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ON THE HOMOLOGY STABILITY RANGE FOR SYMPLECTIC

GROUPS

MARCO SCHLICHTING

Abstract. We improve, by a factor of 2, known homology stability ranges
for the integral homology of symplectic groups over commutative local rings
with infinite residue field and show that the obstruction to further stability is
bounded below by Milnor-Witt K-theory. In particular our stability range is
optimal in many cases.
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1. Introduction

This paper addresses the question of optimal homology stability for symplec-
tic groups over local rings. Recall that the symplectic group Sp2n(R) over a
commutative ring R is the group of R-linear automorphisms A of R2n that pre-
serve the standard symplectic inner product, that is, 〈Ax,Ay〉 = 〈x, y〉 for all
x = (x1, x2, ..., x2n), y = (y1, y2, ..., y2n) ∈ R2n where 〈x, y〉 =

∑n
i=1(x2i+1y2i+2 −

x2i+2y2i+1). We consider Sp2n(R) as a subgroup of Sp2n+2(R) by means of the

embedding A 7→
(
1R2 0
0 A

)
. The following is part of Theorem 7.1 in the text. All

homology groups in this paper are with integer coefficients unless indicated other-
wise.

Theorem 1.1. Let R be a commutative local ring with infinite residue field and
n ≥ 1 an integer. Then the relative integral homology groups satisfy

(1.1) Hd(Sp2n(R), Sp2n−2(R)) = 0, d < 2n.

In particular, for all integers n ≥ 0 inclusion of groups induces isomorphisms

(1.2) H2n(Sp2nR)
∼=
−→ H2n(Sp2n+2 R)

∼=
−→ H2n(Sp2n+4R)

∼=
−→ · · ·

and a surjection followed by isomorphisms

(1.3) H2n+1(Sp2nR) ։ H2n+1(Sp2n+2R)
∼=
−→ H2n+1(Sp2n+4R)

∼=
−→ · · · .
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2 MARCO SCHLICHTING

For n = 1, the isomorphisms (1.2) where proved by van der Kallen [vdK77]
generalizing the results of Matsumoto [Mat69] for infinite fields. In joint work with
Sarwar [SS21], we proved (1.3) for n = 1. Mirzaii [Mir05] proves that the relative
homology groups in (1.1) vanish for d < n − 1. For infinite fields, Essert [Ess13]
and Sprehn-Wahl [SW20] prove the vanishing of that group for d < n. Thus, our
result improves the best known stability ranges by a factor of two.

For a commutative local ring R with infinite residue field, consider the graded
Z[R∗]-algebra generated in degree 1 by the augmentation ideal I[R∗] ⊂ Z[R∗] mod-
ulo the Steinberg relation [a]⊗ [1− a] for a, 1− a ∈ R∗. For n ≥ 2, the n-th degree
part of that algebra is the n-th Milnor-Witt K-group KMW

n (R) of R [Sch17, §4]
which was first defined in [Mor12] for fields where it plays an important role in
A1-homotopy theory. The following is Theorem 7.2 in the text.

Theorem 1.2. Let R be a commutative local ring with infinite residue field and
n ≥ 1 an integer. Then the inclusion Sp2n(R) ⊂ SL2n(R) induces a surjection

H2n(Sp2nR, Sp2n−2R) ։ H2n(SL2nR, SL2n−1R) ∼= KMW
2n (R).

In particular, the homology stability range in Theorem 1.1 is optimal as soon
as the Milnor-Witt K-theory group KMW

2n (R) is non-trivial. This happens, for
instance, when the residue field of R has a real embedding. For many infinite fields,
the surjection H4(Sp4R, Sp2 R) ։ KMW

4 (R) is not injective; see Remark 7.3.

The strategy for proving our homology stability range is classical. We construct
a highly connected chain complex on which our groups act and study the resulting
spectral sequences. The chain complex we use is essentially that of [SS21]. In loc.
cit.we were not able to prove degeneration of the spectral sequence. This is what is
achieved here. Our innovation is the Limit Theorem 4.9 which gives a criterion for
the vanishing of certain modules built out of relative homology groups that carry
an action of the multiplicative monoid (R, ·, 1) of a ring R and may be useful for
groups other than Sp2n(R); see the examples in Section 4.

2. Non-degenerate unimodular sequences

In this section we review notation and a few results from [SS21].

Throughout this paper, n ≥ 0 will be an integer, R will be a commutative local
ring with infinite residue field, R∗ its group of units, GLn(R) the group of invertible
n× n matrices with entries in R,

ψ2n = ψ2 ⊥ · · · ⊥ ψ2 =




ψ2

ψ2

. . .
ψ2



 =

n⊕

1

ψ2, ψ2 =
(

0 1
−1 0

)

the standard hyperbolic symplectic form of rank 2n,

Sp2n(R) = {A ∈ GL2n(R)|
tAψ2nA = ψ2n}

the symplectic group or rank 2n, considered as a subgroup of Sp2n+2(R) by means
of the embedding

(2.1) Sp2n(R) ⊂ Sp2n+2(R) : A 7→
(

1 0 0
0 1 0
0 0 A

)
.

For the purpose of this paper, the symplectic group of rank 2n+ 1 is the subgroup

Sp2n+1(R) = {A ∈ Sp2n+2(R)| Ae1 = e1}
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of Sp2n+2(R) fixing the first standard basis vector e1. This is the group of matrices

(2.2)
(

1 c tuψM
0 1 0
0 u M

)

where ψ = ψ2n, M ∈ Sp2n(R), u ∈ R2n, c ∈ R. The inclusions (2.1) refine to the
sequence of inclusions of groups

(2.3) 1 = Sp0(R) ⊂ Sp1(R) ⊂ Sp2(R) ⊂ · · · ⊂ Spn(R) ⊂ Spn+1(R) ⊂ . . .

where

Sp2n(R) ⊂ Sp2n+1(R) :M 7→
(

1 0 0
0 1 0
0 0 M

)
, Sp2n−1(R) ⊂ Sp2n(R) :M 7→M.

In Theorem 7.1 below we study homology stability for the sequence of groups (2.3).
We shall denote the inclusions Spr(R) ⊂ Sps(R) by ε

s
r, or simply by ε if source and

target group are understood, r ≤ s. Small rank symplectic groups are as follows

Sp0(R) = {1}, Sp1(R) = {( 1 c0 1 ) | c ∈ R} , Sp2(R) = SL2(R).

Let 0 ≤ q be an integer. We denote by Skewq(R) the set of q× q skew symmetric
matrices with entries in R, that is those matrices A = (aij) such that aij = −aji,
aii = 0, aij ∈ R, 1 ≤ i, j ≤ q. We denote by

Skew+
q (R) ⊂ Skewq(R)

the subset of non-degenerate skew-symmetric matrices, that is those matrices A ∈
Skewq(R) such that for all subsets I ⊂ {1, ..., q} of even cardinality the matrix AI ,
obtained from A deleting all rows and columns not in I, is invertible.

The R-module R2n will aways be equipped with the standard symplectic bilinear
form 〈x, y〉 =

∑n
i=1(x2i+1y2i+2 − x2i+2y2i+1) where x = t(x1, x2, ..., x2n), y =

t(y1, y2, ..., y2n) ∈ R2n. The Gram matrix Γ(v) of a sequence v = (v1, ..., vq) of q
vectors v1, ..., vq ∈ R2n is the skew symmetric q × q matrix

Γ(v) = (〈vi, vj〉)
q
i,j=1 = tv ψ2n v

with (i, j) entry 〈vi, vj〉. A sequence v = (v1, ..., vq) of q vectors in R2n is called
unimodular if each subsequence of length r ≤ min(q, 2n) is a basis of a direct
summand of R2n. A unimodular sequence v = (v1, ..., vq) of vectors in R

2n is called
non-degenerate if for all subsets I ⊂ {1, ...q} of even cardinality |I| ≤ min(q, 2n),
the Gram matrix Γ(vI) is invertible, where vI is the sequence of vectors obtained
from v by deleting all columns not in I. We denote by

Uq(R
2n) = {v = (v1, ..., vq)| v non-degenerate unimodular in R2n}

the set of non-degenerate unimodular sequences of length q in R2n. The set
U0(R

2n) is the singleton set consisting of the empty sequence, and the set Uq(R
0)

is the singleton set with unique element the sequence (0, 0, ..., 0) of length q. The
symplectic group Sp2n(R) acts from the left on Uq(R

2n) by matrix multiplication
Av = (Av1, ..., Avq) for A ∈ Sp2n(R), v = (v1, ..., vq) ∈ Uq(R

2n). Note that the
Gram matrix of v and Av are the same for all A ∈ Sp2n(R). The following was
proved in [SS21, §2].

Lemma 2.1. Let R be a local ring. Then for all integers 0 ≤ q ≤ 2n+1 the Gram
matrix defines a bijection

Γ : Sp2n(R)\Uq(R
2n)

∼=
−→ Skew+

q (R).



4 MARCO SCHLICHTING

Definition 2.2. Let R be a local ring and n, q ≥ 1 be integers. A non-degenerate
unimodular sequence u = (u1, ..., uq) ∈ Uq(R

2n) is said to be in normal form if for
r = min(2n, q), the matrix (u1, ..., ur) is upper triangular, (ui)i = 1 for i odd and
(ui)i−1 = 0 for i even, i = 1, ..., r.

In this paper, we will identify Rq with the subspace of R2n sending the standard
basis vector ei of R

q to the standard basis vector ei of R
2n, i = 1, ..., q. Note that

if q ≤ 2n and u ∈ Uq(R
2n) is in normal form then u spans Rq.

Lemma 2.3. Let R be a local ring and n, q ≥ 1 be integers with q ≤ 2n+1. Then for
every A ∈ Skew+

q (R), there is a non-degenerate unimodular sequence u ∈ Uq(R
2n)

which is in normal form and such that Γ(u) = A.

In the situation of Lemma 2.3, we will call u a normal form of A.

Proof of Lemma 2.3. This is proved by induction on q ≥ 1. The case q = 1 is
clear, choosing u1 = e1. Assume we are given A ∈ Skewq+1(R) and u ∈ Uq(R

2n)
generating Rq, for instance, u is in normal form, such that Γ(u) = A{1,...,q} where
for I ⊂ {1, ..., q + 1} we write AI for the skew symmetric matrix obtained from
A by deleting all rows and columns not in I. Then u is a basis in Rq and thus
defines an invertible q × q matrix. If q is even, then there is a unique x ∈ Rq

such that Γ(u, x) = A{1,...,q+1}, namely, the solution to tuψqx = v where v is the
q + 1st column of A with last row removed. If q = 2n, set uq+1 = x. If q < 2n, set
uq+1 = x+ eq+1. If q is odd, then q − 1 is even and we let x ∈ Rq−1 be the unique
solution to Γ(u1, ..., uq−1, x) = A{1,...q−1,q̂,q+1} and set uq+1 = x + αeq+1 where α
is the (q, q + 1)-entry of A. �

For a set S, we denote by Z[S] the free abelian group with basis S. We make
the graded abelian group

(2.4) Z[U∗(R
2n)] = {Z[Uq(R

2n)], q ≥ 0}

into a chain complex with differential d : Z[Uq(R
2n)] → Z[Uq−1(R

2n)] defined on
basis elements (v1, ..., vq) by

dv =

q∑

i=1

(−1)i+1div

where div = v∧i = (v1, ..., v̂i, ..., vq) is obtained from v by deleting the i-th vector
vi. The following was proved in [SS21, §2].

Lemma 2.4. Let R be a local ring with infinite residue field and n ≥ 0 an integer.
Then the chain complex (Z[U∗(R

2n)], d∗) is acyclic. That is, for all p ∈ Z we have

Hp(Z[U∗(R
2n)]) = 0.

Similarly, we make the graded abelian group Z[Skew+
∗ (R)] into a chain complex

with differential d : Z[Skew+
q (R)] → Z[Skew+

q−1(R)] defined on basis elements A ∈

Skew+
q (R) by

dA =

q∑

i=1

(−1)i+1diA

where diA = A∧
i is obtained from A by deleting the i-th row and column. The

following was again proved in [SS21, §2].
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Lemma 2.5. Let R be a local ring with infinite residue field. Then the chain
complex (Z[Skew+

∗ (R)], d∗) is acyclic. That is, for all p ∈ Z we have

Hp(Z[Skew
+
∗ (R)]) = 0.

3. The spectral sequence and its E1-page

In this section we introduce the spectral sequence (3.1) which leads to our ho-
mological stability range in Theorem 1.1 and identify its E1-term.

For a complex M∗ of abelian groups and an integer r ∈ Z, we denote by M≤r ⊂
M∗ the subcomplex which is (M≤r)i = Mi for i ≤ r and (M≤r)i = 0 for i > r.
We call the resulting filtration · · · ⊂ M≤r−1 ⊂ M≤r ⊂ M≤r+1 ⊂ · · · of M∗, the
filtration by degree. The filtration by degree

C≤0(R
2n) ⊂ C≤1(R

2n) ⊂ · · · ⊂ C≤2n−1(R
2n) ⊂ C≤2n(R

2n) = C∗(R
2n)

of the complex

C∗(R
2n) = Z[U≤2n(R

2n)]

of Sp2n(R)-modules yields the exact sequence of complexes

0 → C≤q−1(R
2n) → C≤q(R

2n) → C≤q(R
2n)/C≤q−1(R

2n) → 0.

Upon applying the functor H∗(Sp2n, ) = TorSp2n
∗ (Z, ), the exact sequences

yield the exact couple D1
p+1,q−1 → D1

p,q → E1
p,q → D1

p,q−1 where

D1
p,q = Hp+q(Sp2n(R), C≤q(R

2n)), E1
p,q = Hp+q(Sp2n(R), C≤q(R

2n)/C≤q−1(R
2n))

and hence the spectral sequence

(3.1) E1
p,q = Hp(Sp2n(R), Cq(R

2n)) ⇒ Hp+q(Sp2n(R), C∗(R
2n))

with differential drp,q of bidegree (r − 1,−r).
The following lemma shows that the abutment of the spectral sequence (3.1)

vanishes in degrees p+ q < 2n.

Lemma 3.1. Let R be a local ring with infinite residue field. Then

Hi(Sp2n(R), C∗(R
2n)) = 0, i < 2n.

Proof. Let M be the kernel of d : C2n(R
2n) → C2n−1(R

2n). By Lemma 2.4, the
inclusion of complexes M [2n] → C∗(R

2n) is a quasi-isomorphism. In particular,

Hi(Sp2n(R), C∗(R
2n)) = Hi(Sp2n(R),M [2n]) = Hi−2n(Sp2n(R),M).

The result follows since for all G-modules M , we have Hj(G,M) = 0 for j < 0. �

Remark 3.2. In [SS21], we studied the spectral sequence associated with the
complex Z[U≤2n+1(R

2n)] and its filtration by degree.

Let 0 ≤ q ≤ 2n be integers. Let v ∈ Uq(R
2n) be a non-degenerate unimodular

sequence which spans Rq. Note that for every A ∈ Skewq(R) there is such a v
with Γ(v) = A, for instance a normal form of A will do; see Lemma 2.3. As an
ordered basis of Rq, v defines an element of GLq(R) and as such has a determinant
det(v) ∈ R∗. Using the standard functoriality of group homology as in [Bro94,
III.8], we define a map

fv : Hp(Sp2n−q(R);Z) −→ Hp(Sp2n(R);Z[Uq(R
2n)])
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by

fv =





(ε, v)∗ 0 ≤ q ≤ 2n, q even

(ε ◦ cdet v, v)∗ 0 ≤ q ≤ 2n, q odd

where ε : Sp2n−q(R) → Sp2n(R) is the standard embedding, v denotes the ho-

momorphism of abelian groups Z → Z[Uq(R
2n)] sending 1 to v, and for a ∈ R∗,

ca : Sp2n−q(R) → Sp2n−q(R) is conjugation A 7→ DAD−1 with the diagonal matrix

D =

(
a 0 0
0 a−1 0
0 0 12n−q−1

)
∈ Sp2n−q+1(R)

for 0 < q < 2n odd.

Lemma 3.3. Let q be an integer such that 0 ≤ q ≤ 2n. Let u, v ∈ Uq(R
2n) be

non-degenerate unimodular sequences that span Rq. If Γ(u) = Γ(v) then fu = fv.

Proof. If q is even, then the R-linear automorphism B of Rq sending u to v is an
isometry, since Γ(u) = Γ(v). We extend B to an isometry of R2n by requiring
Bei = ei for i = q + 1, ..., 2n. Since B ∈ Sp2n(R) commutes with every element of
Sp2n−q(R), we have fu = fv.

Assume now q = 2r+1 odd, 0 ≤ r < n. We consider u, v as elements in GLq(R).
There are unique vectors x, y ∈ Rq+1 such that

(
tu 0
0 1

)
ψq+1 x =

(
tv 0
0 1

)
ψq+1 y = eq ∈ Rq+1

since the (q+1)×(q+1) matrices involved are invertible. Then Γ(u, x) = Γ(v, y), by
definition of x and y. We show that (v, y) is a basis of Rq+1. Indeed, let V ⊂ Rq+1

be the R-span of v1, ..., vq−1. Then V equipped with the symplectic form 〈 , 〉 is
non-degenerate since the Gram matrix of v1, ..., vq−1 is invertible. Therefore, there
is a unique w ∈ V such that 〈w, vi〉 = 〈vq, vi〉 for all i = 1, ..., q−1. In the orthogonal
decomposition V ⊥ V ⊥ = Rq+1 of Rq+1, the vectors vq−w, y ∈ V ⊥ are a hyperbolic
basis of V ⊥ since Γ(vq−w, y) = ψ2. It follows that (v1, ..., vq−1, vq−w, x) is a basis
of Rq+1, hence (v1, ..., vq−1, vq, x) is a basis of Rq+1. Similarly, (u, x) is also a basis
of Rq+1. The R-linear endomorphism B = (v, y) ◦ (u, x)−1 : Rq+1 → Rq+1 sending
(u, x) to (v, y) is an isometry and thus has determinant 1 as Spq+1(R) ⊂ SLq+1(R).
Since u, v ∈ GLq(R), the matrices (u, x) and (v, y) have the form

(u, x) =

(
u ∗
0 x0

)
and (v, y) =

(
v ∗
0 y0

)
.

Thus, x0 detu = det(u, x) = det(v, y) = y0 det v, and the matrix
( 12r 0 0

0 det−1 v 0
0 0 det v

)
B
( 12r 0 0

0 detu 0
0 0 det−1 u

)
∈ Spq+1(R)

has last row equal to teq+1 = (0, 0, ..., 0, 1). In particular, that matrix has the form
(
P 0 g
th 1 g0
0 0 1

)

for some g, h ∈ Rq−1, g0 ∈ R, and P ∈ Spq−1(R). Now we extend the isometry B

of Rq+1 to all of R2n by requiring Bei = ei for i = q + 2, ..., 2n. Then Bu = v,
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B ∈ Sp2n(R), and for all M ∈ Sp2n−q(R) we have cdet v(M) = B ◦ cdetu(M) ◦B−1

since(
12r 0 0 0

0 det−1 v 0 0
0 0 det v 0
0 0 0 12n−q−1

)
B

(
12r 0 0 0
0 detu 0 0
0 0 det−1 u 0
0 0 0 12n−q−1

)
=

(
P 0 g 0
th 1 g0 0
0 0 1 0
0 0 0 12n−q−1

)
.

Any such matrix commutes with every matrix in Sp2n−q(R) because(
P 0 g 0
th 1 g0 0
0 0 1 0
0 0 0 1

)( 1 0 0 0
0 1 b0

tb
0 0 1 0
0 0 a N

)
=

(
P 0 g 0
th 1 g0+b0

tb
0 0 1 0
0 0 a N

)
=

( 1 0 0 0
0 1 b0

tb
0 0 1 0
0 0 a N

)( P 0 g 0
th 1 g0 0
0 0 1 0
0 0 0 1

)

for all a, b ∈ R2n−q−1, b0 ∈ R, N ∈M2n−q−1(R). This finishes the proof. �

Corollary 3.4. For 0 ≤ q ≤ 2n, the following map, sending α⊗ A to fv(α), does
not depend on the choice of v and is an isomorphism

(3.2) Hp(Sp2n−q(R))⊗Z Z[Skew+
q (R)]

∼=
−→ Hp(Sp2n(R);Z[Uq(R

2n)])

provided v ∈ Uq(R
2n) with Γ(v) = A and v generates Rq.

Proof. The map does not depend on the choice of v, by Lemma 3.3. It is an
isomorphism, by Shapiro’s isomorphism in view of Lemma 2.1. �

The following lemma identifies the E1-page of the spectral sequence (3.1) and
its d1 differential.

Lemma 3.5. For 0 ≤ q < 2n the following diagram commutes

H∗(Sp2n−q−1;Z)⊗Z Z[Skew+
q+1]

(3.2)

∼=
//

ε∗⊗d

��

H∗(Sp2n;Z[Uq+1(R
2n)])

(1,d)∗

��

H∗(Sp2n−q;Z)⊗Z Z[Skew+
q ]

(3.2)

∼=
// H∗(Sp2n;Z[Uq(R

2n)]).

Proof. Recall that d =
∑q+1

i=1 (−1)i+1di where di omits the i-th entry. We will
show that the diagram commutes with di in place of d for i = 1, ..., q + 1. On
the component of the upper left corner corresponding to A ∈ Skew+

q+1(R) choose

u ∈ Uq+1(R
2n) generating Rq+1 such that Γ(u) = A and diu generates Rq, for

instance, (diu, ui) in normal form will do; see Lemma 2.3. Then Γ(diu) = diA. In
view of Lemma 3.3 we can use fu and fdiu for the horizontal maps.

If q is even then q + 1 is odd and going first right then down gives the map

(ε2n2n−q−1 ◦ ca, diu)∗

= (ε2n2n−q, diu)∗ ◦ (ca ◦ ε
2n−q
2n−q−1) = (ε, diu)∗

where ca is conjugation with the diagonal matrix D in Sp2n−q(R) whose diagonal

entries are (a, a−1, 12n−q−2) and a = detu. Conjugation with any D ∈ Sp2n−q(R)
is the identity on H∗(Sp2n−q(R);Z). Thus, this map equals the map obtained by
going down then right.

If q is odd, then q+1 is even and going right then down is (ε, diu) whereas going

down then right is (ε2n2n−q ◦ ca ◦ ε
2n−q
2n−q−1, diu) = (ε2n2n−q−1, diu) since caε

2n−q
2n−q−1 =

ε2n−q2n−q−1 where ca is conjugation with the diagonal matrix (a, a−1, 12n−q−1) of

Sp2n−q+1(R) and a = det diu. �
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4. The Limit Theorem

The goal of this section is to prove the Limit Theorem 4.9 which is fundamental
in our proof of degeneration of the spectral sequence (3.1) in Section 6.

Let R be a commutative ring (which, for now, need not be local). An R-module
M carries a left action R ×M → M : (a, x) 7→ ax of the multiplicative monoid
(R, ·, 1) of R which is linear in M . In particular, it is a module over the associated
integral monoid ring Z[R] = Z[R, ·, 1]. We denote by 〈a〉 the element of Z[R]
corresponding to a ∈ R and note that Z〈0〉 ⊂ Z[R] is an ideal. Since 0 ·M = 0, the
R-module M is naturally a module over the quotient ring

Z0[R] = Z[R]/Z〈0〉 = Z[R, ·, 1]/Z〈0〉.

By functoriality, the multiplicative action of R onM induces a multiplicative action
on Hq(M), M⊗Zq, Λq

Z
M , and M(q) where the latter is M with action through the

q-th power of its natural action. For q ≥ 1, all those modules are therefore Z0[R]-
modules. For instance, for q ≥ 1, the Z0[R]-module structure on

(4.1) M(q) is

(
r∑

i=1

ni〈ai〉

)
· x =

r∑

i=1

nia
q
i x.

A Z0[R]-module M is an R-module if and only if the multiplicative left action of
R onM is also linear in R, that is, if for all a, b ∈ R, the element 〈a〉+〈b〉−〈a+b〉 acts
as zero on M . We may call such Z0[R]-modules linear. The criterion for linearity
is the m = 2-case of the following generalisation. For a sequence x = (x1, ...., xm)
of m elements in R, and subset J ⊂ {1, ...,m} we denote by xJ the partial sum

xJ =
∑

j∈J

xj ∈ R.

Then a Z0[R]-module M is linear if and only if the element

−
∑

∅6=J⊂{1,...,m}

(−1)|J| 〈xJ 〉 ∈ Z0[R]

acts as zero onM for all m ≥ 2 and all sequences x = (x1, ...., xm) of m elements in
R. More generally, we have the following. Our convention is that x0 = 1 for x ∈ R
even if x = 0.

Lemma 4.1. Let R be a ring, M an abelian group and let t ≥ 1 be an integer. Let

[ ] : R×t →M : (a1, ..., at) 7→ [a1, ..., at]

be a Z-multilinear map. Let x = (x1, ..., xm) be a sequence of m ≥ 1 elements
in R. Let p1(X), ..., pt(X) ∈ R[X ] be polynomials of degrees γ1, ..., γt ≥ 0 with
γ1 + · · ·+ γt < m. Then

(4.2) −
∑

∅6=J⊂{1,...,m}

(−1)|J| [p1(xJ ), · · · , pt(xJ )] = [p1(0), . . . , pt(0)].

Proof. We first prove the lemma for pi(X) = aiX
γi, ai ∈ R. If γ1 = · · · = γt = 0

then the left term in (4.2) is [a1, ..., at] = [p1(0), . . . , pt(0)] because

1 +
∑

∅6=J⊂{1,...,m}

(−1)|J| =
∑

J⊂{1,...,m}

(−1)|J| = (1− 1)m = 0

for m ≥ 1.
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If γ1 + · · ·+ γt ≥ 1 we write [n] for the set {1, ..., n}. Then the left term in (4.2)
is

∑

∅6=J⊂{1,...,m}

(−1)|J| [a1(xJ )
γ1 , · · · , at(xJ )

γt ]

=
∑

∅6=J⊂[m],σi:[γi]→J,1≤i≤t

(−1)|J| [a1xσ1(1) · · ·xσ1(γ1), . . . , atxσt(1) · · ·xσt(γt)]

=
∑

σi:[γi]→[m],1≤i≤t

[a1xσ1(1) · · ·xσ1(γ1), . . . , atxσt(1) · · ·xσt(γt)]
∑

⋃

t
i=1

Im(γi)⊂J⊂[m]

(−1)|J|

= 0

since ∅ 6=
⋃t
i=1 Im(γi) ( [m] as 1 ≤ γ1 + · · ·+ γt < m, and for S ( [m] we have

∑

S⊂J⊂[m]

(−1)|J| = (−1)|S|
∑

J⊂[m]−S

(−1)|J| = (−1)|S|(1 − 1)m−|S| = 0.

Now we assume that p1(X), ..., pt(X) ∈ R[X ] are arbitrary polynomials of de-
grees γ1, ..., γt ≥ 0 with γ1+ · · ·+γt < m. Each polynomial p(X) is the sum of p(0)
and a Z-linear combination of polyomials aγX

γ with γ ≥ 1 and aγ ∈ R. It follows
that the left term of (4.2) is the sum of

(4.3) −
∑

∅6=J⊂{1,...,m}

(−1)|J| [p1(0), . . . , pt(0)]

and a Z-linear combination of terms

(4.4) −
∑

∅6=J⊂{1,...,m}

(−1)|J| [a1(xJ )
δ1 , · · · , at(xJ )

δt ]

for some ai ∈ R and where 0 ≤ δi and 1 ≤ δ1 + · · ·+ δt < m. By the first part of
the proof, the terms (4.4) are zero and therefore, the left term of (4.2) equals (4.3)
which is [p1(0), . . . pt(0)], again by the first part of the proof. �

For a sequence a = (a1, ..., am) ofm elements in R and a polynomial p(X) ∈ R[X ]
with coefficients in R, we write sp(a) ∈ Z[R] for the element

sp(a) = −
∑

∅6=J⊂{1,...,m}

(−1)|J| 〈p(xJ )〉 ∈ Z[R].

Remark 4.2. For p(X) = X , the element sp(a) was first considered in [Sch17] to
prove optimal homology stability for special linear groups. Note that for m ≥ 1

s1 = −
∑

∅6=J⊂{1,...,m}

(−1)|J| = 1.

Definition 4.3. Let R be a commutative ring. A Z0[R]-module M is called quasi-
linear if for every polynomial p ∈ R[X ] there is an integer m0 ≥ 0 such that for all
integers m ≥ m0 and all sequences a = (a1, ..., am) of m elements in R, we have
σ−1M = 0 where σ = sp(a)− 〈p(0)〉 ∈ Z0[R].
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Note that the category of quasi-linear Z0[R]-modules is a Serre abelian subcat-
egory of the abelian category of all Z0[R]-modules, that is, subobjects, quotients
and extensions of quasi-linear Z0[R]-modules in the category of Z0[R]-modules are
quasi-linear.

Example 4.4. By Lemma 4.1, for all R-modules M the Z0[R]-modules M⊗Zq,
Λq
Z
M , and M(q) are quasi-linear for all q ≥ 1. We will see in Proposition 5.3 below

that Hs(M(q)), s ≥ 1, and the relative integral homology groups Hs(M(q)⋊G,G)
are quasi-linear as well if G acts on M by means of R-module homomorphisms; see
Example 5.4.

Remark 4.5. Let (R,M ) be a local ring with infinite residue field R/M , and
consider the ring homomorphism Z0[R] → Z sending R∗ to 1 and M to 0. This
makes M = Z into a Z0[R]-module which is not quasi-linear, in particular, Z0[R]
is not quasi-linear. Indeed, if p(X) = X then sp(a) acts as 1 on Z for all sequences
a = (a1, ..., am) of units ai ∈ R∗ such that aJ ∈ R∗ for all ∅ 6= J ⊂ {1...,m}, and
〈p(0)〉 = 0 acts as 0. In particular σ−1M = M for all σ = sp(a) − 〈p(0)〉 and all
sequences a = (a1, ..., am) of units in R as above. Since R has infinite residue field,
m can be chosen as large as we want.

In order to state our Limit Theorem 4.9 we need to introduce some terminology.

Definition 4.6. Let R be a local ring with infinite residue field k and denote by
π : R → k the quotient map. A subset D ⊂ R of elements in R is called region if
D = π−1π(D). A region D ⊂ R is called dense if k − π(D) is finite.

Definition 4.7. Let R be a local ring, and D ⊂ R a dense region of R. A function
f : D → Z0[R] is called admissible if there are polynomials P ∈ Z[X1, ..., Xn],
Pi, Qi ∈ R[X ], i = 1, ..., n, such that Qi(t) ∈ R∗ for all t ∈ D and

(4.5) f(t) = P

(〈
P1(t)

Q1(t)

〉
, . . . ,

〈
Pn(t)

Qn(t)

〉)
∈ Z0[R]

for all t ∈ D. The polynomials P, Pi, Qi are called presentation of f .
For a ∈ R, we say that f is defined at a (relative to the presentation (P, Pi, Qi))

if the elements Qi(a) ∈ R are units in R. Clearly, f is defined at all elements of
D. Note that if f is defined at a ∈ R then f(a) is a well-defined element in Z0[R],
given by (4.5), though the value f(a) may depend on the presentation of f .

Definition 4.8. Let D ⊂ R be a region of a local ring R, and let f : D → Z0[R]
be an adimissible function represented by (P, Pi, Qi) as in (4.5). For a ∈ R ∪ {∞}
we say that the limit limt→a f(t) of f when t tends to a exists and write

lim
t→a

f(t) = L ∈ Z0[R]

if either of the following holds.

(1) If a ∈ R, then we require f to be defined at a and set L = f(a).
(2) If a = ∞, then we require degPi ≤ degQi and the coefficients of the highest

degree monomials of Qi(X) to be units, i = 1, ..., n. Then

Q̄i(X) = XdegQiQi(1/X), P̄i(X) = XdegQiPi(1/X)

are polynomials with Q̄i(0) ∈ R∗, i = 1, ..., n. We note that

f(1/t) = f̄(t) = P

(〈
P̄1(t)

Q̄1(t)

〉
, . . . ,

〈
P̄n(t)

Q̄n(t)

〉)
∈ Z0[R]
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for 1/t ∈ D, and that f̄ is defined at 0 relative to the presentation (P, P̄i, Q̄i).
We set

L = lim
t→∞

f(t) = lim
t→0

f(1/t) = lim
t→0

f̄(t) = f̄(0).

We do not know if limt f(t) does or does not depend on the presentation of f .
For the purpose of this paper, the limit will always be calculated relative to a given
presentation of f .

Theorem 4.9 (Limit Theorem). Let R be a local ring with infinite residue field.
Let M be a quasi-linear Z0[R]-module, and let x ∈M . Let D ⊂ R be a dense region
of R, and let f : D → Z0[R] be an admissible function with given presentation.

Assume that f(t) ∈
√
Ann(x) ⊂ Z0[R] for all t ∈ D. Then for all a ∈ R ∪ {∞}, if

limt→a f(t) exists in Z0[R] in the given presentation then that limit satisfies

lim
t→a

f(t) ∈
√
Ann(x).

Remark 4.10. The Limit Theorem does not hold for all Z0[R]-modules M . For
instance, letK be an infinite field, and consider the ring homomorphism Z0[K] → Z

sending the elements of K∗ to 1 (and 〈0〉 to 0). This makes the targetM = Z into a
Z0[K]-module. For f(t) = −〈t〉+1, presented by P (X) = −X+1 and P1(X) = X ,
Q1(X) = 1, we have f(t)M = 0 for all t ∈ D = K∗, but f(0) = 1 is not in the
radical of the annihilator of a generator of M . Therefore, some condition such as
”quasi-linear” is required for the theorem to hold.

Proof of Theorem 4.9. Let (P, Pi, Qi) be the given presentation of f as in (4.5). We
first consider the case a = 0. Since limt→0 f(t) exists, we have Qi(0) ∈ R∗ for all
i = 1, ..., n. Let di be the highest power of Xi occurring in P (X1, ..., Xn). Then
g(t) = 〈Q1(t)

d1 · · ·Qn(t)dn〉 f(t) is an integer linear combination of expressions
〈pj(t)〉 with pj(X) ∈ R[X ] polynomials, j = 1, ..., ℓ, for some ℓ ∈ N:

g(t) = 〈Qi(t)
di · · ·Qi(t)

di〉f(t) =
ℓ∑

j=1

nj〈pj(t)〉.

Since M is a quasi-linear Z0[R]-module, we can choose an integer m0 such that
σj(a) = spj (a)−〈pj(0)〉 satisfies σj(a)−1M = 0 for all j = 1, ..., ℓ and all sequences

a = (a1, ..., am) of m elements in R with m ≥ m0. In particular, σj(a) ∈
√
Ann(x)

and hence

(4.6) sg(a)− g(0) =

ℓ∑

j=1

njσj(a) ∈
√
Ann(x)

where (abusing notation slightly)

sg(a) := −
∑

∅6=J⊂{1,...,m}

(−1)|J| g(aJ) =
ℓ∑

j=1

njspj (a).

Fix m ≥ m0 and choose a sequence a = (a1, ..., am) of m elements in R such that
aJ ∈ D for all ∅ 6= J ⊂ {1, ...,m}. This is possible for if we denote by π : R → k
the quotient map to the residue field of R, and if we have chosen (a1, ..., at) such
that aJ ∈ D for all ∅ 6= J ⊂ {1, ..., t}, then at+1 ∈ R can be any element such
that π(at+1) is not the solution x ∈ k to one of the finitely many non-trivial linear
equations x + π(aJ ) = y, y ∈ k − π(D), J ⊂ {1, ..., t}. Such x ∈ k exists since k
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is infinite. Since aJ ∈ D, we have f(aJ) ∈
√
Ann(x) for all ∅ 6= J ⊂ {1, ...,m},

by assumption. Then g(aJ) ∈
√
Ann(x) for all ∅ 6= J ⊂ {1, ...,m}. As a Z-linear

combination of the g(aJ)’s we then have sg(a) ∈
√
Ann(x). By (4.6), we have

g(0) ∈
√
Ann(x) and thus,

lim
t→0

f(t) = f(0) = 〈Q1(0)
−d1 · · ·Qn(0)

−dn〉 g(0) ∈
√
Ann(x)

since Qi(0) ∈ R∗, i = 1, ..., n.
Now assume a ∈ R arbitrary. Define P̄i(X) = Pi(X + a), Q̄i(X) = Qi(X + a),

f̄(t) = f(t + a), P̄ = P , D̄ = D − a. Then f̄(t) ∈
√
Ann(x) for all t ∈ D̄, and the

case of t→ 0 treated above shows that limt→a f(t) = limt→0 f̄(t) ∈
√
Ann(x).

Finally assume a = ∞. Set P̄i(X), Q̄i(X), f̄(t) = f(1/t) as in Definition 4.8
(2). Note that D̄ = {t ∈ R∗| t−1 ∈ D} is a dense region of R since D is. Then

f̄(t) = f(1/t) ∈
√
Ann(x) for t ∈ D̄. By the case a = 0 treated above, we have

lim
t→∞

f(t) = lim
t→0

f̄(t) ∈
√
Ann(x).

�

Remark 4.11. Let R be a local ring with infinite residue field. If the induced
action of R∗ on a quasi-linear Z0[R]-module M is trivial then M = 0. Indeed, the
admissible function f : D = R∗ → Z0[R] defined by f(t) = −〈t〉+1 has f(t)M = 0

for all t ∈ D but limt→0 f(t) = 1 is in
√
Ann(x) for x ∈M if and only if x = 0. By

the Limit Theorem 4.9 we must have M = 0.

5. Quasi-linear modules and group homology

The goal of this section is to prove in Proposition 5.3 below that the relative ho-
mology groups Hs(G,K) are quasi-linear for certain (R, ·, 1)-equivariant inclusions
of groups K ⊂ G. This will be applied to show that the relative homology groups
Hs(Sp2r+1(R), Sp2r(R)) are quasi-linear Z0[R]-modules. At the end of the section
we will give a few first applications of the Limit Theorem 4.9.

For an integer t ≥ 1, we consider the ring homomorphism

ϕt : Z[R, ·, 1] → R⊗t : [a] 7→ a⊗t = a⊗ · · · ⊗ a

where a ∈ R. Assume the multiplicative monoid (R, ·, 1) of R acts on a group
G from the left through group homomorphisms. By functoriality, (R, ·, 1) acts on
the homology group Hq(G) from the left through abelian group homomorphisms,
that is, Hq(G) is a left Z[R]-module. Recall from (4.1) the Z0[R]-module M(q)
associated with an R-module M and an integer q ≥ 0.

Lemma 5.1. Let R be a commutative ring whose underlying abelian group (R,+, 0)
is torsion free. Let A, B be R-modules, and let r, α, β ≥ 1 be integers. Let

(5.1) 1 → B(β) → N → A(α) → 1

be a (R, ·, 1)-equivariant central extension of groups. Let σ ∈ Z[R] be such that
ϕt(σ) = 0 for 1 ≤ t ≤ r. Then σ−1Hs(N) = 0 whenever 1 ≤ s ·max(α, β) ≤ r.

Note that the group N in the lemma need not be abelian.
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Proof of Lemma 5.1. We will first prove the lemma when A is torsion-free as abelian
group. To do so we show that in this case

(5.2) σ−1 (Hp(Aα)⊗Hq(Bβ)) = 0 for 1 ≤ αp+ βq ≤ r,

and then apply the Hochschild-Serre spectral sequence to (5.1). To prove (5.2) we
first also assume that B is torsion-free as abelian group. Then Hp(A) ⊗Hq(B) =
Λp
Z
(A) ⊗ Λq

Z
(B), functorial in A and B. In particular, the result of the action

of a ∈ R ⊂ Z[R] on (x1 ∧ · · · ∧ xp) ⊗ (y1 ∧ · · · ∧ yq) ∈ Hp(A(α)) ⊗ Hq(B(β)) is
(aαx1 ∧ · · · ∧ aαxp)⊗ (aβy1 ∧ · · · ∧ aβyq). This is the image of ϕαp+βq(a) under the
Z-linear map

(5.3) R⊗αp ⊗R⊗βq −→ Λp
Z
(A)⊗ Λq

Z
(B)

which uniquely extends the Z-multilinear map

Rαp ×Rβq −→ Λp
Z
(A)⊗ Λq

Z
(B)

sending (M,N) ∈ Rαp ×Rβq =Mα,p(R)×Mβ,q(R) to
(
(

α∏

i=1

Mi,1)x1 ∧ · · · ∧ (

α∏

i=1

Mi,p)xp

)
⊗

(
(

β∏

i=1

Ni,1)y1 ∧ · · · ∧ (

β∏

i=1

Ni,q)yq

)
.

In particular, the result of the action of σ ∈ Z[R] on (x1∧· · ·∧xp)⊗(y1∧· · ·∧yq) is
the image of ϕαp+βq(σ) under the Z-linear map (5.3). But ϕt(σ) = 0 for 1 ≤ t ≤ r.
Hence, σ(Λp

Z
(A)⊗Λq

Z
(B)) = 0 for 1 ≤ αp+ βq ≤ r. In particular, (5.2) holds when

A and B are torsion-free.
Now we prove (5.2) when A is torsion-free as abelian group and B is an ar-

bitrary R-module. Choose a surjective weak equivalence of simplicial R-modules
B∗ → B with Bi a projective R-module for all i ∈ N. For instance, the simplicial
R-module corresponding to an R-projective resolution of B under the Dold-Kan
correspondence will do. Each Bi is a torsion free abelian group since R is. The
classifying space functor B induces an (R, ·, 1)-equivariant weak equivalence of sim-
plicial sets B(B∗(β)) → BB(β). Tensoring the spectral sequence of the simplicial
space n 7→ BBn,

E1
s,t = Ht(BBs) ⇒ Hs+t(BB∗) = Hs+t(BB) = Hs+t(B),

with the flat Z-module Hp(A) = Λp
Z
A yields the spectral sequence of Z[R]-modules

Hp(A(α)) ⊗ E1
s,t = Hp(A(α)) ⊗Ht(Bs(β)) ⇒ Hp(A(α)) ⊗Hs+t(B(β)).

Localising at σ, this yields a spectral sequence with trivial E1
s,t-term for 1 ≤ αp+

βt ≤ r. Since t ≤ s+ t for 0 ≤ s, t, the E1
s,t-term of the localised spectral sequence

is trivial for 1 ≤ αp + β(s + t) ≤ r (and p, s, t ≥ 0). This proves (5.2) when A is
torsion-free as abelian group.

Now we prove the lemma when A is torsion-free as abelian group. In this case,
the integral homology groups H∗(A) = Λ∗

Z
(A) are torsion free and the natural map

Hp(A)⊗F → Hp(A;F ) is an isomorphism for any abelian group F , by the Universal
Coefficient Theorem. Since the extension (5.1) is central, the group A acts trivially
on H∗(B) and the Hochschild-Serre spectral sequence of the group extension has
the form

E2
p,q = Hp(A;Hq(B)) ∼= Hp(A)⊗Hq(B) ⇒ Hp+q(N).

The spectral sequence is functorial in the exact sequence (5.1). In particular, it is
equivariant for the (R, ·, 1)-action and thus a spectral sequence of Z[R]-modules.
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Localising the spectral sequence at σ yields a spectral sequence with E2-term
σ−1E2

p,q = 0 for 1 ≤ αp + βq ≤ r, by (5.2). This implies the lemma in case A
is torsion-free.

Finally, we prove the lemma for arbitrary R-modules A and B. As above, we
choose a surjective weak equivalence A∗ → A of simplicial R-modules with An a
projective R-module for all n. Then each An is flat as abelian group since R is.
Let Nn = N ×A(α) An(α). The action of (R, ·, 1) on N , A(α), and An(α) defines
an action of (R, ·, 1) on Nn. We obtain a simplicial (R, ·, 1)-equivariant central
extension

1 → B(β) → N∗ → A∗(α) → 1

with degree-wise torsion-free base An. The surjection N∗ → N of simplicial groups
has contractible kernel as it equals the kernel of the surjective weak equivalence
A∗ → A. In particular, the map on classifying spaces B|s 7→ Ns| = |s 7→ BNs| →
BN is an (R, ·, 1)-equivariant weak equivalence. By the torsion free case treated
above, we have σ−1Hq(BNs) = 0 for 1 ≤ q · max(α, β) ≤ r and for all s ≥ 0.
Therefore, the spectral sequence of the simplicial space s 7→ BNs,

E2
p,q = πp|s 7→ Hq(BNs)| ⇒ Hp+q(BN∗) = Hp+q(BN),

localised at σ has trivial E2
p,q-term for 1 ≤ q · max(α, β) ≤ r and for all p. In

particular, σ−1E2
p,q = 0 whenever 1 ≤ (p+ q) ·max(α, β) ≤ r (and 0 ≤ p, q). This

proves the lemma. �

Lemma 5.2. Let a = (a1, ..., am) be a sequence of m elements in R, and let p(X) ∈
R[X ] be a polynomial of degree d with coefficients in R. Then sp(a)−〈p(0)〉 ∈ Z[R]
is sent to zero under the map ϕt for 1 ≤ td < m:

ϕt (sp(a)− 〈p(0)〉) = 0 ∈ R⊗t.

Proof. The image of sp(a) in R
⊗t is

−
∑

∅6=J⊂{1,...,m}

(−1)|J| P (xJ )
⊗t.

We apply Lemma 4.1 to the canonical Z-multilinear map R×t → R⊗t : (x1, ..., xt) 7→
[x1, ..., xt] = x1 ⊗ · · · ⊗ xt and find that

ϕt(sp(a)) = −
∑

∅6=J⊂{1,...,m}(−1)|J| [p(aJ ), · · · , p(aJ)]

= [p(0), . . . , p(0)] = p(0)⊗t = ϕt(〈p(0)〉).

�

Proposition 5.3. Let R be a commutative ring, let A, B be R-modules, and let
α, β ≥ 1 be integers. Let G, K, N be groups with left (R, ·, 1)-actions which are
part of (R, ·, 1)-equivariant exact sequences of groups

1 → B(β) → N → A(α) → 1, 1 → N → G
ρ
→ K → 1

in which the first sequence is a central extension, the second sequence has an
(R, ·, 1)-equivariant splitting i : K → G such that 〈0〉 : G → G is i ◦ ρ, and the
action of (R, ·, 1) on K is trivial. Then for all s ∈ Z the relative homology groups
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Hs(G,K) are quasi-linear Z0[R]-modules where K is considered a subgroup of G by
means of the inclusion i.

Proof. The action of 〈0〉 on Hs(G,K) factors through Hs(K,K) = 0. Hence, the
Z[R]-module Hs(G,K) is a Z0[R]-module. We will prove that for every sequence
a = (a1, ..., am) of m elements in R and every polynomial p(X) ∈ R[X ] of degree d
with coefficients in R, the element σ = sp(a)− 〈p(0)〉 ∈ Z[R] satisfies

(5.4) σ−1Hs(G,K) = 0, provided sdmax(α, β) < m.

This establishes that Hs(G,K) is quasi-linear with m0 = sdmax(α, β) in Definition
4.3.

To prove (5.4), assume first that the underlying abelian group (R,+, 0) of R is
torsion-free. By functoriality, the Hochschild-Serre spectral sequence

(5.5) E2
p,q = Hp(K;Hq(N)) ⇒ Hp+q(G)

of the extension 1 → N → G → K → 1 carries an action of the monoid (R, ·, 1)
induced from the action of that monoid on the extension. Section i : K → G
and projection ρ : G → K make the extension 1 → 1 → K → K → 1 of groups
with (trivial) (R, ·, 1)-action a direct factor of 1 → N → G → K → 1, hence its
Hochschild-Serre spectral sequence of (trivial) Z[R]-modules (which degenerates at
E2) is a direct factor of that of (5.5). Its complement yields the strongly convergent
spectral sequence

Ẽ2
p,q = Hp(K; H̃q(N)) ⇒ Hp+q(G,K)

where H̃q(N) = Hq(N) for q ≥ 1 and 0 otherwise. The action of g ∈ K on Hq(N)
is induced by conjugation with i(g) on N . Since (R, ·, 1) acts trivially on K and
i is equivariant, the action of (R, ·, 1) on N and the action of K on N commute.

It follows that σ−1Ẽ2
p,q = σ−1Hp(K; H̃q(N)) = Hp(K;σ−1H̃q(N)) = 0 for 0 ≤

qmax(α, β) ≤ r and any p, by Lemmas 5.1 and 5.2. Hence, σ−1Hs(G,K) = 0 for
0 ≤ s ·max(α, β) ≤ r.

Now we prove (5.4) when (R,+, 0) is not assumed torsion-free. Choose a surjec-
tion of commutative rings π : R̄ ։ R such that the abelian group (R̄,+, 0) of R̄ is
torsion free, for instance, Z[R] ։ R : 〈a〉 7→ a. Choose a sequence ā = (ā1, ..., ām)
in R̄ and a polynomial p̄(X) ∈ R̄[X ] such that π(ā) = a and π(p̄(X)) = p(X). The
ring homomorphism π makes A and B into R̄-modules, and the action of (R̄, ·, 1)
on Hs(G,K) is induced from the (R, ·, 1)-action via the map π. Therefore, mul-
tiplication by the element σ̄ = sp̄(ā) − p̄(0) on Hs(G,K) equals multiplication by
the element σ = sp(a) − p(0). In particular, σ̄−1Hs(G,K) = σ−1Hs(G,K). By
the torsion-free case above, we have σ̄−1Hs(G,K) = 0 for sdmax(α, β) < m. This
finishes the proof of (5.4) and hence that of the proposition. �

Example 5.4. Let G be a group that acts from the left on an R-moduleM through
R-module homomorphisms. Then for all q ≥ 0, the semi-direct product M(q) ⋊
G carries an action of (R, ·, 1) defined by a(x, g) = (aqx, g) such that the exact
sequence

1 →M(q) →M(q)⋊G→ G→ 1

is (R, ·, 1)-equivariant with trivial action on the base G and equivariant section
G → M(q) ⋊ G : g 7→ (0, g). By Proposition 5.3 with B = 0, α = q, A = M ,
N =M(q), the relative homology groups Hs(M(q)⋊G,G) are quasi-linear Z0[R]-
modules whenever q ≥ 1.
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Example 5.5. Continuing example 5.4, assume moreover that there is an integer
q ≥ 1 and a group homomorphism ρ : R∗ → Z(G) into the center Z(G) of G
such that ρ(a)x = aqx. Then the (R, ·, 1) action of a ∈ R∗ on M(q) ⋊ G equals
the conjugation action on M(q) ⋊ G by (0, ρ(a)). In particular, the quasi-linear
Z0[R]-module Hs(M(q) ⋊ G,G) yields the trivial action when restricted to R∗ ⊂
Z0[R]. By Remark 4.11, if R is local with infinite residue field, we must have
Hs(M(q) ⋊ G,G) = 0. This has been used many times, for instance for G =
GLn(R) acting diagonally on M = Rn × · · · ×Rn via its natural action on Rn and
ρ : R∗ → GLn(R) : a 7→ a · In, we obtain [NS89, Theorem 1.11] for local rings with
infinite residue fields.

Example 5.6. Continuing example 5.4, we have s〈Xr〉(a)
−1Hs(M(q)⋊G,G) = 0

for all sequences a = (a1, ..., am) in R with m ≥ m0. This was used in [Sch17] for
G = SLn(R), M = Rn × · · · ×Rn, and r and q powers of n.

Now comes the most relevant example for this paper.

Example 5.7. Let n ≥ 0 be an integer. For a ∈ R∗, the conjugation action ca
of the (2n+ 2) × (2n + 2) diagonal matrix Da ∈ Sp2n+2(R) with diagonal entries
(a, a−1, 1, 1, ..., 1) on the group Sp2n+2(R) induces an action

(
1 c tuψM
0 1 0
0 u M

)
ca7→
(
a 0 0
0 a−1 0
0 0 1

)(
1 c tuψM
0 1 0
0 u M

)(
a−1 0 0
0 a 0
0 0 1

)
=

(
1 a2c t(au)ψM
0 1 0
0 au M

)

on the subgroup Sp2n+1(R) which extends to an action

(
1 c tuψM
0 1 0
0 u M

)
〈a〉
7→

(
1 a2c t(au)ψM
0 1 0
0 au M

)

of the monoid (R, ·, 1) on Sp2n+1(R), a ∈ R. Denote by N ⊂ Sp2n+1(R) the
subgroup of matrices with M = 1, by A ⊂ Sp2n+1(R) the subgroup of matrices
with M = 1 and c = 0, and by B ⊂ Sp2n+1(R) the subgroup with M = 1, u = 0,
then (A, ·, 1) = (R2n,+, 0), (B, ·, 1) = (R,+, 0), and we have (R, ·, 1) equivariant
exact sequences

1 → B(2) → N → A(1) → 1, 1 → N → Sp2n+1(R) → Sp2n(R) → 1

with left sequence central and 〈0〉 : Sp2n+1(R) → Sp2n+1(R) the projection ρ :
Sp2n+1(R) → Sp2n(R) followed by the inclusion ε : Sp2n(R) → Sp2n+1(R). By
Proposition 5.3, the image of the projector 1− (ερ)∗ of Hp(Sp2n+1(R)) which is the
relative homology group

H̃p(Sp2n+1(R)) := Hp(Sp2n+1(R), Sp2n(R)) = Im(1 − (ερ)∗)

is a quasi-linear Z0[R]-module for all p ∈ Z. We have a canonical decomposition

Hp(Sp2n+1(R)) = Im((ερ)∗)⊕ Im(1− (ερ)∗) = Hp(Sp2n(R))⊕ H̃p(Sp2n+1(R)).

Lemma 5.8. Let R be a local ring with infinite residue field. Then the Z0[R]-module

H̃p(Sp2n+1(R)) = Hp(Sp2n+1(R), Sp2n(R)) is quasi-linear, and the composition

H̃p(Sp2n+1(R)) ⊂ Hp(Sp2n+1(R)) → Hp(Sp2n+2(R))

is zero. Moreover, the map Hp(Sp2n+1(R)) → Hp(Sp2n+2(R)) is surjective if and
only if the map Hp(Sp2n(R)) → Hp(Sp2n+2(R)) is surjective.
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Proof. Quasi-linearity is Example 5.7.
Note that the composition H̃p(Sp2n+1(R)) → Hp(Sp2n+2(R)) is R∗-equivariant

where R∗ acts through conjugation with Da ∈ Sp2n+2 and thus acts trivially on the
target. Since the source is quasi-linear, there is an integer m0 ≥ 1 such that for all
sequences a = (a1, ..., am) ofm ≥ m0 elements in R we have s−1

X (a)H̃p(Sp2n+1R) =
0. If R is local with infinite residue field, we can find a sequence a = (a1, ..., am)
such that aJ ∈ R∗ for all ∅ 6= J ⊂ {1, ...,m}. Since R∗ acts on Hp(Sp2n+2(R))
trivially, for such an a, sX(a) acts as the identity on Hp(Sp2n+2(R)) and thus

s−1
X (a)Hp(Sp2n+2R) = Hp(Sp2n+2(R)). In particular, the R∗-equvariant map

H̃p(Sp2n+1(R)) → Hp(Sp2n+2(R)) factors through s
−1
X (a)H̃p(Sp2n+1R) = 0, hence

that map is zero. For the last statement we note thatHp(Sp2n(R)) → Hp(Sp2n+2(R))
is the localisation of Hp(Sp2n+1(R)) → Hp(Sp2n+2(R)) at sX(a). In particular,
surjectivity of the second map implies surjectivity of the first. The converse is
obvious. �

Corollary 5.9. Let R be a local ring with infinite residue field. Under the de-
composition Hp(Sp2n+1) = Hp(Sp2n) ⊕ H̃p(Sp2n+1) of Example 5.7, the maps
Hp(Sp2n(R)) → Hp(Sp2n+1(R)) → Hp(Sp2n+2(R)) become

Hp(Sp2n(R))
( 10 )

// Hp(Sp2n(R))⊕ H̃p(Sp2n+1(R))
(ε∗,0)

// Hp(Sp2n+2(R)).

Proof. This follows from Lemma 5.8. �

6. Degeneration at E2

In this section we will prove that the spectral sequence (3.1) degenerates at
E2. Our strategy for degeneration is to construct a map of spectral sequences
Ẽ → E from a spectral sequence Ẽ to (3.1). The spectral sequence Ẽ will trivially

degenerate at E2, and the main point will be to show that Ẽ2 → E2 is surjective in
all bidegrees. That will ensure that (3.1) degenerates at E2 as well. The spectral

sequence Ẽ will be a direct sum of spectral sequences E(r), r = 0, ..., n, which we
will introduce now.

For 0 ≤ r < n and i = 1, ..., 2r + 2, consider the Sp2n−2r(R)-set

U
(i)
2r+2(R

2n) = {( uw ) ∈M2n,2r+2(R)| u ∈ U2r+2(R
2r), wi ∈ U1(R

2n−2r), diw = 0}

where N ∈ Sp2n−2r(R) acts by N · ( uw ) = ( u
Nw ), that is, via its natural inclusion

Sp2n−2r(R) ⊂ Sp2n(R). Note that diw = (w1, ..., ŵi, ..., w2r+2) = 0 means that
w = (0, ..0, wi, 0.., 0) only has potentially non-zero entry in the i-th column. We
have the bijection

Sp2n−2r(R)\U
(i)
2r+2(R

2n)
∼=
−→ U2r+2(R

2r) : ( uw ) 7→ u.

The stabiliser of the action on U
(i)
2r+2(R) at

( u
(e1)i

)
is Sp2n−2r−1(R) where (e1)i =

(0, .., 0, e1, 0..., 0) with e1 ∈ R2n−2r in the i-th column. Note that if v = ( uw ) ∈

U
(i)
2r+2 then djv ∈ U2r+1(R

2n) for all 1 ≤ j ≤ 2r + 2 with j 6= i, and div ∈
U2r+1(R

2r). We define the complex C∗(R
2n; r) as

0 //

2r+2⊕

i=1

Z[U
(i)
2r+2(R

2n)]
(−d1,d2,−d3,...,d2r+2)

// Z[U2r+1(R
2r)] // 0
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with Z[U2r+1(R
2r)] placed in degree 2r, and the i-th component of the differential is

(−1)idi. This is a complex of Sp2n−2r(R)-modules where Sp2n−2r(R) acts trivially
on the degree 2r piece Z[U2r+1(R

2r)]. Since d ◦ d = 0, the diagram

0 //

��

Z[U
(i)
2r+2(R

2n)]

d∧i

��

(−1)idi
// Z[U2r+1(R

2r)]

d

��

// 0

��

Z[U2r+2(R
2n)]

d
// Z[U2r+1(R

2n)]
d

// Z[U2r(R
2n)]

d
// Z[U2r−1(R

2n)]

commutes where the second to left vertical map d∧i : Z[U
(i)
2r+2(R

2n)] → Z[U2r+2(R
2n)]

is defined on basis elements w ∈ Z[U
(i)
2r+2(R

2n)] by

d∧i (w) =
2r+2∑

j=1,j 6=i

(−1)j+1djw

and can informally be thought of as d∧i = d + (−1)idi. This defines the map
of complexes ϕ : C∗(R

2n; r) → C∗(R
2n) of Sp2n−2r(R)-modules (where we have

suppressed some of the entries R2n)

0 //

��

2r+2⊕

i=1

Z[U
(i)
2r+2]

(d∧i )i

��

((−1)idi)i
// Z[U2r+1(R

2r)]

d

��

// 0

��

· · · → Z[U2r+2]
d

// Z[U2r+1]
d

// Z[U2r(R
2n)]

d
// Z[U2r−1] → · · ·

For r = n, we let C∗(R
2n, n) be the complex Z[U2n+1(R

2n)][2n] concentrated in
degree 2n and define the map of complexes ϕ : C∗(R

2n, n) → C∗(R
2n) in degree n

as the map d : Z[U2n+1(R
2n)] → Z[U2n(R

2n)]. For 0 ≤ r ≤ n, the pair

(ε, ϕ) : (Sp2n−2r(R), C∗(R
2n; r)) −→ (Sp2n(R), C∗(R

2n))

defines a map of associated group homology spectral sequences

(6.1) Esp,q(R
2n; r) −→ Esp,q(R

2n)

resulting from the filtrations by degree C≤q(R
2n; r) and C≤q(R

2n) of the coefficient
complexes C∗(R

2n; r) and C∗(R
2n). By definition, we have

Esp,q(R
2n; r) = 0, q 6= 2r, 2r + 1.

In particular, the spectral sequences E(R2n; r) degenerate at the E2-page.
The following result shows that the spectral sequence (3.1) degenerates at E2.

Proposition 6.1. Let R be a local ring with infinite residue field. For all integers
0 ≤ r ≤ n, s = 2, q = 2r, 2r + 1 and all p ∈ Z, the map (6.1) is surjective:

E2
p,q(R

2n; r) ։ E2
p,q(R

2n), q = 2r, 2r + 1.

In particular, the spectral sequence (3.1) degenerates at E2.
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Proof of Proposition 6.1 for q = 2r. The map E1
p,2r(R

2n; r) → E1
p,2r(R

2n) is the
first map in the complex

Hp(Sp2n−2r)⊗ Z[U2r+1(R
2r)]

1⊗d◦Γ
// Hp(Sp2n−2r)⊗ Z[Skew+

2r]

ε∗⊗d

��

Hp(Sp2n−2r+1)⊗ Z[Skew+
2r−1];

see Corollary 3.4. In view of Lemma 3.5, the second map in that complex is
d1p,2r : E1

p,2r(R
2n) → E1

p,2r−1(R
2n). Since ε∗ : Hp(Sp2n−2r) → Hp(Sp2n−2r+1)

is (split) injective, Lemmas 2.1 and 2.5 imply that this complex is exact. It follows
that E1

p,2r(R
2n; r) surjects onto the kernel of the right vertical map which which

surjects onto E2
p,2r(R

2n). In particular, its quotient E2
p,2r(R

2n; r) surjects onto

E2
p,2r(R

2n). �

The case q = 2r + 1 of Proposition 6.1 is somewhat more involved except when
r = n in which case the map 0 = E1

p,2n+1(R
2n;n) → E1

p,2n+1(R
2n) = 0 is clearly

surjective. So assume 0 ≤ r < n. For i = 1, ..., 2r + 2, consider the map

(6.2) γi : Hp(Sp2n−2r−1)⊗ Z[U2r+2(R
2r)] // Hp(Sp2n−2r−1)⊗ Z[Skew+

2r+1]

which for u ∈ U2r+2(R
2r) and α ∈ Hp(Sp2n−2r−1) is defined by

γi(α⊗ u) =
∑

1≤j 6=i≤2r+2

(−1)j+1
(
c−1
δij det(u∧ij)

)

∗
(α) ⊗ djΓ(u)

where u∧

ij is obtained from u by omitting the i-th and j-th columns, ca is conjugation

with the diagonal matrix (a, a−1, 1, ..., 1) ∈ Sp2n−2r(R) for a ∈ R∗, and δij is defined
by

δij =





(−1)i+1 , i < j
0 , i = j

(−1)i , i > j
: (δij) =




0 + + + + ··· +
+ 0 − − − ··· −
− − 0 + + ··· +
+ + + 0 − ··· −

. . .


 .

Lemma 6.2. The commutative diagram

E1
p,2r+1(R

2n; r)
d1

//

(6.1)

��

E1
p,2r(R

2n; r)

(6.1)

��

E1
p,2r+1(R

2n)
d1

// E1
p,2r(R

2n)

is isomorphic to the commutative diagram

2r+2⊕

i=1

Hp(Sp2n−2r−1)⊗ Z[U2r+2(R
2r)]

((−1)iε∗⊗di)i
//

γ=(γ1,γ2,...,γ2r+2)

��

Hp(Sp2n−2r)⊗ Z[U2r+1(R
2r)]

1⊗Γ(d)

��

Hp(Sp2n−2r−1)⊗ Z[Skew+
2r+1] ε∗⊗d

// Hp(Sp2n−2r)⊗ Z[Skew+
2r].
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Proof. The right vertical and the lower horizontal map have already been identified
in Lemmas 3.4 and 3.5. For the other two maps, we note that

E1
p,2r+1(R

2n; r) =

2r+2⊕

i=1

Hp(Sp2n−2r,Z[U
(i)
2r+2(R

2n)]).

By Shapiro’s Lemma, we obtain the isomorphism
∑

u

(
ε,
( u
(e1)i

))
∗
:

⊕

u∈U2r+2(R2r)

Hp(Sp2n−2r−1)
∼=
−→ Hp(Sp2n−2r,Z[U

(i)
2r+2(R

2n)])

This yields the identification of the top horizontal map. Composing with the map
E1
p,2r+1(R

2n; r) → E1
p,2r+1(R

2n) yields the map

(6.3)
⊕

u∈U2r+2(R2r)

Hp(Sp2n−2r−1) −→ Hp(Sp2n,Z[U2r+1(R
2n)])

which is ∑

1≤j 6=i≤2r+2

(−1)j+1
(
ε, dj

( u
(e1)i

))
∗

on the component corresponding to u ∈ U2r+2(R
2r). We recall the isomorphism

(6.4)
⊕

A∈Skew+

2r+1

Hp(Sp2n−2r−1)
∼=
−→ Hp(Sp2n,Z[U2r+1(R

2n)])

from Lemma 3.4 which is (ε ◦ cdet v, v)∗ on the component corresponding to A ∈
Skew+

2r+1(R) where v ∈ U2r+1(R
2n) satisfies Γ(v) = A and generates R2r+1. For

u ∈ U2r+2(R
2r) and j 6= i, the unimodular sequence w = dj

( u
(e1)i

)
generates

R2r+1. Since

detw = det
(
dj
( u
(e1)i

))
= δij detu

∧

ij ,

the diagram

Hp(Sp2n−2r−1)

(c−1

δij det u∧
ij

)∗

��

(ε,
(

u
(e1)i

)

)∗
// Hp(Sp2n−2r,Z[U

(i)
2r+2])

dj

��

Hp(Sp2n−2r−1) (ε◦cdet w,w)∗

// Hp(Sp2n,Z[U2r+1])

commutes. Since

Γ(w) = Γ
(
dj
( u
(e1)i

))
= Γ(dju)

we apply Lemma 3.3 to identifies the left vertical map in the lemma with γ. �

Proof of Proposition 6.1 for q = 2r + 1. We need to show that the map of horizon-
tal complexes

0 //

��

E1
p,2r+1(R

2n; r)
d1

//

(6.1)

��

E1
p,2r(R

2n; r)

(6.1)

��

E1
p,2r+2(R

2n)
d1

// E1
p,2r+1(R

2n)
d1

// E1
p,2r(R

2n)
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is surjective on homology (at the middle term). By Corollary 5.9 and Lemma 6.2,
this map of complexes is isomorphic to the direct sum of

(6.5) 0 //

��

2r+2⊕

i=1

H̃p(Sp2n−2r−1)⊗ Z[U2r+2(R
2r)]

γ

��

// 0

��

0 // H̃p(Sp2n−2r−1)⊗ Z[Skew+
2r+1] // 0 and

(6.6)

0 //

��

2r+2⊕

i=1

A⊗ Z[U2r+2(R
2r)]

1⊗(Γ(d)+(−1)iΓ(di))i

��

(−1)iε∗⊗di
// B ⊗ Z[U2r+1(R

2r)]

1⊗Γ(d)

��

A⊗ Z[Skew+
2r+2] 1⊗d

// A⊗ Z[Skew+
2r+1] ε∗⊗d

// B ⊗ Z[Skew+
2r]

where A = Hp(Sp2n−2r−2) and B = Hp(Sp2n−2r). For the latter, we use that ca is
the identity on A. Proposition 6.1 now follows from Lemmas 6.3 and 6.4 below. �

Lemma 6.3. The map of complexes (6.6) is surjective in homology.

Proof. Let F be the image of the map Γ(d) : Z[U2r+1(R
2r)] → Z[Skew+

2r]. This is
a free Z-module, and it is also the image of d : Z[Skew+

2r+1] → Z[Skew+
2r]. In the

diagram (6.6), we can replace Z[Skew+
2r] with F and the lower left horizontal arrow

1 ⊗ d with its cokernel 0 → coker(1 ⊗ d) without changing homology since that
cokernel is A⊗F , by Lemma 2.5. Thus, we can replace the diagram (6.6) with the
diagram

(6.7) 0 //

��

2r+2⊕

i=1

A⊗ Z[U2r+2(R
2r)]

1⊗(Γ(d)+(−1)iΓ(di))i

��
��

(−1)iε∗⊗di
// B ⊗ Z[U2r+1(R

2r)]

1⊗Γ(d)

��
��

0 // A⊗ F
ε∗⊗1

// B ⊗ F

without changing homology. The right hand square is obtained by tensoring the
diagram of free abelian groups

(6.8)
2r+2⊕

i=1

Z[U2r+2(R
2r)]

(Γ(d)+(−1)iΓ(di))i

��
��

(−1)idi
// // Z[U2r+1(R

2r)]

Γ(d)

��
��

F
1

// F

with the map ε∗ : A → B. The top horizontal arrow in (6.8) is surjective because
the maps di : U2r+2(R

2r) → U2r+1(R
2r) are surjective. Since all abelian groups in
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diagram (6.8) are free, that diagram is isomorphic to

M ⊕N
(1,0)

//

(f,0)
��
��

M

f
��
��

F
1

// F

where M = Z[U2r+1(R
2r)] and N is the kernel of the top horizontal arrow. It

follows that diagram (6.7) is isomorphic to

0

��

// A⊗ (M ⊕N)
ε∗⊗(1,0)

//

1⊗(f,0)
��
��

B ⊗M

1⊗f
��
��

0 // A⊗ F
ε∗⊗1

// B ⊗ F.

Hence the map on homology (kernels of right horizontal maps) is

(1⊗ f, 0) : (ker(ε∗)⊗M)⊕ (A⊗N) −→ ker(ε∗)⊗ F

which is surjective since f is. �

For a Z0[R]-module H , define the map of Z0[R]-modules, generalising (6.2),

(6.9) γ = (γ1, γ2..., γ2r+2) :

2r+2⊕

i=1

H ⊗Z Z[U2r+2(R
2r)] → H ⊗Z Z[Skew+

2r+1(R)]

by

(6.10) γi(h⊗ u) =
∑

1≤j 6=i≤2r+2

(−1)j+1〈δijdet
−1u∧

ij〉 · h⊗ Γ(dju)

for u ∈ U2r+2(R
2r) and h ∈ H . Recall from Lemma 5.8 that the relative homology

groups H̃p(Sp2n+1(R)) = Hp(Sp2n+1(R), Sp2n(R)) are quasi-linear Z0[R]-modules.

Lemma 6.4. Let R be a local ring with infinite residue field, and let r ≥ 0 be an
integer. Then for all quasi-linear Z0[R]-modules H, the map (6.9) is surjective. In
particular, the map of complexes (6.5) is surjective in homology.

Proof. We may write h[B] in place of h⊗B. Denote by N = coker(γ) the cokernel
of γ. We have to show that N = 0. As a cokernel of a Z0[R]-linear map of quasi-
linear modules, N is also quasi-linear. In N , the expressions on the right hand side
of (6.10) are zero. In matrix form, the system of equations, expressing the right
hand side of (6.10) as zero, can be written as M(U) ·X(U) = 0 for U ∈ U2r+2(R

2r)
and h ∈ H where

M(U) =
(
〈δijdet

−1U∧
i,j〉
)

is the (2r+2)× (2r+2) matrix with entries in Z0[R] which has 0’s on the diagonal

and 〈δijdet
−1U∧

i,j〉 at the i, j-spot, and X(U) = ((−1)j+1z [Γ(U∧
j )]) is the column

vector with (−1)j+1z [Γ(U∧
j )] at its j-th entry. Multiplying with the adjugate of

M(U) yields the equation (detM(U)) h [Γ(U∧
j )] = 0 ∈ N . Thus, for h ∈ H and

B ∈ Skew+
2r+1(R) we have

(6.11) (detM(U, x)) · h · [B] = 0 ∈ N
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for all U ∈ U2r+1(R
2r), x ∈ R2r such that Γ(U) = B and (U, x) ∈ U2r+2(R

2r).
The following Lemma 6.5 therefore shows that h[B] = 0 ∈ N for all h ∈ H and
B ∈ Skew+

2r+1(R), that is, the map γ in Lemma 6.4 is surjective. �

Lemma 6.5. For all B ∈ Skew+
2r+1(R) and h ∈ H, the radical of the annihilator

ideal √
Ann(h[B]) ⊂ Z0[R]

of h[B] ∈ N = coker(γ) is the unit ideal.

Proof. Denote by F the residue field of R, and by x̄ ∈ F s the reduction modulo
the maximal ideal of the element x ∈ Rs.

For B ∈ Skew+
2r+1(R), choose a normal form U = (u1, ..., u2r+1) ∈ U2r+1(R

2r)
of B, that is, Γ(U) = B, (u1, ..., u2r) is upper triangular, (u2i−1)2i−1 = 1 and
(u2i)2i−1 = 0 for i = 1, ..., r; see Lemma 2.3. For ℓ = 1, ..., r, the matrix U(ℓ) ob-
tained from U by deleting the first 2r − 2ℓ rows and columns is in U2ℓ+1(R

2ℓ).
Indeed, the sequence U(ℓ) is unimodular in R2ℓ because (u1, ..., u2r) is upper
triangular and (u1, ..., u2r, u2r+1) is unimodular. It is non-generate as for I ⊂
{2r − 2ℓ + 1, ..., 2r + 1} of even cardinality, the sequence U(ℓ)I−2r+2ℓ generates
the orthogonal complement of u1, ..., u2ℓ in the non-degenerate space generated by
(u1, ..., u2ℓ, UI) and is thus non-degenerate.

We will show by descending induction on ℓ = 1, ..., r that

(6.12) detM(U(ℓ), x) ∈
√
Ann(h[B])

for all x ∈ R2ℓ such that (U(ℓ), x) ∈ U2ℓ+2(R
2ℓ).

The case ℓ = r is (6.11). Let ℓ ∈ {1, ..., r − 1} and assume (6.12) holds for ℓ+ 1
in place of ℓ. We want to show that (6.12) holds for ℓ. Fix x ∈ R2ℓ such that
(U(ℓ), x) ∈ U2ℓ+2(R

2ℓ). For ξ = (s, t, x) ∈ R×R×R2ℓ, the matrix

(U(ℓ + 1), ξ) =




1 0 · · · ∗ · · · s

0 α · · · ∗ · · · t

0 0 x1
...

... U(ℓ)
...

0 0 x2ℓ




is in U2ℓ+4(R
2ℓ+2) if and only if for all 1 ≤ i < j ≤ 2ℓ+ 3, the square matrix

(U(ℓ+ 1)∧ij , ξ)

is invertible, and for all I ⊂ {1, ..., 2ℓ+3} of odd cardinality < 2ℓ+2, the subspace
spanned by (U(ℓ+1)I , ξ) is non-degenerate. This happens if and only if s̄, t̄ ∈ F is
not a solution to any of the equations in F

(6.13) Lij(s, t) := det(U(ℓ + 1)∧ij , ξ) = 0 and Pf(Γ(U(ℓ+ 1)I , ξ)) = 0

where 1 ≤ i < j ≤ 2ℓ + 3 and I ⊂ {1, ..., 2ℓ + 3} of odd cardinality < 2ℓ + 2.
Here, Pf(A) denotes the Pfaffian of a skew-symmetric matrix A. The equations in
(6.13) are linear and homogeneous in ξ, hence, linear (possibly inhomogeneous) in
(s, t) ∈ R2.

We check that every equation in (6.13) is non-trivial in (s, t), that is, that for
each equation in (6.13), there is (s, t) ∈ R2 for which the left-hand side of that
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equation does not vanish in F . We start by investigating the Pfaffian equations.
Let I ⊂ {1, ..., 2ℓ+3} be a subset of odd cardinality < 2ℓ+2. By abuse of notation
I will label the columns of U(ℓ) by (U3(ℓ), ..., U2r+3(ℓ)) so that U(ℓ)J is obtained
from U(ℓ + 1)J by deleting the first two rows provided J ⊂ {3, 4, ..., 2ℓ + 3}. If
1, 2 ∈ I, then the subspace spanned by (U(ℓ+1)I , ξ) is non-degenerate as it equals
the subspace generated by




1 0 0 0

0 α 0 0

0 0 U(ℓ)I−{1,2} x




which is non-degenerate since (U(ℓ), x) ∈ U2ℓ+2(R
2ℓ). Hence, Pf(U(ℓ + 1)I , ξ) is

a unit in R for all s, t ∈ R. If 1 ∈ I but 2 /∈ I then the subspace spanned by
(U(ℓ+ 1)I , ξ) equals the subspace spanned by




1 0 0

0 t y

0 x U(ℓ)I−{1}




which has Gram matrix




0 t y

−t 0 〈x, U(ℓ)I−{1}〉

−ty −t〈x, U(ℓ)I−{1}〉 Γ(U(ℓ)I−{1})




with Pfaffian tPf(Γ(U(ℓ)I−{1}))+c where c does not depend on t. Since Pf(Γ(U(ℓ)I−{1})) 6=
0 ∈ F , for all s ∈ R there is a t ∈ R such that Pf(U(ℓ + 1)I , ξ) is a unit in R. If
2 ∈ I but 1 /∈ I then the subspace spanned by (U(ℓ + 1)I , ξ) equals the subspace
spanned by




0 s y

α 0 0

0 x U(ℓ)I−{2}




since α ∈ R∗. This has Gram matrix




0 −αs −αy

αs 0 〈x, U(ℓ)I−{2}〉

αty −t〈x, U(ℓ)I−{2}〉 Γ(U(ℓ)I−{2})




with Pfaffian −αsPf(Γ(U(ℓ)I−{2})) + c where c does not depend on s. Since
αPf(Γ(U(ℓ)I−{2})) 6= 0 ∈ F , for all t there is s such that Pf(U(ℓ + 1)I , ξ) is a
unit in R. If 1, 2 /∈ I, assume first that |I| 6= 2ℓ + 1, hence 1 ≤ |I| ≤ 2ℓ − 1. Let
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J ⊂ I be the subset obtained from I by deleting its maximal element. Then

(6.14) (U(ℓ + 1)I , ξ) =




v a s

w b t

U(ℓ)J y x




We need to find s, t ∈ R such that the Pfaffian of (6.14) is a unit in R, that is, such
that the columns of (6.14) span a non-degenerate subspace of R2ℓ+2. Since U(ℓ)J
spans a non-degenerate subspace of R2ℓ, there are unique aj , bj ∈ R, j ∈ J , such
that

〈Ui(ℓ), x〉 =
∑

j∈J

aj〈Ui(ℓ), Uj(ℓ)〉, 〈Ui(ℓ), y〉 =
∑

j∈J

bj〈Ui(ℓ), Uj(ℓ)〉

for all i ∈ J . Set

x0 =
∑

j∈J

ajUj(ℓ), s0 =
∑

j∈J

ajvj , t0 =
∑

j∈J

ajwj ,

y0 =
∑

j∈J

bjUj(ℓ), a0 =
∑

j∈J

bjvj , b0 =
∑

j∈J

bjwj .

Then the columns of (6.14) and those of

(6.15)




v a− a0 s− s0

w b− b0 t− t0

U(ℓ)J y − y0 x− x0




span the same subspace of R2ℓ+2. Moreover, y− y0, x− x0 is a basis of the orthog-
onal complement of U(ℓ)J inside the non-degenerate subspace of R2ℓ generated
by (U(ℓ)J , y, x) = (U(ℓ)I , x). In particular, c := 〈y − y0, x − x0〉 ∈ R∗. For
(s, t) = (s0, t0), the Gram-matrix of (6.15) is




Γ(U(ℓ+ 1)J) ∗ 0

∗ 0 c

0 −c 0




which has Pfaffian cPf(U(ℓ+1)J) ∈ R∗. In particular, the Pfaffian of (6.14) is a unit
for (s, t) = (s0, t0). If |I| = 2ℓ+1 (and 1, 2 /∈ I) then the space generated by (U(ℓ+
1)I , ξ) is non-degenerate if and only if the determinant L12(s, t) of (U(ℓ+ 1)I , ξ) is
a unit. This is a special case of the linear equations Lij(s, t), 1 ≤ i < j ≤ 2ℓ + 3,
which we investigate now. We have

L12(s, t) = det(U(ℓ+ 1), ξ)∧12 = as+ bt+ c

for some c ∈ R where a = − det(A), b = detB, A is obtained from U(ℓ + 1)∧12 by
deleting the first row, and B is obtained from U(ℓ+1)∧12 by deleting the second row.
The matricesA and B are invertible because U(ℓ+1) ∈ U2ℓ+3(R

2ℓ+2), U1(ℓ+1) = e1
and U2(ℓ+1) = αe2, α ∈ R∗. In particular, a and b are units, and there is (s, t) ∈ R2

such that L12(s, t) ∈ R∗. For i = 1, 2 and 3 ≤ j ≤ 2ℓ+ 3, we have

L1j(s, t) = a1js+ c1j , and L2j(s, t) = b2jt+ c2i,
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where a1j = −α detU(ℓ)∧j and b2j = detU(ℓ)∧j are units in R, and c1j , c2j ∈ R.

In particular, for i = 1, 2 and 3 ≤ j ≤ 2ℓ + 3, there is (s, t) ∈ R2 such that
Lij(s, t) ∈ R∗. For 3 ≤ i < j ≤ 2r + 1,

Lij(s, t) = αLi,j(U(ℓ), x).

does not depend on s, t ∈ R and is a unit since (U(ℓ), x) ∈ U2ℓ+2(R
2ℓ). Summaris-

ing, for every equation in (6.13), there is (s, t) ∈ R2 for which the left-hand side of
that equation does not vanish in F .

From the computation of Lij(s, t) above, the matrix M(U(ℓ+ 1), ξ) is









































0 〈as+ bt+ c〉−1 · · · 〈δ1j〉〈a1js+ c1j〉
−1 · · · 〈c1〉

−1

〈as+ bt+ c〉−1 0 · · · 〈δ2j〉〈b2jt+ c2j〉
−1 · · · 〈−c2〉

−1

...
...

〈δi1〉〈a1is+ c1i〉
−1 〈δi2〉〈b2it+ c2i〉

−1

...
... 〈α〉−1 ·M(U(ℓ), x)

〈c1〉
−1 〈c2〉

−1









































By assumption, it has determinant g(s, t) = detM(U(ℓ+ 1), ξ) in
√
Ann(h[B]) for

all (s̄, t̄) ∈ F 2 − S where S is a finite union of affine subspaces of dimension ≤ 1
defined by the equations (6.13). For γ ∈ R∗, consider the equation γ = as+ bt+ c
and note that for all but finitely many γ̄ ∈ F ∗ the hyperplane γ̄ = ās̄ + b̄t̄ + c̄ in
F 2 is not entirely in S. Then s = a−1(γ − c− bt) and M(U(ℓ+ 1), ξ) becomes









































0 〈γ〉−1 · · · 〈δ1j〉〈ã1jt+ c̃1j〉
−1 · · · 〈c1〉

−1

〈γ〉−1 0 · · · 〈δ2j〉〈b2jt+ c2j〉
−1 · · · 〈−c2〉

−1

...
...

〈δi1〉〈ã1it+ c̃1i〉
−1 〈δi2〉〈b2it+ c2i〉

−1

...
... 〈α〉−1 ·M(U(ℓ), x)

〈c1〉
−1 〈c2〉

−1









































where ã1j = −a1jb/a and c̃1j = c1j + a1j(γ − c)/a. Its determinant f(t, γ) =

g(a−1(γ − c− bt), t) is in
√
Ann(z[B]) for all t̄ ∈ F − S′ for a finite set S′ ⊂ F (for

fixed γ). Since the coefficients ã1j and b2j of t are units in R, we can apply the
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Limit Theorem 4.9 and find that limt→∞ f(t, γ) ∈
√

Ann(h[B]) where

f(γ) = lim
t→∞

f(t, γ) = det




0 〈γ〉−1 0 · · · 0 · · · 0 〈c1〉−1

〈γ〉−1 0 0 · · · 0 · · · 0 〈−c2〉
−1

0 0

...
... 〈α〉−1 ·M(U(ℓ), x)

0 0

〈c1〉−1 〈c2〉−1




for all but finitely many γ̄ ∈ F . Then

〈γ〉2f(γ) = det




0 1 0 · · · 0 · · · 0 〈c1〉−1〈γ〉

1 0 0 · · · 0 · · · 0 〈−c2〉−1〈γ〉

0 0

...
... 〈α〉−1 ·M(U(ℓ), x)

0 0

〈c1〉−1 〈c1〉−1




is in
√
Ann(h[B]) for all but finitely an γ̄ ∈ F . By the Limit Theorem 4.9, the

element

lim
γ→0

〈γ〉2f(γ) = det




0 1 0 · · · 0 · · · 0 0

1 0 0 · · · 0 · · · 0 0

0 0

...
... 〈α〉−1 ·M(U(ℓ), x)

0 0

〈c1〉−1 〈c1〉−1




is also in
√

Ann(h[B]). Hence, −〈α〉−2ℓ detM(U(ℓ), x) ∈
√
Ann(z[B]) which im-

plies detM(U(ℓ), x) ∈
√
Ann(h[B]) since −〈α〉−2ℓ is a unit in Z0[R]. This finishes

the proof of (6.12) for ℓ = 1, ..., r. In particular, it holds for ℓ = 1.
Finally, we investigate what (6.12) means for ℓ = 1. The given matrix

U(1) =

(
1 0 b
0 a c

)
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has a, b, c ∈ R∗ since it is in U3(R
2). For x = (s, t) ∈ R2, the matrix

(U(1), x) =

(
1 0 b s
0 a c t

)

is in U4(R
2) if and only if s, t, bt−cs ∈ R∗. ThenM(U(1), x) = (〈δijdet

−1(U(1), x)∧ij〉)
has determinant

f(s, t) = detM(U(1), x) = det




0 〈bt− cs〉−1 〈−as〉−1 〈−ab〉−1

〈bt− cs〉−1 0 〈−t〉−1 〈−c〉−1

〈as〉−1 〈−t〉−1 0 〈a〉−1

〈−ab〉−1 〈c〉−1 〈a〉−1 0




in
√
Ann(h[B]) for all s, t,∈ R∗ such that bt− cs ∈ R∗. Setting s = 1 then every

t ∈ R such that t̄ 6= 0, c̄/b̄ ∈ F has

f(1, t) = det




0 〈bt− c〉−1 〈−a〉−1 〈−ab〉−1

〈bt− c〉−1 0 〈−t〉−1 〈−c〉−1

〈a〉−1 〈−t〉−1 0 〈a〉−1

〈−ab〉−1 〈c〉−1 〈a〉−1 0




in
√
Ann(h[B]). Since the coefficients b an and −1 of t are units in R, we can apply

the Limit Theorem 4.9 and find that the element

lim
t→∞

f(1, t) = det




0 0 〈−a〉−1 〈−ab〉−1

0 0 0 〈−c〉−1

〈a〉−1 0 0 〈a〉−1

〈−ab〉−1 〈c〉−1 〈a〉−1 0


 = 〈ac〉−2

is in
√
Ann(h[B]). Since 〈ac〉−2 is a unit in Z0[R], the ideal

√
Ann(h[B]) is the

unit ideal. �

7. Homology stability

In this section we prove the results announced in the Introduction. The following
proves Theorem 1.1.

Theorem 7.1. Let R be a commutative local ring with infinite residue field and
n ≥ 0 an integer. Then in the following sequence of integral homology groups, all
maps are isomorphisms

H2n(Sp2nR)
∼=
−→ H2n(Sp2n+1R)

∼=
−→ H2n(Sp2n+2 R)

∼=
−→ · · ·

and in the following sequence of integral homology groups, the first map is a sur-
jection and all other maps are isomorphisms

H2n+1(Sp2n+1R) ։ H2n+1(Sp2n+2R)
∼=
−→ H2n+1(Sp2n+3R)

∼=
−→ · · · .

Moreover, inclusion of groups induces a surjection

H2n+1(Sp2n(R)) ։ H2n+1(Sp2n+2(R)).

In particular, Hi(Sp2n(R), Sp2n−2(R)) = 0 for all i < 2n.

Proof. The case n = 0 is clear, so assume n ≥ 1. The spectral sequence (3.1)
degenerates at the E2-page (Proposition 6.1). By Lemma 3.1, we have E2

p,q(R
2n) =

0 for p+q < 2n. Moreover, 0 = d : Z[Skew+
2 (R)] → Z[Skew+

1 (R)] forcing d
1
p,2 = 0 for
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all p ∈ Z (Lemma 3.5). Therefore, d1p,1 : E1
p,1(R

2n) → E1
p,0(R

2n) is an isomorphism
for p ≤ 2n− 2 and a surjection for p = 2n− 1. Hence,

Hp(Sp2n−2)⊕ H̃p(Sp2n−1) = Hp(Sp2n−1) −→ Hp(Sp2n)

is an isomorphism for p ≤ 2n− 2 and a surjection for p = 2n− 1. By Lemma 5.8,
the map is zero on the second summand. In particular,

H̃p(Sp2n−1) = 0 for p ≤ 2n− 2

and

Hp(Sp2n−2)
∼=
−→ Hp(Sp2n) for p ≤ 2n− 2.

This proves the first string of isomorphisms and the second string of a surjec-
tion followed by isomorphisms in the theorem. Using Lemma 5.8, the surjectiv-
ity of H2n−1(Sp2n−1) −→ H2n−1(Sp2n) implies surjectivity of H2n−1(Sp2n−2) −→
H2n−1(Sp2n). �

Let KMW
∗ (R) be the Milnor-Witt K-theory ring of R [Mor12, Definition 3.1],

[Sch17, Definition 4.10]. The following proves Theorem 1.2 from the Introduction.

Theorem 7.2. Let R be a local ring with infinite residue field and n ≥ 1 an integer.
Then the inclusions of groups Sp2r ⊂ SL2r ⊂ SL2r+1 induce a surjection

H2n(Sp2n(R), Sp2n−2(R)) ։ H2n(SL2n(R), SL2n−1(R)) = KMW
2n (R).

Proof. Consider the string of maps

H2(Sp2
(R))⊗n → H2n(Sp2n(R)) → H2n(Sp2n(R),Sp

2n−2
(R)) → H2n(SL2n(R), SL2n−1(R))

in which the first map is induced by the block sum of matrices. By [Sch17, Theorem
5.37 and proof], the composition is the surjective multiplication map

KMW
2 (R)⊗n ։ KMW

2n (R).

It follows that the last map in the composition is surjective. �

Remark 7.3. Let k be an infinite perfect field of characteristic not 2 which is
finitely generated over its prime field. Then neither of the two surjective maps

(7.1) H3(Sp2(k)) ։ H3(Sp4(k)), and H4(Sp4(k), Sp2(k)) ։ KMW
4 (k)

is injective. For the first map, this follows from [HW15, Theorem 7.4] since that
map factors through H3(B Sp2(k[∆

•])) in view of the isomorphisms

H3(B Sp4(k))
∼= H3(B Sp(k)) ∼= H3(B Sp(k[∆•]))

resulting from Theorem 7.1 and homotopy invariance of symplectic K-theory for
regular rings containing 1/2.

If the second map in (7.1) was an isomorphism, then the map

H4(Sp4(k)) → H4(Sp4(k), Sp2(k))

would be surjective (see proof of Theorem 7.2), and the long homology exact se-
quence for the pair (Sp4(k), Sp2(k)) would force the first map in (7.1) to be injective.
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