
HIGHER K-THEORY OF FORMS I.

FROM RINGS TO EXACT CATEGORIES
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Abstract. We prove the analog for the K-theory of forms of the Q = +

theorem in algebraic K-theory. That is, we show that the K-theory of forms
defined in terms of an S•-construction is a group completion of the category

of quadratic spaces for form categories in which all admissible exact sequences

split. This applies for instance to quadratic and hermitian forms defined with
respect to a form parameter.
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1. Introduction

This is the first in a series of articles addressing fundamental and computational
aspects of higher algebraic K-theory of quadratic, hermitian, symplectic, skew-
symmetric and other kinds of forms over rings and schemes avoiding the unnecessary
but common assumption of inverting the prime 2. We will study these forms in
the framework of additive and exact form categories and show in Theorem 6.6 the
analog for forms of the ”Q=+” theorem in algebraic K-theory [Gra76, Th p. 11].

The lower K-theory of forms has been studied by several authors, notably by
Bak [Bak81]. But to our knowledge, there seems to be no systematic treatment of
the higher K-theory of forms, at least not in the desired generality. When 2 is a
unit in a ring with involution R, the higher K-theory of forms was introduced by
Karoubi [Kar73], [Kar80a] under the name of Hermitian K-theory, and a modern
treatment for dg categories with uniquely 2-divisible mapping complexes was given
by the author in [Sch17b]. Motivated by applications in A1-homotopy theory, we
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initiated the study of higher K-theory of symmetric bilinear forms in [Sch10a] and
[Sch10b] taking care to avoid the assumption 1/2 ∈ R. It turns out, however, that
if we want to study symmetric bilinear forms through the lens of derived categories
– as was done in [Sch17b] under the uniquely 2-divisibility hypothesis – we also
need to consider other types of forms as the examples in [Sch17b, Proposition 2.1]
show. Indeed, we will see in forthcoming work that symmetric bilinear forms on
one piece of the derived category of an algebraic variety can correspond to some
different type of forms on another but derived-equivalent piece. This requires us to
consider all types of forms in a unified way.

We do so in this paper by considering additive and exact form categories. These
are additive categories A equipped with a quadratic functor Q : Aop → Ab which
associates to each object X of A an abelian group Q(X) of ”quadratic forms” on X
such that the associated symmetric bilinear functor comes from a duality functor
] : Aop → A, canX : X → X]]. For instance, Q(X) could be the set of quadratic
(hermitian, symmetric, symplectic, anti-symmetric, alternating, even hermitian)
forms on a projective module X over a ring with involution. By Definition 2.1
below, the quadratic functor Q comes with a functorial C2-equivariant diagram of
functors Aop → Ab,

(A(X,X]), σ)
τ−→ Q(X)

ρ−→ (A(X,X]), σ),

where σ(f) = f ] can, ρτ = 1+σ and Q(f+g)(ξ) = Q(f)(ξ)+Q(g)(ξ)+τ(f ]ρ(ξ)g).
A quadratic space in (A, Q) is an object X of A equipped with a quadratic form
ξ ∈ Q(X) on X such that the associated symmetric bilinear form ρ(ξ) : X → X] is
an isomorphism. The groupoid iQuad(A, Q) of quadratic spaces and isometries in
A is symmetric monoidal under orthogonal sum, and we define the orthogonal sum
Grothendieck-Witt space GW⊕(A, Q) as the group completion of that symmet-
ric monoidal groupoid, a model of which is given by Quillen’s S−1S construction
[Gra76] for S = iQuad(A, Q).

If A is equipped with a notion of exact sequences, we require ] to be exact and Q
to be quadratic left exact (Definitions 2.22, A.13). As was done for symmetric bi-
linear forms in [Sch10b], we use a variant of Waldhausen’s S•-construction to define
the Grothendieck-Witt space GW (A, Q) of an exact form category (A, ], can, Q) by
the homotopy fibration

GW (A, Q) −→ |iQuad(S2•+1A)| −→ |iS•A|.
The main theorem of this paper is the following; see Theorem 6.6 in the text.

Theorem 1.1 (Group Completion Theorem). Let (A, ], can, Q) be an exact form
category with strong duality1 in which every admissible exact sequence splits. Then
there is a natural homotopy equivalence of spaces

GW⊕(A, Q)
∼−→ GW (A, Q).

The importance of the theorem lies in the fact that the left space GW⊕(A, Q)
is related to the homology of orthogonal and symplectic groups (Remark 2.19)
whereas the right space GW (A, Q) leads to fibration sequences [Sch10b], [Scha]
and the use of derived category methods [Sch17b], [Schb].

Special cases of Theorem 1.1 can already be found in the literature. In [CL86],
the authors claimed a version of the theorem for symmetric bilinear forms, but

1Strong duality means the natural map canX : X → X]] is an isomorphism for all X ∈ A.
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as noted in the introduction to [Sch04], their argument has an error. In [Sch04],
we gave a proof of Theorem 1.1 for symmetric bilinear forms based on Karoubi’s
Fundamental Theorem [Kar80a] provided A is Z[1/2]-linear. In [Sch17b] we gave
another proof avoiding the use of the Fundamental Theorem. In the context of Real
algebraic K-theory, Hesselholt and Madsen have given a proof of Theorem 1.1 for
symmetric bilinear forms [HM15]. Whereas the proof in [HM15] is an elaboration
of Quillen’s techniques in [Qui76], our proof uses a generalisation of the techniques
in [Sch17a] which go back to [NS89].

The results of this paper are used in [Schb] to prove an integral version of
Karoubi’s Fundamental Theorem [Kar80a] and in [Schc] to compute the symplectic
and orthogonal K-groups of the integers.

Here is a more detailed outline of the contents of the article. In Section 2, we
define linear, additive and exact form categories. The motivation for the definitions
is explained in Appendix A. We also define the orthogonal sum Grothendieck-Witt
space of an additive form category and study products in GW -theory. In Section
3, we define form parameter rings whose categories of modules are canonically
equipped with a structure of form category. They give a convenient framework
for defining the transfer maps in GW -theory which we will need in the proof of
Theorem 5.1. In order to compute a particular transfer map, we specialise the
treatment in Section 4 to form rings. These are the form categories with strict
duality which have precisely one object (Lemma 4.5). Thus, for us, a form ring
(R,Λ) is a C2-equivariant diagram of abelian groups

(R, σ)
τ−→ Λ

ρ−→ (R, σ)

such that ρτ = 1 + σ, where (R, σ) is a ring with involution, Λ is an abelian group
equipped with a multiplicative quadratic action Q : (R, ·, 0, 1)→ (EndZ(Λ), ◦, 0, 1)
compatible with τ and ρ; see Definitions 3.3 and 4.1. Bak requires ρ to be injective
[Bak81, p. 5]. This results in a parallel but separate treatment of hermitian and
quadratic forms. We are forced to abandon the injectivity of ρ as it is meaningless
in a homotopical context which is essential in the further development of the theory.
As a byproduct, hermitian and quadratic forms can now be treated the same.

Form rings and free modules over them were also studied by Dotto and Ogle
in [DOss] under the name Hermitian Mackey functor. However, form parameter
rings and form categories seem not to have been studied before though there is a
related notion of stable infinity category with non-degenerate quadratic functor due
to Lurie [Lur13].

In Section 5 we prove an Additivity Theorem for orthogonal sum Grothendieck-
Witt theory which is the main ingredient in the proof of the Group Completion
Theorem 1.1. The idea of the proof is explained in Section 5.3. In Section 6 we give
the proof of the main theorem. In Appendix A we recall the definition of a quadratic
functor on an additive category and motivate the definition of such a functor for
linear categories. Some of this material is similar to [Bau94]. In Appendix B we
recall basic facts about C2-Mackey functors, in Appendix C we consider the tensor
product of unital abelian monoids which is a convenient framework for checking
that certain quadratic functors on tensor products are well-defined. Finally, in
Appendix D we recall and generalise some results from [Sch17a] needed in the
proof of Theorem 5.1.



4 MARCO SCHLICHTING

Acknowledgements. This project began while I was visiting Mittag-Leffler In-
stitute in Stockholm in Spring 2017. The main results were obtained (under the
additional hypothesis τρ = 2) while I was visiting the Hausdorff Institute in Bonn
in Summer 2017. I would like to thank both Institutes for their hospitality and the
organisers of the special programs for inviting me. The final version was completed
while I was visiting the University of Kansas, and I’d like to thank Satya Mandal for
the invitation and hospitality. I’d also like to thank Kristian Moi for listening to a
preliminary version, Denis Nardin for insisting that I remove the hypothesis τρ = 2
and the anonymous referee for his or her useful comments. Finally, I would like
to acknowledge support through EPSRC grant EP/M001113/1 and the Lerhulme
Trust.

Notation. Below is a list of notation used throughout the paper. They will also
be explained at the appropriate place in the text.

• For rings R and S, we denote by RMod, ModS, RModS the categories
of left R-modules, right S-modules, R-S-bimodules, and we denote by

R[M,N ], [M,N ]S and R[M,N ]S the abelian groups of homomorphisms
in those categories.
• If M ∈ ModS and N ∈ RModS, the abelian group [M,N ]S of right
S-module homomorphisms is a left R-module with scalar multiplication
(a, f) 7→ af defined by (af)(x) = a · f(x) for a ∈ R, f ∈ [M,N ]S and
x ∈M .
• If R is a ring with involution Rop → R : a 7→ ā and M ∈ RMod, we let
Mop ∈ ModR be the right R-module (M,+, 0) with scalar multiplication
xopa = (ā · x)op. If M is an R-bimodule, then Mop is the R-bimodule with
scalar multiplication a · xop · b = (b̄xā)op ∈Mop for a, b ∈ R and x ∈M .
• For a map of sets f : A→ B between abelian groups, the deviation of f is

the map f( > ) : A×A→ B defined by f(a > b) = f(a+b)−f(a)−f(b).
• C2 is the cyclic group of order 2 with generator usually denoted by σ.
• Ab is the category of abelian groups, R proj, R -free are the categories of

finitely generated projective respectively free left R-modules.
• S† = S−1S is the group completion of a symmetric monoidal groupoid S.
• BC = |C| is the classifying space of a small category C.
• Z = (Z,A(Z)) denotes the Burnside form ring (Example 4.10). This is not

the constant Mackey functor.

2. K-theory of form categories

Recall [Sch10a] that a category with duality is a triple (A, ], can) where A is a
category, ] : Aop → A is a functor, and can : 1 → ]] is a natural transformation,

called double dual identification, such that 1A] = can]A ◦ canA] for all objects A
of A. If the double dual identification is a natural isomorphism, we say that the
duality is strong. In case it is the identity (in which case ]] = id), we call the
duality strict. The functor Aop×Aop → Sets : (A,B) 7→ A(A,B]) is equipped with
an automorphism σ of order two:

(2.1) σ : A(A,B])→ A(B,A]) : f 7→ f ] ◦ canB .

In particular, for every object A of A the set of arrows A(A,A]) from A to its dual
carries an action of the cyclic group C2 = {1, σ} of order 2. A symmetric form on A
is a fixed point for that action, that is, an arrow f : A→ A] such that f = f ] canA.
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A linear category with duality is a category with duality (A, ], can) where A is a
linear category (that is, a category enriched over abelian groups) and the duality
functor ] is linear. An additive category with duality is a linear category with duality
(A, ], can) where A is additive, that is, has finite direct sums. An exact category
with duality is a category with duality (A, ], can) where A is an exact category
[Qui73] and the duality functor ] is exact.

A form functor from a category with duality (A, ], can) to another such category
(B, ], can) is a pair (F,ϕ) where F : A → B is a functor and ϕ : F] → ]F is a

natural transformation, called duality compatibility map, such that ϕ]A ◦ canFA =
ϕA] ◦F (canA) for every object A of A. There is an evident definition of composition
of form functors, see [Sch10a, 3.2]. If A and B are linear (additive, exact) categories,
then a form functor (F,ϕ) as above is called linear (additive, exact) if the functor
F is linear (additive, exact). In this paper, if A and B have strong dualities, a
form functor is called non-singular if the duality compatibility map ϕ is a natural
isomorphism.

Now we come to the definition of the main objects of study in this paper, the form
categories. In a nutshell, a form category is a linear category with duality (A, ], can)
together with a quadratic functor (Definition A.14) on Aop whose associated sym-
metric bilinear functor is (2.1). The motivation for the actual formulation of the
Definition is explained in the introduction to Section A.4.

Definition 2.1. A form category is a linear category with duality (A, ], can) to-
gether with a functor Q : Aop → Ab and natural transformations τ and ρ of functors
Aop → Ab

(2.2) A(A,A])
τ // Q(A)

ρ // A(A,A]), A ∈ A,

called transfer and restriction such that (1) - (3) below hold. An element ξ ∈ Q(A)
is called a quadratic form on A. For f ∈ A(A,B) and ξ ∈ Q(B) we may write
f•(ξ) for Q(f)(ξ) if Q is understood and call f•(ξ) the restriction of ξ along f . We
require the following.

(1) τσ = τ and σρ = ρ.
(2) ρτ = 1 + σ.
(3) For all f, g ∈ A(A,B) and ξ ∈ Q(B) we have

(f + g)•(ξ) = f•(ξ) + g•(ξ) + τ(g] ◦ ρ(ξ) ◦ f).

For a quadratic form ξ ∈ Q(A) on A, the map ρ(ξ) : A→ A] is called the associated
symmetric (bilinear) form. It is indeed symmetric in view of (1). An additive form
category is a form category as above where A is additive.

Remark 2.2. As natural transformations of functors with values in abelian groups,
τ and ρ are abelian group homomorphisms. Definition 2.1 (1) and (2) say that
diagram (2.2) is a C2-Mackey functor (Appendix B) contravariantly functorial in
A ∈ A, and Definition 2.1 (3) says that for ξ ∈ Q(B), the map of sets A(A,B) →
Ab : f 7→ f•(ξ) is quadratic (Appendix A.1) with deviation

(f > g)•(ξ) := (f + g)•(ξ)− f•(ξ)− g•(ξ)

the symmetric bilinear form

(f > g)•(ξ) = τ(g] ◦ ρ(ξ) ◦ f).
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Remark 2.3. From Definition 2.1 (3) we have Q(0) = Q(0 + 0) = Q(0) +Q(0) + 0
and thus, Q(0) = 0. Furthermore, Q(1) = 1 since Q is a functor. Then 0 =
Q(−1 + 1) = Q(−1) + 1− τρ, that is, Q(−1) = −1 + τρ. By induction we obtain

Q(n) = n+ ( n2 ) τρ, n ∈ Z.

Remark 2.4. In view of Lemma A.10 below, an additive form category is the same
as an additive category with duality (A, ], can) together with a quadratic functor
Q : Aop → Ab whose cross effect Q(A |B) is naturally isomorphic to A(A,B]) as
symmetric bilinear functors. In fact, Yoneda’s Lemma implies that the functor Q
determines (], can) up to natural isomorphism.

Example 2.5 (Classical quadratic and symmetric bilinear forms). Consider a linear
category with duality A = (A, ], can). Recall from (2.1) that for every object A
of A, the abelian group A(A,A]) is equipped with a C2-action. There are two
standard ways to make A into a form category. The form category of symmetric
forms in (A, ], can) has the fixed set Qs(A) = A(A,A])C2 of the C2-action (2.1) as
quadratic set of forms where transfer and restriction are

(2.3) A(A,A])
1+σ // A(A,A])C2 // 1 // A(A,A]).

The form category of classical quadratic forms in (A, ], can) has the orbit abelian
group Qq(A) = A(A,A])C2

as set of quadratic forms where transfer and restriction
are

A(A,A])
1 // // A(A,A])C2

1+σ // A(A,A]).

Indeed, the following is a well-known and easy exercise. Suppose the category with
duality (A, ], can) is the category R proj of finitely generated projective modules
over a commutative ring R with duality P ] = HomR(P,R) and standard double
dual identification. Then the map HomR(P, P ])C2

→ Q(P ) : f 7→ (x 7→ f(x)(x))
is an isomorphism for every P ∈ R proj where Q(P ) denotes the abelian group of
classical quadratic forms on P in the sense of [Bou07, §3 no. 4 Définition 2]; see
[Bou07, §3 no. 4 Proposition 2].

We will see many more examples in Sections 3 and 4; see (3.6) and (3.7).

Remark 2.6 (Classical form categories when 2 is invertible). Let (A, ], can, Q) be
a linear form category. By Definition 2.1 we have ρτ = 1 + σ but that definition
does not say anything about the other composition τρ. However, it often happens
that τρ = 2 as in Example 2.5. When this is the case, I call such form categories
classical. By Remark 2.3, a form category is classical if and only if Q(−1) = 1. If
A is a Z[1/2]-linear classical form category, then τρ = 2 is an isomorphism, and
thus, ρ is injective, τ is surjective, and Q(A) is the image of 1 + σ. In particular,
a Z[1/2]-linear category with duality (A, ], can) has a unique structure of classical
form category. For instance, if A is Z[1/2]-linear, then symmetric and classical
quadratic forms as in Example 2.5 coincide.

In general, we don’t have τρ = 2. See Example 4.10 below.

Definition 2.7 (Form functors). A form functor or homomorphism of form cate-
gories from a form category (A, ], can, QA) to a form category (B, ], can, QB) is a
triple (F,ϕq, ϕ) where (F,ϕ) : (A, ], can) → (A, ], can) is a linear form functor be-
tween linear categories with duality, ϕq : QA → QB ◦F is a natural transformation
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of functors Aop → Ab such that for all objects X ∈ A the following diagram of
abelian groups commutes

A(X,X])
τ //

f 7→ϕXF (f)

��

QA(X)
ρ //

ϕq

��

A(X,X])

f 7→ϕXF (f)

��
B(FX, (FX)])

τ // QB(FX)
ρ // B(FX, (FX)]).

The form functor is called non-singular if (F,ϕ) is. There is an obvious definition
of composition of form functors:

(G,ψq, ψ) ◦ (F,ϕq, ϕ) = (G ◦ F, (ψqF ) ◦ ϕq, (ψF ) ◦G(ϕ)).

A natural transformation of form functors η : (F,ϕq, ϕ) → (G,ψq, ψ) is a natu-
ral transformation of functors η : F → G such that the following two diagrams
commute

F]
η] //

ϕ

��

G]

ψ

��

QA

ϕq

��

QA

ψq

��
]F ]G

]η
oo QB ◦ F QB ◦G.

QB(η)
oo

We will see in Remark 2.37 below that form functors (A, Q) → (B, Q) are pre-
cisely the quadratic forms in the form category of linear functors from A to B.

Definition 2.8 (Category of quadratic forms). Let (A, ], can, Q) be a form cate-
gory. The category of quadratic forms in A is the category

Quad(A, ], can, Q)

whose objects are pairs (X, ξ) where X is an object of A and ξ ∈ Q(X) is a
quadratic form on X. An arrow f : (X, ξ) → (Y, ζ) in Quad(A, ], can, Q) is a
map f : X → Y in A such that ξ = f•(ζ). Composition is composition of maps
in A. We may write Quad(A, Q) or simply Quad(A) if the remaining data are
understood. Isomorphisms in Quad(A, Q) are called isometries. A form functor
(F,ϕq, ϕ) : (A, ], can, Q)→ (B, ], can, Q) defines a functor of categories of quadratic
forms

Quad(A, Q)→ Quad(B, Q) : (X, ξ) 7→ (FX,ϕq(ξ)).

Definition 2.9 (Orthogonal sum). Let X and Y be objects of an additive form
category (A, ], can, Q). Denote by pX and pY the canonical projections from X⊕Y
onto X and Y . The orthogonal sum of the quadratic forms ξ ∈ Q(X) and ζ ∈ Q(Y )
on X and Y is the quadratic form ξ ⊥ ζ on X ⊕ Y defined by

ξ ⊥ ζ = p•X(ξ) + p•Y (ζ) ∈ Q(X ⊕ Y ).

Orthogonal sum makes the category Quad(A, Q) of quadratic forms in A into a
symmetric monoidal category.

Definition 2.10 (Category of quadratic spaces). Let (A, ], can, Q) be an form
category with strong duality. A quadratic form ξ ∈ Q(X) on an object X of A is
called non-degenerate if the associated symmetric bilinear form ρ(ξ) : X → X] is
an isomorphism. A quadratic space is a pair (X, ξ) where X is an object of A and
ξ ∈ Q(X) is a non-degenerate quadratic form on X. We denote by

iQuad(A, Q)
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the subcategory of Quad(A, Q) whose objects are the quadratic spaces in A and
whose arrows are the isometries.

Note that a non-singular form functor between form categories with strong du-
ality preserves quadratic spaces.

Example 2.11 (Hyperbolic space). Let (A, ], can, Q) be an additive form category
with strong duality. The hyperbolic quadratic space of an object X of A is the

quadratic space H(X) = (X ⊕ X], hX) where hX = τ(p]X ◦ pX]) and pX , pX]
are the canonical projections from X ⊕X] onto X and X]. The hyperbolic space
H(X) = (X ⊕X], hX) is indeed non-degenerate because

ρ(hX) = ρτ(p]X ◦ pX]) = p]X ◦ pX] + p]
X]
◦ p]]X canX⊕X] =

(
0 1

X]

canX 0

)
.

A quadratic space (Y, ξ) is called hyperbolic if it is isometric to H(X) for some
object X ∈ A.

For an additive category A, denote by iA ⊂ A the subcategory that has the
same objects as A and whose arrows are the isomorphisms in A. This notation
must not be confused with the notation iQuad(A, Q) introduced in Definition 2.10;
Quad(A, Q) is rarely additive.

Remark 2.12 (Hyperbolic and forgetful functors). Let (A, ], can, Q) be an ad-
ditive form category with strong duality. Then we have a forgetful functor F :
iQuad(A, Q)→ iA sending a quadratic space (X, ξ) to its underlying object X and
an isometry f to the isomorphism f . The hyperbolic functor H : iA → iQuad(A, Q)
sends an object X of A to the hyperbolic space H(X) and an isomorphism f : X →
Y to the isometry H(f) = f ⊕ (f ])−1 : H(X)→ H(Y ).

Example 2.13 (Hyperbolic form functor). See also Definition 2.36. Let (A, can, ], Q)
and (B, can, ], Q) be additive form categories, and let G : A → B be an additive
functor. The associated hyperbolic form functor

H(G) : (A, can, ], Q)→ (B, can, ], Q)

has underlying functor G⊕ ]G], duality compatibility map(
0 ]G(can)

canG] 0

)
and on quadratic forms it is the map

Q(A)→ Q(GA⊕ ]G(A])) : ξ 7→ τ
(

0 ]Gρ(ξ)
0 0

)
.

If the dualities on A and B are strong, then on categories of quadratic spaces,
the hyperbolic form functor is naturally isomorphic to the composition of forgetful
functor, G and the hyperbolic functor H(G) ∼= H ◦G ◦ F :

iQuad(A, Q)
F−→ iA G−→ iB H−→ iQuad(B, Q)

where the natural isomorphism at the quadratic space (A, ξ) in A is the map(
1 0
0 ]Gρ(ξ)

)
:
(
GA⊕ ]G]A, τ

(
0 ]Gρ(ξ)
0 0

)) ∼=−→ (GA⊕ ]GA, τ ( 0 1
0 0 )) .

The following generalises the classical definitions as for example in [Bak81].
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Definition 2.14 (Grothendieck-Witt group). Let (A, ], can, Q) be an additive form
category with strong duality. The orthogonal sum of non-degenerate forms is
non-degenerate. Hence, the groupoid iQuad(A, Q) becomes a unital symmetric
monoidal category under orthogonal sum. In particular, the set quad(A, Q) =
π0iQuad(A, Q) of isometry classes of non-degenerate quadratic forms is a unital
commutative monoid, and we define the (orthogonal sum) Grothendieck-Witt group
of (A, ], can, Q) as the Grothendieck group of that abelian monoid

GW⊕0 (A, Q) = K0(quad(A, Q),⊥).

The hyperbolic functor from Remark 2.12 induces a mapH : K⊕0 (A)→ GW⊕0 (A, Q)
whose cokernel W⊕(A, Q) is the Witt group of (A, Q). Orthogonal sum Witt and
Grothendieck-Witt groups are functorial for non-singular additive form functors.

To any unital symmetric monoidal groupoid (S,⊕, 0), Quillen [Gra76] associates
a symmetric monoidal category S−1S together with a symmetric monoidal functor
S → S−1S which on π0 is the universal map π0S → π0S−1S = K0(S) to the
Grothendieck-group of the abelian monoid π0S and which on integral homology
groups yields an isomorphism2

(2.4) [(π0S)−1]H∗(S)
∼=−→ H∗(S−1S)

after inverting the multiplicative action of π0S on H∗(S). To simplify notation,
we will write S† for S−1S. The isomorphism (2.4) characterises the symmetric
monoidal category S† = S−1S up to homotopy, and one defines the K-theory
space of S as the classifying space

K(S) = B(S†)
of S† and writes Ki(S) = πiK(S) for the homotopy groups of K(S) with respect
to 0 as base-point.

Recall that the (direct sum) K-theory space K⊕(A) of an additive category A
is the K-theory space K⊕(A) = K(iA,⊕) of the symmetric monoidal groupoid
(iA,⊕) of isomorphisms in A with respect to direct sum.

Definition 2.15 (Grothendieck-Witt space). Let (A, ], can, Q) be an additive form
category with strong duality. Its (orthogonal sum) Grothendieck-Witt space is the
K-theory space

GW⊕(A, Q) = K(iQuad(A, Q),⊥)

of the symmetric monoidal groupoid of non-degenerate quadratic forms in A. Hy-
perbolic and forgetful functors from Remark 2.12 induce maps on K-theory spaces

(2.5) K⊕(A)
H−→ GW⊕(A, Q)

F−→ K⊕(A).

The higher Grothendieck-Witt groups of (A, Q) are the homotopy groups of its
Grothendieck-Witt space GW⊕i (A, Q) = πiGW

⊕(A, Q) taken with respect to a
zero object as base-point.

By definition, the zeroth homotopy group of GW⊕(A, Q) is the Grothendieck-
Witt group of Definition 2.14. The orthogonal sum Grothendieck-Witt space is
functorial for non-singular additive form functors.

2In [Gra76] the translation functors S → S : A 7→ A ⊕ S are required to be faithful for all
S ∈ S. This assumption automatically holds for all symmetric monoidal groupoids of the form

iQuad(A, Q) where (A, ], can, Q) is an additive form category with strong duality.
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Remark 2.16 (Homology of connected components). Denote by K(S)0 the con-
nected component of 0 of the K-theory space K(S) of a symmetric monoidal
groupoid S. Then the isomorphism (2.4) yields the isomorphism

(2.6) colim
[X]∈π0S

H∗Aut(X)
∼=−→ H∗(K(S)0)

where the indexing category for the colimit on the left is the filtered category whose
objects are the elements [X] ∈ π0S and where a map [X] → [Y ] is an element
A ∈ π0S such that [X] + [A] = [Y ] ∈ π0S. Composition is addition of the [A]’s.
Note that there is a (non-functorial) homotopy equivalence K(S) ∼ K0(S)×K(S)0

which depends on the choice of a section of K(S)→ K0(S).

Remark 2.17 (Cofinality for K(S)). Let S be a symmetric monoidal groupoid.
A full symmetric monoidal subgroupoid S ′ ⊂ S is called cofinal if for every object
X of S, there is an object Y of S such that X ⊕ Y is isomorphic to an object of
S ′. In this case, the indexing category π0S ′ of the colimit in (2.6) is cofinal in π0S
and hence the colimits over π0S ′ and π0S agree. In view of the isomorphism (2.6),
the inclusion S ′ ⊂ S induces a homology isomorphism H∗(K(S ′)0) ∼= H∗(K(S)0)
between connected H-spaces and thus a homotopy equivalence of connected com-
ponents K(S ′)0

∼−→ K(S)0. Moreover, the map K0(S ′) → K0(S) is easily seen
injective. In summary, if S ′ ⊂ S is a fully faithful cofinal inclusion of symmetric
monoidal groupoids, then

Ki(S ′)→ Ki(S) is

{
an isomorphism i > 0,

a monomorphism i = 0.

Lemma 2.18 (Cofinality for GW⊕). Let (A, ], can, Q) be an additive form category
with strong duality. Let B ⊂ A be a full additive subcategory closed under the duality
]. Assume that for every object A of A there is an object A′ of A such that A⊕A′
is isomorphic to an object of B. Then

GW⊕i (B, Q)→ GW⊕i (A, Q) is

{
an isomorphism i > 0,

a monomorphism i = 0.

Proof. This is a special case of Remark 2.17. Indeed, iQuad(B, Q) ⊂ iQuad(A, Q)
is cofinal since for any (A, ξ) ∈ iQuad(A, Q) we have

(A, ξ) ⊥ (A, ξ) ⊥ H(A′) ∈ iQ(B, Q)

for any A′ ∈ A with A⊕A′ ∈ B. �

Remark 2.19 (GW⊕ and the Plus Construction). Remark 2.17 applies to the
inclusion of free modules into projectives and gives rise to the usual homotopy
equivalence K(R) ∼ K0(R)×BGL(R)+; see [Gra76, Theorem p. 7].

In general, there is no nice cofinal subcategory of iQuad(A, Q) which would give
a similar description of the Grothendieck-Witt space even if A is the category of
finitely generated projective modules over a ring. However, if for all objects X of
an additive form category, the transfer τX is surjective, then the hyperbolic spaces
are cofinal in the category of all quadratic spaces3. In particular, we have

GW⊕(P(R), Q) ∼ GW⊕0 (P(R), Q)×BO∞(R,Q)+,

3Split metabolic spaces are always cofinal (Example 2.26). When τ is surjective, split metabolic
spaces are hyperbolic which follows from Lemma 5.3 with a = c = 1 and µ = 0.
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where P(R) is the category of finitely generated projective modules over a ring
R equipped with a structure of form category with strong duality for which all
transfers τ are surjective, and O∞(R,Q) is the union of the automorphism groups
O2n(R,Q) = Aut(HRn) of the hyperbolic spaces H(Rn) of Example 2.11. This
applies for example to the classical quadratic forms Qq of Example 2.5 [Kar80b,
Théorème 1.6] and to symplectic forms over a commutative ring.

For an example where τ is not surjective, consider the category of symmetric
bilinear spaces over the integers Z. It contains the cofinal subcategory of symmetric
bilinear spaces n〈1〉 ⊥ n〈−1〉, n ∈ N; see [MH73, Theorem 4.3]. In particular,

GW⊕(Z, Qs) ∼ Z× Z×BO∞,∞(Z)+

where O∞,∞(Z) is the union of the groups On,n(Z) = Aut(n〈1〉 ⊥ n〈−1〉).

Remark 2.20 (Extending GW⊕ to linear categories). Sometimes it is useful to
have a Grothendieck-Witt space GW⊕ associated with a form category with strong
duality which may not be additive. It follows from Lemma A.16 below that the
structure of form category (], can, Q) on a linear category A extends uniquely (up
to natural isomorphism) to a structure of form category (], can, Q) on its additive
hull A⊕. If A is additive, then the inclusion Quad(A, Q) ⊂ Quad(A⊕, Q) is an
equivalence and therefore induces an equivalence of K-theory spaces GW⊕(A, Q) '
GW⊕(A⊕, Q). Thus if (A, ], can, Q) is a form category with strong duality, I may
write GW⊕(A, Q) to mean GW⊕(A⊕, Q) without causing confusion in case A was
additive.

As for Quillen’s K-theory, there is a definition of a Grothendieck-Witt space
GW (E , Q) for exact categories which generalises Definition 2.15; see Remark 2.33
and Definition 6.3. But first we need to define what we mean by an exact form
category. The following lemma motivates the definition.

Lemma 2.21. Let (A, ], can, Q) be an additive form category. Then for every split
exact sequence

0→ X
i−→ Y

p−→ Z → 0

in A, the following is an exact sequence of abelian groups

(2.7) 0 // Q(Z)
p• // Q(Y )

(i]◦ρ( ), i•) // A(Y,X])×Q(X).

Proof. This is a special case of Lemma A.12 in view of Lemma A.10. But it is
also easy to prove directly. Since the sequence in A is split exact, there are maps
s : Z → X and r : Y → X such that ps = 1Z , ri = 1X and sp + ir = 1Y . In
particular, 1 = (ps)• = s•p• and p• is injective. For exactness at Q(Y ), first note
that the composition of the two maps in (2.7) is zero since for ξ ∈ Q(Z) we have

(i] ◦ ρ(p•ξ), i•p•ξ) = ((pi)] ◦ ρ(ξ) ◦ p, (pi)•ξ) = (0, 0)

as ρ(p•ξ) = p] ◦ ρ(ξ) ◦ p and pi = 0. Now, let ξ ∈ Q(Y ) such that i•(ξ) = 0 and
i] ◦ ρ(ξ) = 0. Then

ξ = (ir + sp)•(ξ) = r•i•(ξ) + p•s•(ξ) + τ(r]i] ◦ ρ(ξ) ◦ sp) = p•s•(ξ)

is in the image of p•. �
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Definition 2.22 (Exact form category). An exact form category is an additive form
category (E , ], can, Q) where E is an exact category such that for every admissible
short exact sequence

(2.8) X // i // Y
p // // Z

in E , the sequence (2.7) is exact.

Example 2.23. An additive category A can be considered as an exact category
where a sequence (2.8) is admissible exact if it splits, that is, if p has a section, or
equivalently, if i has a retraction. Such exact categories are called split exact. By
Lemma 2.21, any additive form category is canonically a split exact form category.

Example 2.24. Any exact category with duality (E , ], can) canonically defines an
exact form category (E , ], can, Q) of symmetric forms in E . So

Q(E) = E (E,E])C2

with restriction and transfer as in Example 2.5 (2.3). The exact sequence (2.7) is
an easy diagram chase.

Definition 2.25 (Sublagrangian, Lagrangian, metabolic space). Let (E , ], can, Q)
be an exact form category with strong duality, and let (X, ξ) be a quadratic space
in (E , Q). Let i : Y � X be an admissible subobject. The orthogonal complement
of Y in X is the admissible subobject Y ⊥ = ker(i]◦ρ(ξ)) � X of X. The subobject
Y ⊂ X is called sublagrangian, or totally isotropic subspace, if i•(ξ) = 0 and the
inclusion Y ⊂ Y ⊥ is an admissible monomorphism.4 A Lagrangian of (X, ξ) is a
sublagrangian Y ⊂ X such that Y = Y ⊥. A Lagrangian is called split if it is a direct
summand. A quadratic space (X, ξ) is called metabolic if it has a Lagrangian. It is
called split metabolic if it has a split Lagrangian. Note that a nonsingular exact form
functor between exact form categories with strong dualities preserves metabolic and
split metabolic objects.

Example 2.26. For every quadratic space (X, ξ), the quadratic space (X, ξ) ⊥
(X,−ξ) is split metabolic with Lagrangian the diagonal embedding X ⊂ X ⊕ X.
The hyperbolic space H(X) of an object X is split metabolic with Lagrangian the
canonical inclusion X ⊂ X ⊕X] : x 7→ (x, 0).

Definition 2.27. The Grothendieck-Witt group of an exact form category with
strong duality (E , ], can, Q) is the abelian group

GW0(E , Q)

generated by isometry classes of quadratic spaces [X, ξ] in (E , Q) subject to the
relations

(1) [X ⊥ Y ] = [X] + [Y ]
(2) [M ] = [H(L)] if M is metabolic with Lagrangian L.

The Witt group W (E , Q) of (E , ], can, Q) is the abelian monoid of isometry classes
[X, ξ] of quadratic spaces (X, ξ) in (E , Q) modulo the submonoid of metabolic
spaces. The quotient monoid is indeed a group since (X, ξ) ⊥ (X,−ξ) is metabolic
for every quadratic space (X, ξ) and thus −[X, ξ] = [X,−ξ] ∈W (E , Q).

4Admissibility comes for free when E is semi-idempotent complete, that is, when every arrow
in E which has a section also has a kernel.
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Remark 2.28. For any exact form category with strong duality (E , ], can, Q) we
have an exact sequence of abelian groups

K0(E )
H−→ GW0(E , Q) −→W (E , Q)→ 0

where the first map sends [X] to [HX] and the second map sends [X, ξ] to [X, ξ].
Indeed, the mapW (E , Q)→ coker(H) : [X, ξ] 7→ [X, ξ] is well-defined, surjective,

and the composition with coker(H)→ W (E , Q) : [X, ξ] 7→ [X, ξ] is the identity on
W (E , Q).

Many constructions and properties of classical quadratic forms carry over to the
context of form categories. Here are some examples.

Lemma 2.29 (Existence of orthogonal decompositions). Let (E , ], can, Q) be an
exact form category with strong duality. Let ξ ∈ Q(X) be a non-degenerate quadratic
form on an object X of E , and let i : Y � X be an admissible subobject such that
i•(ξ) ∈ Q(Y ) is non-degenerate. Let j : Y ⊥ ⊂ X be the inclusion of the orthogonal
complement of Y in X with respect to ρ(ξ), that is, Y ⊥ = ker(i] ◦ ρ(ξ)). Then we
have the following orthogonal sum decomposition

(X, ξ) = (Y, i•(ξ)) ⊥ (Y ⊥, j•(ξ)).

Proof. Since ρ(ξ) is an isomorphism, the usual argument for symmetric forms im-
plies that (i, j) : Y ⊕ Y ⊥ → X is an isomorphism. Denote by p : X → Y
and q : X → Y ⊥ the corresponding projections under this isomorphism. Then
ip+ jq = 1X , and since i] ◦ ρ(ξ) ◦ j = 0 we have

ξ = (ip+ jq)•(ξ) = (ip)•(ξ) + (jq)•(ξ) + τ(p]i] ◦ ρ(ξ) ◦ jq) = (ip)•(ξ) + (jq)•(ξ).

�

Lemma 2.30 (Sublagrangian construction). Let Y � X be a sublagrangian of a
quadratic space (X, ξ) in an exact form category with strong duality (E , ], can, Q).
Denote by j : Y ⊥ � X its orthogonal complement. Then there is a unique non-
degenerate quadratic form ζ ∈ Q(Y ⊥/Y ) on the quotient Y ⊥/Y such that j•(ξ) =
p•(ζ) where p : Y ⊥ � Y ⊥/Y is the quotient map. Moreover, in the Witt and
Grothendieck-Witt groups we have the following equalities

[X, ξ] = [Y ⊥/Y, ζ] ∈W (E , Q), [X, ξ] = [Y ⊥/Y, ζ] + [H(Y )] ∈ GW0(E , Q).

Proof. The existence of the non-degenerate form ζ follows from the exact sequence
(2.7) associated with the admissible short exact sequence Y � Y ⊥ � Y ⊥/Y . For
the relation in the Grothendieck-Witt group, we note that (X, ξ) ⊥ (Y ⊥/Y,−ζ) is
metabolic with Lagrangian Y ⊥ and thus we have in GW0(E , Q)

[X, ξ] = −[Y ⊥/Y,−ζ] + [H(Y ⊥)]

= [Y ⊥/Y, ζ]− [H(Y ⊥/Y )] + [H(Y ⊥)]

= [Y ⊥/Y, ζ] + [H(Y )]

since H(Y ⊥) has Lagrangian Y ⊕ (Y ⊥/Y )] and ρ(ζ) : Y ⊥/Y ∼= (Y ⊥/Y )]. �

Lemma 2.31 (Split metabolic forms are stably hyperbolic). Let M be a split
metabolic space with split Lagrangian L ⊂M in an exact form category with strong
duality (E , ], can, Q). Then there is a metabolic space N and an isometry M ⊥
N ∼= H(L) ⊥ N .
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Proof. The usual proof [Sch10a, Lemma 2.9] easily generalises. It also follows from
Lemma 5.5 below in view of Lemma 5.3. �

Corollary 2.32. Let (A, ], can, Q) be a split exact form category with strong dual-
ity. Then the following surjective map is an isomorphism of abelian groups

GW⊕0 (A, Q)
∼=−→ GW0(A, Q) : [X, ξ] 7→ [X, ξ].

Proof. The inverse map GW0(A, Q)→ GW⊕0 (A, Q) : [X, ξ] 7→ [X, ξ] is well-defined
in view of Lemma 2.31. �

Remark 2.33 (Q-construction). As was done for symmetric bilinear forms in
[Sch10a], Quillen’sQ-construction can be generalised to exact form categories (E , ], can, Q)
in order to define its Grothendieck-Witt space GW (E , ], can, Q). We will pursue
this in [Scha]. In Section 6 we will give a model for GW (E , ], can, Q) in terms of
Waldhausen’s S•-construction. Our Group Completion Theorem 6.6 below gener-
alises Corollary 2.32 to higher homotopy groups.

We finish the section with a quick overview of products for orthogonal sum GW -
theory. This is needed in the proof of Theorem 5.1 below. We will define tensor
product and internal homomorphism objects of form categories.

Definition 2.34 (Tensor product of form categories). Let (A, ]A, canA, QA) and
(B, ]B, canB, QB) be two form categories. Their tensor product

(A, ]A, canA, QA)⊗ (B, ]B, canB, QA) = (A⊗ B, ], can, Q)

is the linear category A ⊗ B whose objects are pairs (A,B) of objects A ∈ A
and B ∈ B and whose abelian group of homomorphisms from (A,B) to (X,Y ) is
A(A,X)⊗B(B, Y ) with composition given by (f2⊗g2)⊗(f1⊗g1) = (f2f1)⊗(g2g1).
The duality functor is

] = ]A ⊗ ]B : (A⊗ B)op = Aop ⊗ Bop → A⊗B : (A,B) 7→ (A], B])

with double dual identification can(A,B) = canA,A⊗ canB,B : (A,B) → (A]], B]]).
The C2-Mackey functor

A(A,A])⊗ B(B,B])
τ // QA(A)⊗̂QB(B)

ρ // A(A,A])⊗ B(B,B])

of quadratic forms at (A,B) ∈ A⊗B is the tensor product of the Mackey functors
(Appendix B) of quadratic forms (A(A,A]), QA(A)) and (B(B,B]), QB(B)). That
is, Q(A,B) = QA(A)⊗̂QB(B) is the quotient abelian group of

QA(A)⊗QB(B)⊕A(A,A])⊗ B(B,B])

modulo the three relations

(2.9) ξ ⊗ τ(b) = ρ(ξ)⊗ b, τ(a)⊗ ζ = a⊗ ρ(ζ), a⊗ b = σ(a)⊗ σ(b)

where a ∈ A(A,A]), b ∈ B(B,B]), ξ ∈ QA(A) and ζ ∈ QB(B). Restriction and
transfer are the linear maps

ρ(ξ ⊗ ζ + a⊗ b) = ρ(ξ)⊗ ρ(ζ) + a⊗ b+ σ(a)⊗ σ(b), τ(a⊗ b) = a⊗ b.

We need to make Q = QA⊗̂QB into a functor (A ⊗ B)op → Ab satisfying the
requirement of Definition 2.1 (3). For simple tensors f ⊗ g, this is given by the
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bifunctoriality of the tensor product of Mackey functors, and the formula for gen-
eral tensors is then forced by Definition 2.1 (3). For the details we will use the
description of the tensor product of unital abelian monoids in Appendix C. Let

η =

r∑
i=1

fi ⊗ gi

be an element of the free unital abelian monoid generated by symbols f ⊗ g with
f ∈ A(X,A) and g ∈ B(Y,B). We set

(η)
•

(ξ ⊗ ζ) =

r∑
i=1

f•i (ξ)⊗ g•i (ζ) +
∑

1≤i<j≤r

(f ]i ρ(ξ)fj)⊗ (g]iρ(ζ)gj)

and

(2.10) (η)
•

(a⊗ b) =
r∑

i,j=1

(f ]i ◦ a ◦ fj)⊗ (g]i ◦ b ◦ gj)

where ξ, ζ, a and b are as above. One checks that for fixed fi, gi, the three relations
(2.9) are preserved so that the above defines a homomorphism of abelian groups
Q(η) : QA(A)⊗̂QB(B) → QA(X)⊗̂QB(Y ). For elements η, ε of the free unital
abelian monoid on symbols f ⊗ g, we have

(η + ε)• = η• + ε• + τ(η] · ρ( ) · ε).

It follows that if η•1 = η•2 and τ(η]1·ρ( )·ε) = τ(η]2·ρ( )·ε) then (η1+ε)• = (η2+ε)•.
In other words, in order to check that η• is well-defined for η ∈ A(X,A)⊗B(Y,B),
we only need to check that the relations (f ⊗ (g1 + g2))• = (f ⊗ g1)• + (f ⊗ g2)•,
((f1 +f2)⊗g)• = (f1⊗g)•+ (f2⊗g)• and (0⊗g)• = (f ⊗0)• = 0 hold; see Section
C. These relations hold when applied to a⊗ b with a : A→ A] and b : B → B] on
account of bilinearity of (2.10). They also hold when applied to ξ⊗ζ with ξ ∈ Q(A)
and ζ ∈ Q(B). For instance,

(f ⊗ (g1 + g2))•(ξ ⊗ ζ) = f•(ξ)⊗ (g1 + g2)•(ζ)

= f•(ξ)⊗ g•1(ζ) + f•(ξ)⊗ g•2(ζ) + f•(ξ)⊗ τ(g]1ρ(ζ)g2)

= f•(ξ)⊗ g•1(ζ) + f•(ξ)⊗ g•2(ζ) + ρ(f•(ξ))⊗ (g]1ρ(ζ)g2)

= f•(ξ)⊗ g•1(ζ) + f•(ξ)⊗ g•2(ζ) + (f ]ρ(ξ)f)⊗ (g]1ρ(ζ)g2)

= (f ⊗ g1 + f ⊗ g2)•(ξ ⊗ ζ).

Remark 2.35. Even if A and B are additive categories, A ⊗ B is linear but not
additive, in general.

For any two form categories as in Definition 2.34 we have a canonical functor of
categories of quadratic forms

⊗ : Quad(A, Q)×Quad(B, Q) −→ Quad(A⊗ B) : (ξ, ζ) 7→ ξ ⊗ ζ

If the dualities are strong, this induces homomorphisms of abelian groups

GW⊕i (A, QA)⊗GW⊕j (B, QB)
∪−→ GW⊕i+j(A⊗ B, QA⊗̂QB)
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using the machinery of [EM06]. The map is easy to define for i = 0. This is all
we need below, so we will only give details in this case. Let (A, ]A, canA, QA) and
(B, ]B, canB, QB) be two form categories with strong duality, and let (X, ξ) be a
quadratic space in (A, Q). We define the linear form functor

(2.11) ξ ⊗ : (B, ]B, canB, QB) −→ (A⊗ B, ], can, QA⊗̂QB)

where the right hand side was defined in Definition 2.34. On objects it sends B ∈ B
to (X,B) ∈ A ⊗ B, on morphisms it sends g ∈ B(Y,B) to 1X ⊗ g, the duality
compatibility map is the isomorphism ρ(ξ) ⊗ 1 : (X,B]) → (X,B)] = (X], B]),
and on quadratic forms it is the map QB(B)→ QA(X)⊗̂QB(B) : ζ 7→ ξ ⊗ ζ. Since
the duality compatibility map is an isomorphism the linear form functor (2.11) is
non-singular and induces a map of Grothendieck-Witt spaces

(2.12) ξ ∪ : GW⊕(B, ], can, QB) −→ GW⊕(A⊗ B, ], can, QA⊗̂QB)

with the understanding that GW⊕ of a linear category means GW⊕ of its additive
hull; see Remark 2.20. An isometry ξ ∼= ξ′ induces a natural isomorphism of form
functors (ξ ⊗ ) ∼= (ξ′ ⊗ ). Moreover, one has a natural isomorphism of form
functors (ξ ⊥ ξ′) ⊗ ∼= (ξ ⊗ ) ⊥ (ξ′ ⊗ ) so that we obtain a homomorphism of
abelian groups

(2.13) GW⊕0 (A, QA)⊗GW⊕j (B, QB)
∪−→ GW⊕j (A⊗ B, QA⊗̂QB).

which sends [ξ]⊗y to the image of y under the map (2.12). The cup-product (2.13)
is associative in the sense that x ∪ (y ∪ z) = (x ∪ y) ∪ z in GW⊕j (A⊗B ⊗ C, Q) for

x ∈ GW⊕0 (A, Q), y ∈ GW⊕0 (B, Q) and z ∈ GW⊕j (C, Q).

Definition 2.36 (The form category of functors). Given two small form categories
(A, ∗, canA, QA) and (B, ∗, canB, QB), we will make the category Funadd(A,B) of
linear functors from A to B into a form category

(Funadd(A,B), ], can, Q)

as follows. For linear functors F,G : A → B denote by [F,G] the abelian group of
natural transformations F → G.

(1) The dual of a functor F : A → B is F ] = ∗F∗. The dual of a natural
transformation η : F → G is the natural transformation η] : G] → F ]

which at A ∈ A is the map (η])A = (ηA∗)
∗. The double dual identification

F → F ]] at A ∈ A is canF (A∗∗) ◦F (canA) : FA→ F ]]A = F (A∗∗)∗∗.
(2) There is an isomorphism of symmetric bilinear functors

[F,G]]
∼=−→ [F∗, ∗G] : η 7→ (F can)∗ ◦ η∗

where the symmetry for the functor on the right is

[F∗, ∗G]→ [G∗, ∗F ] : ϕ 7→ ϕ̃ = (F can)∗ ◦ ϕ∗∗ ◦ canG∗ .

We have ˜̃ϕ = ϕ and ϕ∗A ◦ canGA = ϕ̃A∗ ◦G(canA) for all A ∈ A.
(3) For any linear functor F : A → B, any natural transformation ϕ : F∗ → ∗F

and any arrow a : A→ A∗ in A we have

ϕA ◦ F (a) = ϕ̃A ◦ F (ā).
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(4) The set Q(F ) of quadratic forms Q(F ) on a functor F is the set of all pairs
(ϕq, ϕ) of natural transformations ϕq : QA → QBF and ϕ : F∗ → ∗F
such that (F,ϕq, ϕ) is a form functor (Definition 2.7) from (A, ∗, canA, QA)
to (B, ∗, canB, QB). The set Q(F ) is an abelian group under addition of
natural transformations.

(5) The functorial Mackey-functor of quadratic forms (under the C2-equivariant
isomorphism [F, F ]] ∼= [F∗, ∗F ] of (2))

[F∗, ∗F ]
τ−→ Q(F )

ρ−→ [F∗, ∗F ]

has restriction ρ(ϕq, ϕ) = ϕ and transfer τ(ϕ) = (ϕq, ϕ + ϕ̃) where for
A ∈ A we set

ϕq : Q(A)→ Q(FA) : ξ 7→ τ(ϕA ◦ Fρ(ξ)).

Using (3) one checks that the diagram in Definition 2.7 commutes for
(F,ϕq, ϕ+ ϕ̃).

Remark 2.37. By definition, a quadratic form in (Funadd(A,B), Q) is the same as
a form functor (A, Q)→ (B, Q), and a map of quadratic forms in (Funadd(A,B), Q)
is the same as a natural transformation of form functors.

If (A, Q) and (B, Q) have strong dualities, then so has (Funadd(A,B), Q). In
this case, a quadratic space in (Funadd(A,B), Q) is the same as a non-singular form
functor (A, Q)→ (B, Q).

Remark 2.38. Let (A, ∗, canA, QA) and (B, ∗, canB, QB) be two additive from
categories, and let A0 ⊂ A be a full subcategory closed under the duality but
not necessarily additive. If A0 generates A as an additive category, that is, if
every object of A is a finite direct sum of objects in A0, then restriction induces
an equivalence of categories Funadd(A,B) → Funadd(A0,B). In particular, if the
dualities on A and B are strong, restriction yields an equivalence of categories of
quadratic spaces

iQuad(Funadd(A,B), Q)
∼−→ iQuad(Funadd(A0,B), Q).

In particular, any non-singular form functor A0 → B extends uniquely (up to
isomorphism of form functors) to a non-singular form functor A → B.

3. Form parameter rings and their modules

In classical (linear) ring theory, a ring homomorphism R→ S induces an adjoint
pair of functors between categories of left modules RMod→ SMod : M 7→ S⊗RM
and SMod → RMod : M 7→ M . In this section we will spell out the analog for
form parameter rings. Their restrictions to projective modules govern the covariant
and contravariant functoriality behaviour of Grothendieck-Witt groups.

We start by providing a large supply of duality functors for the category of
left R-modules. We emphasize however, that it is not our aim here to give a
complete classification of such functors but rather to provide a context for the
transfer computations in Sections 4 and 5 needed in the proof of our main theorems
5.1 and 6.6.

Let R be a ring with involution. For a left R-module M , denote by Mop the right
R-module with underlying abelian group M and scalar multiplication Mop ×R→
Mop : (xop, a) 7→ (āx)op where xop is the element in Mop corresponding to x ∈M .
We sometimes drop the superscript and simply write x for xop if no confusion may
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arise. If M is a right R-module or an R-bimodule, then we similarly define the left
R-module or R-bimodule Mop. For instance, a · xop · b = (b̄xā)op for a, b ∈ R and
x an element of the R-bimodule M . If R is a ring, then Rop denotes the opposite
ring.

Definition 3.1. Let R be a ring with involution Rop → R : a 7→ ā. An R-bimodule
with involution, also called duality coefficient for R, is an R-bimodule I together
with a bimodule homomorphism σ : Iop → I such that σop ◦ σ = 1. Recall that
σ : Iop → I is an R-bimodule homomorphism if σ(axb) = b̄σ(x)ā for all x ∈ I,
a, b ∈ R since (axb)op = b̄xopā.

Example 3.2. If R is a ring with involution, then (R, a 7→ ε · ā) is a duality
coefficient for any element ε ∈ R in the centre Z(R) of R such that ε · ε̄ = 1.

If A→ B is a homomorphism of rings with involution, then B is an A-bimodule
with involution.

A duality coefficient (I, σ) makes the category RMod of left R-modules into a
category with duality

(RMod, ]I , canI)

where the duality functor is

] = ]I : (RMod)op → RMod : M 7→M ] = [Mop, I]R

with double dual identification canM = canIM : M →M ]] defined by

canM (x)(f) = σ(f(xop)), x ∈M, f ∈M ] = [Mop, I]R.

For a left R-module M we frequently identify the set R[M,M ]] of left R-module
homomorphisms from M to M ] = [Mop, I]R with the set R[M ⊗Z M

op, I]R of R-
bimodule maps M ⊗Z M

op → I, (which we may call R-bilinear maps with values
in I) under the adjunction

(3.1) R[M,M ]]
∼=−→ R[M ⊗Z M

op, I]R : f 7→ (x⊗ yop 7→ f(x)(yop)).

The abelian group I of a duality coefficient (I, σ) is canonically equipped with

• the C2-action x 7→ σ(xop), and
• the quadratic multiplicative left action Q : (R, ·, 0, 1) → (EndZ(I), ◦, 0, 1)

defined by Q(a)(x) = a · x · ā.

The mapQ is indeed quadratic since its deviation is the Z-bilinear mapQ(a > b)(x) =
a · x · b̄+ b · x · ā; see Section A.1 for terminology.

The following generalises the notion of form parameter due to Bak [Bak81].

Definition 3.3. Let R be a ring with involution. A form parameter for R is a pair
(I,Λ) where I = (I, σ) is an R-bimodule with involution and Λ is an abelian group
equipped with the trivial C2-action together with C2-equivariant abelian group
homomorphisms τ and ρ,

(3.2) (I, σ)
τ−→ Λ

ρ−→ (I, σ)

called transfer and restriction, and a multiplicative Z-linear left action

(3.3) Q : (R, ·, 0, 1)→ (EndZ(Λ), ◦, 0, 1)

of R on Λ preserving 0 and 1 such that the following holds.

(1) Diagram (3.2) defines a C2-Mackey functor (Section B).
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(2) The deviation (Section A.1) of Q is given by the formula

Q(a > b)(x) = τ(a · ρ(x) · b̄)
for a, b ∈ R and x ∈ Λ. In particular, the map Q in (3.3) defines a quadratic
action of R on Λ.

(3) The maps ρ and τ commute with the quadratic actions.

A form parameter ring (R, I,Λ) is a ring with involution R equipped with a form
parameter (I,Λ).

We will see below that the category of left modules over a form parameter ring
is canonically endowed with the structure of a form category.

Remark 3.4. Definition 3.3 (1) means that ρ ◦ τ = 1 + σ, that is, ρ(τ(x)) =
x + σ(xop) for all x ∈ I. Definition 3.3 (2) means that Q(a + b)(x) = Q(a)(x) +
Q(b)(x) + τ(a · ρ(x) · b̄) for a, b ∈ R and x ∈ Λ. Definition 3.3 (3) means that
τ(a · x · ā) = Q(a)τ(x) and ρ(Q(a)ξ) = a · ρ(ξ) · ā for all a ∈ R, x ∈ I and ξ ∈ Λ.

Definition 3.5. Let R be a ring with involution. A homomorphism of form pa-
rameters (f1, f0) : (I,Λ)→ (J,Γ) for R is a pair of abelian group homomorphisms
f1 : I → J , f0 : Λ→ Γ such that the diagram

I
τ //

f1
��

Λ
ρ //

f0
��

I

f1
��

J
τ
// Γ

ρ
// J

commutes, the map f1 : I → J is a homomorphism of R-bimodules commuting
with the involutions on I and J , and the map f0 commutes with the quadratic
actions of R on Λ and Γ, that is, f0(Q(a)(x)) = Q(a)(f0(x)).

Example 3.6. Our definition of form parameter generalises that of Bak [Bak81].
If (R, σ) is a ring with involution and ε ∈ R a central element with ε · σ(ε) = 1,
we will denote by εR the duality coefficient (R, εσ). A form parameter ε(R,Λ) in
the sense of Bak [Bak81] gives rise to a form parameter (εR,Λ, τ, ρ) in the sense of
Definition 3.3 where ρ : Λ→ R is the inclusion Λ ⊂ R and τ = 1 + εσ.

Example 3.7. Let f : R→ S be a homomorphism of rings with involutions. Then
a form parameter (J,Γ, τ, ρ) for S defines a form parameter (J,Γ, τ, ρ) for R via
restriction of scalars along f .

Definition 3.8. Let (R, I,Λ) be a form parameter ring. A Λ-quadratic form on a
left R-module M is a pair (q, β) where

(1) q : M → Λ is a map of sets such that q(ax) = Q(a)q(x) for all a ∈ R and
x ∈M ,

(2) β : M ⊗Z M
op → I is a symmetric bilinear map such that β(x, xop) =

ρ(q(x)) for all x ∈M , and
(3) the deviation of q satisfies q(x > y) = τ(β(x, yop)) for all x, y ∈M .

Recall that β : M ⊗Z M
op → I is bilinear if β(ax, (by)op) = aβ(x, yop)b̄ and

symmetric if β(x, yop) = σ(β(y, xop)) for all a, b ∈ R and x, y ∈ M . Part (3) in
Definition 3.8 says that q : M → Λ is quadratic with associated Z-bilinear form
(x, y) 7→ τ(β(x, yop)). We denote by

Q(M)
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the set of all Λ-quadratic forms on M . This is an abelian group under addition of
functions M → Λ, M⊗Mop → I using the abelian group structures on Λ and I. To
emphasise dependence on (R, I,Λ) we may sometimes write QI,Λ(M) or versions
thereof for Q(M).

Example 3.9 (Hermitian and quadratic modules in the sense of Bak). Let R be a
ring with involution and form parameter where ρ is injective:

(3.4) (I, σ)
τ // Λ // ρ // (I, σ).

Then one checks that

(3.5) (I,−σ)
x 7→[x] // // I/ρ(Λ)

[x] 7→x−σ(x) // (I,−σ).

is another form parameter for R. For instance, the deviation of the quadratic action
Q(a)[x] = [axā] of the middle term of (3.5) satisfies Definition 3.3 (2) since

Q(a > b)[x] = [axb̄+ bxā] = [a(x− σ(x))b̄] + [bxā+ aσ(x)b̄] = [a(x− σ(x))b̄]

as bxā+ aσ(x)b̄ = bxā+ σ(bxā) = ρτ(bxā) ∈ ρ(Λ).
Assume that (I, σ) = εR as in Example 3.6. Then a Λ-hermitian module in the

sense of Bak is a quadratic module in our sense for the form parameter (3.4). A
Λ-quadratic module in the sense of Bak is a quadratic module in our sense for the
form parameter (3.5). In this paper and its sequels, it is important to dispense with
the injectivity and surjectivity requirements in (3.4) and (3.5). For instance, these
properties are not preserved under basic constructions such as those in Examples
4.12 and 4.13.

RMod as a form category. Let (R, I,Λ) be a form parameter ring. For a
homomorphism f : N → M of left R-modules, we define the homomorphism of
abelian groups

f• : Q(M)→ Q(N) : (q, β) 7→ (q ◦ f, β ◦ (f ⊗ fop))

by restricting quadratic maps and symmetric bilinear forms along f . This defines
the functor

Q : (RMod)op → Ab

and makes the quadruple

(3.6) RModI,Λ = (RMod, ]I , can, QI,Λ)

into a form category. The structure maps

R[M,M ]]
τ−→ Q(M)

ρ−→ R[M,M ]]

under the identification (3.1) are defined by the formulas τ(α) = (qα, α + ᾱ) and
ρ(q, β) = β where

qα(x) = τ(α(x, xop)) and ᾱ(x, yop) = σ(α(y, xop)).

Definition 3.10. Let (R, I,Λ) be a form parameter ring. Assume that the bimod-
ule I is finitely generated projective as left R-module and that the canonical double
dual identification can : R → R]] is an isomorphism. Then for any finitely gener-
ated projective left R-module P , the dual P ] = [P op, I]R is again finitely generated
projective and canP : P → P ]] is an isomorphism since this is true for P = R, and
those properties are preserved under taking finite direct sums and direct factors.
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Restricting the quadratic functor QI,Λ of RModI,Λ to such modules then defines
an additive form category with strong duality

(3.7) R projI,Λ = (R proj, ], can, QI,Λ)

with underlying additive category the category of finitely generated projective left
R-modules. The (orthogonal sum) Grothendieck-Witt space

GW⊕(R, I,Λ) = GW⊕(R projI,Λ)

of such a form parameter ring (R, I,Λ) is the Grothendieck-Witt space of the form
category R projI,Λ. As usual, the higher Grothendieck-Witt groups GW⊕i (R, I,Λ)

of (R, I,Λ) are the homotopy groups of GW⊕(R, I,Λ).

Example 3.11. In the notation of Example 3.6, for a commutative ring R with
trivial involution quadratic modules over the form ring (R,−1R, 0) are the usual
symplectic modules, and thus the symplectic K-theory of R is defined as

K Sp(R) = GW⊕(R,−1R, 0).

For a ring R with involution quadratic forms over the form ring (R, εR,Rεσ) from
Example 3.9 (3.5) are the usual classical ε-quadratic forms over R and thus the
ε-quadratic K-theory of R is defined as

εKQ(R) = GW⊕(R, εR,Rεσ).

Again, for a ring R with involution quadratic forms over the form ring (R, εR,R
εσ)

from Example 3.9 (3.4) are the usual classical ε-hermitian forms over R and thus
the ε-hermitian K-theory of R is defined as

εGW (R) = GW⊕(R, εR,R
εσ).

When ε = 1, we usually drop the index ε from the notation.

Definition 3.12. A homomorphism of form parameter rings

f : (R, I,Λ)→ (S, J,Γ)

is a homomorphism of rings with involution f : R → S together with a homomor-
phism of form parameters (f1, f0) : (I,Λ) → (J,Γ) for R where the latter is con-
sidered a form parameter for R via restriction of scalars along the map f : R→ S.
Composition is composition of underlying maps of sets. To simplify notation, we
may denote the maps I → J and Λ→ Γ by the same letter as the homomorphism
R→ S.

Covariant functoriality. A homomorphism f : (R, I,Λ) → (S, J,Γ) of form
parameter rings defines a homomorphism of associated form categories

RModI,Λ
f∗ // SModJ,Γ .

On objects, the functor f∗ is the usual extension of scalars M 7→ S ⊗R M . The
duality compatibility map

S ⊗R [Mop, I]R −→ [(S ⊗RM)op, J ]S : a⊗ ϕ 7→ a⊗ fϕ
is given by the formula

(a⊗ fϕ) ((b⊗ x)op) = a · fϕ(xop) · b̄,
and on quadratic forms f∗ is the map

QI,Λ(M) −→ QJ,Γ(S ⊗RM) : (q, β) 7→ (q̃, β̃)
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where

q̃

(
r∑
i=1

mi(si ⊗ xi)

)
=

r∑
i=1

Q(misi) (fq(xi)) +
∑

1≤i<j≤r

mimj · τ (si · fβ(xi, xj) · s̄j)

and

β̃

∑
i

mi(si ⊗ xi),
∑
j

mj(tj ⊗ yj)

 =
∑
i,j

minj · si · fβ(xi, yj) · t̄j

for mi, nj ∈ Z, si, tj ∈ S and xi, yj ∈ M . It is standard that β̃ is well-defined
and symmetric bilinear. Moreover, q̃ is also well-defined by an argument similar
to that in Definition 2.34. First, q̃ is well-defined as a map from the free abelian
group on the symbols a ⊗ x, where s ∈ S, x ∈ M . Then for elements ξ and ζ
of that free abelian group we check that q̃(ξ + ζ) = q̃(ξ) + q̃(ζ) + τ β̃(ξ, ζ) and

β̃(ξ, ξ) = ρq̃(ξ). In particular, for all ε, ξ, ζ in the free abelian group of symbols, if

q̃(ξ) = q̃(ζ) and β̃(ξ, ε) = β̃(ζ, ε) then q̃(ξ + ε) = q̃(ζ + ε). Thus, in order to verify
that q̃ is well-defined on S ⊗R M it suffices to check that q̃(ar ⊗ x) = q̃(a ⊗ rx),
q̃((a+ b)⊗x) = q̃(a⊗x+ b⊗x) and q̃(a⊗ (x+ y)) = q̃(a⊗x+ a⊗ y) for all r ∈ R,
a, b ∈ S and x, y ∈M . But this is clear since

q̃(ar ⊗ x) = Q(ar)fq(x) = Q(a)Q(r)fq(x) = Q(a)fq(rx) = q̃(a⊗ rx),

q̃((a+ b)⊗ x) = Q(a+ b)fq(x)

= (Q(a) +Q(b)) fq(x) + τ(a · ρ(fq(x)) · b̄)

= q̃(a⊗ x) + q̃(b⊗ x) + τ(β̃(a⊗ x, b⊗ y))

= q̃(a⊗ x+ b⊗ x),

and

q̃ (a⊗ (x+ y)) = Q(a)fq(x+ y)

= Q(a)f(q(x) + q(y) + τ(β(x, y)))

= Q(a)f(q(x) + q(y)) + τ(β̃(a⊗ x, a⊗ y))

= q̃(a⊗ x+ a⊗ y).

Contravariant functoriality. Let (S, J,Γ) be a form parameter ring, and let
f : R → S be a homomorphism of rings with involutions. Restriction of scalars
along f defines a form parameter (J,Γ) for R, and we obtain a homomorphism of
form categories

SModJ,Γ
f∗ // RModJ,Γ

whose underlying functor is the functor M 7→ M restricting scalars along f . The
duality compatibility map

[Mop, J ]S → [Mop, J ]R : g 7→ g

is the canonical inclusion. For quadratic forms on M ∈ SMod, the functor is the
map QS,J,Γ(M)→ QR,J,Γ(M) sending (q, β) to (q, β).
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If moreover, we have a homomorphisms ι : (J,Γ) → (I,Λ) of form parameters
for R, then we obtain an induced functor of form categories as the composition

(3.8) (f, ι)∗ : SModJ,Γ
f∗−→ RModJ,Γ

ι∗−→ RModI,Λ .

4. Form rings and a transfer map

In many cases of interest, the duality coefficient (I, σ) of a form parameter ring
(R, I,Λ) equals the ring with involution (R, σ). When this happens, many formulas
simplify. It is therefore convenient to introduce notation adapted to those kinds of
form parameter rings.

Definition 4.1. A form ring is a form parameter ring (R, I,Λ) where the duality
coefficient (I, σ) satisfies I = R, and σ : Iop → I is a 7→ ā, a ∈ R.

When talking about form rings, we usually omit the mention of the duality
coefficient I = R and simply write (R,Λ) for the form parameter ring (R,R,Λ).
For instance, GW⊕(R,Λ) will mean GW⊕(R,R,Λ) from Definition 3.105. Note
that the Grothendieck-Witt space GW⊕(R,Λ) is defined for all form rings (R,Λ).

A homomorphism of form rings (f, f0) : (R,Λ) → (S,Γ) is a homomorphism of
form parameters rings (f, f, f0) : (R,R,Λ) → (S, S,Γ) where the map of duality
coefficients equals the homomorphism of rings with involutions.

Remark 4.2. Bak has coined the name form ring in [Bak81] to mean a form
parameter ring (R, εR,Λ) with injective restriction as in Example 3.6. See also
Examples 3.9 and 3.11. We will see in Lemma 4.5 below, that a form ring in the
sense of Definition 4.1 is the same as a form category with strict duality that has
precisely one object. From that point of view, our definition is very natural.

Form rings were called Hermitian Mackey functors in [DOss].

Example 4.3 (The symmetric form ring). Any ring with involution (B, σ) defines
a form ring

B
1+σ // Bσ //

1 // B

whose quadratic modules are the usual hermitian modules over (B, σ).

Example 4.4 (The endomorphism form ring). Let (A, ], can, Q) be a form category
with strong duality. Let (P,ϕ) be a symmetric space in (A, ], can), that is, ϕ : P →
P ] is an isomorphism such that ϕ] can = ϕ. Then EndA(P ) is a ring with involution
f 7→ ϕ−1f ]ϕ. In particular, EndA(P )op is a ring with involution and we have a
C2-equivariant isomorphism of abelian groups commuting with the quadratic action
of EndA(P )op

Φ : EndA(P )op
∼=−→ A(P, P ]) : f 7→ ϕ ◦ f.

Under this isomorphism, the Mackey functor

A(P, P ])
τ−→ Q(P )

ρ−→ A(P, P ])

becomes the form ring

EndA(P )op
τ◦Φ // Q(P )

Φ−1◦ρ // EndA(P )op .

5In view of Lemma 4.5, there is a potential conflict with the convention in Remark 2.20.
Nevertheless, GW⊕(R,Λ) will always be based on projective modules.
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Recall that a ring is the same as a linear category with precisely one object. The
analog for form rings is true as well.

Lemma 4.5. To give a form ring is the same as to give a form category with strict
duality that has precisely one object6.

Proof. Let (A, ], can, Q) be a form category with strict duality that has precisely
one object. Call that object A. Then the identity 1 : A → A] = A is a symmetric
isomorphism since canA = 1A, and we obtain a form ring as in Example 4.4

EndA(A)op
τ // Q(A)

ρ // EndA(A)op.

Conversely, a form ring

(4.1) R
τ // Λ

ρ // R

defines a form category with strict dualityA which has one object, sayA, and arrows
the left R-module homomorphisms R→ R. The duality functor ] : Aop → A sends
A to A and the left R-module homomorphism fa : R → R : x 7→ xa given by
right multiplication with a to right multiplication fā : x 7→ xā with ā. Double
dual identification can : A → A]] = A is the identity. So, (A, ], can) is a linear
category with strict duality. Posing Q(A) = Λ and Q(fa) = QΛ(a) defines a
functor Q : Aop → Ab since

Q(fa ◦ fb) = Q(fba) = QΛ(ba) = QΛ(b) ◦QΛ(a) = Q(fb) ◦Q(fa).

Under the identification Rop = EndA(A) = A(A,A]) : a 7→ fa the C2-Mackey
functor 4.1 becomes the Mackey functor

A(A,A])
τ // Q(A)

ρ // A(A,A])

giving A the structure of a form category with strict duality (A, ], can, Q).
It is clear that the two constructions above are inverse to each other. �

Definition 4.6. A form ring (R,Λ, τ, ρ) is called commutative if R and Λ are
commutative rings, ρ : Λ → R is a ring homomorphism, Q(x) : Λ → Λ is Λ-linear
for all x ∈ R, and τ : R→ Λ is Λ-linear where R is considered a Λ-module via ρ. A
homomorphism (A,ΛA)→ (B,ΛB) of commutative form rings is a homomorphism
of form rings such that ΛA → ΛB is a ring homomorphism.

Remark 4.7. We will note below that the commutative form rings are precisely
the commutative monoids in the unital symmetric monoidal category of form rings
under the tensor product.

Remark 4.8. Tambara functors give rise to commutative form rings. Recall that
a C2-Tambara functor is a diagram

R
τ
//

η // Λ
ρ // R

6It is a little confusing that the quadratic action in a form category is contravariant whereas
the quadratic action in a form ring is covariant. This is an amplification of the ring isomorphism

R ∼= EndRMod(R)op.
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where (R,Λ, τ, ρ) is a C2-Mackey functor, R, Λ are commutative rings, ρ is a ring ho-
momorphism, the C2-action on R is a homomorphism of rings, and η : (R, ·, 0, 1)→
(Λ, ·, 0, 1) is a C2-equivariant multiplicative map preserving 0 and 1 such that

τ(a) · λ = τ(a · ρ(λ)), ρ(η(a)) = a · ā, η(a > b) = τ(a · b̄)
for all a, b ∈ R and λ ∈ Λ. It was noted in [DOss, Example 1.4] that a C2-Tambara
functor defines a form ring (R,Λ, τ, ρ) with quadratic action Q on Λ given by
Q(a)λ = η(a) · λ, a ∈ R, λ ∈ Λ. This form ring is clearly commutative.

Note that a Tambara functor has equivariant multiplicative transfer, that is,
η(a) = η(ā). It is easy to come up with commutative form rings for which Q(a) 6=
Q(ā). For instance, the extension of scalars (Definition 4.13, Lemma 4.14) from
the symmetric form ring Z of Example 4.3 along the homomorphisms of rings with
involution Z → Z[X,Y ] where X = Y , Y = X. Thus, not every commutative
form ring comes from a Tambara functor. However, if a commutative form ring
(R,Λ) satisfies Q(a) = Q(ā) for all a ∈ R then it defines a C2-Tambara functor
with multiplicative transfer η(a) = Q(a)1Λ.

Example 4.9. Examples of C2-Tambara functors and hence of commutative form
rings come from C2-equivariant topological K-theory. Let X be a compact topo-
logical space. Then we have the Tambara functor

(4.2) K0 VectC(X)
τ
//

η // K0 VectC2

C (X)
ρ // K0 VectC(X)

where VectC(X) and VectC2

C (X) are the categories of complex vector bundles and
C2-equivariant complex vector bundles on X, respectively. The structure maps are
given by

τ(V ) = (V ⊕ V, (x, y) 7→ (y, x)); η(V ) = (V ⊗ V : x⊗ y 7→ y ⊗ x); ρ(V ) = V.

Example 4.10 (The Burnside form ring Z). The Burnside form ring Z = (Z,A(Z))
of the integers7 is the commutative form ring associated with the Tambara functor
(4.2) where X is the one-point space. So, it is given by the diagram

Z
τ
//

η // A(Z)
ρ // Z

where A(Z) = ZC2 = Z[t]/(t2 − 1) is the integral group ring over C2 and

τ(n) = n(1 + t), ρ(a+ bt) = a+ b, η(n) =
(n+ 1)n

2
+
n(n− 1)

2
t.

The Burnside form ring Z is the initial object in the category of commutative form
rings.

Remark 4.11. Consider the Burnside form ring Z as a form category with one
object (Lemma 4.5). Let (A, ], can, Q) be a form category. To give a form functor
Z→ (A, ], can, Q) is the same as to give an object A ∈ A together with a quadratic
form q ∈ Q(A). Indeed, given (A, q) ∈ Quad(A, Q), the corresponding form functor
sends Z to A, has duality compatibility ρ(q) and on quadratic forms it is the Z-
linear map A(Z) → Q(P ) sending 1 to q and t to Q(−1)q. Conversely, a form
functor (F,ϕq, ϕ) : Z→ (A, Q) defines the object (F (Z), ϕq(1A)) ∈ Quad(A, Q).

7Our notation here deviates from [DOss]. Below, we will define a Burnside form ring R for
any commutative ring R.
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Example 4.12 (Restriction of scalars). Let A
τ→ Λ

ρ→ A be a form ring and let
ι : B → A be a homomorphism of rings with involution. Then we obtain an induced
form ring B → ΛB = Λ×A Bσ → B and a homomorphism of form rings as in the
diagram

B
(τ◦ι)×(1+σ) //

ι

��

Λ×A Bσ
(q,x) 7→x //

(q,x)7→q
��

B

ι

��
A

τ
// Λ

ρ
// A

where the quadratic action of B on ΛB is

Q(a)(q, x) = (Q(ιa)q, axā)

for a ∈ B, q ∈ Λ and x ∈ Bσ.

The following definition and lemma are crucial for the transfer arguments in the
proof of Theorem 5.1.

Definition 4.13 (Extension of scalars). Let (A,Λ, τ, ρ) be a form ring and let
f : A → B be a homomorphism of rings with involution. We define a new form
ring (B,ΛB , τB , ρB) called extension of scalars of (A,Λ) along f . Here, the abelian
group ΛB is generated by symbols

[x], [y, λ], x, y ∈ B, λ ∈ Λ,

subject to the relations

(1) [x · f(a) · x̄] = [x, τA(a)],
(2) [x+ y] = [x] + [y],
(3) [x] = [x̄],
(4) [x, λ1 + λ2] = [x, λ1] + [x, λ2],
(5) [x+ y, λ] = [x, λ] + [y, λ] + [x · f(ρλ) · ȳ],
(6) [x,Q(a)λ] = [x · f(a), λ],

where a ∈ A, x, y ∈ B, λ, λ1, λ2 ∈ Λ. We define the linear maps ρB : ΛB → B and
Q(x) : ΛB → ΛB for x ∈ B on symbols by

ρB([y]) = y + ȳ,

ρB([y, λ]) = y · f(ρλ) · ȳ,

Q(x)([y]) = [x · y · x̄],

Q(x)([y, λ]) = [xy, λ],

where y ∈ B and λ ∈ Λ. One checks that ρB and Q(x) are well-defined. Setting
τB(x) = [x] for x ∈ B we obtain the form ring (B,ΛB , τB , ρB). Setting f0(λ) = [1, λ]
for λ ∈ Λ we obtain the homomorphism of form rings (f, f0) : (A,Λ)→ (B,ΛB).

Lemma 4.14. Let (A,Λ) be a commutative form ring and A→ B a homomorphism
of commutative rings with involution. Let (B,ΛB) be the extension of scalars of
(A,Λ) along A → B as in Definition 4.13. Then (B,ΛB) is a commutative form
ring with unit 1ΛB = [1B , 1Λ] and multiplication ΛB⊗ΛB → ΛB defined on symbols
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by

[x] · [y] = [x · y] + [x · ȳ], x, y ∈ B

[x] · [y, λ] = [x · y · f(ρλ) · ȳ], x, y ∈ B, λ ∈ Λ

[x, λ] · [y, ξ] = [x · y, λ · ξ], x, y ∈ B, λ, ξ ∈ Λ.

The homomorphism of form rings (A,Λ) → (B,ΛB) is a homomorphism of com-
mutative form rings.

Proof. Direct verification. �

Notation 4.15 (The form rings R and R). Let R be a commutative ring with
involution σ. I will denote by R and R the form rings

R = (R,Rσ) and R = (R,A(R)),

where R is the symmetric form ring of Example 4.3, and R is the extension of
scalars (Definition 4.13) of the Burnside form ring Z from Example 4.10 along the
unique ring homomorphism Z → R. The form ring R is called the Burnside form
ring of R. By Lemma 4.14, it is a commutative form ring.

Tensor product of form rings. The tensor product of form rings is given by the
tensor product of rings with involution and the tensor product of Mackey functors
of form parameters. In more detail, recall from Lemma 4.5 that form rings are
the same as form categories with strict duality that have one object. The tensor
product of the latter was defined in Definition 2.34 and yields another such form
category with strict duality that has one object. In that sense, we have already
defined the tensor product of form rings. As we will need the details below, we
spell out what this means. The tensor product of form rings

(A⊗B,ΛA⊗̂ΛB) = (A,ΛA)⊗ (B,ΛB)

has underlying ring with involution σ : (A ⊗ B)op → A ⊗ B : (a ⊗ b) 7→ ā ⊗ b̄ and
abelian group of quadratic forms ΛA⊗̂ΛB the quotient of

(A⊗B)/σ ⊕ ΛA ⊗ ΛB

by the two relations

[ρ(ξ)⊗ y] = ξ ⊗ τ(y), [x⊗ ρ(ζ)] = τ(x)⊗ ζ

for x ∈ A, y ∈ B, ξ ∈ ΛA and ζ ∈ ΛB . The structure maps ρ and τ are defined as

A⊗B τ−→ ΛA⊗B : x⊗ y 7→ [x⊗ y], and

ΛA⊗̂ΛB
ρ−→ A⊗B : [x⊗ y] + ξ ⊗ ζ 7→ x⊗ y + x̄⊗ ȳ + ρ(ξ)⊗ ρ(ζ).

The quadratic action of A⊗B on ΛA⊗̂ΛB is defined by

Q(a⊗ b)([x⊗ y]) = [axā⊗ byb̄], Q(a⊗ b)(ξ ⊗ ζ) = Q(a)(ξ)⊗Q(b)(ζ)

extended to all of A ⊗ B by the requirement Q(x > y) = τ(xρ( )ȳ). The unit of
the tensor product is the Burnside form ring Z of the integers from Example 4.10.
The isomorphism (Z,A(Z)) ⊗ (A,ΛA) ∼= (A,ΛA) on quadratic forms is the map
A(Z)⊗̂ΛA → ΛA from Section B.4 given by

A/σ ⊕ ZC2 ⊗ ΛA → ΛA : [a] 7→ τ(a), (m+ nt)⊗ ξ 7→ nτρ(ξ) + (m− n)ξ.
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The same formula shows that Z considered as a form category (Lemma 4.5) is the
unit for the tensor product of form categories (Definition 2.34). Tensor product
makes the category of form rings into a unital symmetric monoidal category

(4.3) (FormRings,⊗,Z)

Example 4.16. A commutative form ring (A,Λ) is a unital commutative monoid
in (FormRings,⊗,Z) with multiplication

µA = (µ, µ0) : (A,Λ)⊗ (A,Λ)→ (A,Λ)

and unit map the unique homomorphism of commutative form rings

Z→ (A,Λ)

where µ is multiplication in A and µ0 is defined as

µ0 : Λ⊗̂Λ→ Λ : [a⊗ b] + ξ ⊗ ζ 7→ τ(a · b) + ξ · ζ.

The converse also holds. Since we do not need this here, we will formulate it as
an exercise.

Exercise 4.17. The unital commutative monoids in the symmetric monoidal cat-
egory of form rings (4.3) are precisely the commutative form rings.

Tensor product of form rings induces a form functor of form categories

(4.4) (⊗, q, ϕ) : AModΛ⊗BModΓ → (A⊗B) ModΛ⊗̂Γ

extending the usual tensor product (M,N) 7→ M ⊗ N . On quadratic forms the
functor is

QΛ(M)⊗̂QΓ(N)
q−→ QΛ⊗̂Γ(M ⊗N)

(ξ, bξ)⊗ (ζ, bζ) + [f ⊗ g] 7→ (ξ⊗̂ζ, bξ · bζ) + τ(f ⊗ g)

where

(ξ⊗̂ζ)

(
n∑
i=1

xi ⊗ yi

)
=

n∑
i=1

ξ(xi)⊗ ξ(yi) +
∑

1≤i<j≤n

τ(bξ(xi, xj)⊗ bζ(yi, yj))

and

(bξ · bζ)(x⊗ y, x′ ⊗ y′) = bξ(x, x
′)⊗ bζ(y, y′).

The duality compatibility map is

[Mop, A]A ⊗ [Nop, B]B
ϕ−→ [(M ⊗N)op, A⊗B]A⊗B

f ⊗ g 7→ f ⊗ g

where (f ⊗ g)((x⊗ y)op) = f(xop)⊗ g(yop).
Restricting (4.4) to finitely generated projective modules, (2.13) defines the prod-

uct

GW⊕0 (A,Λ)⊗GW⊕j (B,Γ)
∪−→ GW⊕j (A⊗B,Λ⊗̂Γ)

which is associative and unital in the first variable.

Transfer for Grothendieck-Witt groups. Recall from Example 4.16 that a
commutative form ring (A,Λ) is a unital commutative monoid for the tensor product
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of form rings. In particular, the Grothendieck-Witt group GW0(A,Λ) is a unital
commutative ring under the multiplication map

GW0(A,Λ)⊗GW0(A,Λ)
∪−→ GW0(A⊗A,Λ⊗̂Λ)

µ∗−→ GW0(A,Λ)

defined in (2.13) with unit the quadratic space 〈1Λ〉 given by the multiplicative unit
1Λ in Λ. A homomorphism of commutative form rings (f, f0) : (A,Λ) → (B,Γ)
induces a ring homomorphism

f∗ : GW0(A,Λ)→ GW0(B,Λ)

in view of the following commutative diagram

(A,Λ)⊗ (A,Λ)
µA //

f∗⊗f∗

��

(A,Λ)

f∗

��
(B,Γ)⊗ (B,Γ)

µB
// (B,Γ).

Recall that (B,Γ) is a form parameter for A by restriction of scalars along f .
Assume we are given a homomorphism (t, t0) : (B,Γ)→ (A,Λ) of form parameters
for A. In particular, t is A-linear and t0 commutes with the quadratic actions of A
on Γ and Λ. If, moreover, t0 is Λ-linear, then we have a commutative diagram of
Mackey functors

(4.5) (A,Λ)⊗ (B,Γ)
µB◦(f⊗1) //

1⊗(t,t0)

��

(B,Γ)

(t,t0)

��
(A,Λ)⊗ (A,Λ)

µA
// (A,Λ).

We obtain from (3.8) the form functor

(f, t, t0)∗ : BModΓ −→ AModΛ : M 7→M

which on quadratic forms on M ∈ BMod is

QB,Γ(M)→ QA,Λ(M) : (q, b) 7→ (t0 ◦ q, t ◦ b).
If B is finitely generated projective over A then the form functor restricts to finitely
generated projective modules

(f, t, t0)∗ : B projΓ −→ AprojΛ : M 7→M.

If, moreover, the symmetric form B⊗Bop → A : x⊗ y 7→ t(x · ȳ) is non-degenerate
over A, then the last form functor is non-singular and it induces the transfer map

(f, t, t0)∗ : GWi(B,Γ)→ GWi(A,Λ).

The transfer map is a homomorphism of GW0(A,Λ)-modules in view of (4.5).

Example 4.18. We apply the observation above as follows. Let (A,Λ) be a com-
mutative form ring, and let f : A → B be a homomorphism of commutative
rings with involution such that B is finitely generated projective over A. Let
(f, f0) : (A,Λ) → (B,Γ) be the extension of scalars (Definition 4.13) of (A,Λ)
along f . By Lemma 4.14, (B,Γ) is a commutative form ring. Let t : B → A be an
A-linear C2-equivariant map such that the symmetric bilinear form b : B ⊗Bop →
A : x ⊗ y 7→ t(x · ȳ) is non-degenerate over A. Let (q, b) ∈ QΛ(B) be a quadratic
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form in (A,Λ) with associated symmetric form b. That is, q : B → Λ is a map
satisfying q(ax) = QΛ(a)q(x), q(x > y) = τA(t(x · ȳ)) and t(x · x̄) = ρA(q(x)) for
a ∈ A and x, y ∈ B. We define the Z-linear map t0 : Γ→ Λ on symbols by

t0([x]) = τA(t(x)), t0([x, λ]) = q(x) · λ

and obtain the homomorphism (t, t0) : (B,Γ) → (A,Λ) of form parameters for A.
Note that t0 is Λ-linear and thus makes diagram (4.5) commutative. The non-
singular form functor

q∗ := (f, t, t0)∗ : B projΓ → AprojΛ

induces the GW0(A,Λ)-linear transfer map

q∗ : GWi(B,Γ)→ GWi(A,Λ)

generalising the usual transfer for symmetric bilinear forms as in [Sch85, Chapter
2 §§5, 8].

Lemma 4.19. In the situation of Example 4.18, the composition

GW0(A,Λ)
f∗ // GW0(B,Γ)

q∗ // GW0(A,Λ)

is multiplication with the quadratic space [B, q, b].

Proof. The maps in the lemma are module homomorphisms over the commutative
unital ring GW0(A,Λ). It follows that the composition is given by multiplication
with the image of 1 ∈ GW0(A,Λ). But that image is [B, q, b]. �

5. Additivity for orthogonal sum K-theory

5.1. The form category of extensions. Let (E , ], can, Q) be an exact form cat-
egory (Definition 2.22). Let S2E be the category of admissible exact sequences

(5.1) 0→M−1
i→M0

p→M1 → 0

in E . Defining duality and double dual identification object-wise makes S2E into an
exact category with duality (S2E , ], can). The dual (M•)

] of the admissible exact
sequence M• in (5.1) is the admissible exact sequence

0→M ]
1

p]→M ]
0
i]→M ]

−1 → 0.

The double dual identification M• → (M•)
]] is the map (canM−1 , canM0 , canM1).

In view of the universal property of kernel and cokernel in an exact sequence, a

map (ϕ−1, ϕ0, ϕ1) : M• → M ]
• in S2E is determined by ϕ0. More precisely, the

map (ϕ−1, ϕ0, ϕ1) 7→ ϕ0 defines an isomorphism of abelian groups

(5.2) S2E (M•,M ]
•)
∼= {ϕ0 ∈ E (M0,M

]
0)| i] ◦ ϕ0 ◦ i = 0}.

Note that the map (ϕ−1, ϕ0, ϕ1) : M• → (M•)
] is symmetric if and only if ϕ0 :

M0 → (M0)] is.
We make S2E into an exact form category (S2E , ], can, Q) as follows. For a

generalisation, see Section 6, after Lemma 6.2. For an exact sequence M• as in
(5.1), the abelian group of quadratic forms Q(M•) on M• is the abelian group

Q(M•) = {ζ ∈ Q(M0)| i•(ζ) = 0}
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of quadratic forms ζ on M0 whose restriction ζ|M−1
= Q(i)(ζ) to M−1 is zero. In

view of (5.2), the structure maps

S2E (M•,M
]
•)

τ // Q(M•)
ρ // S2E (M•,M

]
•)

are defined by

τS2E (ϕ0) = τE (ϕ0), ρS2E (ζ) = ρE (ζ).

Let (A, ], can, Q) be an additive form category with strong duality. Consider
A as an exact category in which every admissible exact sequence splits. Then
(A, ], can, Q) is a split exact form category with strong duality. Let iA ⊂ A be the
subcategory of isomorphisms in A. There is an evident functor

(5.3) F : iQuad(S2A, Q)→ iA : (M•, ζ) 7→M−1

The proof of the following theorem will occupy the rest of this section.

Theorem 5.1 (Additivity for GW⊕). For any additive form category with strong
duality (A, ], can, Q), the symmetric monoidal functor (5.3) induces a homotopy
equivalence after group completion:

(5.4) GW⊕(S2A, Q)
'−→ K⊕(A).

Remark 5.2. The Additivity Theorem for symmetric bilinear forms proved in
[Sch10a, Theorem 7.2] uses the hermitian Q-construction rather than the group
completion definition of Hermitian K-theory. To relate the two one has to show
that the two definitions agree (for split exact categories). This is the content of
the Group Completion Theorem 6.6 which we will prove below. The point is that
we need the GW⊕-version of Additivity in order to prove our Group Completion
Theorem. Also, the Additivity Theorem in [Sch10a, Theorem 7.2] is actually an
S3-version of Additivity. As we will see in Proposition 6.8 below, the Sn-version
formally follows from the S2-version. In [Scha] we generalise the Additivity Theorem
to exact form categories using the appropriate version of the Q-construction.

For the rest of this section, let (A, ], can, Q) be a split exact form category with
strong duality as in Theorem 5.1, and let (S2A, ], can, Q) be the form category of
extensions in (A, ], can, Q) as defined above.

5.2. Quadratic spaces in (S2A, Q). We start by giving a more explicit descrip-
tion of the category of quadratic spaces in (S2A, Q). From the definition of the
form category (S2A, , ], can, Q), it follows that its category iQuad(S2A, Q) of qua-
dratic spaces is equivalent to the category whose objects are triples (M,L, ξ) where
(M, ξ) ∈ iQuad(A, Q) is a metabolic quadratic space in (A, Q) and L ⊂ M is
an Lagrangian of (M, ξ) such that ξ|L = 0. Maps f : (M,L, ξ) → (N,L′, ζ) in
iQuad(S2A, Q) are isometries f : (M, ξ)→ (N, ζ) in (A, Q) mapping L isomorphi-
cally onto L′.

Generalising the hyperbolic spaces of Example 2.11, for any object L ∈ A and
quadratic form λ ∈ Q(L]) on its dual, we define the quadratic space

Mλ(L) = (L⊕ L], L, hL + p•L](λ))

in (S2A, Q) where iL : L ⊂ L⊕ L] : x 7→ (x, 0) and pL] : L⊕ L] → L] : (x, y) 7→ y

are the canonical inclusion and projection, respectively, and hL = τ(p]LpL]) is
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the standard hyperbolic form. The object Mλ(L) is indeed a quadratic space in
(S2A, Q) since

ρ(hL + p•L](λ)) = ρ(hL) + ρ(p•L](λ)) = ρ(hL) + p]
L]
ρ(λ)pL] =

(
0 1

can ρ(λ)

)
.

is a metabolic symmetric bilinear space in A with Lagrangian L and

i•L(hL + p•L](λ)) = i•L(hL) + i•Lp
•
L](λ) = 0.

Note that we have a natural isometry in (S2A, Q)

(5.5) 1A ⊕
(

0 1
A]

1B 0

)
⊕ 1B] : Mλ⊥µ(A⊕B)

∼=−→Mλ(A) ⊥Mµ(B).

Lemma 5.3. Every quadratic space in (S2A, Q) is isometric to a quadratic space
Mλ(L) for some λ ∈ Q(L]). The set of maps Mλ(A)→Mµ(B) in iQuad(S2A, Q)
is the set of matrices (

a b
0 c

)
: A⊕A] → B ⊕B],

where a : A → B, b : A] → B and c : A] → B] are maps in A, and a and c are
isomorphisms satisfying

(5.6) a] ◦ c = 1A] , λ = τ(b] ◦ c) + c•(µ).

Composition is matrix multiplication.

Proof. Let (M,L, ξ) be an object of iQuad(S2A, Q) and denote by i : L ⊂ M the
inclusion. Then (i, i]ρ(ξ)) defines a split exact sequence and we can choose a map
s : L] → M such that i]ρ(ξ)s = 1L] . Set λ = s•(ξ), and let pL : L ⊕ L] → L and
pL] : L⊕L] → L] be the canonical projections. Then f = ipL+spL] : L⊕L] →M
is an isomorphism in A which is the identity on L and which satisfies

f•(ξ) = (ipL)•(ξ) + (spL])
•(ξ) + τ(p]Li

]ρ(ξ)spL]) = 0 + p•L](λ) + hL

since i]ρ(ξ)s = 1 and hL = τ(p]LpL]). Hence, we have an isometry

f : Mλ(L)
∼=−→ (M,L, ξ)

in (S2A, Q) as required.
A map Mλ(A)→Mµ(B) is given by an invertible matrix(

a b
d c

)
: A⊕A] → B ⊕B]

sending A isomorphically onto B and preserving quadratic forms. So, d = 0, a is
an isomorphism, and

(5.7) hA + (0, 1)•λ = ( a b0 c )
•

(hB + (0, 1)•µ) .

Applying the restriction ρ to (5.7) yields the equation(
0 1

can ρ(λ)

)
=
(
a] 0
b] c]

) (
0 1

can ρ(µ)

)
( a b0 c )

from which we deduce a]c = 1. Applying ( 0
1 )
•

to (5.7) yields

λ = ( bc )
•

(hB + (0, 1)•µ)

from which we deduce the second equation in (5.6) since

( bc )
•
hB = ( bc )

•
τ ( 0 1

0 0 ) = τ
(
(b], c]) ( 0 1

0 0 ) ( bc )
)

= τ(b]c).
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The conditions (5.6) are also sufficient as they imply (5.7):

( a b0 c )
•

(hB + (0, 1)•µ) = ( a b0 c )
•
hB + (0, 1)•c•(µ)

= ( a b0 c )
•
τ ( 0 1

0 0 )− (0, 1)•τ(b]c) + (0, 1)•λ

= (0, 1)•λ+ τ
((

a] 0
b] c]

)
( 0 1

0 0 ) ( a b0 c )− ( 0
1 ) b]c(0, 1)

)
= (0, 1)•λ+ τ ( 0 1

0 0 ) .

It is clear that composition is matrix multiplication. �

Lemma 5.4. The functor F in (5.3) has a section.

Proof. The section is given by the functor

L 7→M0(L) : a 7→
(
a 0
0 (a])−1

)
.

�

Lemma 5.5. For any λ ∈ Q(L]), the map

(5.8) σ : Mλ⊥λ(L⊕ L)→Mλ⊥0(L⊕ L)

is an isomorphism in iQuad(S2A, Q) where σ and σ−1 are given by

σ =

(
1 0 0 0
1 1 β 0
0 0 1 −1
0 0 0 1

)
, σ−1 =

(
1 0 0 0
−1 1 −β −β
0 0 1 1
0 0 0 1

)
and β = can−1

L ◦ρ(λ).

Proof. It is clear that σ−1 is the inverse of σ, and that σ has the prescribed form
as in Lemma 5.3 with

a = ( 1 0
1 1 ) , b =

(
0 0
β 0

)
, c =

(
1 −1
0 1

)
.

Note that β] = ρ(λ)](can]L)−1 = ρ(λ)] canL] = ρ(λ). Now, the second equation in
(5.6) is also immediate:

c•(λ ⊥ 0) + τ(b]c) =
(

1 −1
0 1

)•
(1 0)•λ+ τ

((
0 ρ(λ)
0 0

)
◦
(

1 −1
0 1

))
= (1 − 1)•λ+ τ

(
0 ρ(λ)
0 0

)
= (1 0)•λ+ (0 − 1)•λ+ τ (( 1

0 ) ρ(λ)(0 − 1)) + τ
(

0 ρ(λ)
0 0

)
= (1 0)•λ+ (0 1)•λ.

�

Corollary 5.6. The functor (5.3) induces an isomorphism of abelian groups

GW⊕0 (S2A, Q)
∼=−→ K⊕0 (A).

Proof. The map [L] 7→ [M0(L)] is a section to the map in the corollary. It suffices
to show that the section is an isomorphism. It is clearly injective. By Lemmas 5.3,
5.5 and the isomorphism (5.5), every object in iQuad(S2A, Q) is stably isomorphic
to M0(L) for some L ∈ A. Hence the section is also surjective. �
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5.3. Strategy of proof of Theorem 5.1. The map (5.4) in Theorem 5.1 is a map
of group complete H-spaces which is an isomorphism on π0, by Corollary 5.6. All
components of a group complete H-space have the same homotopy type. Therefore,
it suffices to show that the map is a homotopy equivalence between the connected
components of 0. In fact, it suffices to show that the last map is an isomorphism
on integral homology groups as a homology isomorphism between simple spaces is
a homotopy equivalence. By (2.6), this is the map

(5.9) colim
[Mλ(L)]∈π0iQuad(S2A,Q)

H∗Aut (Mλ(L))
F−→ colim

[A]∈π0iA
H∗Aut(A).

By Lemma 5.4, this map is surjective in all degrees. We therefore need to show
that it is also injective. For L ∈ A and λ ∈ Q(L]) we will construct in Lemma 5.7
below a commutative diagram of groups

(5.10) Aut(Mλ(L))

��

F

xx

Mλ(L)⊥

))
Aut(L) Gλ(L)

(5.14)
oo // Aut (Mλ(L) ⊥Mλ(L))

in which the lower left horizontal arrow (5.14) is an isomorphism on integral homol-
ogy groups in a range of degrees depending on the global units in A; see Proposition
5.9 below. In particular, a homology class in H∗Aut(Mλ(L)) which is sent to zero
under F is sent to zero under Mλ(L) ⊥ ( ). This implies that the map (5.9) is an
isomorphism in case A has enough global units. The general case will follow from
a transfer argument at the end of this section.

5.4. The group Gλ(L). We define the subgroup

Gλ(L) ⊂ Aut(Mλ⊥0(L⊕ L))

of the group of automorphisms of Mλ⊥0(L ⊕ L) as the set of tuples (a, b, c, f)
corresponding to the matrices of the form( 1 0 0 0

−a f−1 b c

0 0 1 a]f]

0 0 0 f]

)
∈ Aut(Mλ⊥0(L⊕ L)).

By Lemma 5.3, such a matrix defines an automorphism ofMλ⊥0(L⊕L) in iQuad(S2A, Q)
if and only if the equation

(5.11) (1 0)•λ =
(

1 a]f]

0 f]

)•
(1 0)•λ+ τ

((
0 b]

0 c]

)
◦
(

1 a]f]

0 f]

))
holds. Since(

1 a]f]

0 f]

)•
(1 0)•λ = (1 a]f ])•λ = (1 0)•λ+ (0 a]f ])•λ+ τ

(
0 ρ(λ)a]f]

0 0

)
,

equation (5.11) is equivalent to

(5.12) (1 0)•λ = (1 a]f ])•λ+ τ
(

0 b]f]

0 c]f]

)
and equivalent to

0 = (0 a]f ])•λ+ τ
(

0 b]f]+ρ(λ)a]f]

0 c]f]

)
and to

(5.13) 0 = (0 a])•λ+ τ
((

(f]])−1 0

0 (f]])−1

)
◦
(

0 b]+ρ(λ)a]

0 c]

))
.
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From this equation, we see that the group homomorphism

(5.14) Gλ(L)→ Aut(L) : (a, b, c, f) 7→ (f−1)

has a section g 7→ (0, 0, 0, g−1) and is thus surjective.

Lemma 5.7. The diagram of groups (5.10) commutes where the two non-labelled
group homomorphisms are defined as follows (suppressing L in the notation)

Aut(Mλ)
g 7→1Mλ⊥g−→ Aut (Mλ ⊥Mλ)

(5.5)−→∼= Aut (Mλ⊥λ)
(5.8)−→∼= Aut (Mλ⊥0) ⊃ Gλ

Gλ ⊂ Aut (Mλ⊥0)
(5.8)−→∼= Aut (Mλ⊥λ)

(5.5)−→∼= Aut (Mλ ⊥Mλ) .

Proof. The main point is to check that the image of the first map is in Gλ. In the
notation of Lemma 5.3, the first map is

(
f−1 α

0 f]

)
7→


1 0 0 0

1− f−1 f−1 (1− f−1)β α+ (1− f−1)β
0 0 1 1− f ]
0 0 0 f ]

 ∈ Aut (Mλ⊥0)

which lands indeed in Gλ. Commutativity of diagram (5.10) is now clear. �

5.5. The ring ΣR2. For a commutative ring R, let ΣR2 ⊂ R be the abelian
subgroup generated by the squares a2 ∈ R of elements a ∈ R. The abelian group
ΣR2 is clearly a subring of R. As examples, we have ΣZ2 = Z and ΣR2 = R for
every commutative ring R with 2 ∈ R∗ a unit: in this case every a ∈ R can be
written as a = ((1/2)2 + (1/2)2) · ((a + 1)2 − a2 − 12) ∈ ΣR2. However, ΣF 2 6= F
for an imperfect field of characteristic 2. Note that the inclusion ΣR2 ⊂ R detects
units: if an element a ∈ ΣR2 is a unit in R with inverse b ∈ R then b = ab2 ∈ ΣR2

and a is a unit in ΣR2.

Definition 5.8. Let R be a commutative ring. An R-linear form category is a
form category (A, ], can, Q) such that A is an R-linear category and the duality
functor ] : Aop → A is R-linear. This means that homomorphism sets in A are left
R-modules, composition is R-bilinear, and we have (ta)] = t(a]) for all t ∈ R and
a ∈ A(A,B).

For an R-linear form category (A,Q) and A ∈ A, the kernel of the transfer
τ : A(A,A])→ Q(A) is a ΣR2-submodule of the R-module A(A,A]). Indeed, this
kernel is an abelian subgroup and if τ(f) = 0 then τ(t2f) = Q(t ·1A)τ(f) = 0 for all
t ∈ R and f : A→ A]. Similarly, the image of the restriction ρ : Q(A)→ A(A,A])
is also a ΣR2-submodule.

For the next proposition, recall from Definition D.1 the notion of S(m)-algebra
and the element sm ∈ Z[S(m)∗].

Proposition 5.9. Let m ≥ 1 be an integer. Let R be a commutative ring such
that ΣR2 is an S(m)-algebra. Let (A, ], can, Q) be an R-linear additive form cat-
egory with strong duality. Then for every object L ∈ A and every quadratic form
λ ∈ Q(L]) the group homomorphism (5.14) induces an isomorphism on integral
homology groups

Hi (Gλ(L))
∼=−→ Hi (Aut(L)) for i < m/2.
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Proof. To simplify, write S for the subring ΣR2 of R. Let G0
λ(L) be the kernel of

the surjective group homomorphism (5.14). Thus, G0
λ(L) is the group of matrices

under multiplication ( 1 0 0 0
−a 1 b c

0 0 1 a]

0 0 0 1

)
satisfying

(5.15) 0 = (0 a])•λ+ τ
(

0 b]+ρ(λ)a]

0 c]

)
∈ Q(L] ⊕ L]).

Under the isomorphism(
( 1

0 )
•
, ( 0

1 )
•
, (1 0) ◦ ρ( ) ◦ ( 0

1 )
)

: Q(A⊕B)
∼=−→ Q(A)⊕Q(B)⊕A(B,A])

of (A.10) in Remark A.11, the element on the right hand side of the equation cor-
responds to (0, (a])•λ+ τ(c]), b] + ρ(λ)a]). Therefore, equation (5.15) is equivalent
to the set of equations

(5.16) 0 = (a])•λ+ τ(c]) ∈ Q(L]), 0 = b] + ρ(λ)a] ∈ A(L], L]]).

Since (
1 0 0 0
−a0 1 b0 c0

0 0 1 a]0
0 0 0 1

)(
1 0 0 0
−a1 1 b1 c1

0 0 1 a]1
0 0 0 1

)
=

( 1 0 0 0
−a0−a1 1 b0+b1 c0+c1+b0a

]
1

0 0 1 a]0+a]1
0 0 0 1

)
,

multiplication in the group G0
λ(L) is given by

(a0, b0, c0) · (a1, b1, c1) = (a0 + a1, b0 + b1, c0 + c1 + b0a
]
1).

Unit and inverse are

1 = (0, 0, 0), (a, b, c)−1 = (−a,−b,−c+ ba]).

By assumption, (A, ], can, Q) is an R-linear additive form category. For t ∈ R and
(a, b, c) ∈ G0

λ(L), we set

(5.17) t.(a, b, c) = (ta, tb, t2c).

Applying (t · 1L])• to the first equation of (5.16) and composing from the left with
t · 1L]] in the second equation we see that t.(a, b, c) ∈ G0

λ(L) for all (a, b, c) ∈ G0
λ.

It follows that the group homomorphism

G0
λ(L)→ A(L,L)×A(L], L) : (a, b, c) 7→ (a, b)

has image G1
λ(L) an R-submodule of A(L,L) × A(L], L) and kernel Nλ(L) an

S = ΣR2-submodule of A(L], L). Summarizing, we have an exact sequence of
groups

(5.18) 0→ Nλ(L)→ G0
λ(L)→ G1

λ(L)→ 0

in which subgroup and quotient group are the underlying abelian groups of S-
modules. There is an action of R∗ on the exact sequence (5.18). For t ∈ R, it is
given by (5.17) on the middle term and by multiplication with t and t2 on quotient
and kernel. Via the inclusion S ⊂ R, this action restricts to an action of S∗ on
(5.18). On G1

λ(L) this action is the linear S-module action, and on Nλ(L) it is the
square of the linear S-module action. The conjugation action of G0

λ(L) on Nλ(L)
is trivial because for all (a, b, c) ∈ G0

λ(L) and (0, 0, c0) ∈ Nλ(L), we have

(a, b, c) · (0, 0, c0) · (a, b, c)−1 = (a, b, c+ c0) · (−a,−b,−c+ ba]) = (0, 0, c0).
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In other words, the exact sequences (5.18) is a central extension. Since S is an
S(m)-algebra we have

s−1
m Hn(G0

λ(L)) = 0 for 1 ≤ n < m/2,

by Proposition D.4.
For t ∈ S∗ ⊂ R∗, conjugation with the element (0, 0, 0, t−1) ∈ Gλ(L) induces an

action of S∗ on the exact sequence

1→ G0
λ(L)→ Gλ(L)→ Aut(L)→ 1

which is trivial on the base Aut(L) and which is the action on G0
λ(L) considered

above. The integral homology Hochschild-Serre spectral sequence of that exact
sequence

E2
p,q = Hp(Aut(L), Hq(G

0
λ(L)))⇒ Hp+q(Gλ(L))

localised at sm has E2-terms

s−1
m Hp(Aut(L), Hq(G

0
λ(L))) = Hp(Aut(L), s−1

m Hq(G
0
λ(L)))

since the action on the base is trivial. As shown above, this group is trivial for 1 ≤
q < m/2. Hence, the edge map in the localised spectral sequence is an isomorphism
for n < m/2

s−1
m Hn(Gλ(L))

∼=−→ Hn(Aut(L), s−1
m H0(G0

λ(L))).

But this map is the map Hn(Gλ(L))→ Hn(Aut(L)) in the lemma since S∗ acts on
Gλ(L) via conjugation, hence trivially on its homology groups, and the augmenta-
tion Z[S(m)∗]→ Z : 〈r〉 7→ 1 sends sm to 1. �

Corollary 5.10. Let m ≥ 2 be an integer. Let R be a commutative ring such that
ΣR2 is an S(m)-algebra. Let (A, ], can, Q) be an R-linear split exact form category
with strong duality. Then the functor (5.3) induces an isomorphism of K-groups
for 0 ≤ i < m/2

GW⊕i (S2A, Q)
∼=−→ K⊕i (A).

Proof. For n = 0 this is Lemma 5.6. In view of the commutativity of diagram (5.10)
proved in Lemma 5.7, Proposition 5.9 implies that the map (5.9) is an isomorphism
in degrees < m/2; see Subsection 5.3. Thus, the map (5.4) is an isomorphism on
integral homology in degrees < m/2. This implies the claim. �

If A is linear over a ring R such that ΣR2 has many units, Corollary 5.10 holds
for all n, that is, Theorem 5.1 is proved in this case. This holds for instance when R
is an infinite field. In order to reduce the general case of Theorem 5.1 to Corollary
5.10, we will employ a transfer argument. To set up the argument, we need the
next few lemmas.

Lemma 5.11. Let m ≥ 1 be an integer. Let R be a commutative ring such that ΣR2

is an S(m)-algebra. Then for any integer d ≥ 2m+1 there is a monic polynomial
f = T d + ad−1T

d−1 + · · · + a1T + a0 ∈ R[T ] of degree d with ad−1 = a0 = 1 such
that ΣS2 is an S(m+ 1)-algebra where S = R[T ]/f .
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Proof. Since ΣR2 is an S(m)-algebra (Definition 5.4) there are units (u1, ..., um) in
ΣR2 such that uJ ∈ (ΣR2)∗ for ∅ 6= J ⊂ {1, ...,m}. Set

h = T ·
∏
∅6=J⊂{1,...,m}(T

2 + uJ) = Tn + cn−1T
n−1 + · · ·+ c1T,

f = 1 + gh = T d + ad−1T
d−1 + · · ·+ a1T + a0 ∈ R[T ]

where n = 2m+1−1 and g = T e+be−1T
e−1 + · · ·+b1T +b0 is a monic polynomial of

degree e = d− n ≥ 1. Set S = R[T ]/f . Recall that the inclusion of rings ΣS2 ⊂ S
detects units. In particular, T 2 and T 2 + uJ are units in ΣS2 since they are units
in S. Hence, ΣS2 is an S(m+ 1)-algebra with S(m+ 1)-sequence (u1, ..., um, T

2),
and f is monic of degree d. We have a0 = 1 as c0 = 0. Finally, since h is monic we
have ad−1 = be−1 + cn−1 and we can choose be−1 such that ad−1 = 1. �

Lemma 5.12. Let d ≥ 2 be an integer, let R be a commutative ring and let f =
T d + ad−1T

d−1 + · · · + a1T + a0 ∈ R[T ] be a monic polynomial of degree d with
ad−1 = a0 = 1. Let t : S = R[T ]/f → R be the R-linear map 1 7→ 1, T j 7→ 0 for
1 ≤ j < d, and let µ : S⊗S → S the multiplication map. Then there are a metabolic
symmetric bilinear space M over R and an isometry of symmetric bilinear spaces
over R

(S, t ◦ µ) ∼=

 〈1〉 ⊥ 〈−1〉 ⊥M if d = 2r

2〈1〉 ⊥ 〈−1〉 ⊥M if d = 2r + 1.

Proof. The symmetric bilinear form (S, tµ) over R is non-degenerate, by inspection
of its Gram matrix with respect to the basis {1, T, ..., T d−1}. If d = 2r then the
symmetric bilinear space of the lemma S ⊗ S → R : x ⊗ y 7→ t(xy) has a non-
degenerate subspace R · 1 ⊥ R · T r = 〈1〉 ⊥ 〈−1〉 whose orthogonal complement M
is metabolic with Lagrangian RT ⊕ RT 2 ⊕ · · ·RT r−1. If d = 2r + 1 then S has a
non-degenerate subspace

R · 1 ⊥ (R · T r ⊕R · T r+1) = 〈1〉 ⊥ 〈
(

0 −1
−1 1

)
〉 ∼= 〈1〉 ⊥ 〈1〉 ⊥ 〈−1〉

whose orthogonal complementM is metabolic with LagrangianRT⊕RT 2⊕· · ·RT r−1.
�

Lemma 5.13. For every integer m ≥ 2 there are an integer n ≥ 0, commuta-
tive rings B1 and B2 with multiplication µ1 and µ2 together with abelian group
homomorphisms t1 : B1 → Z, t2 : B2 → Z such that

(1) Σ(B1)2 and Σ(B2)2 are S(m)-algebras,
(2) B1 and B2 are finitely generated free abelian groups of rank 2n+ 1 and 2n,

and
(3) there exist isometries of symmetric bilinear forms over Z
g1 : (B1, t1 ◦ µ1) ∼= n〈1〉 ⊥ n〈−1〉, g2 : (B2, t2 ◦ µ2) ∼= (n+ 1)〈1〉+ n〈−1〉.

Proof. We start with a preliminary remark based on Lemma 5.12 and the fact
that the transfer of symmetric bilinear forms associated with an R-linear section
t : S → R of a commutative R-algebra S preserves metabolic spaces and sends
〈1〉 and 〈−1〉 to (S, tµ) and (S,−tµ). Consider a sequence of commutative rings
R0 → R1 → · · · → Rm−1 where Ri+1 = Ri[Ti]/fi and fi is monic and has lowest
and second highest coefficient equal 1 as in Lemma 5.12. Let ti+1 : Ri+1 → Ri be
the Ri-linear map defined in Lemma 5.12. Write t : Rm−1 → R0 for the R0-linear
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map which is the composition t = t1 ◦· · ·◦ tm−1. Then the symmetric bilinear space
(Rm−1, t◦µm−1) over R0 is isometric to ε〈1〉 ⊥ 〈−1〉 ⊥M where M is metabolic and
ε = 1, 2 depending on wether the rank of Rm−1 over R0 is even or odd, by Lemma
5.12. If R0 = Z then 〈1〉 ⊥ 〈−1〉 ⊥M ∼= (r+1)(〈1〉+ 〈−1〉) where rkZM = 2r since
any indefinite inner product space of type I is determined by its rank and signature
[MH73, Theorem 4.3].

Now we prove Lemma 5.13. We will use the identities

X(2m) − 1 = (X − 1)
∏m−1
i=0

(
X(2i) + 1

)
X(2m) = X

∏m−1
i=0 X(2i)

in Z[X] for X = 3 and we set

n =
∏m−1
i=0

(
X(2i) + 1

)
,

d0 = (X − 1)(X + 1), d′0 = X2,

di = X(2i) + 1, d′i = X(2i) for i = 1, ...,m− 1.

Then we have 2n = d0d1 · · · dm−1 and 2n + 1 = d′0d
′
1 · · · d′m−1 with di, d

′
i ≥ 2i+2

for i = 0, ...,m − 1. By Lemma 5.11, there are sequences of commutative rings
Z = A0 → A1 → · · · → Am−1 = B1 and Z = A′0 → A′1 → · · · → A′m−1 = B2 where
Σ(Ar)

2 and Σ(A′r)
2 are S(r+ 1)-rings, Ar+1

∼= Ar[T ]/fr and A′r+1
∼= A′r[T ]/f ′r are

free Ar- and A′r-modules of rank dr and d′r. Moreover, fr and f ′r are monic and have
lowest and second highest coefficient equal to 1. Now we apply the remark at the
beginning of the proof to the two sequences of rings and conclude the lemma. �

End of proof of Theorem 5.1. We will use the multiplicative structure on Grothen-
dieck-Witt groups (2.13) and the transfer computation in Lemma 4.19. Recall that
the Burnside form ring Z = (Z,A(Z)) is the tensor unit for form categories. In par-
ticular, the higher Grothendieck-Witt groups of any form category with strong du-
ality are modules over the ring GW⊕0 (Z). Any quadratic space (P, q) in ZprojA(Z)

defines a non-singular form functor (P, q) : Z → ZprojA(Z) (Remark 4.11). For

any additive form category with strong duality A = (A, ], can, Q) the quadratic
space (P, q) ∈ iQuad(Z) defines a non-singular form functor A → A, called tensor
product with (P, q), given by

A ∼= Z⊗A
(P,q)⊗1 // ZprojA(Z)⊗A Z⊗A ∼= A

(Z,1A)⊗1

'
oo

where the second arrow is an equivalence since A is additive.
Let R be a commutative ring with multiplication µ and trivial involution. Recall

from Notation 4.15 the Burnside form ring R = (R,A(R)) of R. Assume that R
is finitely generated free as abelian group, that t : R → Z is a homomorphism of
abelian groups such that (R, t◦µ) is a non-degenerate symmetric bilinear form over
Z, and that q ∈ QA(Z)(R) is a quadratic form on R over Z with associated symmetric
bilinear form ρ(q) = t ◦ µ. As explained in Example 4.18, we have induced form
functors of additive form categories with strong duality

(5.19) ZprojA(Z) −→ R projA(R)
q∗−→ ZprojA(Z) .
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By Remark 2.38, the composition is tensor product with the quadratic space (R, q) ∈
iQuad(Z) since it sends (Z, 1A) to (R, q). For an additive form category A, write
AR for the additive hull of the form category R⊗A; see Definition 2.34. Note that
AR and its category of extensions S2(AR) are R-linear form categories with strong
duality. Tensoring diagram (5.19) with A, taking additive hulls and applying the
functor S2 of extensions induces diagrams of additive form categories

A −→ AR
q∗−→ A and S2A −→ S2(AR)

q∗−→ S2A
whose compositions are given by the tensor product with the quadratic space
(R, q) ∈ iQuad(Z). This induces the string of maps of Grothendieck-Witt groups

GW⊕i (S2A) −→ GW⊕i (S2(AR))
q∗−→ GW⊕i (S2A)

whose composition is multiplication with [q] ∈ GW⊕0 (Z).
Now we are ready to prove Theorem 5.1. Let (A, ], can, Q) be any small split

exact form category with strong duality. Let m and i be integers such that m ≥
2 and 0 ≤ i < m/2. As noted in Lemma 5.4, the functor (5.3) has a section
K⊕(A) → GW⊕(S2A). It suffices to show that this section is an isomorphism in
degree i. Choose an integer n ≥ 0 such that the conclusion of Lemma 5.13 holds
and keep the notation of that lemma. The quadratic space 〈1A〉 = (Z, 1A) over Z
has associated symmetric bilinear space 〈1Z〉 where 1A ∈ A(Z) is the multiplicative
identity. Define the quadratic form qj ∈ QA(Z)(Bj) on Bj by the formulas

q1 = g•1 (n〈1A〉 ⊥ n〈−1A〉) , q2 = g•2 ((n+ 1)〈1A〉 ⊥ n〈−1A〉)
and note that ρ(qj) = tjµj . Then we have isometries of quadratic spaces

g1 : (B1, q1) ∼= n〈1A〉 ⊥ n〈−1A〉, g2 : (B2, q2) ∼= (n+ 1)〈1A〉 ⊥ n〈−1A〉
in iQuad(Z). For j = 1, 2 we have a commutative diagram of abelian groups

K⊕i (A) //

��

K⊕i (ABj )

∼=
��

(qj)∗ // K⊕i (A)

��
GW⊕i (S2A) // GW⊕i (S2(ABj )) (qj)∗

// GW⊕i (S2A)

in which the middle vertical arrow is an isomorphism, by Corollary 5.10. The
composition of the two lower horizontal maps is multiplication with [qj ] ∈ GW0(Z).
It follows that for any x ∈ GW⊕i (S2A), the element [qj ] · x is in the image of the
right vertical map. Since [q2] − [q1] = 1 ∈ GW0(Z) we have x = [q2] · x − [q1] · x.
Both summands are in the image of the right vertical map, hence the element x is,
too. �

6. The Group Completion Theorem

In order to state and prove the Group Completion Theorem 6.6 below it is
convenient to give a model of the Grothendieck-Witt space in terms of Waldhausen’s
S•-construction adapted to form categories as was done for symmetric forms in
[Sch10b, Definition 3].

Recall [Sch10a, §3.2] that the category of functors Fun(A,B) between categories
with dualities (A, ]A, canA), (B, ]B, canB) is canonically a category with duality
where the dual of a functor F is ] ◦ F ◦ ] and the double dual identification is
canB ◦F (canA). If B is linear (additive, exact) then so is Fun(A,B). For instance,
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if B is exact, then a sequence in Fun(A, B) is exact if its value at A is exact in
B for all objects A ∈ A. There is a bijection between symmetric forms (F,ϕ) in
Fun(A,B) and form functors (F, ϕ̂) : A → B between categories with dualities
which sends ϕ : F → ]F ] to ϕ̂ = ϕ]B ◦ canB : F] → ]F . In this sense we may
identify these two notions.

Definition 6.1. Let (P,≤) be a poset with strong duality Pop → P : x 7→ x′.
We assume that x ≤ y and y ≤ x implies x = y so that the duality is strict and
x′′ = x. Let (A, ], can, Q) be a form category. A quadratic form on a functor
A : P → A : i 7→ Ai is a pair (ξ, ϕ) where ξ = (ξi)i≤i′ is a family of quadratic
forms ξi ∈ Q(Ai) indexed over those i ∈ P satisfying i ≤ i′ and ϕ : A → A] is a
symmetric form in Fun(P,A). We require compatibility among the forms ξi and ϕ
in the sense that A•i≤j(ξj) = ξi whenever i ≤ j ≤ j′ ≤ i′ and ρ(ξi) = ϕi′ ◦ Ai≤i′ is
the diagonal map in the commutative diagram

(6.1) Ai ϕi
//

Ai≤i′

��

(A])i

(A])i≤i′

��

(Ai′)
]

(Ai≤i′ )
]

��
Ai′ ϕi′

// (A])i′ (Ai)
].

In other words, the set of quadratic forms Q(A) on a functor A is defined by the
equalizer diagram

Q(A) // // lim
i≤i′

Q(Ai)× [A,A]]
ρ //
ε
//
∏
i≤i′
A(Ai, (Ai)

])

where [A,A]] = Fun(P,A)(A,A]) is the set of natural transformations A→ A] and
where the i-th component of ρ and ε are ρi(ξ, ϕ) = ρAi(ξi) and ε(ξ, ϕ) = ϕi′ ◦Ai≤i′ .
The set Q(A) is an abelian group with component-wise addition (ξ, ϕ) + (ζ, ψ) =
(ξ + ζ, ϕ + ψ) where (ξi)i≤i′ + (ζi)i≤i′ = (ξi + ζi)i≤i′ . The abelian group Q(A) is
part of the following Mackey functor structure

[A,A]]
τ−→ Q(A)

ρ−→ [A,A]].

The restriction is ρ : Q(A)→ [A,A]] : (ξ, ϕ) 7→ ϕ. The transfer τ : [A,A]]→ Q(A)
for ϕ ∈ [A,A]] at i ≤ i′ is the pair (τ(ϕ), ϕ+ ϕ] can) where

τ(ϕ)i = τ(ϕi′ ◦Ai≤i′) = τ((Ai≤i′)
] ◦ ϕi)

is the transfer in A of the diagonal arrow in the commutative diagram (6.1). The
family of quadratic forms (τ(ϕ)i)i≤i′ is indeed compatible: for j ≤ i we have

Q(Aj≤i)τ(ϕi′ ◦Ai≤i′) = τ((Aj≤i)
] ◦ ϕi′ ◦Ai≤i′Aj≤i) = τ(ϕj′ ◦Aj≤j′)

since (Aj≤i)
] ◦ ϕi′ = ϕj′ ◦Ai′≤j′ and

ρ(τ(ϕ)i) = ϕi′Ai≤i′ + (Ai≤i′)
](ϕi′)

] can = (ϕ+ ϕ] can)i′ ◦Ai≤i′ .

It is clear that ρ is equivariant and that ρτ = 1+σ. The transfer τ is also equivariant
because of the commutativity of (6.1) and equivariance of τ in A. Finally,

(6.2) Q : Fun(P,A)op → Ab

is a functor sending a natural transformation f : B → A to the map f• : Q(A) →
Q(B) defined by f•(ξ, ϕ) = (f•(ξ), f•(ϕ)) where f•(ξ)i = f•i (ξi) and f•(ϕ) = f ]ϕf .
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For natural transformations f, g : B → A and elements i ≤ i′ in P we have

((f > g)•(ξ))i = (fi > gi)
•(ξi)

= τBi
(
(fi)

] ◦ ρAi(ξi) ◦ gi
)

= τBi
(
(fi)

] ◦ (Ai≤i′)
] ◦ ϕi ◦ gi

)
= τBi

(
(Bi≤i′)

] ◦ (f ])i ◦ ϕi ◦ gi
)

=
(
τB
(
f ] ◦ ρA(ξ, ϕ) ◦ g

))
i

and condition (3) in Definition 2.1 holds so that we have a form category

(6.3) (Fun(P,A), ], can, Q).

Lemma 6.2. Let (A, ], can, Q) be an exact form category. Then for every poset
with strict duality P, the category of functors (6.3) is an exact form category where
a sequence of functors is admissible exact if its evaluation at all i ∈ P is admissible
exact in A.

Proof. We have to show that for every admissible short exact sequence X
s
� Y

p
� Z

of functors P → A the induced sequence of abelian groups

0 // Q(Z)
p• // Q(Y )

(s]◦ρ( ), s•) // [Y,X]]×Q(X)

is exact. Injectivity of p• is clear since the component maps Q(Zi) → Q(Yi) and
[Z,Z]] → [Y, Y ]] are injective. For exactness at Q(Y ), let (ξ, ϕ) ∈ Q(Y ) be such
that s•(ξ, ϕ) = 0 and s]ϕ = 0. Since (Fun(P,A), ], can) is an exact category with
duality, there is a unique symmetric ϕ̄ ∈ [Z,Z]] such that ϕ = p]ϕ̄p; see Example
2.24. Moreover, in view of the functorial exact sequence

0 // Q(Zi)
p•i // Q(Yi)

(s]i◦ρi( ), s•i )// A(Yi, (Xi)
])×Q(Xi)

there is a unique ξ̄ ∈ limi≤i′ Q(Zi) such that p•i (ξ̄i) = ξi since s•i (ξi) = 0 and

s]iρi(ξi) = s]i(Ai≤i′)
]ϕi = (s]ϕ)i = 0. Then (ξ̄, ϕ̄) ∈ Q(Z) satisfies p•(ξ̄, ϕ̄) =

(ξ, ϕ). �

Let Ar[n] denote the poset whose objects are the arrows of the poset [n] = {0 <
1 < ... < n} and whose morphisms are the commutative squares in [n]. For an
exact category E , we let as usual SnE ⊂ Fun(Ar[n],E ) be the full subcategory of
those functors

A : Ar[n]→ E : (p ≤ q) 7→ Ap,q

for which Ap,p = 0 and Ap,q � Ap,r � Aq,r is an admissible short exact sequence
whenever p ≤ q ≤ r, p, q, r ∈ [n]. The category SnE is closed under extensions in
Fun(Ar[n],E ). This makes it into an exact category by declaring a sequence in SnE
to be admissible exact if it is in Fun(Ar[n],E ). The cosimplicial category n 7→ Ar[n]
makes the assignment n 7→ SnE into a simplicial exact category.

Recall [Wal85, §1.9] that the K-theory space K(E ) of an exact category E can
be defined as the space

K(E ) = Ω|iS•E |
where iSnE ⊂ SnE is the subcategory of isomorphisms.

The category [n] has a unique structure of a poset with strict duality [n]op →
[n] : i 7→ n− i. This induces a strict duality on the category Ar[n] of arrows in [n].
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For an exact form category (E , ], can, Q), the category Fun(Ar[n],E ) is therefore
an exact form category (see Lemma 6.2). This duality preserves the subcategory
SnE ⊂ Fun(Ar[n],E ), and we obtain an exact form category

(SnE , ], can, Q)

by restricting the quadratic functor Q on Fun(Ar[n],E ) to SnE . The simplicial
structure maps of n 7→ SnE are not compatible with dualities. However, its edge-
wise subdivision [Wal85, §1.9]

Se•E : n 7→ SenE = S2n+1E

does defines a simplicial exact form category where for a simplicial object n 7→ X[n]
its edgewise subdivision Xe is the simplicial object n 7→ X([n]op[n]) and [n]op[n] ∼=
{n′ < · · · < 0′ < 0 < · · ·n} ∼= [2n + 1] is the concatenation (or join) of [n]op and
[n]; see [Wal85, §1.9], [Sch10b, §2.4-2.6].

The following generalises the definition of the Grothendieck-Witt space for sym-
metric bilinear forms given in [Sch10b], [Sch17b].

Definition 6.3 (Grothendieck-Witt space). Let (E , ], can, Q) be an exact form cat-
egory with strong duality. The assignment n 7→ (SenE , ], can, Q) defines a simplicial
exact form category with strong duality. The associated categories of quadratic
spaces define a simplicial category n 7→ iQuad(SenE , Q).

The composition iQuad(Se•E , Q) → iSe•E → iS•E of simplicial categories, in
which the first arrow is the forgetful functor (X, ξ) 7→ X, and the second is the
canonical map Xe

• → X• of simplicial objects induced by [n] ⊂ [n]op[n] : i 7→ i
yields a map of classifying spaces

(6.4) |iQuad(Se•E , Q)| → |iS•E |

whose homotopy fibre (with respect to a zero object of E as base point of iS•E ) is
defined to be the Grothendieck-Witt space

GW (E , Q)

of (E , ], can, Q). Thus, we have a homotopy fibration

GW (E , Q)→ |iQuad(Se•E , Q)| → |iS•E |.

We define the higher Grothendieck-Witt groups of (E , ], can, Q) as the homotopy
groups

GWi(E , Q) = πiGW (E , Q), i ≥ 1,

and show in Theorem 6.5 below that π0GW (E , Q) ∼= GW0(E , Q), so that our
definition here extends that in Definition 2.27.

The topological realisation |C| of a symmetric monoidal category (C,⊕, e, α, λ, ρ, γ)
as defined in [Mac71, p. 180] is a homotopy commutative, associative and unital
H-space ⊕ : |C × C| = |C| × |C| → |C| with specified homotopies for the unit, asso-
ciativity and commutativity diagrams given by the structure maps e, α, λ, ρ, γ. A
choice of direct sum in E makes E and all functor categories Fun(P,E ) into a sym-
metric monoidal category [Mac71, p. 180] where the structure maps on Fun(P,E )
are defined object-wise. For instance, for F,G ∈ Fun(P,E ) and P ∈ P we set
(F ⊕ G)(P ) = F (P ) ⊕ G(P ). This makes iQuad(Se•E , Q) into a simplicial sym-
metric monoidal category where all simplicial structure maps strictly commute
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with the symmetric monoidal structures maps. In particular, its geometric reali-
sation |iQuad(Se•E , Q)| becomes a homotopy commutative, associative and unital
H-space. Its set of connected components is therefore a unital abelian monoid. The
terminal object [0] in ∆ induces the inclusion

(6.5) iQuad(E , Q) = iQuad(Se0E , Q)→ iQuad(Se•E , Q)

of simplicial categories in which the first is considered simplicially constant. Taking
π0, we obtain a homomorphism of abelian monoids

(6.6) π0 iQuad(E , Q)→ π0|iQuad(Se•E , Q)|.

Recall that the Witt group W (E , Q) of (E , Q) is the quotient of π0 iQuad(E , Q)
modulo the submonoid of metabolic spaces.

Lemma 6.4. Let (E , ], can, Q) be an exact form category with strong duality. Then
the map (6.6) sends metabolic spaces to zero and the induced map of abelian monoids
is an isomorphism:

W (E , Q)
∼=−→ π0|iQuad(Se•E , Q)|.

Proof. We have a coequalizer diagram

π0 iQuad(Se1E , Q)
d0 //
d1

// π0 iQuad(Se0E , Q) // π0|iQuad(Se•E , Q)|

which is precisely the presentation of W (E , Q) in view of Lemma 2.30. �

The H-spaces |iQuad(Se•E , Q)| and |iS•E | are group complete since their π0 are
W (E , Q) and the trivial group; see Lemma 6.4. Therefore, the following degree-
wise group completion maps are weak equivalences (see for instance [Sch04, Lemma
2.6])

|iQuad(Se•E , Q)| ∼−→ |iQuad(Se•E , Q)†|, |iS•E |
∼−→ |(iS•E )†|.

In particular, from the definition of the Grothendieck-Witt space we have the ho-
motopy fibration

GW (E , Q)→ |iQuad(Se•E , Q)†| → |(iS•E )†|.

The maps (6.5) and (6.4) define the sequence of simplicial categories

(6.7) iQuad(E , Q)→ iQuad(Se•E , Q)→ iS•E

whose composition is trivial since iS0E is trivial. This defines the natural map of
topological spaces

(6.8) |iQuad(E , Q)| → GW (E , Q).

We will see in Theorem 6.6 below that this map is a group completion provided all
admissible exact sequences in E split. But first we study the effect of this map on
π0.

Theorem 6.5. Let (E , ], can, Q) be an exact form category with strong duality.
Then the map (6.8) on π0 induces an isomorphism of abelian groups

GW0(E , Q)
∼=−→ π0GW (E , Q)

where the group on the left was defined in Definition 2.27.
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Proof. Let Vn be the homotopy fibre of |iQuad(SenE , Q)†| → |(iSnE )†|. Since
the last map is a map of group complete H-spaces which is surjective on π0, the
Bousfield-Friedlander Theorem [BF78, Theorem B.4] implies that the induced map
GW (E , Q) → |V•| to the realisation of the simplicial space n 7→ Vn is a weak
equivalence. Hence, we have a coequalizer diagram

π0V1

d0 //
d1

// π0 V0
// π0|V•| = π0GW (E , Q).

For any monoidal functor F : A → B between symmetric monoidal groupoids which
is essentially surjective on objects, Bass [Bas68], [Kar08, Ch2 §2.13] computes the
π0 of the homotopy fibre of K(A)→ K(B) as the abelian group K(F ) generated by
triples (A,B, f) where A,B are objects of A and f : FA ∼= FB is an isomorphism
in B, modulo some relations which are irrelevant for our purpose. So, π0V1 is
generated by pairs (X,Y ) of quadratic spaces X,Y ∈ iQuad(S3E , Q) such that
X01

∼= Y01. Since V0 = GW⊕(E , Q), we have π0V0 = GW⊕0 (E , Q) and d1 − d0 is
the map

π0V1
d1−d0 // GW⊕0 (E , Q) : (X,Y ) 7→ X12 − Y12 −X03 + Y03 .

By Lemma 2.30, we haveX12−Y12−X03+Y03 = H(X01)−H(Y01) = 0 ∈ GW0(E , Q)
since X01

∼= Y01. Hence, the map GW⊕0 (E , Q)/(d1−d0)→ GW0(E , Q) : [X] 7→ [X]
is well-defined. The inverse map GW0(E )→ GW⊕0 (E , Q)/(d1 − d0) : [X] 7→ [X] is
also well-defined since a metabolic quadratic space X with Lagrangian L defines a
pair of quadratic spaces in S3E , namely L ⊂ L ⊂ X and L ⊂ L ⊂ H(L), which
defines an element of π0V1. Hence, the result follows. �

The following is the main theorem of the article. Its proof will occupy the rest
of the section.

Theorem 6.6 (Group Completion Theorem). Let (E , ], can, Q) be an exact form
category with strong duality in which every admissible exact sequence splits. Then
the sequence (6.7) induces a homotopy fibration after degree-wise group completion

(6.9) |iQuad(E , Q)†| → |iQuad(Se•E , Q)†| → |(iS•E )†|.

In particular, the induced map into the homotopy fibre of the right map is a weak
equivalence

GW⊕(E , Q)
∼−→ GW (E , Q).

Let (A, ], can, Q) be an exact form category with strong duality. Recall that the
poset [n] has a unique strict duality i 7→ n − i which gives the category SnA the
structure of an exact form category (SnA, ], can, Q) as explained at the beginning
of Section 6. For any i ≤ j, the map [0]→ Ar[n] : 0 7→ (i ≤ j) induces by restriction
the exact evaluation functor SnA → A : A 7→ Aij evaluating at i ≤ j. The map
[0] → Ar[n] : 0 7→ (i ≤ j) preserves dualities if j = n − i in which case restriction
along [0]→ Ar[n] defines an exact form functor (SnA, Q)→ (A, Q) : A 7→ Aij . For
a form functor G : (A, Q) → Sn(B, Q), I will denote by Gij : (A, Q) → (B, Q) the
composition of G and evaluation at i ≤ j if j = n− i. Recall from Example 2.13 the
hyperbolic form functor H(G) : (A, Q)→ (B, Q) of an exact functor G : A → B.

The following generalises [Sch17b, Corollary A.9].
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Proposition 6.7. Let (A, ], can, Q) and (B, ], can, Q) be split exact form categories
with strong duality.

(1) Let G = (G,ϕq, ϕ) : (A, Q)→ (S2B, Q) be a non-singular exact form func-
tor. Then the two non-singular exact form functors G02 and H(G01) induce
homotopic maps of orthogonal sum Grothendieck-Witt spaces

G02 ∼ H(G01) : GW⊕(A, Q)→ GW⊕(B, Q).

(2) Let G = (G,ϕq, ϕ) : (A, Q)→ (S3B, Q) be a non-singular exact form func-
tor. Then the two non-singular exact form functors G03 and G12 ⊥ H(G01)
induce homotopic maps of Grothendieck-Witt spaces

G03 ∼ (G12 ⊥ H(G01)) : GW⊕(A, Q)→ GW⊕(B, Q).

Proof. Consider the commutative diagram of categories

iQuad(S2B, Q)
F // iS2B

δ2 // iB

1 !!

σ1 // iS2B
H //

δ1

��

iQuad(S2B, Q)

δ1

��
iQuad(A, Q)

G

OO

F
// iA

G

OO

G01

==

G01

// iB
H

// iQuad(B, Q)

where F and H denote forgetful and hyperbolic functors, and δi : [1] → [2] and
σi : [2] → [1] are the standard i-th face and degeneracy maps. By Theorem 5.1,
the composition δ2F of the top two left arrows induces an equivalence after group
completion. The composition (δ2F ) ◦ (Hσ1) of the top two right maps followed
by the top two left maps is the identity. It follows that Hσ1 is the homotopy
inverse of δ2F after group completion. In particular, the composition of the top
four horizontal maps is homotopic to the identity after group completion. It follows
that δ1 ◦G and H ◦G01 ◦ F induce homotopic maps after group completion. This
proves the first claim.

The second claim follows formally from part (1) and Lemma 2.30. Here are the
details. Write ∼ for “homotopic after applying GW⊕”. For any non-singular exact
form functor F = (F,ϕq, ϕ) : (A, ], can, Q)→ (B, ], can, Q), we have a non-singular
exact form functor (A, ], can, Q) → (S2B, ], can, Q) with underlying functor and
duality compatibility map

F
( 1

1 )
� F ⊕ F

( 1 −1 )
� F, (ϕ,

( ϕ 0
0 −ϕ

)
, ϕ),

which on quadratic forms is

QA(A)→ QS2B(FA→ FA⊕ FA→ FA) ⊂ QB(FA⊕ FA) : ξ 7→ ξ ⊥ −ξ.
By the first part we have

(6.10) H(F ) ∼ F ⊥ (−F ).

where (−F ) = (F,−ϕq,−ϕ).
For any exact form category (E , ], can, Q), we have an exact form functor Φ :

(S3E , Q)→ (S2E , Q) which sends X ∈ S3E to the admissible exact sequence

X02
//

( 1
1 )

// X12 ⊕X03

(−1 1 ) // // X23

with duality compatibility (1,−1⊕ 1, 1) and map on quadratic forms

QS3E (X)→ QS2E (ΦX) ⊂ QE (X12 ⊕X03) : (ξ)i≤i′ 7→ −ξ12 ⊥ ξ03.
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For the non-singular exact form functor G = (G,ϕq, ϕ) : (A, Q) → (S3B, Q) in
the proposition, we have

G12 ⊥ H(G01) ⊥ H(G12) ∼ G12 ⊥ H(G02)

∼ G12 ⊥ (−G12) ⊥ G03

∼ H(G12) ⊥ G03

where the first homotopy follows from Additivity in K-theory, the second is part
(1) applied to Φ ◦G, and the third is (6.10). After applying GW⊕, these are maps
between commutative H-spaces. Thus, we can cancel H(G12) after applying GW⊕

and obtain the result. �

Proposition 6.8. Let (A, ], can, Q) be an exact form category with strong duality
in which every admissible exact sequence splits. Then the symmetric monoidal
functors

iQuad(S2nA, Q)→ (iA)n : (A, ξ) 7→ (A01, A12, ..., An−1,n)

iQuad(S2n+1A, Q)→ (iA)n × iQuad(A, Q) : (A, ξ) 7→ (A01, A12, ..., An−1,n), (An,n+1, ξn,n+1)

are homotopy equivalences after group completion.

Proof. This immediately follows from Proposition 6.7 and is mutatis mutandis the
same as [Sch17b, Proposition A.8.]. �

Proof of Theorem 6.6. Using Proposition 6.8, the proof now is the same as [Sch04,
Theorem 4.2]. Here are the details. Let (S,⊕, 0) be a symmetric strict monoidal
category [Mac71, p. 157] acting on a category T from the right. Then there is a
simplicial category Bar(T, S) which in simplicial degree n is

Barn(T, S) = T × Sn

with face maps induced by ⊕ and the action, and the degeneracy maps insert 0’s.
If S acts invertibly on T , that is, if for every object A of S, the map ⊕A : T →
T induced by the action is a homotopy equivalence, then this space fits into a
homotopy fibration

(6.11) T −→ Bar(T, S) −→ Bar(0, S)

where the first map is inclusion of degree 0 and the second map is induced by
T → 0, see for instance [Sch04, Lemma 2.2] which is a special case of [Moe89,
Theorem 2.1]. We will identify the sequence (6.9) in Theorem 6.6 with the sequence
(6.11) up to homotopy. To that end, we replace (E , ], can, Q) with an equivalent
form category that has a strictly monoidal direct sum, a strict duality and satisfies
(A⊕B)] = B]⊕A] for all A,B ∈ E ; see [Sch04, Lemma A.8.]. We define an action

iQuad(E , Q)× iE → iQuad(E , Q)

of (iE ,⊕, 0) on iQuad(E , Q) by sending ((B, ξ), A) to (A] ⊕ B ⊕ A,α•(hA ⊥ ξ))
where α : A] ⊕ B ⊕ A ∼= A ⊕ A] ⊕ B is the canonical isomorphism switching
A and A] ⊕ B. The action sends the arrow (a, b) to the arrow (a])−1 ⊕ b ⊕ a.
This defines the simplicial category Bar•(iQuad(E , Q), iE ). We define a map of
simplicial categories which in simplicial degree n is

βn : Barn(iQuad(E , Q), iE )→ iQuad(Sen(E , Q))
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sending the object ((B, ξ), A1, ..., An) to the object X ∈ SenE with

Xi,j = Xi,i+1 ⊕ · · · ⊕Xj−1,j =
⊕
i≤r<j

Xr,r+1

for i ≤ j and i, j ∈ {n′ < · · · < 0′ < 0 < · · · < n} where

(Xn′,(n−1)′ , . . . , X1′,0′ , X0′0, X0,1, . . . , Xn−1,n) = (A]n, . . . , A
]
1, B,A1, . . . , An).

Note that for i 6= 0′ we have X]
i,i+1 = X(i+1)′,i′ = Xi′−1,i′ since the duality on E is

strict. The maps Xi,j → Xr,s for (i, j) ≤ (r, s) are induced by the canonical partial
inclusions and projections. The object X is equipped with the form (ξ•, ϕ) where
ϕ : X → X] has components

Xi,j = Xi,i+1 ⊕ · · · ⊕Xj−1,j

ϕi,j ↓

(X])i,j = (Xj′,i′)
] = (Xj′,j′+1 ⊕ · · · ⊕Xi′−1,i′)

] = X]
i′−1,i′ ⊕ · · · ⊕X

]
j′,j′+1

which are 1 on the summands Xi,i+1 for i 6= 0′ and ρ(ξ) : X0′0 → X]
0′0 for i = 0′.

The compatible collection ξ• of forms ξi,j ∈ Q(Xi,j) for (i, j) ≤ (j′, i′) is

α•(hX0,j
⊥ ξ) ∈ Q(Xj′,j) = Q(X]

0,j ⊕X0′,0 ⊕X0,j)

when i = j′, j = 0, ..., n where α : X]
0,j ⊕X0′,0 ⊕X0,j

∼= X0,j ⊕X]
0,j ⊕X0′,0 is the

canonical isomorphism switching X0,j and X]
0,j ⊕X0′,0. For (r, s) ≤ (j′, j), we let

ξr,s be the restriction of ξj′,j along the map Xr,s → Xj′,j .
Similarly, we have a map of simplicial categories γ : Bar•(0, iE ) → iS•E which

in degree n sends (A1, ..., An) to X ∈ iSnE with

Xi,j = Xi,i+1 ⊕ · · · ⊕Xj−1,j =
⊕
i≤r<j

Xr,r+1

for i ≤ j and i, j ∈ {0 < · · · < n} where (X0,1, . . . Xn−1,n) = (A1, . . . , An).
For S = iE and T = iQuad(E , Q), β and γ induce a commutative diagram of

simplicial categories

T † // Bar•(S, T )† //

β†

��

Bar•(S, 0)†

γ†

��
iQuad(E , Q)† // iQuad(Se•E , Q)† // (iS•E )†.

Note that Barn(S, T )† = Barn(S†, T †). Since T † is group complete, S† acts invert-
ibly on T †, and thus, the top row is a homotopy fibration. Using the second part of
Proposition 6.8, the middle vertical arrow is degree-wise a homotopy equivalence.
By Additivity in K-theory [Wal85], [Qui73], the right vertical map is also degree-
wise a homotopy equivalence. Since the top sequence is a homotopy fibration (after
realisation), so is the bottom sequence. �



K-THEORY OF FORMS I 49

Appendix A. Quadratic functors on linear categories

A.1. Quadratic maps and deviation. Let M and N be abelian groups. Recall
that a map of sets g : M → N is called linear if g(x + y) = g(x) + g(y) for all
x, y ∈ M . A map of sets b : M ×M → N is called bilinear if it is linear in both
variables, that is the maps M → N defined by z 7→ b(x, z) and z 7→ b(z, y) are
linear for all x, y ∈M . A map of sets g : M → N is called quadratic if its deviation

M ×M → N : (x, y) 7→ g(x > y) = g(x+ y)− g(x)− g(y)

is bilinear. Note that a quadratic map g satisfies g(0) = 0 since 0 = g(0 > 0) =
g(0 + 0)− g(0)− g(0) = −g(0). The notion of linear and quadratic maps between
abelian groups categorify to notions about functors between linear categories. The
purpose of this section is to review these concepts and to establish notation and
simple facts used throughout the paper. Some of the material is similar to [Bau94].

A.2. Reduced functors, deviation and cross effect. Let A be an additive
category. A functor F : A → Ab with values in the category Ab of abelian groups
is called reduced if F (0) = 0. To any reduced functor F is associated a functor
A × A → Ab : (X,Y ) 7→ F (X |Y ), called cross effect, equipped with a natural
automorphism of order 2

σX |Y : F (X |Y )
∼=−→ F (Y |X), σY |X ◦ σX |Y = 1

and a C2-equivariant natural diagram

F (X |X)
τX−→ F (X)

ρX−→ F (X |X)

where C2 acts via σ on F (X |X) and trivially on F (X); see Lemma A.2. The
purpose of this subsection is to explain these extra data associated with F .

Let A be an additive category, F : A → Ab a reduced functor, and let X, Y be
objects of A. The deviation of F at (X,Y ) is the function

A(X,Y )×A(X,Y )→ Ab(FX,FY ) : (f1, f2) 7→ F (f1 > f2)

defined by

F (f1 > f2) = F (f1 + f2)− F (f1)− F (f2).

Note that F (f1 > 0) = F (0 > f2) = 0 because F is reduced. Since F is a functor,
we have

F (h) ◦ F (f1 > f2) = F (hf1 > hf2), F (f1 > f2) ◦ F (g) = F (f1g > f2g).

The biproduct X ⊕ Y in A is equipped with natural injection and projection maps
iX : X → X⊕Y , iY : Y → X⊕Y , pX : X⊕Y → X and pY : X⊕Y → Y satisfying
1X = pX iX , 1Y = pY iY and 1X⊕Y = eX + eY where eX = iXpX , eY = iY pY . By
functoriality we have F (eX)F (eY ) = F (eY )F (eX) = F (0) = 0 since F is reduced.
The maps F (eX), F (eY ), F (eX > eY ) = 1 − F (eX) − F (eY ) are idempotents of
F (X ⊕ Y ) and define the decomposition of abelian groups

(A.1) F (X ⊕ Y ) = ImF (eX)⊕ ImF (eY )⊕ ImF (eX > eY ).

Note that we have isomorphisms F (iX) : F (X) ∼= ImF (eX) and F (iY ) : F (Y ) ∼=
ImF (eY ) with inverses F (pX) and F (pY ). The cross effect of F at (X,Y ) is by
definition the third term in the decomposition, that is, the abelian group

(A.2) F (X |Y ) = ImF (eX > eY ).



50 MARCO SCHLICHTING

Denote by

(A.3) ρX,Y : F (X ⊕ Y )→ F (X |Y ), τX,Y : F (X |Y )→ F (X ⊕ Y )

the projection and inclusion maps induced by the decomposition (A.1) of F (X⊕Y ).
They are determined by the equations

ρX,Y ◦ τX,Y = 1, τX,Y ◦ ρX,Y = F (eX > eY ).

With this notation we have the natural isomorphism

(A.4) F (X ⊕ Y ) ∼= F (X)⊕ F (Y )⊕ F (X |Y )

given by the map (F (pX), F (pY ), ρX,Y ) with inverse (F (iX), F (iY ), τX,Y ). For
maps f1 : X1 → Y1 and f2 : X2 → Y2 in A, the homomorphism F (f1 ⊕ f2)
corresponds under this isomorphism to the map F (f1)⊕ F (f2)⊕ F (f1 | f2) where

F (f1 | f2) = ρY1,Y2 ◦ F (f1 ⊕ f2) ◦ τX1,X2

= ρY1,Y2
◦ F (iY1

· f1 · pX1 > iY2
· f2 · pX2

) ◦ τX1,X2
.

Note that for X1 = X2 = X and Y1 = Y2 = Y and f1, f2 : X → Y we have

(A.5) F (f1 > f2) = F (∇Y ) ◦ F (iY1
f1pX1 > iY2

f2pX2
) ◦ F (∆X)

where ∆X : X → X ⊕X : x 7→ (x, x) and ∇X : X ⊕X → X : (x, y) 7→ x + y are
diagonal and codiagonal of X. If we set

(A.6)
ρX = ρX,X ◦ F (∆X) : F (X)

∆X−→ F (X ⊕X)
ρX,X−→ F (X|X)

τX = F (∇X) ◦ τX,X : F (X|X)
τX,X−→ F (X ⊕X)

∇X−→ F (X)

then we have the following.

Lemma A.1. Let A be an additive category and let F : A → Ab be a reduced
functor. Then the following holds.

(1) For all f1 ∈ A(X1, Y1) and f2 ∈ A(X2, Y2) we have

F (f1 | f2) = ρY1,Y2 ◦ F (iY1 · f1 · pX1 > iY2 · f2 · pX1) ◦ τX1,X2 .

(2) For all f, g ∈ A(X,Y ) we have

F (f > g) = τY ◦ F (f | g) ◦ ρX .

Proof. The first holds by definition, and the second is a restatement of equation
(A.5). �

Let A be an additive category and F : A → Ab a reduced functor. Denote by σ
the natural switch isomorphism σX,Y : X⊕Y → Y ⊕X : (x, y) 7→ (y, x) in A. Since
F (σX,Y ) ◦ F (eX > eY ) = F (eY > eX) ◦ F (σY,X), there is a unique homomorphism
of abelian groups

(A.7) σX |Y : F (X |Y )→ F (Y |X)

characterized by the equations

ρY,X ◦ F (σX,Y ) = σX |Y ◦ ρX,Y , F (σX,Y ) ◦ τX,Y = τY,X ◦ σX |Y .
Moreover, we have σX |Y ◦ σY |X = 1. The map

σX = σX |X : F (X |X)→ F (X |X).
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defines a C2-action on F (X |X). Since ∆X and ∇X are C2-equivariant where the
action on X is trivial and on X ⊕X it is the switch, we have

τXσX = τX , σXρX = ρX .

We equip F (X) with the trivial involution. Summarising we have the following.

Lemma A.2. Let A be an additive category and F : A → Ab a reduced functor.
Then the cross effect (X,Y ) 7→ F (X |Y ) is equipped with a natural automorphism
(A.7) of order 2 and we have a natural C2-equivariant diagram

(A.8) F (X |X)
τX−→ F (X)

ρX−→ F (X |X)

defined in (A.6). Moreover for any two maps f, g ∈ A(X,Y ) we have

F (f + g) = F (f) + F (g) + τY F (f | g)ρX .

Proof. This follows from Lemma A.1 (2) and the definitions as discussed above. �

We will refer to the natural maps τ , ρ, σ associated with a reduced functor F as
its structure maps.

A.3. Quadratic functors on additive categories. Let A be a linear category.
Recall that a functor F : A → Ab is called linear if for all objects X,Y ∈ A the
map

(A.9) A(X,Y )→ Ab(FX,FY ) : f 7→ F (f)

is a linear map of abelian groups.

Definition A.3. Let A be an additive category. A functor F : A → Ab is called
quadratic if for all objects X,Y of A the map (A.9) is a quadratic map of abelian
groups, that is, (f, g) 7→ F (f > g) is bilinear.

There are many equivalent definitions for a functor on an additive category to
be quadratic. We will review some of them in this subsection. Recall that for a
linear category A, a functor B : A × A → Ab is called bilinear if it is linear in
each variable, that is, for all objects X,Y ∈ A the functors A → Ab given by
Z 7→ B(X,Z) and Z 7→ B(Z, Y ) are linear.

Lemma A.4. Let A be an additive category and let F : A → Ab be a functor.
Then the following are equivalent.

(1) F is quadratic.
(2) F is reduced and its cross effect F ( | ) : A×A → Ab is bilinear.

Proof. Assume that F is quadratic. Then F is reduced. Indeed, any quadratic map
between abelian groups sends 0 to 0, and any functor sends identity morphisms
to identity morphisms. For the zero-object 0 of A we have 10 = 00 ∈ A(0, 0).
Therefore 1F (0) = F (10) = F (00) = 0F (0) and F (0) is the zero abelian group. The
rest is immediate from Lemma A.1. �

In particular, any quadratic functor is reduced and thus is equipped with extra
structure maps as in Lemma A.2.

Example A.5. Let B : A × A → Ab be a bilinear functor. Then the functor
X 7→ F (X) = B(X,X) is quadratic with cross effect

F (X|Y ) = B(X,Y )⊕B(Y,X)
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and structure maps

ρ : B(X,X)→ B(X,X)⊕B(X,X) : q 7→ (q, q)

τ : B(X,X)⊕B(X,X)→ B(X,X) : (f, g) 7→ f + g

σ : B(X,Y )⊕B(Y,X)→ B(Y,X)⊕B(X,Y ) : (f, g) 7→ (g, f).

Recall that the cross effect of a reduced functor F is equipped with an automor-
phism σ : F (X |Y )→ F (Y |X) of order 2.

Lemma A.6. Let A be an additive category, and let F : A → Ab be a quadratic
functor. Then for every object X ∈ A we have

ρX ◦ τX = 1 + σX : F (X |X)→ F (X |X).

Proof. By definition (A.3), the map ρX,X is surjective and τX,X is injective. Thus,
it suffices to check

τX,X ◦ ρXτX ◦ ρX,X = τX,X ◦ (1 + σX) ◦ ρX,X .

Note that

F (1+σ)F (eX1 > eX2
) = F (eX1

+σeX1 > eX2
+σeX2

) = F (eX1
+eX2

σ > eX2
+eX2

σ)

= F (eX1 > eX2
)(1 + F (σ)) + (F (eX1

) + F (eX2
))F (1 > σ)

using bilinearity of the deviation. Therefore,

τX,X ◦ ρXτX ◦ ρX,X = F (eX1 > eX2)F (∆X)F (∇X)F (eX1 > eX2)

= F (eX1 > eX2
)F (1 + σ)F (eX1 > eX2

)

= F (eX1 > eX2)(1 + F (σ))

= τX,X ◦ (1 + σX) ◦ ρX,X

because F (eX1 > eX2)F (eX1) = F (eX1 > eX2)F (eX2) = 0 as product of orthogonal
idempotents. �

Definition A.7. Let A be a linear category. A symmetric bilinear functor on A
(with values in Ab) is a pair (B, ι) where B : A×A → Ab is a bilinear functor and
ι : B(X,Y )→ B(Y,X) is a natural automorphism of order 2. A homomorphism of
symmetric bilinear functors (B1, ι)→ (B2, ι) is a natural transformation B1 → B2

commuting with ι.

Example A.8. The cross effect (F ( | ), σ) of a quadratic functor F on an ad-
ditive category is symmetric bilinear; see Lemma A.4.

Let (B, ι) be a symmetric bilinear functor on an additive category A. Then
the automorphism ι defines a C2-action on B(X,X) and we denote by BC2

, BC2 :
A → Ab the orbit and fixed point functors defined by BC2

(X) = B(X,X)C2
and

BC2(X) = B(X,X)C2 . The map 1 + ι : B(X,X)→ B(X,X) naturally factors as

B
τB // // BC2

N // BC2 // ρB // B
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where τB and ρB are the natural quotient and inclusion maps. The map N is called
norm.

Lemma A.9. Let A be an additive category and (B, ι) : A×A → Ab a symmetric
bilinear functor on A. Then the orbit and fixed point functors BC2

and BC2 are
quadratic with associated symmetric bilinear cross effects isomorphic to (B(X,Y ), ι)
and structure maps (τB , ρBN) and (NτB , ρB). In particular, the norm map N :
BC2 → BC2 induces an isomorphism of associated symmetric bilinear cross effects
N : BC2

(X |Y ) ∼= BC2(X |Y ).

Proof. The functor X 7→ F (X) = B(X,X) carries a C2-action defined by ι which
induces the following C2-action on the cross effect F (X |Y ), by Example A.5:

ι : B(X,Y )⊕B(Y,X)→ B(X,Y )⊕B(Y,X) : (a, b) 7→ (ιb, ιa).

The structure maps ρ, τ and σ in Example A.5 commute with the action of ι. Since
the construction of the cross effect commutes with taking fixed points and orbits
we obtain the following isomorphisms of symmetric bilinear functors

B(X,Y ) ∼= FC2(X |Y ) = F (X |Y )C2 : a 7→ (a, ιa)

FC2(X |Y ) = F (X |Y )C2
∼= B(X,Y ) : (a, b) 7→ a+ ι(b)

Under these isomorphisms the left hand diagram below maps isomorphically to the
right diagram

F (X |Y )

����

1+ι // F (X |Y ) B(X,Y )⊕B(Y,X)

����

1+ι // B(X,Y )⊕B(Y,X)

FC2
(X |Y )

N
// FC2(X |Y )

OO

OO

B(X,Y )
1

// B(X,Y ).

OO

OO

In particular, N is an isomorphism on cross effects. �

Here comes our final characterisation of quadratic functors on additive categories.

Lemma A.10. Let A be an additive category and let F : A → Ab be a functor.
Then the following are equivalent.

(1) F is quadratic.
(2) There is a symmetric bilinear functor (B, σ) : A ×A → Ab and a natural

C2-equivariant diagram of functors A → Ab

B(X,X)
τ−→ F (X)

ρ−→ B(X,X)

such that ρτ = 1 + σ and F (f > g) = τB(f, g)ρ.

Moreover, if F is quadratic, the diagram in (2) defines a factorisation of the norm

BC2

τ̃−→ F
ρ̃−→ BC2 which induces isomorphisms of associated symmetric bilinear

cross effects which are inverse to each other

B(X,Y )
τ̃−→∼= F (X |Y )

ρ̃−→∼= B(X,Y ).

Proof. We have already proved that (1) implies (2) with B(X,Y ) = F (X |Y ); see
Lemmas A.4, A.2 and A.6. Moreover, (2) implies (1) since the cross effect of F is
bilinear in view of the equation F (f > g) = τB(f, g)ρ and Lemma A.1.

We are left with proving the two isomorphisms of cross effects. In view of Lemma
A.9, the equation ρτ = 1 + σ implies that on cross effects the composition ρ̃τ̃ is an
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isomorphism. In particular, the map τ̃ is injective on cross effects. The equation
F (f > g) = τB(f, g)ρ shows that the cokernel of τ̃ : BC2(X) → F (X) is a linear
functor. In particular, its cross effect coker(τ̃ : BC2(X,Y ) → F (X |Y )) is zero,
that is, τ̃ : B(X,Y ) = BC2

(X |Y )→ F (X |Y ) is also surjective. �

Remark A.11. In the situation of Lemma A.10 (2), the isomorphism of symmetric
bilinear functors τ̃ : B → F ( | ) with inverse ρ̃ turns the natural isomorphism
(A.4) into the isomorphism

(A.10) F (X ⊕ Y ) ∼= F (X)⊕ F (Y )⊕B(X,Y )

given by (F (pX), F (pY ), B(pX , pY )ρX⊕Y ) and inverse (F (iX), F (iY ), τX⊕YB(iX , iY )).
Since B is bilinear, the map (B(pX , pX), B(pY , pY ), B(pX , pY ), B(pY , pX))

(A.11) B(X ⊕ Y,X ⊕ Y ) ∼= B(X)⊕B(Y )⊕B(X,Y )⊕B(Y,X)

is an isomorphism with inverse (B(iX , iX), B(iY , iY ), B(iX , iY ), B(iY , iX)). Under
the isomorphisms (A.10) and (A.11), the structure maps (τ, ρ) at X⊕Y in Lemma
A.10 (2) become

(A.12) B(X,X)⊕B(Y, Y )⊕B(X,Y )⊕B(Y,X)

τX⊕τY ⊕(1,σ)

��
F (X)⊕ F (Y )⊕B(X,Y )

ρX⊕ρY ⊕( 1
σ )

��
B(X,X)⊕B(Y, Y )⊕B(X,Y )⊕B(Y,X).

In particular, the value of the quadratic functor (F,B, ρ, τ) at X⊕Y is determined
(up to natural isomorphism) by its values at X and Y .

Lemma A.12. Let A be an additive category, and let F : A → Ab be a quadratic
functor. Then for every split exact sequence

0→ X
s−→ Y

r−→ Z → 0

in A, the following is an exact sequence of abelian groups

0→ F (X)
F (s)−→ F (Y )

(
F (1 | r)ρY
−F (r)

)
−→ F (Y |Z)⊕ F (Z)

(F (r | 1),ρZ)−→ F (Z |Z)→ 0.

Proof. The choice t : Z → Y of a splitting of r : Y → Z defines an isomorphism
u = (s, t) : X ⊕ Z → Y . Consider the following diagram of abelian groups and
linear maps

(A.13) F (X |Z) //
F (u)◦τX,Z // F (Y )/F (X)

F (1 | r)ρY
��

F (r) // // F (Z)

ρZ

��
F (X |Z) //

F (s | 1)
// F (Y |Z)

F (r | 1)
// // F (Z |Z)

where F (Y )/F (X) is the cokernel of the injective map F (s). The right square
commutes by functoriality of ρ. We check commutativity of the left square. Since
τY,Z is injective and ρX,Z is surjective it suffices to check

τY,Z ◦ F (s | 1) ◦ ρX,Z = τY,Z ◦ F (1 | r) ◦ ρY ◦ F (u) ◦ τX,Z ◦ ρX,Z .
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This equality holds since the right hand side of that equation is

τY,Z ◦ ρY,Z ◦ F (1Y ⊕ r) ◦ F (∆Y ) ◦ F (u) ◦ τX,Z ◦ ρX,Z

= F
((

1Y 0
0 0

)
>
(

0 0
0 1Z

))
◦ F

(
s t
0 1Z

)
◦ F

((
1X 0
0 0

)
>
(

0 0
0 1Z

))
=

(
1− F

(
1Y 0
0 0

)
− F

(
0 0
0 1Z

))
◦ F

(
( s 0

0 0 ) >
(

0 t
0 1Z

))
= F

(
( s 0

0 0 ) >
(

0 t
0 1Z

))
− F (( s 0

0 0 ) > ( 0 t
0 0 ))

= F
(
( s 0

0 0 ) >
(

0 0
0 1Z

))
whereas the left hand side of that equation is

τY,Z ◦ ρY,Z ◦ F (s⊕ 1Z) = F
((

1Y 0
0 0

)
>
(

0 0
0 1Z

))
◦ F (s⊕ 1Z)

= F
(
( s 0

0 0 ) >
(

0 0
0 1Z

))
.

To prove the lemma, note that the right horizontal maps in diagram (A.13) are
split surjective and the left horizontal maps are split injective. The top row is exact,
by definition of the cross effect. The bottom row is exact since F is quadratic; see
Lemma A.4. It follows that the total complex of the right square is exact, that is,
the sequence of abelian groups in the lemma is exact. �

Definition A.13. Let E be an exact category. A functor F : E → Ab is called
quadratic left exact if it is quadratic on the underlying additive category and if for
every admissible exact sequence in E

0→ X
s−→ Y

r−→ Z → 0

the following sequence of abelian groups and linear maps is exact

0→ F (Z)
F (r)−→ F (Y )

(
F (1|s)ρY
−F (s)

)
−→ F (Y |X)⊕ F (X).

By Lemma A.12, any quadratic functor on a split exact category is quadratic
left exact.

A.4. Quadratic functors on linear categories. In Section A.3, we have given
three equivalent characterisations of quadratic functors on additive categories. But
what should be a quadratic functor on a linear category which is not additive
such as a ring R? The characterisation in Lemma A.4 doesn’t make sense since
the cross effect is only defined in the presence of finite direct sums. It turns out
that the characterisation in Definition A.3 is not appropriate either since non-
isomorphic quadratic functors on finitely generated free R-modules may be isomor-
phic when restricted to R. For instance, the quadratic functors P 7→ HomZ(P, P ])σ
and P 7→ HomZ(P, P ])σ are isomorphic when restricted to P = Z, but they are
not isomorphic on finitely generated free Z-modules, where σ(f) = f ] can and
P ] = HomZ(P,Z). The first defines quadratic forms over Z whereas the second
functor defines symmetric bilinear forms over Z. Therefore, we are forced to use
the characterisation given in Lemma A.10. This is the reason for the formulation
of Definition 2.1 on form categories.



56 MARCO SCHLICHTING

Recall from Definition A.7 the notion of a symmetric bilinear functor.

Definition A.14. Let A be a linear category. A quadratic functor on A is the
datum of a functor F : A → Ab, a symmetric bilinear functor (B, σ) : A×A → Ab
and a C2-equivariant diagram of functors A → Ab

B(X,X)
τ−→ F (X)

ρ−→ B(X,X)

such that ρτ = 1+σ and F (f > g) = τB(f, g)ρ for all f, g ∈ A(X,Y ) and X,Y ∈ A.
Here C2 acts trivially on F (X) and via σ on B(X,X).

A map of quadratic functors (F1, B1, σ, τ, ρ)→ (F2, B2, σ, τ, ρ) on A is a pair of
natural transformations of functors F1 → F2 and B1 → B2 commuting with the
structure maps σ, τ and ρ. Composition is composition of natural transformations.
This defines the category Funquad(A,Ab) of quadratic functors on A.

Remark A.15. In view of Definition B.1, a quadratic functor on a linear category
A is a functor

(F,B, σ, τ, ρ) : A → C2 Mac

into C2-Mackey functors together with an extension of (B, σ) to a symmetric bilin-
ear functor on A such that F (f > g) = τB(f, g)ρ for all f, g ∈ A(X,Y ).

Recall that to any linear category A is associated an additive category A⊕, its
additive hull, together with a fully faithful embedding A ⊂ A⊕ such that for every
additive category B, the restriction along the embedding yields an equivalence of
categories of additive functors

Funadd(A⊕,B)
∼−→ Funadd(A,B).

Explicitly, an object of A⊕ is a pair (A,n) where n ≥ 0 is an integer and A =
(A1, ..., An) is a sequence of objects in A of length n formally written as

⊕n
i=1Ai.

Maps from (A,n) to (B,m) are matrices (fij) of maps fij : Aj → Bi in A for
1 ≤ i ≤ m and 1 ≤ j ≤ n. Composition is matrix multiplication. The category A⊕
is an additive category with biproduct

(A1, ..., An)⊕ (B1, ..., Bm) = (A1, ..., An, B1, ..., Bm)

and zero object (0) the unique sequence of length 0. Moreover, A is embedded in
A⊕ via the functor A → A⊕ : A 7→ (A, 1).

Lemma A.16. A quadratic functor (B, σ)
τ−→ F

ρ−→ (B, σ) on a linear category
A extends essentially uniquely to a quadratic functor on the additive hull A⊕ of
A. More precisely, the embedding A ⊂ A⊕ induces an equivalence of categories of
quadratic functors

(A.14) Funquad(A⊕,Ab)
∼−→ Funquad(A,Ab).
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Proof. It follows from Remark A.11 that the functor (A.14) is fully faithful with
quasi-inverse given by

B(
⊕n

i=1Ai,
⊕n

i=1Ai) =
⊕n

i=1B(Ai, Ai)⊕
⊕

1≤i<j≤n (B(Ai, Aj)⊕B(Aj , Ai))

τ ↓ ↓ τ ⊕ (1, σ)

Q(
⊕n

i=1Ai) =
⊕n

i=1Q(Ai)⊕
⊕

1≤i<j≤nB(Ai, Aj)

ρ ↓ ↓ ρ⊕ ( 1
σ )

B(
⊕n

i=1Ai,
⊕n

i=1Ai) =
⊕n

i=1B(Ai, Ai)⊕
⊕

1≤i<j≤n (B(Ai, Aj)⊕B(Aj , Ai))

�

Appendix B. C2-Mackey functors

The tensor product and internal hom of form categories is based on the tensor
product and internal hom of C2-Mackey functors which we will review in this sec-
tion. The material here can be found in much greater generality in [Bou97]. We
denote by ⊗ the tensor product of abelian groups.

Definition B.1 (C2-Mackey functor). Let C2 = {1, σ} be the cyclic group of order
2 with generator σ. A C2-Mackey functor is a diagram M = (M(e),M(C2), τ, ρ) of
C2-abelian groups and C2-equivariant linear maps

M(e)
τ // M(C2)

ρ // M(e)

where the action on M(C2) is trivial and ρ ◦ τ = 1 + σ. It helps to think of M(G)
as the ”G-fixed points” of M for G ⊂ C2 a subgroup. The maps τ and ρ are called
transfer and restriction.

A homomorphism f : M → N of Mackey functors is a pair f = (fe, fC2) of
C2-equivariant maps fe : M(e) → N(e) and fC2 : M(C2) → N(C2) commuting
with transfer and restriction. The category of C2-Mackey functors is denoted by
C2 Mac or simply Mac.

B.1. The internal Homomorphism Mackey functor. LetM , N be C2-Mackey
functors. The internal homomorphism Mackey functor Mac(M,N) is

Mac(M,N)(e) = Hom(M(e), N(e)), with action f 7→ f̄ = σ ◦ f ◦ σ,

Mac(M,N)(C2) = Mac(M,N)

and structure maps

τ : Mac(M,N)(e)→ Mac(M,N)(C2) : f 7→ (f + f̄ , τ ◦ f ◦ ρ)

ρ : Mac(M,N)(C2)→ Mac(M,N)(e) : (fe, fC2) 7→ fe.

B.2. The tensor product of Mackey functors. The tensor product Mackey
functor M⊗̂N of two C2-Mackey functors M and N has

(M⊗̂N)(e) = M(e)⊗N(e), with action σ ⊗ σ,

and (M⊗̂N)(C2) is the quotient of

M(C2)⊗N(C2)⊕ (M(e)⊗N(e))/(1− σ ⊗ σ)
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by the two relations

ρ(ξ)⊗ y = ξ ⊗ τ(y), x⊗ ρ(ζ) = τ(x)⊗ ζ

for x ∈ M(e), y ∈ N(e), ξ ∈ M(C2) and ζ ∈ N(C2). Transfer and restriction are
defined by

(M⊗̂N)(e)
τ−→ (M⊗̂N)(C2) : x⊗ y 7→ [x⊗ y]

(M⊗̂N)(C2)
ρ−→ (M⊗̂N)(e) : ξ ⊗ ζ + [x⊗ y] 7→ ρ(ξ)⊗ ρ(ζ) + x⊗ y + σ(x)⊗ σ(y).

B.3. Adjointness of ⊗̂ and Mac. As usual, there is a natural isomorphism

Mac(M⊗̂N,P ) ∼= Mac(M,Mac(N,P ))

given by unit and counit of an adjunction defined as follows. Evaluation is the map

e = (e, eC2) : Mac(M,N)⊗M → N

defined by the usual evaluation map at e, and at C2 it is

(Mac(M,N)⊗̂M)(C2)
eC2

−→ N(C2) : (fe, fC2)⊗ ξ + [g ⊗ x] 7→ fC2(ξ) + τ(g(x)).

The coevaluation map

∇ : M → Mac(N,M⊗̂N)

is the usual coevaluation map at e

M(e)→ Mac(N,M⊗̂N) = Hom(N(e),M(e)⊗N(e)) : x 7→ (y 7→ x⊗ y)

and at C2 it is the map

∇ : M(C2)→ Mac(N,M⊗̂N)(C2) = Mac(N,M⊗̂N) : ξ 7→ (∇eξ,∇
C2

ξ )

where

∇eξ : N(e)→M(e)⊗N(e) : y 7→ ρ(ξ)⊗ y
and

∇C2

ξ : N(C2)→ (M ⊗N)(C2) : ζ 7→ ξ ⊗ ζ.

B.4. The unit of the tensor product. The unit of the tensor product is the
Burnside Mackey functor Z where Z(e) = Z with trivial action, Z(C2) = Z[C2] =
Z⊕Zσ, τ(m) = m+mσ, ρ(m+nσ) = m+n. The unit isomorphism u : Z⊗̂M →M
is the following isomorphism of Mackey functors

(Z⊗̂M)(e)
∼= //

τ

��

M(e) :

τ

��

m⊗ x 7→ m · x

(Z⊗̂M)(C2)
∼= //

ρ

OO

M(C2) :

ρ

OO

(m+ nσ)⊗ ξ + [r ⊗ y]

7→ (m− n) · ξ + n · τρ(ξ) + r · τ(y)

Associativity a : (M⊗̂N)⊗̂P ∼= M⊗̂(N⊗̂P ) and commutativity isomorphisms
c : M⊗̂N → N⊗̂M are the maps induced by associativity and commutativity of
the usual tensor product of abelian groups. In consequence, we have the following.

Proposition B.2. The data (⊗̂,Mac,∇, e, a, c,Z, u) defined above make the cate-
gory C2 Mac of C2-Mackey functors into a closed symmetric monoidal category.
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Exercise B.3. Use Proposition B.2 to make the category of small form categories
into a closed symmetric monoidal category with tensor product and internal homo-
morphism objects as in Definitions 2.34 and 2.36.

Appendix C. Tensor product of unital abelian monoids

Let M , P be unital abelian monoids. A map of sets f : M → P is called linear
if f(0) = 0 and f(a + b) = f(a) + f(b) for all a, b ∈ M . Let M , N , P be unital
abelian monoids. A map of sets M × N → P : (x, y) 7→ 〈x, y〉 is called bilinear if
the maps M → P : m 7→ 〈m, y〉 and N 7→ P : n 7→ 〈x, n〉 are linear for all x ∈ M
and y ∈ N .

The tensor product M ⊗N of unital abelian monoids M and N is the quotient
unital abelian monoid of the free unital abelian monoid on symbols m ⊗ n with
m ∈ M and n ∈ N modulo the relations (m1 + m2) ⊗ n = m1 ⊗ n + m2 ⊗ n and
m ⊗ (n1 + n2) = m ⊗ n1 + m ⊗ n2, and 0 ⊗ n = m ⊗ 0 = 0. It satisfies the usual
universal property where restriction along M × N → M ⊗ N : (m,n) 7→ m ⊗ n
defines a bijection between linear maps from M⊗N with bilinear maps from M×N .

Recall that an abelian group is a unital abelian monoid in which every element
has an inverse. If M and N are abelian groups, then their tensor product M ⊗N
as abelian monoids is the usual tensor product of abelian groups with inverses give
by −(m⊗ n) = (−m)⊗ n = m⊗ (−n).

Appendix D. Homology of S(m)-modules

We recall from [Sch17a] the notion of S(m)-sequence and S(m)-algebra.

Definition D.1. Let R be a ring with group of units R∗, and let m ≥ 0 be an
integer. An S(m)-sequence in R is a sequence (u1, ..., um) of m central elements
u1, ..., um in R all of whose non-empty partial sums are units, that is, for every
index set ∅ 6= J ⊂ {1, ...,m}, we require

uJ =
∑
j∈J

uj ∈ R∗.

An S(m)-algebra is a ring together with a choice of an S(m)-sequence.

A ring has many units if it has an S(m)-algebra structure for all integers m ≥ 0.
For instance, Z is an S(1)-algebra but not an S(2)-algebra. Any infinite field and
any local ring with infinite residue field has many units.
S(m)-algebras in the sense above are algebras over the commutative ring

S(m) = Z[X1, ..., Xm][Σ−1]

obtained by localising the polynomial ring Z[X1, ..., Xm] in them variablesX1, ..., Xm

at the set of all non-empty partial sums of the variables

Σ = {XJ | ∅ 6= J ⊂ {1, ...,m}}, where XJ =
∑
j∈J

Xj .

Indeed, an S(m)-sequence (u1, ..., um) inR determines a ring homomorphism S(m)→
R : Xi 7→ ui with image in the centre of R.

For a ring R, we denote by Z[R∗] the integral group ring of the group of units R∗

in R. It has Z-basis the elements 〈a〉 corresponding to the units a ∈ R∗. Suppose
R has an S(m)-sequence u = (u1, ..., um). For an integer m ≥ 1, write [1,m] for
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the set {1, ...,m} of integers between 1 and m. As in [Sch17a], we will denote by
s(u) the following element in Z[R∗]

s(u) = −
∑

∅6=J⊂[1,m]

(−1)|J|〈uJ〉 ∈ Z[R∗].

Note that the augmentation homomorphism ε : Z[R∗]→ Z : 〈a〉 7→ 1 sends s(u) to
1; see [Sch17a, §2]. For the universal S(m)-sequence (X1, ..., Xm) in S(m), I will
write sm instead of s(X1, ..., Xm)

Lemma D.2. Let R be a commutative ring with S(m)-sequence u = (u1, ..., um).
Let A, N be R-modules. Consider A and N as Z[R∗]-modules with multiplication
〈r〉(a) = ra and 〈r〉(y) = r2y for r ∈ R∗, a ∈ A and y ∈ N . By functoriality
of exterior products, this makes ΛpZA and ΛqZN into R∗-modules. Consider the
tensor product ΛpZA ⊗ ΛqZN equipped with the diagonal R∗-action. Then for all
1 ≤ p+ 2q < m we have

s(u) · (ΛpZ(A)⊗ ΛqZ(N)) = 0.

Proof. By definition of the functor ΛnZ, we have a surjection of R∗-modules

(D.1)
⊗p

A⊗
⊗q

N � Λp(A)⊗ Λq(N).

Thus, it suffices to show that s(u) annihilates the source of that map. Consider each
copy of A in the source of (D.1) as an R-module with its given scalar product and
each copy ofN as an R⊗2-module with scalar multiplication (a⊗b)·y = aby for a, b ∈
R and y ∈ N . Together this defines a natural R⊗(p+2q) =

⊗p
R⊗

⊗q
(R⊗2)-module

structure on the source of (D.1). The Z[R∗]-module structure on the source of (D.1)
is the restriction of the R⊗(p+2q)-module structure along the ring homomorphism
Z[R∗] → R⊗(p+2q) : 〈r〉 7→ r ⊗ · · · ⊗ r. Since that ring homomorphism sends s(u)
to zero [Sch17a, Lemma 2.2] provided 1 ≤ p+ 2q < m, we are done. �

Lemma D.3. Keep notation and hypothesis of Lemma D.2. If moreover A is
torsion free as abelian group then for all 1 ≤ p+ 2q < m we have

s(u)−1 (Hp(A)⊗Hq(N)) = 0.

Proof. Assume first that N is torsion free. Then s(u) annihilates

Hp(A)⊗Hq(N) ∼= ΛpZA⊗ ΛqZN

by Lemma D.2
For the general case, choose a surjective weak equivalence of simplicial S(m)-

modules N∗ → N with Ni a projective S(m)-module for all i ∈ N. For instance,
the simplicial S(m)-module corresponding to an S(m)-projective resolution of N
under the Dold-Kan correspondence will do. Each Ni is a torsion free abelian
group since S(m) is. The classifying space functor induces an S(m)∗-equivariant
weak equivalence of simplicial sets BN∗ → BN where S(m)∗ acts on each Ni as the
square of the natural S(m) scalar multiplication. Tensoring the spectral sequence
of the simplicial space n 7→ BNn,

E1
s,t = Ht(BNs)⇒ Hs+t(BN∗) = Hs+t(BN) = Hs+t(N),

with the flat Z-module Hp(A) yields the spectral sequence of S(m)∗-modules

Hp(A)⊗ E1
s,t = Hp(A)⊗Ht(BNs)⇒ Hp(A)⊗Hs+t(N)
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Localising at sm ∈ Z[S(m)∗], this yields a spectral sequence with trivial E1
s,t-term

for 1 ≤ p+ 2t < m. This implies the claim. �

The following is a version of [Sch17a, Proposition 2.4].

Proposition D.4. Let R be a commutative ring with S(m)-sequence u = (u1, ..., um).
Let

N → G→ A

be a central extension of groups. Assume that the group of units R∗ acts on the
exact sequence, that the groups A and N are the underlying abelian groups (A,+, 0)
and (N,+, 0) of R-modules (A,+, 0, ·) and (N,+, 0, ·) such that the R∗-actions
on A and N in the exact sequence are the scalar multiplication and its square
R∗ × A → A : (t, a) 7→ t · a and R∗ × N → N : (t, y) 7→ t2 · y. Then for all
1 ≤ n < m/2 we have

s−1
m Hn(G) = 0.

Proof. Assume first that A is torsion free as abelian group. Then its integral ho-
mology groups H∗(A) are torsion free and the natural map Hp(A)⊗F → Hp(A,F )
is an isomorphism for any abelian group F , by the Universal Coefficient Theo-
rem. Since the extension is central, the group A acts trivially on H∗(N) and the
Hochschild-Serre spectral sequence of the group extension has the form

E2
p,q = Hp(A,Hq(N)) ∼= Hp(A)⊗Hq(N)⇒ Hp+q(G).

Localising the spectral sequence at sm yields a spectral sequence with E2-term
s−1
m E2

p,q = 0 for 1 ≤ p+ 2q < m, by Lemma D.3. This implies the claim in case A
is torsion free.

For general A, choose a surjective weak equivalence A∗ → A of simplicial S(m)-
modules with An a projective S(m)-module for all n. For instance, the simplicial
S(m)-module corresponding to an S(m)-projective resolution of A under the Dold-
Kan correspondence will do. Then each An is flat as abelian group since S(m)
is. Let Gn = G ×A An. Then G∗ → G is a surjection of simplicial groups with
contractible kernel. In particular, the map on classifying spaces B|s 7→ Gs| = |s 7→
BGs| → BG is an S(m)∗-equivariant weak equivalence. For each n we have an
S(m)∗-equivariant central extension N → Gn → An with torsion free base. By the
torsion free case treated above, we have s−1

m Hr(BGn) = 0 for 1 ≤ r < m/2 and for
all n. Therefore, the spectral sequence of the simplicial space s 7→ BGs,

E2
p,q = πp|s 7→ Hq(BGs)| ⇒ Hp+q(BG∗) = Hp+q(BG),

localised at sm has trivial E2
p,q-term for 1 ≤ p+ q < m/2. The claim follows. �
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