition

For simplicial sets X and Y the projection maps X×Y → X and X×Y → Y induce a map of
topological spaces |X×Y |→ |X |×|Y | which is a homeomorphism provided the cartesian pro-
duct |X |× |Y | is taken in the category of compactly generated Hausdorff topological spaces.
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A.1.3 The Classifying Space of a Category

Consider the ordered set [n] as a category whose objects are the integers 0, 1, ..., n. There is a
unique map i→ j if i ≤ j. Then a functor [n]→ [m] is nothing else than an order preserving
map. Thus, we can consider Δ as the category whose objects are the categories [n] for n ≥ 0,
and where the morphisms in Δ are the functors [n]→ [m].

Let C be a small category. Its nerve is the simplicial set N∗C whose n-simplices NnC are
the functors [n]→C . A functor θ : [n]→ [m] defines a map NmC → NnC given by F �→ F ◦θ .
We have (θ ◦σ)∗ = (σ)∗ ◦(θ )∗ and N∗C is indeed a simplicial set. An n-simplex in N∗C , that
is, a functor [n]→ C , is nothing else than a string of composable arrows

C0
f0→C1

f1→ ··· fn−1→ Cn (25)

in C . The face map d∗i deletes the object Ci and, if i �= 0,n, it composes the maps fi−1 and
fi. The degeneracy map si doubles Ci and it inserts the identity map 1Ci . In particular, the
n-simplex (25) is non-degenerate iff none of the maps fi is the identity map for i = 0, ...,n−1.

The classifying space BC of a small category C is the topological realization

BC = |N∗C |
of the nerve simplicial set N∗C of C . Any functor C → C ′ induces maps N∗C → N∗C ′ and
BC → BC ′ on associated nerves and classifying spaces.

The classifying space construction commutes with products. This is because a functor
[n]→ C ×C ′ is the same as a pair of functors [n]→ C , [n]→ C ′. Therefore, we have N∗(C ×
C ′) = N∗C ×N∗C ′ and B(C ×C ′) = BC ×BC ′ by Proposition A.1.2.

A.1.4 Example B[1]

The nerve of the category [1] has two non-degenerate 0-simplices, namely the objects 0 and 1.
It has exactly one non-degenerate 1-simplex, namely the map 0→ 1. All other simplices are
degenerate. Thus, the classifying space B[1] of [1] is obtained from the two point set {0,1} by
attaching a 1-cell Δ1 along its boundary ∂Δ1. The attachment is such that the two points of
∂Δ1 are identified with the two points {0,1}. We see that B[1] is homeomorphic to the usual
interval Δ1 ∼= [0,1].

A.1.5 Example BG

For a group G, we let G be the category with one object ∗ and where Hom(∗,∗) = G. Then
πiBG = 0 for i �= 1 and π1BG = G where the isomorphism G→ π1BG sends an element
g ∈G to the loop lg represented by the morphism g : ∗→ ∗. For details, see for instance [102,
Exercise 8.2.4, Example 8.3.3].

A.1.6 Lemma

A natural transformation η : F0→ F1 between functors F0,F1 : C → C ′ induces a homotopy
BF0 � BF1 between the associated maps on classifying spaces BF0,BF1 : BC → BC ′. In par-
ticular, an equivalence of categories C → C ′ induces a homotopy equivalence BC →BC ′.
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Proof:

A natural transformation η : F0 → F1 defines a functor H : [1]×C → C ′ which sends the
object (i,X) to Fi(X) where i = 0,1 and X ∈ C . There are two types of morphisms in [1]×C ,
namely (idi, f ) and (0→ 1, f ) where i = 0,1 and f : X → Y is a map in C . They are sent to
Fi( f ) for i = 0,1 and to ηY F0( f ) = F1( f )ηX , respectively. It is easy to check that H is indeed
a functor. Now, H induces a map [0,1]×BC = B[1]×BC = B([1]×C )→ BC ′ on classifying
spaces whose restrictions to {0}×BC and {1}×BC are BF0 and BF1. Thus, BF0 and BF1 are
homotopic maps.

If F : C → C ′ is an equivalence of categories, then there are a functor G : C ′ → C and
natural isomorphisms FG ∼= 1 and 1 ∼= GF . Thus, the map BG : BC ′ → BC is a homotopy
inverse of BF . �

A.1.7 Homotopy Fibres and Homotopy Fibrations

Let g : Y → Z be a map of pointed topological spaces. The homotopy fibre F(g) of g is the
pointed topological space

F(g) = {(γ ,y)| γ : [0,1]→ Z s.t. γ(0) = ∗,γ(1) = g(y)} ⊂ Z[0,1]×Y

with base-point the pair (∗,∗) where the first ∗ is the constant path t �→ ∗ for t ∈ [0,1]. There
is a continuous map of pointed spaces F(g)→ Y given by (γ ,y) �→ y which fits into a natural
long exact sequence of homotopy groups [104, Corollary IV.8.9]

· · · → πi+1Z→ πiF(g)→ πiY → πiZ→ πi−1F(g)→ ··· (26)

ending in π0Y → π0Z. For more details, see [104, Chap. I.7].

A sequence of pointed spaces X
f→ Y

g→ Z such that the composition is the constant map
to the base-point of Z is called homotopy fibration if the natural map X → F(g) given by x �→
(∗, f (x)) is a homotopy equivalence. In this case, there is a long exact sequence of homotopy
groups as in (26) with X in place of F(g).

A.1.8 Spectra and Homotopy Cartesian Squares of Spectra

A spectrum is a sequence E0,E1,E2, ... of pointed topological spaces together with pointed
maps σi : Ei→ ΩEi+1 called bonding maps or structure maps. The spectrum (E,σ) is called
Ω -spectrum if the bonding maps σi are homotopy equivalences for all i ∈ N. For i ∈ Z, the
homotopy group πiE of the spectrum (E,σ) is the colimit

πiE = colim(πi+lΩ k−lEk
σ→ πi+lΩ k−l+1Ek+1

σ→ πi+lΩ k−l+2Ek+2→ ···).
This colimit is independent of k and l as long as i+ l ≥ 0 and k ≥ l. Thus, it also makes sense
for i < 0. If (E ,σ) is an Ω -spectrum, then πiE = πiE0 for i≥ 0 and πiE = π0E−i for i < 0.

A map of spectra f : (E,σ)→ (E ′,σ ′) is a sequence of pointed maps fi : Ei → E ′i such
that σ ′i fi = (Ω fi+1)σi. The map of spectra is called equivalence of spectra if it induces an
isomorphism on all homotopy groups πi for i ∈ Z. The homotopy fibre F( f ) of a map of spec-
tra f : (E,σ)→ (E ′,σ ′) is the sequence of pointed topological spaces F( f0),F( f1),F( f2), ...
together with bonding maps F( fi)→ΩF( fi+1) = F(Ω fi+1) between the homotopy fibres of
fi and Ω fi+1 given by the maps σi and σ ′i . Taking a colimit over the exact sequences (26)
yields the exact sequence of abelian groups for i ∈ Z

· · · → πi+1E ′ → πiF( f )→ πiE→ πiE
′ → πi−1F( f )→ ··· (27)
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A sequence of spectra E ′′ → E
f→ E ′ is a homotopy fibration if the composition E ′′ → E ′

is (homotopic to) the zero spectrum (the spectrum with all spaces a point), and the induced
map E ′′ → F( f ) is an equivalence of spectra. In this case, we can replace F( f ) by E ′′ in the
long exact sequence (27). A commutative square of spectra

E00
f0 ��

g0

��

E01

g1

��
E10

f1 �� E11

is called homotopy cartesian if the induced map F( f0)→F( f1) on horizontal homotopy fibres
(or equivalently, the map F(g0)→ F(g1) on vertical homotopy fibres) is an equivalence of
spectra. From the exact sequence (27) and the equivalence F( f0)

∼→ F( f1), we obtain a long
exact sequence of homotopy groups of spectra for i ∈ Z

· · · → πi+1(E11)→ πi(E00)→ πi(E01)⊕πi(E10)→ πi(E11)→ πi−1(E00)→ ···
For more on spectra, see [1, III], [9, 43, 79].

A.2 Background on Triangulated Categories

Our main references here are [48, 66, 95].

A.2.1 Definition

A triangulated category is an additive category A together with an auto-equivalence3 T :
A →A and a class of sequences

X
u→Y

v→ Z
w→ T X (28)

of maps in A called distinguished triangles. They are to satisfy the axioms TR1 – TR4 below.

TR1. Every sequence of the form (28) which is isomorphic to a distinguished triangle is a

distinguished triangle. For every object A of A , the sequence A
1→ A→ 0→ TA is a

distinguished triangle. Every map u : X → Y in A is part of a distinguished triangle
(28).

TR2. A sequence (28) is distinguished if and only if Y
v→ Z

w→ T X
−Tu→ TY is a distinguished

triangle.

TR3. For any two distinguished triangles X
u→ Y

v→ Z
w→ T X and X ′ u′→ Y ′ v′→ Z′ w′→ T X ′ and

for any pair of maps f : X → X ′ and g : Y → Y ′ such that gu = u′ f there is a map
h : Z→ Z′ such that hv = v′g and (T f )w = w′h.

TR4. Octahedron axiom, see [48, 95] and in Sect. A.2.2 below.

In a distinguished triangle (28) the object Z is determined by the map u up to (non-canonical)
isomorphism. We call Z “the” cone of u.

3 We may sometimes write A[1] instead of TA especially when A is a complex.
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A.2.2 Good Maps of Triangles and the Octahedron Axiom

A useful reformulation of the octahedron axiom TR4 (which we haven’t stated...) is as follows
[66, Definition 1.3.13 and Remark 1.4.7]. Call a map of distinguished triangles

A0
a0 ��

f0

��

A1
a1 ��

f1

��

A2
a2 ��

f2

��

TA0

Ta0

��
B0

b0 �� B1
b1 �� B2

b2 �� T B0

(29)

good if the mapping cone (in the sense of complexes)

B0⊕A1

(
b0 f1
0 −a1

)

�� B1⊕A2

(
b1 f2
0 −a2

)

�� B2⊕TA0

(
b2 T f0
0 −Ta0

)

�� T B0⊕TA1 (30)

is a distinguished triangle. The reformulation of the octahedron axiom [63, Theorem 1.8] says
that in a triangulated category every commutative diagram

A0
a0 ��

f0

��

A1
a1 ��

f1

��

A2
a2 �� TA0

Ta0

��
B0

b0 �� B1
b1 �� B2

b2 �� T B0

in which the rows are distinguished triangles can be completed into a good morphism of
distinguished triangles.

We will need the following special case below. If in a good map of distinguished triangles
as in (29) the map f2 is an isomorphism then the triangle

A0

(− f0
a0

)
�� B0⊕A1

(b0 f1 ) �� B1
a2 f−1

2 b1 �� TA0

is distinguished. This is because, in case f2 is an isomorphism, this triangle is a direct fac-
tor of the distinguished triangle obtained by rotating via TR2 the distinguished triangle (30).
Therefore, it is a distinguished triangle itself [16, Lemma 1.6].

A.2.3 Definition

Let R and S be triangulated categories. A triangle functor [48, Sect. 8] from R to S is a pair
(F,ϕ) where F : R →S is an additive functor and ϕ : FT

∼=→ T F is a natural isomorphism
such that for any distinguished triangle (28) in R, the triangle FX→ FY → FZ→ T FX given
by the maps (Fu,Fv,ϕX Fw) is distinguished in S . Triangle functors can be composed in the
obvious way.

If a triangle functor has an adjoint, then the adjoint can be made into a triangle functor
in a canonical way [66, Lemma 5.3.6], [47, 6.7]. In particular, if a triangulated category has
infinite sums, then an arbitrary direct sum of distinguished triangles is a distinguished triangle.

A.2.4 Exercise

Let F : S → T be a triangle functor. If the functor is conservative (that is, a map f in S is
an isomorphism iff F( f ) is) and full, then F is fully faithful.
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A.2.5 Example (The Homotopy Category of an Additive Category)

Let A be an additive category. We denote by K (A ) the homotopy category of chain
complexes in A . Its objects are the chain complexes in A . Maps in K (A ) are chain maps
up to chain homotopy. The category K (A ) is a triangulated category where a sequence is a
distinguished triangle if it is isomorphic in K (A ) to a cofibre sequence

X
f→Y

j→C( f )
q→ T X .

Here, C( f ) is the mapping cone of the chain map f : X → Y which is C( f )i = Y i⊕Xi+1 in

degree i and has differential di =
(

dY f
0 −dX

)
. The object T X is the shift of X which is (T X)i =

Xi+1 in degree i and has differential di =−di+1
X . The maps j : Y →C( f ) and q : C( f )→ T X

are the canonical inclusions and projections in each degree.

A.2.6 Calculus of Fractions

Let C be a category and w ⊂ MorC be a class of morphisms in C . The localization of C
with respect to w is the category obtained from C by formally inverting the morphisms in w.
This is a category C [w−1] together with a functor C → C [w−1] which satisfies the following
universal property. For any functor C → D which sends maps in w to isomorphisms, there
is a unique functor C [w−1]→ D such that the composition C → C [w−1]→ D is the given
functor C →D . In general, the category C [w−1] may or may not exist. It always exists if C
is a small category.

If the class w satisfies a “calculus of right (or left) fractions”, there is an explicit description
of C [w−1] as we shall explain now. A class w of morphisms in a category C is said to satisfy
a calculus of right fractions if (a) – (c) below hold.

(a) The class w is closed under composition. The identity morphism 1X is in w for every
object X of C .

(b) For all pairs of maps u : X → Y and s : Z→ Y such that s ∈ w, there are maps v : W → Z
and t : W → X such that t ∈ w and sv = ut.

(c) For any three maps f ,g : X→Y and s : Y → Z such that s ∈ w and s f = sg, there is a map
t : W → X such that t ∈ w and f t = gt.

If the class w satisfies the dual of (a) – (c) then it is said to satisfy a calculus of left fractions.
If w satisfies both, a calculus of left and right fractions, then w is said to satisfy a calculus of
fractions.

If a class w of maps in a category C satisfies a calculus of right fractions, then the localized
category C [w−1] has the following description. Objects are the same as in C . A map X → Y

in C [w−1] is an equivalence class of data X
s←M

f→ Y written as a right fraction f s−1 where

f and s are maps in C such that s∈ w. The datum f s−1 is equivalent to the datum X
t←N

g→Y
iff there are map s̄ : P→ N and t̄ : P→M such that s̄ (or t̄) is in w and such that st̄ = s̄t and
f t̄ = gs̄. The composition ( f s−1)(gt−1) is defined as follows. By (b) above, there are maps h
and r in C such that r ∈ w and sh = gr. Then ( f s−1)(gt−1) = ( f h)(tr)−1. In this description
it is not clear whether HomC [w−1](X ,Y ) is actually a set. However, it is a set if C is a small
category. But in general, this issue has to be dealt with separately.
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A.2.7 Verdier Quotient

Let A be a triangulated category and B⊂A be a full triangulated subcategory. The class w of
maps whose cones are isomorphic to objects in B satisfies a calculus of fractions. The Verdier
quotient A /B is, by definition, the localized category A [w−1]. It is a triangulated category
where a sequence is a distinguished triangle if it is isomorphic to the image of a distinguished
triangle of A under the localization functor A →A [w−1]; see [95], [66, Sect. 2]. If B′ ⊂A
denotes the full subcategory of those objects which are zero in the Verdier quotient A /B,
then we have B ⊂B′, the category B′ is a triangulated category and every object of B′ is a
direct factor of an object of B [66, 2.1.33].

A.2.8 Exercise

The following exercises are variations on a theme called “Bousfield localization”; see [66,
Sect. 9].

(a) Let L : S → T be a triangle functor which has a right adjoint R such that the counit of
adjunction LR→ id is an isomorphism. Let λ : R ⊂S be the full subcategory of S of
those objects which are zero in T . Then the sequence R→S →T is an exact sequence
of triangulated categories (in the sense of Definition 3.1.5). Furthermore, the inclusion
λ : R ⊂S has a right adjoint ρ : S →R, and the counit and unit of adjunction fit into
a functorial distinguished triangle in S

λρ → 1→ RL→ λρ[1].

(b) Let T be a triangulated category, and let T0,T1 ⊂ T be full triangulated subcategories.
Assume that Hom(A0,A1) = 0 for all objects A0 ∈T0 and A1 ∈T1. If T is generated as a
triangulated category by the union of T0 and T1, then the composition T1 ⊂T →T /T0
is an equivalence. Moreover, an inverse induces a left adjoint T → T /T0 ∼= T1 to the
inclusion T1 ⊂ T .

(c) Let A
λ→B

L→ C be a sequence of triangle functors. Assume that λ and L have right
adjoints ρ and R such that the unit 1→ ρλ and counit LR→ 1 are isomorphisms. Assume
furthermore that for every object B of B the unit and counit of adjunction extend to a
distinguished triangle in B

λρ(B)→ B→ RL(B)→ λρ(B)[1].

Then the sequence of triangulated categories (λ ,L) is exact.

A.2.9 Example (The Derived Category of an Abelian Category)

Let A be an abelian category. Its unbounded derived category D (A ) is obtained from the
category ChA of chain complexes in A by formally inverting the quasi-isomorphisms.
Recall that a chain map f : A → B is a quasi-isomorphism if it induces isomorphisms
Hi( f ) : HiA→ HiB in cohomology for all i ∈ Z where for a chain complex (C,d) we have
HiC = kerdi/imdi−1. Since homotopy equivalences are quasi-isomorphisms, the category
D (A ) is also obtained from the homotopy category K (A ) by formally inverting the quasi-
isomorphisms. Let Kac(A ) ⊂ K (A ) be the full subcategory of acyclic chain complexes.
This is the category of those chain complexes C for which HiC = 0 for all i∈ Z. The inclusion
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Kac(A ) ⊂K (A ) is closed under taking cones. Furthermore, a chain complex A is acyclic
iff TA is. Therefore, Kac(A ) is a full triangulated subcategory of K (A ). Since a map is a
quasi-isomorphism iff its cone is acyclic, we see that the category D (A ) is the Verdier quo-
tient K (A )/Kac(A ). In particular, the category D(A ) is a triangulated category (provided
it exists, that is, provided it has small homomorphism sets).

There are versions D bA , D +A , D−A of DA which are obtained from the category
of bounded, bounded below, bounded above chain complexes in A by formally inverting
the quasi-isomorphisms. Again, they are the Verdier quotients K b+−(A )/K b+−

ac (A ) of the
corresponding homotopy categories by the homotopy category of acyclic chain complexes.

A.2.10 Exercise

Let A be an abelian category. Show that the obvious triangle functors D bA ,D +A ,D−A →
DA are fully faithful. Hint: Use the existence of the truncation functors τ≥n : DA → D +A
and τ≤n : D A → D−A which for a complex E are the quotient complex τ≥nE = · · ·0→
cokerdn−1→ En+1→ ··· and the subcomplex τ≤nE = · · · → En−1→ ker(dn)→ 0→ ··· of
E; see [8, Exemple 1.3.2].

A.2.11 The Derived Category of a Grothendieck Abelian Category

Recall that a Grothendieck abelian category is an abelian category A in which all set-indexed
colimits exist, where filtered colimits are exact and which has a generator. An object U is a
generator of A if for every object X of A there is a surjection

⊕
I U → X with I some index

set. A set of objects is called set of generators if their direct sum is a generator. The unbounded
derived category DA of a Grothendieck abelian category has small hom sets [102, Remark
10.4.5], [5, 26].

For a Grothendieck abelian category A , the derived category DA has the following
explicit description. Following [87], a complex I ∈ ChA is called K -injective if for every
map f : X → I and every quasi-isomorphism s : X → Y there is a unique map (up to
homotopy) g : Y → I such that gs = f in K (A ). This is equivalent to the requirement
that HomK A (A, I) = 0 for all acyclic chain complexes A. For instance, a bounded below
chain complex of injective objects in A is K -injective. But K -injective chain complexes
do not need to consist of injective objects (for instance, every contractible chain complex
is K -injective), nor does an unbounded chain complex of injective objects need to be
K -injective.

In a Grothendieck abelian category, every chain complex has a K -injective resolution
[5, 26]. This means that for every chain complex X in A there is a quasi-isomorphism
X → I where I is a K -injective complex. Let Kin j(A ) ⊂ K (A ) be the full subcate-
gory of all K -injective chain complexes. This is a triangulated subcategory. By defini-
tion, a quasi-isomorphism I

∼→ X from a K -injective complex I to an arbitrary complex
X always has a retraction up to homotopy. Therefore, the composition of triangle functors
Kin j(A ) ⊂ K (A )→ D (A ) is fully faithful. This composition is also essentially surjec-
tive because every chain complex in A has a K -injective resolution. Therefore, the triangle
functor Kin j(A )→ D (A ) is an equivalence.

A.2.12 Right Derived Functors

Let F : A → B be an additive functor between abelian categories. The functor induces a
triangle functor K A →K B between the homotopy categories of unbounded chain com-
plexes in A and B. Denote by LA and LB the localization triangle functors K A → DA
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and K B→DB. Furthermore, denote by F : K A →DB the composition of K A →K B
with the localization functor LB . The right-derived functor of F is a pair (RF,λ ) as in the
diagram

where RF : DA →DB is a triangle functor and λ : F→ RF ◦LA is a natural transformation
of triangle functors which has the following universal property. For any pair (G,γ) where
G : DA →DB is a triangle functor and γ : F→G◦LA is a natural transformation of triangle
functors, there is a unique natural transformation of triangle functors η : RF → G such that
γ = η ◦λ . Of course, the pair (RF,λ ) is uniquely determined by the universal property up to
isomorphisms of natural transformations of triangle functors.

If F : A →B is any additive functor between Grothendieck abelian categories, then the
right derived functor (RF,λ ) of F always exists. For E ∈ DA , it is given by RF(E) = F(I)
where E→ I is a K -injective resolution of E. The natural transformation λ at E is the image
FE→ FI under F of the resolution map E→ I. More generally, one has the following.

A.2.13 Exercise

Let F : K A → DB be a triangle functor. Assume that there is a triangle endofunctor
G : K A →K A such that FG : K A → DB sends quasi-isomorphisms to isomorphisms.
Assume furthermore that there is a natural quasi-isomorphism λ : id

∼−→ G such that the two
natural transformations Gλ and λG of functors G→ GG satisfy FGλ = FλG. Then the pair
(FG,Fλ ) represents the right derived functor of F .

In the remainder of the subsection, we collect some basic facts about Frobenius exact
categories and their triangulated stable categories. They constitute the framework for the com-
plicial exact categories considered in the text.

A.2.14 Frobenius Exact Categories

An object P in an exact category E is called projective if for every deflation q : Y � Z and
every map f : P→ Z there is a map g : P→ Y such that f = qg. An exact category E has
enough projectives if for every object E of E there is a deflation P � E with P projective.
Dually, an object I in E is called injective if for every inflation j : X � Y and every map
f : X→ I there is a map g : Y → I such that f = g j. An exact category E has enough injectives
if for every object E of E there is an inflation E � I with I injective.

An exact category E is called Frobenius exact category if it has enough injectives and
enough projectives, and an object is injective iff it is projective. Call two maps f ,g : X → Y
in a Frobenius exact category E homotopic if their difference factors through a projective-
injective object. Homotopy is an equivalence relation. The stable category E of a Frobenius
exact category E is the category whose objects are the objects of E and whose maps are



Higher Algebraic K-Theory 225

the homotopy classes of maps in E . The stable category of a Frobenius exact category is a
triangulated category as follows. To define the shift T : E → E , we choose for every object X
of E an inflation X � I(X) into an injective object, and we set T X = I(X)/X . Distinguished
triangles in the stable category E are those triangles which are isomorphic in E to sequences
of the form

X
f→ Y → I(X)�X Y → I(X)/X

where f : X → Y is any map in E . For more details, we refer the reader to [48] and [40,
Sect. 9].

A.2.15 Complicial Exact Categories as Frobenius Categories

Recall from Sect. 3.2.1 the bounded complex of free Z-modules C = Z · 1C⊕Z ·η where 1C
and η have degrees 0 and −1, respectively. There is a degree-wise split inclusion of chain
complexes i : 11 = Z � C defined by 1 �→ 1C. Similarly, denote by P ∈ Chb(Z) the complex
P = Hom(C,11) which is concentrated in degrees 0 and 1 where it is a free Z-module of rank
1. There is a degree-wise split surjection p : P→ 11 = Z defined by f �→ f (1C).

Let E be a complicial exact category. This means that E comes equipped with an action
by the category Chb(Z) of bounded complexes of free Z-modules of finite rank; see Definition
3.2.2. We have natural inflations iE = i⊗ 1E : E � CE and natural deflations pE = p⊗ 1E :
PE � E for every object E of E . Call an inflation j : X � Y in E Frobenius inflation if for
every object U ∈ E and every map f : X →CU there is a map g : Y →CU such that f = g j.
Similarly, call a deflation q : Y � Z in E Frobenius deflation if for every object U ∈ E and
every map f : CU → Z there is a map g : CU → Y such that f = qg.

A.2.16 Lemma

Let E be a complicial exact category.

(a) For every object E of E , the natural inflation iX : X � CX is a Frobenius inflation, and
the natural deflation pX : PX � X is a Frobenius deflation.

(b) Frobenius inflations (deflations) are closed under composition.
(c) Frobenius inflations (deflations) are preserved under push-outs (pull-backs)
(d) Split injections (surjections) are Frobenius inflations (deflations).
(e) For a conflation X � Y � Z in E , the map X � Y is a Frobenius inflation iff the map

Y � Z is a Frobenius deflation.
(f) The category E equipped with the Frobenius conflations as defined in Sect. 3.2.5 is a

Frobenius exact category. In this exact structure, an object is injective (projective) iff it is
a direct factor of an object of the form CU with U ∈ E .

Proof:

For (a), we note that C is a commutative dg Z-algebra with unique multiplication μ :C⊗C→C
and unit map i : 11→C : 1 �→ 1C . Let f : X→CU be a map in E . We define the map f ′ : CX→
CU as the composition CX

1⊗ f→ CCU
μ⊗1→ CU . Then we have f ′iX = (μ⊗1U )◦ (1C⊗ f )◦ (i⊗

1X ) = (μ⊗1U )◦ (i⊗1C⊗1U )◦ f = f since the composition C
i⊗1→ C⊗C

μ→C is the identity.
This shows that iX is a Frobenius inflation. The proof that PX → X is a Frobenius deflation is
similar using the fact that P = Hom(C,11) is a co-algebra. Sections (b), (c) and (d) are clear.
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For (e), we note that the map CX → T X is a Frobenius deflation. This is because this map
is isomorphic to PT X → T X via the isomorphism C→ Hom(C,T ) = PT which is adjoint to

C⊗C
μ→C→ T . Let X � Y be a Frobenius inflation. By definition, there is a map Y →CX

such that the composition X → Y → CX is the canonical Frobenius inflation iX : X � CX .
Passing to quotients, we see that Y � Z is a pull-back of CX � T X . Since the latter is a
Frobenius deflation, we can apply (c), and we see that Y � Z is a Frobenius deflation as well.
The other implication in (e) is dual. For (f), we note that (a) – (e) imply that E together with the
Frobenius conflations is an exact category. By definition, objects of the form CU are injective
and projective for the Frobenius exact structure, hence any of its direct factors is injective
and projective. For an object I of E which is injective in the Frobenius exact structure, the
Frobenius inflation I � CI has a retraction since, by the definition of injective objects, the
map 1 : I→ I to the injective I extends to CI. Therefore, the injective object I is a direct factor
of CI. Similarly for projective objects. �

A.3 The Derived Category of Quasi-Coherent Sheaves

A.3.1 Separated Schemes and Their Quasi-Coherent Sheaves

Let X be a quasi-compact and separated scheme. In the category Qcoh(X) of quasi-coherent
OX -modules, all small colimits exist and filtered colimits are exact (as they can be calcu-
lated locally on quasi-compact open subsets). Every quasi-coherent OX -module is a filtered
colimit of its quasi-coherent submodules of finite type [37, 9.4.9]. Therefore, the set of quasi-
coherent OX -modules of finite type forms a set of generators for Qcoh(X). Hence, the category
Qcoh(X) is a Grothendieck abelian category. In particular, its derived category D Qcoh(X)
exists, and it has an explicit description as in Example A.2.9.

A.3.2 Examples of Hom-Sets in D Qcoh(X)

For a complex E of quasi-coherent OX -modules, the set of homomorphisms Hom(OX ,E) in
the triangulated category D Qcoh(X) is given by the formula

Hom(OX ,E) = H0(Rg∗E)

where g : X → SpecZ is the structure map of X . We can see this by replacing E with a K -
injective resolution E ∼→ I. Then both sides are H0(I(X)).

More generally, for a vector bundle A on X , the homomorphism set Hom(A,E) in
D Qcoh(X) can be calculated as above using the equality

Hom(A,E) = Hom(OX ,E⊗A∨)

where A∨ is the dual sheaf Hom(A,OX ) of A. Again, we can see this by choosing a K-injective
resolution E ∼→ I of E and noting that E⊗A∨ ∼→ I⊗A∨ is a K -injective resolution of E⊗A∨
when A (and thus A∨) is a vector bundle.
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A.3.3 The Čech Resolution

Let X be a quasi-compact scheme, and let U = {U0, ...,Un} be a finite cover of X by quasi-
compact open subsets Ui ⊂ X . For a k+1 tuple i = (i0, ..., ik) such that 0≤ i0, ..., ik ≤ n, write
ji : Ui = Ui0 ∩ ...∩Uik ⊂ X for the open immersion of the intersection of the corresponding
Ui’s. Let F be a quasi-coherent OX module. We consider the sheafified Čech complex Č(U ,F)
associated with the cover U of X . In degree k it is the quasi-coherent OX -module

Č(U ,F)k =
⊕

i

ji∗ j∗i F

where the indexing set is taken over all k+1-tuples i = (i0, ..., ik) such that 0≤ i0 < · · ·< ik ≤
n. The differential dk : Č(U ,F)k→ Č(U ,F)k+1 for the component i = (i0, ..., ik+1) is given
by the formula

(dk(x))i =
k+1

∑
l=0

(−1)l ji∗ j∗i x(i0,...,îl ,...,ik+1).

Note that the complex Č(U ,F) is concentrated in degrees 0, ...,n.
The units of adjunction F → ji∗ j∗i F define a map F → Č(U ,F)0 =

⊕n
i=0 ji∗ j∗i F into the

degree zero part of the Čech complex such that d0(F) = 0. Therefore, we obtain a map of
complexes of quasi-coherent OX -modules F → Č(U ,F). This map is a quasi-isomorphism
for any quasi-coherent OX -module F as can be checked by restricting the map to the open
subsets Ui of the cover U of X .

More generally, if F is a complex, then Č(U ,F) is a bicomplex, and we can consider
its total complex TotČ(U ,F) which, by a slight abuse of notation, we will still denote by
Č(U ,F). The map F→ Č(U ,F) is a map of bicomplexes. Taking total complexes, we obtain
a natural quasi-isomorphism of complexes of quasi-coherent OX -modules

λF : F
∼→ Č(U ,F). (31)

which is called the Čech resolution of F associated with the open cover U .

A.3.4 Exercise

Let X be a scheme and U be a finite open cover of X . Write Č for the functor F �→ Č(U ,F)
from complexes of quasi-coherent sheaves to itself defined in Sect. A.3.3 above. Show that for
any complex F of quasi-coherent sheaves on X , the following two maps Č(F)→ Č(Č(F)) are
chain homotopic:

Č(λF)∼ λČ(F).

A.3.5 Explicit Description of Rg∗

Let g : X → Y be a map of quasi-compact schemes such that there is a finite cover U =
{U0, ...,Un} of X with the property that the restrictions gi :Ui→Y of g to all finite intersections
Ui = Ui0 ∩ ...∩Uik of the Ui’s are affine maps where i = (i0, ..., ik) and i0, ..., ik ∈ {0, ...,n}. If
X and Y are quasi-compact and separated such a cover always exists. In this case, any cover
U = {U0, ...,Un} of X by affine open subschemes Ui ⊂ X such that each Ui maps into an open
affine subscheme of Y has this property.
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Using the cover U instead of K -injective resolutions, one can construct the right-derived
functor Rg∗ : D Qcoh(X)→ D Qcoh(Y ) of g∗ : Qcoh(X)→ Qcoh(Y ) as follows. By assump-
tion, for every k + 1-tuple i = (i0, ..., ik), the restriction gi = g ◦ ji : Ui → Y of g to Ui is an
affine map. Therefore, the functor

g∗Č(U ) : Qcoh(X)→ ChQcoh(Y ) : F �→ g∗Č(U ,F)

is exact. Taking total complexes, this functor extends to a functor on all complexes

g∗Č(U ) : ChQcoh(X)→ ChQcoh(Y ) : F �→ g∗Č(U ,F)

which preserves quasi-isomorphisms as it is exact and sends acyclics to acyclics. This functor
is equipped with a natural quasi-isomorphism given by the Čech resolution

λF : F
∼−→ Č(U ,F).

By Exercises A.2.13 and A.3.4, the right derived functor Rg∗ of g∗ is represented by the pair
(g∗Č(U ),g∗λ ).

A.3.6 Lemma

Let g : X → Y be a map of quasi-compact and separated schemes. Then for any set Ei, i ∈ I,
of complexes of quasi-coherent OX -modules, the following natural map of complexes of OY -
modules is a quasi-isomorphism

⊕
I Rg∗ (Ei)

∼−→ Rg∗ (
⊕

I Ei) .

Proof:

This follows from the explicit construction of Rg∗ given in Sect. A.3.5, for which the map in
the lemma is already an isomorphism in ChQcoh(Y ). �

A.3.7 Lemma (Base-Change for Open Immersions)

Let X = U ∪V be a quasi-compact separated scheme which is covered by two quasi-compact
open subschemes U and V . Denote by j : U ↪→ X, jV : U ∩V ↪→V , i : V ↪→ X, iU : U ∩V ↪→U
the corresponding open immersions. Then for every complex E of quasi-coherent OU -modules,
the natural map

i∗ ◦R j∗E
∼=−→ R jV∗ ◦ i∗U E

of complexes of quasi-coherent OV -modules is an isomorphism in D Qcoh(V ).
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Proof

We first make the following remark. For a quasi-coherent OU -module M, we have the
canonical map i∗ j∗M → jV∗i∗U M which is adjoint to the map j∗V i∗ j∗M = i∗U j∗ j∗M → i∗U M
obtained by applying i∗U to the counit map j∗ j∗M → M. Calculating sections over open
subsets, we see that the map i∗ j∗M → jV∗i∗U M is an isomorphism for every quasi-coherent
OU -module M.

For the proof of the lemma, recall that U is quasi-compact. Therefore we can find a finite
open affine cover U = {U0, ...,Un} of U . For this cover, all inclusions Ui0 ∩ ...∩Uik ⊂ X are
affine maps because X is separated. By Sect. A.3.5 and the remark above, for a complex E of
quasi-coherent OU -modules, we have an isomorphism

i∗R j∗E = i∗ j∗Č(U ,E)
∼=→ jV∗i∗UČ(U ,E) = jV∗Č(U ∩V, i∗U E)

where U ∩V is the cover {U0∩V, ...,Un∩V} of V . Pull-backs of affine maps are affine maps.
Hence, all inclusions (Ui0 ∩V )∩ ...∩ (Uik ∩V )⊂V are affine maps. By Sect. A.3.5, the func-
tor jV∗Č(U ∩V ) represents R jV∗. So, the isomorphism above represents an isomorphism of

functors i∗ ◦R j∗
∼=−→ R jV∗ ◦ i∗U . �

A.3.8 Lemma

Let X = V1 ∪V2 be a quasi-compact and separated scheme which is covered by two quasi-
compact open subschemes V1,V2 ⊂ X. Denote by ji : Vi ↪→ X and j12 : V1 ∩V2 ↪→ X the
corresponding open immersions. Then for E ∈D Qcoh(X), there is a distinguished triangle in
D Qcoh(X)

E −→ R j1∗( j∗1 E)⊕R j2∗( j∗2 E)−→ R j12∗( j∗12 E)−→ E[1].

Proof

Consider the commutative square in D Qcoh(X)

E ��

��

R j1∗( j∗1 E)

��
R j2∗( j∗2 E) �� R j12∗( j∗12 E)

in which the maps are induced by the unit of adjunction maps 1→ R j∗ ◦ j∗ and the base-
change isomorphism in Lemma A.3.7. By Sect. A.2.2, we can complete this square to the
right into a good map of distinguished triangles. The map on horizontal cones is an isomor-
phism when restricted to U1 (since both cones are zero, by Base-Change A.3.7) and when res-
tricted to U2 (by the Five Lemma and Base-Change A.3.7). Therefore, the map on horizontal
cones is an isomorphism in D Qcoh(X). Finally, the sequence E→R j1∗( j∗1 E)⊕R j2∗( j∗2 E)→
R j12∗( j∗12 E) can be completed to a distinguished triangle by the last paragraph in
Sect. A.2.2. �
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A.4 Proof of Compact Generation of DZ Qcoh(X)

In this appendix, we prove Proposition 3.4.6, first for schemes with an ample family of line
bundles and then, by a formal induction argument, for general quasi-compact and separated
schemes. To summarize, in Lemma A.4.10 we show that DZ Qcoh(X) is compactly generated
and in Lemmas A.4.8 and A.4.9 we show that the compact objects in DZ Qcoh(X) are preci-
sely those complexes which are isomorphic (in the derived category) to bounded complexes
of vector bundles when restricted to the open subsets of an affine open cover of X . Part of the
exposition is taken from [83]. When Z = X , the reader may also find proofs in [65, Corollary
2.3 and Proposition 2.5] and [18, Theorems 3.1.1 and 3.1.3].

We first recall the usual technique of extending a section of a quasi-coherent sheaf from
an open subset cut out by a divisor to the scheme itself. For a proof, see [37, Théorème 9.3.1],
[41, Lemma II.5.14].

A.4.1 Lemma

Let X be a quasi-compact and separated scheme, s ∈ Γ (X ,L) be a global section of a line
bundle L on X, and Xs = {x ∈ X | s(x) �= 0 ∈ Lx/mxLx} be the non-vanishing locus of s. Let F
be a quasi-coherent sheaf on X. Then the following hold.

(a) For every f ∈ Γ (Xs,F), there is an n ∈ N such that f ⊗ sn extends to a global section of
F⊗L⊗n.

(b) For every f ∈ Γ (X ,F) such that f|Xs
= 0, there is an n ∈N such that f ⊗ sn = 0.

A.4.2 Schemes with an Ample Family of Line Bundles

A scheme X has an ample family of line bundles if there is a finite set L1, ...,Ln of line
bundles on X and if there are global sections si ∈ Γ (X ,Li) such that the non-vanishing loci
Xsi = {x ∈ X | si(x) �= 0 ∈ Lx/mxLx} form an open affine cover of X ; see [94, Definition 2.1],
[85, II 2.2.4]. Note that such an X is necessarily quasi-compact.

Recall that if f ∈ Γ (X ,L) is a global section of a line bundle L on a scheme X , then the
open inclusion Xf ⊂ X is an affine map (as can be seen by choosing an open affine cover of X
trivializing the line bundle L). As a special case, the open subscheme Xf is affine whenever X
is affine. Thus, for the affine cover X =

⋃
Xsi associated with an ample family of line-bundles

as above, all finite intersections of the Xsi ’s are affine.
Let X be a scheme which has an ample family of line bundles. Then there is a set

{Li| i ∈ I} of line bundles on X together with global sections si ∈ Γ (X ,Li) such that the
set {Xsi | i ∈ I} of non-vanishing loci forms an open affine basis for the topology of X [94,
2.1.1 (b)]. If X is affine, this follows from the definition of the Zariski topology. For a general
X (with an ample family of line bundles), the sections which give rise to a basis of topology
on an open affine Xs can be extended (up to a power of s) to global sections, by Lemma A.4.1.
Therefore, every open subset of a basis for Xs is also the non-vanishing locus of a global
section of some line bundle on X .

Let X be a scheme which has an ample family of line bundles L1, ...,Ln. Then for every
quasi-coherent sheaf F on X , there is a surjective map M � F of quasi-coherent sheaves where
M is a (possibly infinite) direct sum of line bundles of the form Lk

i for i = 1, ...,n and k < 0.
This follows from the definition of an ample family of line bundles and Lemma A.4.1.
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A.4.3 Truncated Koszul Complexes

Let X be a quasi-compact and separated scheme, and let Li, i = 1, ..., l be a finite set of line
bundles together with global sections si ∈ Γ (X ,Li). Let U =

⋃l
i=1 Xsi be the union of the non-

vanishing loci Xsi of the si’s, and j : U ⊂ X be the corresponding open immersion. The global
sections si define maps si : OX → Li of line-bundles whose OX -duals are denoted by s−1

i :
L−1

i →OX . We consider the maps s−1
i as (cohomologically graded) chain-complexes with OX

placed in degree 0. For an l-tuple n = (n1, ...,nl) of negative integers, the Koszul complex

l⊗

i=1

(Lni
i

sni→ OX ) (32)

is acyclic over U . This is because the map sni = (s−1
i )⊗|ni| : Lni

i →OX is an isomorphism when
restricted to Xsi , hence the Koszul complex (32) is acyclic (even contractible) over each Xsi .
Let K(sn) denote the bounded complex which is obtained from the Koszul complex (32) by de-
leting the degree zero part OX and placing the remaining non-zero part in degrees−l +1, ...,0.
The last differential d−1 of the Koszul complex defines a map

K(sn) =

[
l⊗

i=1

(Lni
i

sni→ OX )

]≤−1

[−1] ε−→ OX

of complexes of vector bundles. This map of complexes is a quasi-isomorphism over U , since
its cone, the Koszul complex, is acyclic over U . For a complex M of quasi-coherent OX -
modules, we write εM for the tensor product map εM = 1M⊗ ε : M⊗K(sn)→M⊗OX ∼= M.

The following proposition is a generalization of Lemma A.4.1. It is implicit in the proof
of [94, Proposition 5.4.2]. We omit the proof (which is not very difficult, but not very enligh-
tening either). Details can be found in loc.cit. and in [83, Lemma 9.6].

A.4.4 Proposition

Let X be a quasi-compact and quasi-separated scheme, and L1, ...Ln be a finite set of line
bundles together with global sections si ∈ Γ (X ,Li) for i = 1, ...,n. Let U =

⋃n
i=1 Xsi be the

union of the non-vanishing loci Xsi of the si’s, and j : U ⊂ X be the corresponding open im-
mersion. Let M be a complex of quasi-coherent OX -modules and let A be a bounded complex
of vector bundles on X. Then the following hold.

(a) For every map f : j∗A → j∗M of complexes of OU -modules between the restrictions
of A and M to U, there is an l-tuple of negative integers n = (n1, ...,nl) and a map
f̃ : A⊗K(sn)→M of complexes of OX -modules such that f ◦ j∗(εA) = j∗( f̃ ).

(b) For every map f : A→ M of complexes of OX -modules such that j∗( f ) = 0, there is an
l-tuple of negative integers n = (n1, ...,nl) such that f ◦εA = 0.

A.4.5 Lemma

Let X be a quasi-compact scheme, and s ∈Γ (X ,L) be a global section of a line-bundle L such
that Xs is affine. Let N→ E be a map of complexes of quasi-coherent OX -modules such that
its restriction to Xs is a quasi-isomorphism. If E is a bounded complex of vector bundles on X,
then there is an integer k > 0 and a map of complexes E⊗L−k→ N whose restriction to Xs is
a quasi-isomorphism.
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Proof:

Write j : Xs ⊂ X for the open inclusion. Since Xs is affine, say Xs = SpecA, we have an equi-
valence of categories between quasi-coherent OXs -modules and A-modules under which the
map j∗N→ j∗E becomes a quasi-isomorphism of complexes of A-modules with j∗E a boun-
ded complex of projectives. Any quasi-isomorphism of complexes of A-modules with target
a bounded complex of projectives has a retraction up to homotopy. Therefore, the choice of a
homotopy right inverse f : j∗E → j∗N yields a quasi-isomorphisms. By Lemma A.4.1, there
is a map of complexes f̃ : E⊗Lk → N such that j∗ f̃ = f · sk for some k < 0. In particular, f̃
is a quasi-isomorphism when restricted to Xs. �

Lemma A.4.5 has the following generalization.

A.4.6 Lemma

Let X be a quasi-compact and separated scheme. Let U =
⋃n

i=1 Xsi be the union of affine non-
vanishing loci Xsi associated with global sections si ∈ Γ (X ,Li) of line bundles Li on X where
i = 1, ...,n. Denote by j : U ⊂ X the open immersion. Let b : M→ B be a map of complexes of
quasi-coherent OX -modules such that its restriction j∗b to U is a quasi-isomorphism. If B is a
bounded complex of vector bundles on X, then there is a map of complexes a : A→M such that
its restriction to U is a quasi-isomorphism and A is a bounded complex of vector bundles on X.

Proof:

We prove the lemma by induction on n. For n = 1, this is Lemma A.4.5. Let U0 =
⋃n−1

i=1 Xsi ⊂X .
By the induction hypothesis, there is map a0 : A0 → M from a bounded complex of vec-
tor bundles A0 such that a0 is a quasi-isomorphism when restricted to U0. The induced map
b0 : C(a0)→C(ba0) on mapping cones is a quasi-isomorphism when restricted to U (hence
when restricted to Xsn ) since b is. Moreover, both cones are acyclic on U0. Note that we have
a distinguished triangle A0 → M → C(a0)→ A0[1] in K Qcoh(X). Since Xsn is affine and
C(ba0) a bounded complex of vector bundles, Lemma A.4.5 implies the existence of a map
a1 : A1→C(a0) of complexes with A1 = C(ba0)⊗Lk

n a bounded complex of vector bundles
on X which is acyclic when restricted to U0, and a1 is a quasi-isomorphism when restricted to
Xsn . It follows that a1 is a quasi-isomorphism when restricted to U . Let A be a complex such
that A→ A1→ A0[1] extends to a distinguished triangle in K Qcoh(X) where the last map is
A1→ C(a0)→ A0[1]. We can choose A to be a bounded complex of vector bundles because
A0 and A1 are also of this form. Let a : A→M be a map such that (a,a1,1A0[1]) is a map of tri-
angles. By the Five-lemma, the map a : A→M is a quasi-isomorphism when restricted to U . �

The following proposition is a more precise version of Proposition 3.4.6 in case X has an
ample line bundle. For a closed subscheme Z ⊂ X of a scheme X , denote by D b

Z Vect(X) ⊂
D b Vect(X) the full triangulated subcategory of those complexes of vector bundles which are
acyclic over X−Z. Recall from Sect. 3.4.4 the definition of a “compact object” and of a “com-
pactly generated triangulated category”.

A.4.7 Proposition

Let X be a quasi-compact and separated scheme which has an ample family of line bundles
L1, ...,Ln. Let Z ⊂ X be a closed subset with quasi-compact open complement j : U = X−Z ⊂
X. Then the following hold.
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(a) D Qcoh(X) is a compactly generated triangulated category with generating set of com-
pact objects the set

L = { Lki
i [l] | i = 1, ...,n, ki < 0, ki, l ∈ Z }.

The inclusion Vect(X) ⊂ Qcoh(X) yields a triangle functor D b Vect(X) ⊂ D Qcoh(X)
which is fully faithful and induces an equivalence of D b Vect(X) with the triangulated
subcategory of compact objects in D Qcoh(X). In particular, D b Vect(X) is generated –
as an idempotent complete triangulated category – by the set of line bundles Lki

i where
i = 1, ...,n, where ki < 0 and ki ∈ Z.

(b) The following sequence of triangulated categories is exact up to factors

D b
Z Vect(X)→ D b Vect(X)→ D b Vect(U).

(c) The triangulated category D Z Qcoh(X) is compactly generated, and the inclusion
Vect(X)⊂ Qcoh(X) of vector bundles into quasi-coherent sheaves yields a fully faithful
triangle functor D b

Z Vect(X)⊂D Z Qcoh(X) which induces an equivalence of D b
Z Vect(X)

with the triangulated subcategory of compact objects in D Z Qcoh(X).

Proof:

For (a), we first note that a vector bundle A on X is compact in D Qcoh(X). This is be-
cause the functor E �→ Hom(A,E) is, in the notation of Sect. A.3.2, the same as the func-
tor E �→ H0(Rg∗(E ⊗A∨)). The latter functor commutes with infinite direct sums since its
component functors E �→ E ⊗ A∨, Rg∗ and H0 : D (Z -Mod)→ Z -Mod have this property.
Secondly, recall that the compact objects form a triangulated subcategory. Therefore, every
complex of vector bundles is compact in D Qcoh(X). Next, we will check that the set L
which consists of compact objects generates D Qcoh(X). For that, let E be a complex such
that every map L→ E is zero in D Qcoh(X) when L ∈ L . We have to show that E = 0 in
D Qcoh(X), that is, that H∗E = 0. Since L is closed under shifts, it suffices to show that
the cohomology sheaf H0E = ker(d0)/im(d−1) is zero where di is the i-th differential of
E. By ampleness of the family L1, ...,Ln, we can choose a surjection M � ker(d0) of quasi-
coherent OX -modules with M a (possibly infinite) direct sum of line bundles of the form Lki

i
where i = 1, ...,n and ki < 0. Composing the inclusion of complexes ker(d0)→ E with this
surjection defines a map of complexes M � ker(d0)→ E which induces a surjective map
M = H0M � ker(d0) � H0E of cohomology sheaves. Since every map Lki

i → E is zero in
D Qcoh(X), the induced surjective map M � H0E is the zero map, hence H0E = 0. Altoge-
ther, the arguments above show that D Qcoh(X) is compactly generated by the set L . Finally,
the triangle functors D b Vect(X) ⊂ D b Qcoh(X) ⊂ D Qcoh(X) are fully faithful. The first by
the dual of Sect. 3.1.7 (b) and the second by Sect. A.2.10. The remaining statements in (a)
follow directly from Neeman’s Theorem 3.4.5 (a) and from Sect. 3.1.7 (c).

For part (b), denote by U -quis the set of maps of complexes of vector bundles on X
which are quasi-isomorphisms when restricted to U = X −Z. By construction, the following
sequence of triangulated categories is exact

D b
Z Vect(X)→ D b Vect(X)→ T (Chb Vect(X),U -quis),

and the triangle functor T (Chb Vect(X),U -quis) → D b Vect(U) is conservative. Using
Proposition A.4.4 and Lemma A.4.6 we see that the last triangle functor is full. Any conser-
vative and full triangle functor is fully faithful, by Sect. A.2.4. Hence, the last triangle functor
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is fully faithful. The restriction to U of an ample family of line bundles on X is an ample
family of line bundles on U . Therefore, part (a) shows that the triangle functor is also cofinal.
It follows that the sequence in part (b) of the Proposition is exact up to factors.

For part (c), we already know that the functor D b
Z Vect(X)→ D Z Qcoh(X) is fully fai-

thful since both categories are full subcategories of D Qcoh(X). By part (a), every object in
D b

Z Vect(X) is compact in D Qcoh(X). Since the inclusion D Z Qcoh(X) ⊂ D Qcoh(X) com-
mutes with infinite sums, the objects of D b

Z Vect(X) are also compact in D Z Qcoh(X). Let
S ⊂ D Z Qcoh(X) be the smallest full triangulated subcategory closed under arbitrary co-
products in D Z Qcoh(X) which contains D b

Z Vect(X). Then S is compactly generated with
category of compact objects D b

Z Vect(X). By Neeman’s Theorem 3.4.5 (b), the triangulated
category D Qcoh(X)/S is compactly generated. It has as category of compact objects the
idempotent completion of D b Vect(X)/D b

Z Vect(X). By part (b), this category is D b Vect(U).
The functor D Qcoh(X)/S → D Qcoh(U) preserves coproducts and compact objects, and
it induces an equivalence of categories of compact objects. Any triangle functor between
compactly generated triangulated categories which commutes with coproducts and which in-
duces an equivalence on compact objects is an equivalence. Therefore, the triangle functor
D Qcoh(X)/S → D Qcoh(U) is an equivalence. It follows that S = D Z Qcoh(X). �

For the remainder of the subsection, write D X (A,F) for maps in D Qcoh(X) from A to F ,
and similarly for U , V and U ∩V in place of X .

A.4.8 Lemma

Let X = U ∪V be a quasi-compact and separated scheme covered by two quasi-compact
open subschemes U, V . Then a complex A ∈D Qcoh(X) is compact iff A|U ∈D Qcoh(U) and
A|V ∈ D Qcoh(V ) are compact.

Proof:

Write j : U ↪→ X for the open immersion. Let A ∈ D Qcoh(X) be a compact object, and let
Fi ∈D Qcoh(U) be a set of complexes on U where i ∈ I. In the sequence of equations

DU ( j∗A,
⊕

I Fi) = D X (A,R j∗
⊕

I Fi)

= D X (A,
⊕

I R j∗Fi)

=
⊕

I D X (A,R j∗Fi)

=
⊕

I DU ( j∗A,Fi),

the first and last are justified by adjointness of j∗ and R j∗, the second by Sect. A.3.6, and the
third by compactness of A. This shows that A|U is compact. The same argument also shows
that A|V is compact.

For the other direction, assume that A|U and A|V are compact. Then A|U∩V is also compact,
by the argument above. Let Fi ∈ D Qcoh(X) be a set of complexes of quasi-coherent sheaves
on X where i ∈ I. We have

D X (A,R j∗ j∗
⊕

I Fi) = DU ( j∗A, j∗
⊕

I Fi) = DU ( j∗A,
⊕

I j∗Fi), (*)
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by adjointness of j∗ and R j∗ and the fact that j∗ commutes with infinite sums (as it is a left
adjoint). Similarly, for V and U ∩V in place of U . For every i ∈ I, Lemma A.3.8 provides us
with a distinguished triangle

Fi −→ R j1∗( j∗1 Fi)⊕R j2∗( j∗2 Fi)−→ R j12∗( j∗12 Fi)−→ Fi[1] (**)

where j1 : U ⊂ X , j2 : V ⊂ X and j12 : U ∩V ⊂ X are the corresponding open immersions.
Taking direct sum, we obtain a distinguished triangle

⊕
I Fi→⊕

I R j1∗( j∗1 Fi)⊕⊕
I R j2∗( j∗2 Fi)→⊕

I R j12∗( j∗12 Fi)→⊕
I Fi[1]

which receives a canonical map from (**). Using Lemma A.3.6, we have a canonical isomor-
phism

⊕
I Rg∗(g∗Fi)

∼=→ Rg∗(g∗
⊕

I Fi) for g = j1, j2, j12, and the last distinguished triangle
becomes

⊕
I Fi→ R j1∗( j∗1

⊕
I Fi)⊕R j2∗( j∗2

⊕
I Fi)→ R j12∗( j∗12

⊕
I Fi)→⊕

I Fi[1].

Applying the functor D X (A, ) to the last triangle, the triangles (**) and the natural map from
(**) to the last triangle, we obtain a map of long exact sequences of abelian groups. In view
of the identification (*) above, this is the commutative diagram

· · · →⊕
ID X (A,Fi) →

��

⊕
IDU (A,Fi)⊕⊕

IDV (A,Fi) →

∼=
��

⊕
IDU∩V (A,Fi)→ ···

∼=
��

· · · → D X (A,
⊕

IFi) → DU (A,
⊕

IFi)⊕DV (A,
⊕

IFi) →DU∩V (A,
⊕

IFi)→ ···

where we wrote DU (A,Fi) in place of DU (A|U ,Fi|U ), similarily for V and U ∩V . All but every
third vertical map in the diagram is an isomorphism, by compactness of A|U , A|V and A|U∩V .
By the Five Lemma, the remaining vertical maps are also isomorphisms. Hence, A is compact.

�

Let j : U ⊂ X be an open immersion of quasi-compact and separated schemes with clo-
sed complement Z = X −U . Recall that j∗ : D Qcoh(X)→ D Qcoh(U) has a right adjoint
R j∗ such that the counit of adjunction j∗R j∗ → 1 is an isomorphism. By Exercise A.2.8
(a), the inclusion J : D Z Qcoh(X) ⊂ D Qcoh(X) has a right adjoint which we denote by
R : D Qcoh(X)→ D Z Qcoh(X). It is part of a functorial distinguished triangle

JR(E)→ E→ R j∗ j∗E→ JR(E)[1]. (33)

A.4.9 Lemma

Let X be a quasi-compact and separated scheme, Z ⊂ X a closed subset with quasi-compact
open complement j : U = X − Z ⊂ X. Then an object A ∈ D Z Qcoh(X) is compact in
D Z Qcoh(X) iff it is compact in D Qcoh(X).

Proof:

Let A be an object of D Z Qcoh(X). If A is compact in D Qcoh(X) then A is also compact
in D Z Qcoh(X) because the inclusion D Z Qcoh(X) ⊂ D Qcoh(X) commutes with infinite
coproducts.



236 Marco Schlichting

For an object B ∈D Z Qcoh(X), we have

D X (B,R j∗ j∗E) = DU ( j∗B, j∗E) = 0.

Therefore, the long exact sequence of hom-sets associated with the distinguished triangle (33)
yields an isomorphism D X (B,JRE) ∼= D X (B,E). Since j∗ and R j∗ commute with infinite
coproducts, the distinguished triangle (33) shows that IR : D Qcoh(X)→ D Qcoh(X) also
commutes with infinite coproducts. Let A be a compact object of D Z Qcoh(X), and let Fi be a
set of objects in D Qcoh(X) where i ∈ I. Then

D X (JA,
⊕

I Fi) = D X (JA,JR
⊕

I Fi) = D X (JA,
⊕

I JRFi) = D X (JA,J
⊕

I RFi)

= D Z Qcoh(X)(A,
⊕

I RFi) =
⊕

I D Z Qcoh(X)(A,RFi)

=
⊕

I D X (JA,Fi).

Thus, A is also compact in D Qcoh(X). �

A.4.10 Lemma

Let X be a quasi-compact and separated scheme, Z ⊂ X a closed subset with quasi-compact
open complement X−Z ⊂ X. Then the triangulated category D Z Qcoh(X) is compactly gene-
rated.

Proof:

The lemma is true when X has an ample family of line bundles, by Proposition A.4.7. In par-
ticular, it is true for affine schemes and their quasi-compact open subschemes. The proof for
general quasi-compact and separated X is by induction on the number of elements in a finite
cover of X by open subschemes which have an ample family of line bundles. We only need
to prove the induction step. Assume X = U ∪V is covered by two open subschemes U and V
such that the lemma holds for U , V and U ∩V in place of X . Denote by i, ī, j, and j̄ the open
immersions V ↪→ X , U ∩V ↪→U , U ↪→ X , and U ∩V ↪→V , respectively.

Consider the diagram of triangulated categories

D Z−U Qcoh(X) J ��

�
��

D Z Qcoh(X)
j∗ ��

i∗

��

D Z∩U Qcoh(U)

ī∗

��
D Z∩V−U∩V Qcoh(V ) �� D Z∩V Qcoh(V )

j̄∗ �� D Z∩U∩V Qcoh(U ∩V )

in which the rows are exact, by (the argument in the proof of) Lemma 3.4.3 (a), and the left
vertical map is an equivalence, by Lemma 3.4.3 (b).

Let A be a compact object of D Z∩U Qcoh(U). We will show that E = A⊕A[1] is (up to iso-
morphism) the image j∗C of a compact object C of D Z Qcoh(X). By induction hypothesis, the
lower row in the diagram is an exact sequence of compactly generated triangulated in which
the functors preserve infinite coproducts and compact objects (Lemmas A.4.8 and A.4.9). By
Lemmas A.4.8 and A.4.9, ī∗A is compact. By Neeman’s Theorem 3.4.5 (b) and Remark 3.1.14,
there is a compact object B of D Z∩V Qcoh(V ) and an isomorphism g : j̄∗B ∼=→ ī∗E. Define the
object C of D Z Qcoh(X) to be the third object in the distinguished triangle in D Z Qcoh(X)
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C −→ Ri∗B⊕R j∗E−→Ri j̄∗(ī∗E)−→C[1]

in which the middle map on the summands Ri∗B and R j∗E are given by the maps g :
(i j̄)∗Ri∗B = j̄∗B→ j̄∗E and id : (i j̄)∗R j∗E = ( jī)∗R j∗E = ī∗E → ī∗E, in view of the ad-
junction between R(i j̄)∗ and (i j̄)∗. By the Base-Change Lemma A.3.7, we have j∗C ∼= E and
i∗C ∼= B. By Lemmas A.4.8 and A.4.9, C is compact. Summarizing, every compact object of
D Z∩U Qcoh(U) is a direct factor of the image of a compact object of D Z Qcoh(X).

To finish the proof that D Z Qcoh(X) is compactly generated, let E be an object of
D Z Qcoh(X) such that every map from a compact object of D Z Qcoh(X) to E is trivial. We
have to show that E = 0. Since compact objects of D Z−U Qcoh(X) are also compact objects
of D Z Qcoh(X) (Lemma A.4.9), all maps from compact objects of D Z−U Qcoh(X) to E va-
nish. The category D Z−U Qcoh(X) is compactly generated. This is because it is equivalent
to D Z∩V∪(V−U) Qcoh(V ) which is compactly generated, by induction hypothesis. Therefore,
all maps from all objects of D Z−U Qcoh(X) to E are trivial. For the right adjoint R of J, we
therefore have R(E) = 0. The distinguished triangle (33) then shows that the unit of adjunc-
tion E → R j∗ j∗E is an isomorphism. I claim that j∗E = 0. For that, it suffices to show that
DU (A, j∗E) = 0 for all compact A∈D Z∩U Qcoh(U), since D Z∩U Qcoh(U) is compactly gene-
rated, by induction hypothesis. All such compact A’s are direct factors of objects of the form
j∗C with C ∈ D Z Qcoh(X) compact. Therefore, it suffices to show that DU ( j∗C, j∗E) = 0
for all compact C ∈ D Z Qcoh(X). But DU ( j∗C, j∗E) = DX (C,R j∗ j∗E) = DX (C,E) = 0. So
j∗E = 0. In view of the isomorphism E ∼= R j∗ j∗E, we have E = 0. �
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on schemes. Ann. Sci. École Norm. Sup. (4), 30(1), 1–39 (1997)
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