GEOMETRIC MODELS FOR HIGHER GROTHENDIECK-WITT
GROUPS IN Al-HOMOTOPY THEORY

M. SCHLICHTING AND G. S. TRIPATHI

ABSTRACT. We show that the higher Grothendieck-Witt groups, a.k.a. alge-
braic hermitian K-groups, are represented by an infinite orthogonal Grass-
mannian in the A'-homotopy category of smooth schemes over a regular base
for which 2 is a unit in the ring of regular functions. We also give geometric
models for various P!- and S'-loop spaces of hermitian K-theory.
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1. INTRODUCTION

For a regular noetherian separated scheme S of finite Krull dimension, denote
by . (S) the pointed unstable Al-homotopy category of smooth S-schemes, and
by [, Jor[ , J|xs(s) maps in that category [MV99]. A theorem of Morel
and Voevodsky says that Quillen’s algebraic K-theory is represented in 5 (.S) by
Z x BGL ~ 7 x Gre where for a vector bundle V on S, the scheme Grq(V') denotes
the Grassmannian scheme of d-planes in V', and Gr, = colim,, Gr, (0% @ O%) is the
infinite Grassmannian over S. More precisely [MV99, Theorem 3.13, p. 140], for
any smooth S-scheme X there are natural isomorphisms for all ¢ > 0

(1.1) Ki(X)2[Xy AS,7Z x Gre] =2 X, AS",Z x BGL)

where S° = A?/OA" is the simplicial i-sphere and X; = X U + is X with a
disjoint basepoint + added. This is analogous to the fact that complex K-theory
is represented in topology by Z x BU and the infinite complex Grassmannian.
The purpose of this article is to prove a result analogous to (1.1) for the theory
of higher Grothendieck-Witt groups, a.k.a. algebraic hermitian K-theory [Kar73],
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extended to schemes in [Sch10b]. Our result has already been used in the work of
[AF12] and [Zib11] and opens the door to a classification of unstable operations in
Grothendieck-Witt theory as done in [Riol0] for K-theory.

To state our main theorem, let V' = (V, ¢) be an inner product space over S, that
is, a vector bundle V over S equipped with a non-degenerate symmetric bilinear
form ¢ : V®@gV — Og, and let GrO4(V) C Gry(V) be the open subscheme, of the
usual Grassmannian Grq (V') of d-planes in V', of those subbundles E of V' for which
the from ¢ restricts to a non-degenerate form ¢z on E. Let Hg be the hyperbolic
plane over S, that is, the rank 2 vector bundle O% equipped with the inner product
(z,y) - (2',y") = za’ — yy'. We define the infinite orthogonal Grassmannian (over
S) as the colimit of schemes

GrO, = colim,, GrOy, (H™ L H™)
where the colimit is taken over the maps
GrOg,(H™ L H") — GrOgpio(H™™ L H"™ ) : E+— H L E.

Moreover, let O = colim,, O(H™) be the infinite orthogonal group over S where
O(V) denotes the group of isometries of an inner product space V. Let B, O =
colim,, B.tO(H™) be the etale classifying space of O [MV99, p. 130]. Finally,
for a scheme X with § € T'(X,0x) let GW;(X) = m;GW (X) be the i-th higher
Grothendieck-Witt group of X ([Sch1l0a, Definition 4.6] with £ = Ox and ¢ =
1). For an affine scheme X = Spec A (with § € A), these groups are Karoubi’s
hermitian K-groups of A [Sch10a, Remark 4.13]. Here is our main result.

Theorem 1.1. Let S be a regular noetherian separated scheme of finite Krull di-
mension with + € I'(S,0g), and let X be a smooth S-scheme. Then there are
natural isomorphisms

GW;(X) 2 [ X4 NS Z x GrOd) sy = [X4 AS*,Z x BeyO) gy (5).-

The proof of the K-theory analog of Theorem 1.1 has two steps. The first consists
in showing that the K-theory presheaf K is homotopy invariant and satisfies the
Nisnevich Brown-Gersten property. Both statements follow from Quillen’s work
[Qui73] and they imply K;(X) 2 [X; A S% K]. In the second step, one constructs
explicit Al-weak equivalences Z x Gre ~a1 Z x BGL ~ 1 K. This was done in
[MV99]; see also Remark 8.5.

For higher Grothendieck-Witt theory, the first step was proved by Hornbostel for
affine schemes in [Hor05]. The extension to non-affine schemes follows from [Sch10b]
and is also proved in [Sch12, Theorems 9.6, 9.8]. Thus, [X| A S*, GW] =2 GW;(X).
Also, it is known from [PW10] that B.:O = GrO, in 4, (S); we give an alternative
proof of a more precise statement in Proposition 8.1.

Denote by Z the constant sheaf Z. For a ring R, denote by AR the standard
simplicial ring n — A"R = R[To,...,T,|/{To + -+ + T, — 1). Theorem 1.1 is a
consequence of the following which is proved in Theorem 8.2 and Proposition 8.1.

Theorem 1.2. Let S be a reqular noetherian separated scheme of finite Krull di-
mension with % € I'(S,Og). Then there are maps of simplicial presheaves on smooth
S-schemes

Z x GrOq — Z X BetO — GW
which are weak equivalences of simplicial sets when evaluated at AR for any smooth
affine S-scheme Spec R. In particular, these maps are isomorphisms in He(S).
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We also give models for the n-th P'-loop space of GW and their S'-loop spaces.
Denote by GW™(X) the n-th shifted Grothendieck-Witt space of X ([Sch10b, Defi-
nition 7] withe =1, Z = X, L = Ox, Ax = Ox, or [Sch12, Definition 9.1]), that is,
the Grothendieck-Witt space of the category of bounded chain complexes of vector
bundles on X with duality in Ox|[n], the line bundle Ox placed in degree —n. Let
GW"™ : X — GW"(X) be the corresponding simplicial presheaf made functorial as
in [Sch12, Remark 9.4]. Then GWY = GW, and the presheaves GW™ are homotopy
invariant [Sch12, Theorem 9.8] and satisfy the Nisnevich Brown-Gersten property
[Sch12, Theorem 9.6]. Therefore,

GWM(X) = [X, AS,GW"
for all smooth S-schemes X. The motivic spaces GW™ are related by Al-weak
equivalences GW™ ~ Qpi GW™ ! (a consequence of the P!-bundle theorem [Sch12,
Theorem 9.10]) and isomorphisms GW™ = GW™*4 [Sch10b, §8 Corollary 1], [Sch12,
Remark 5.9]. The following is therefore a complete list of geometric models for the
n-th P-loop space Qp, GW =2 GW ™" of Z x GrO, and their Sl-loop spaces, n € Z.
Note that upon complex realization we obtain the 8 spaces of real Bott-periodicity.

Theorem 1.3. Let S be a regular noetherian separated scheme of finite Krull di-
mension with & € T'(S, Og). Then there are isomorphisms in 4 (S)

ZxGrOg n=20 0] n=>0

n~ ) Sp/GL n=1 ne) (GL/O)ey n=1
GWn = ZxBSp n=2 Qg1 GW™ = Sp n =2
O/GL n=3 GL/Sp n=3

where Sp denotes the infinite symplectic group and (GL/O)¢: denotes the etale or
scheme theoretic quotient.

More precise versions are proved in Theorems 8.2 and 8.4.

Acknowledgments. The authors would like to thank Paulo Lima-Filho and Simon
Markett for useful discussions. We would also like to acknowledge support through
NSF grant DMS 0906290.

2. ORTHOGONAL (GRASSMANNIANS

For a quasi-compact, separated scheme S, denote by Schg and Smg the categories
of separated, finite type S-schemes and its full subcategory of smooth S-schemes,
respectively.

Let .# be a quasi-coherent sheaf on a scheme X. A symmetric bilinear form
on % isamap ¢ : ¥ Rx F — Ox of Ox-modules such that o7 = ¢ where
T: FRY2YGR.F is the switch map. The form ¢ is called non-degenerate and the
pair (F, ) is called an inner product space if % is a vector bundle and the adjoint
$:F — F*=Homo(F,0x) : £ — p( &) is an isomorphism. If g : ¥ — F
is a map of Ox-modules, then the restriction 4 of ¢ to & has as adjoint the map
g*pg. If F is a sheaf on S and p: X — S is an S-scheme, we may write .Fx for
the sheaf p*.%.

Definition 2.1 (Orthogonal Grassmannians). Let .# = (%, ¢) be a quasi-coherent
sheaf over S together with a symmetric bilinear form ¢ : .# ®g .% — Og which
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may be degenerate. The Grassmannian of non-degenerate subspaces of % is the
presheaf

GrO(&) : (Schg)? — Sets

whose value at an S-scheme p : X — S is the set GrO(Zx) of finite rank locally
free Ox-submodules £ C Fx of Fx = p*.# for which the restriction ¢ of the
form ¢ to E is non-degenerate. For a map f : X — Y of S-schemes, the map
GrO(Zy) — GrO(Zx) is induced by the pullback f* of quasi-coherent sheaves.
For an integer d > 0 we let

GrO4(F) C GrO(F)

be the subpresheaf of those non-degenerate subspaces E C % which have constant
rank d. If X = Spec R is affine, we may write GrO4(F#r) and GrO(Zg) in place
of G’I"Od(jx) and GTO(E)()

Lemma 2.2. Let V = (V,¢) be an inner product space of rank n over S, and
0 < d < n be an integer. Then the presheaf GrOy4(V') is represented by a scheme
which is smooth and affine over S.

Proof. To see that GrO4(V) — S is smooth, we note that it is an open subscheme
of the usual Grassmannian Grg(V') of d-planes in V. More precisely, if we denote
by & the universal rank d subbundle of V' on Gry(V), then the form on V restricts
to a (degenerate) form ¢|¢ on &, and GrO4(V) is the open subscheme of Grq(V)
where ¢ is non-degenerate, that is, GrOgq(V) is the non-vanishing locus of the
global section A%} of the line bundle Homg (A%, A%€*) on X = Gry(V). Since
Grq(V) — S is smooth, so is GrO4(V) — S.

To see that GrO4(V) — S is an affine morphism, note that for any S-scheme
X, we have a natural bijection of sets

GrO(Vx) = {p € Homo, (Vx, Vx)| p = p°, p*¢ = ¢p}.

The map is defined by (i : M C Vx) — i(cplj\/l[)i*@ and has inverse p — Im(p) C Vx.
This shows that GrO(V) is a closed subscheme of the vector bundle Hom, (V, V)
over S defined by two equations. In particular, GrO(V) — Hom, (V,V) — S are
affine morphisms. As a closed subscheme of GrO(V), the scheme GrO4(V) is also
affine over S. O

For an S-scheme X, let Hx be the hyperbolic plane over X, that is, the rank
2 vector bundle O% equipped with the inner product (z,y) - (z/,y') = zy — 2y’
Let H% be its n-fold orthogonal sum (an inner product space over X) and let
H$ = colim,, H% be the infinite hyperbolic space (a quasi-coherent O x-module
with symmetric bilinear form). Order non-degenerate subspaces of HY by inclu-
sion. This defines a filtered category H. Its objects are non-degenerate subspaces
V C H® (which are inner product spaces), and maps are inclusions of subspaces.
For a non-degenerate subspace V C V' of an inner product space V', denote by
V' — V the orthogonal complement of V in V".

Definition 2.3 (Infinite orthogonal Grassmannian). For a vector bundle V' of
constant rank, write |V for its rank. The infinite orthogonal Grassmannian over S
is the presheaf

GrOe = colimycgee GrOpy (VL H™).



GEOMETRIC MODELS FOR GROTHENDIECK-WITT GROUPS 5

The colimit is taken over the non-degenerate subbundles of HZ® of constant rank
ordered by inclusion, and the transition maps are

G?“O‘V|(V 1 HOO) - GT‘O|V/|(V/ 1 HOO) tE— (V/ - V) 1 FE

whenever V' C V’. Of course, it suffices to take the colimit over a cofinal subset
such as the set {HZ| n € N}.

3. THE ETALE CLASSIFYING SPACE

Let S be a scheme and .% = (#, ¢) a quasi-coherent sheaf over S together with
a symmetric bilinear form ¢ : F ®g % — Og which may be degenerate. For an
S-scheme X, denote by

S(Fx)

the category of inner product spaces embedded in Fx, that is, the category whose
objects are the locally free Ox-submodules F C Zx of %x = p*.# for which
the restriction ¢z of the form ¢ to E is non-degenerate. A map from Fy C Fx
to By C Fx is an isometry (Eo,¢|g,) — (E1,9|g,) which does not need to be
compatible with the embeddings Ey, 1 C Fx. For a map f: X — Y of S-
schemes, pull-back f* of quasi-coherent modules defines a map S(Fy) — S(Fx),
and we obtain a presheaf of categories X — S(Fx). Note that the set of objects
of §(Fx) is precisely GrO(Fx).

For an integer d > 0, we denote by

Sd(y)() C 8(?){)

the full subcategory of those inner product spaces £ C .#x which have constant
rank d. Then S§;(.%) is a presheaf of groupoids with presheaf of objects GrOg4(F).

In the category Sy (V' L H*), the group of automorphisms of the object V' C
V L H*® : v+ (v,0) is the group O(V) of isometries of V. Thus we have a
full inclusion O(V) — Sy (V' L H*) of presheaves of categories. After etale
sheafification, this inclusion becomes an equivalence of categories. This is because
in a strictly henselian ring R with % € R, every unit is a square, and thus, any two
innner product spaces over R are isometric if and only if they have the same rank.
It follows that the inclusion of categories induces a map of simplicial presheaves
BO(V) — BSy|(V L H*) which is a weak equivalence at all strictly henselian R
with % € R. In other words, this map is a weak equivalence in the etale topology.
In particluar, a globally fibrant model of BS)y|(V L H>) for the etale topology is
also a globally fibrant model, denoted B.:O(V'), of BO(V'). Therefore, we obtain a
sequence of maps

(3.1) BO(V) — BS|V‘(V 1 Hoo) — BetO(V)
which are weak equivalences in the etale topology, and the last presheaf is fibrant
(in the etale topology).
Lemma 3.1. Let V' be an inner product space over a scheme S with % eI'(S,0g).
Then for any affine S-scheme Spec R, the map

BS\V|(V 1L HOO)(R) — BetO(V)(R)
is a weak equivalence of simplicial sets. In particular, the following map is an

Al-weak equivalence
BS‘V‘(V 1 HOO) — BetO(V).
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Proof. This follows from [Jar01]. Let St be the stack associated with the sheaf of
groupoids Sy (V' L H*), then St is a sheaf of groupoids satisfying the effective
descent condition for the etale topology. So, X — St(X) is a sheaf version of the
category of O(V')-torsors over X. Since for affine X, the category Sjy|(V L HY)
is already the category of all O(V)-torsors, the map Sy (V' L H*)(X) — St(X)
is an equivalence of categories for X affine. Therefore, in the string of maps

BSjy\(V L H®)(X) — BSH(X) — ByO(V)(X),

the first map is a weak equivalence for every affine S-scheme X. The second map
BSt(X) — B:O(V)(X) is a weak equivalence of simplicial sets for all S-schemes
X [Jar01, Theorem 6. O

Definition 3.2. Set
S. = colimVCch '5|V\ (V 1 Hoo)

where for V' C V', the transition map Sy|(V L H*>®) — Sjy+|(V' L H*) is defined
by E+— (V' —V) L E on objects and by g — 1y/_y L g on maps.

Inclusion of zero-simplices and the second map in (3.1) define the string of maps
of simplicial presheaves

in which the second map is section-wise a weak equivalence on affine schemes, by
Lemma 3.1. Passing to the colimit over the index category H defines the string of
maps

(3.2) GrO¢ — S¢ — Be:O

in which the second map is a weak equivalence when evaluated at affine schemes.

4. THE GROTHENDIECK-WITT SPACE

Let R be a commutative ring. Let . denote the category of inner product
spaces over R with isometries as morphisms. This category is symmetric monoidal
with respect to orthogonal sum L. In particular, we have the category /5 Lo
as constructed in [Gra76] whose classifying space B} 1.k is naturally weakly
equivalent to GW (R) [Sch04], [Sch12, Appendix A] (at least when § € R though
this is also true without this hypothesis). Recall that the objects of .7 1 Sk are
pairs of inner product spaces and a map (Ag, A1) — (B, B1) in that category
is an equivalence class of data [C,ap,a1] where C' is an inner product space and
a; : A; L C — B is an isometry for ¢ = 0,1. We have [C, ag,a1] = [C, ap,a}] if
and only if there is an isometry f: C' = C" such that a;(14, L f) =a; for i =0, 1.

The category .75 1. %k is not convenient for our purposes as it is, a priori, not a
small category, and it is not really functorial in R. In particular, the assignment
X +— S5 g with R = T(X,Ox) does not define a presheaf. We remedy this as
follows.

Definition 4.1 (The presheaf of Grothendieck-Witt spaces). Let
YW(R) C S IR

be the full subcategory whose objects are pairs (A, B) where A ¢ HY 1 HY
and B C (H*)%?> are finitely generated non-degenerate subspaces of (Hg)1? and
(HZ)™3, respectively. The ambient bilinear form spaces (Hg)*? and (H)L3 are
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chosen so that we can construct certain maps below. The explicit ambient spaces
don’t matter as long as they are functorial in R and contain a copy of each inner
product space over R.

From our definition, the category ¢W (R) is small, it is equivalent to ./ L S,
and it is functorial in R. In particular, the assignment X — ¥W(R) with R =
I'(X,0x) does define a presheaf (of categories and hence of simplicial sets after
application of the nerve functor).

From [Sch04], [Sch12, Appendix A], there is a map of presheaves YW — GW
which is a weak equivalence (of simplicial sets) for all affine schemes. We record a
special case in the following Lemma.

Lemma 4.2. Let S be a reqular separated noetherian scheme of finite Krull dimen-
sion with % € S. Then map of presheaves YW — GW in A°? PSh(Smg) is a weak
equivalence of simplicial sets at all Spec R — S. In particular the map of presheaves
is a Nisnevich simplicial weak equivalence, and hence an Al-weak equivalence. 0O

Definition 4.3. We define the presheaf of reduced Grothendieck- Witt spaces GW
as the presheaf of categories which for a ring R = I'(X, Ox) is the full subcategory

GW(R) C 9W (R)

of objects (A, B) € YW (R) such that A C HY = 0 L H¥ C (H¥)'?, and
BCALHECOL(HY)* c (Hg)*? and A, B have the same constant rank.

For an integer i, we set GW;(R) = WZ(%(R)) where the homotopy groups are
taken with respect to the base point (0,0).

Consider the integers Z as a (symmetric monoidal) category with one object for
each integer and only identity morphisms. Let N C Z be the (full) subcategory of
non-negative integers viewed as a symmetric monoidal category where the monoidal
product is given by addition.

The functor

(4.1) NN = Z: (n,m) —n—m
induces a weak equivalence of simplicial sets (after application of the nerve functor)
since all fibres are filtered categories and hence contractible.

Consider the ring R as an inner product space with bilinear form R®@ R — R :
x ®y +— xy. Then we have a map of presheaves of categories
(4.2) NN - 9W : (n,m) — (R", R™)
where the first factor R™ is considered as being in H™ L 0 C H>* 1 H* and the
second factor R™ as being in H™ L 0 1L 0C H> L H* L H>. Together with the
inclusion YW C 4W this defines a map of presheaves of categories

(4.3) N7INx 9W — W : (n,m), (A, B) — (R" L A,R™ L B)

Lemma 4.4. Let R be a connected ring with % € R. Then the map (4.3) is a
weak equivalence of simplicial sets. In particular, the maps (4.8) and (4.1) induce
Al-weak equivalences

ZxGW ENINxGW S gw
Proof. For a connected ring R, the functor of categories ¥W(R) — Z : (A, B) —

rk A — 1k B is well defined and has ¢W has homotopy fibre, by cofinality. Now, the
functor (4.2) provides a splitting. Hence the result. a
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Remark 4.5 (The Grothendieck-Witt space as a homotopy colimit). Let Z be the
category whose objects are the finitely generated non-degenerated subspaces V' C
H* and whose maps are all isometric embeddings, that is, a map from V' C H* to
W C H* is a map of Ox-modules f : V — W such that the form on W restricts to
the form on V' but f does not need to commute with the embeddings V, W C H®°.
Composition is composition of Ox-module maps. In the notation of [Gra76], the
category Z is the category (S(H*),S(H®)). Note that our index category H is
naturally a subcategory of Z. It is the subcategory with the same objects as Z and
with maps those isometric embeddings f : V' — W which do commute with the
embedding V. W C H°.

We define a functor from Z to the category of small categories which on objects
is

Vi S|V|(V 1 Hoo)

and which sends an isometric embedding g : V' — W to the functor

Syi(VLH®) = S |(W LH*®): Ew— (W-g(V))~ Lg(E)
e Lwg(vy- L geg™!

where § = g L lge : V. 1L H*® — W 1L H*. Then we have an equality of

categories

W/(R) = hocolimy ¢z Sy (V' L H*™)

where the right hand side is the homotopy colimit of categories as in [Tho79] whose
construction is recalled in Appendix A.8.

Replacing Sy (V' L H*) with the full groupoid S(V L H*°) of all inner product
spaces in V' 1 H* and taking the homotopy colimit as above yields a model for
the Grothendieck-Witt space GW (R) of R.

5. THE MAPS GrOe — B.;O — GW

Definition 5.1. By Remark 4.5, the (reduced) Grothendieck-Witt space is a homo-
topy colimit. In order to construct maps between various models for Grothendieck-
Witt theory, we will need to express the presheaves GrO, and S, ~ B.O as
homotopy colimits as well. Recall that the presheaves GrO, and S, are obtained
as the colimits of sets GrOpy|(V L H*) and of categories Sy |(V L H*) over
the index category H of non-degenerate subspaces V' C H®. As usual, we con-
sider sets as (discrete) categories and categories as simplicial sets (via the nerve
functor) and thus sets as (constant) simplicial sets. Replacing the colimit over the
(filtering) index category H with the corrensponding homotopy colimit as in Ap-
pendix A.8 yields the definition of the presheaves of categories 47O, and .#,. For
R =T(X,0x), they are

gTO. (R) = hOCOlichHoo GTO|V|(VR 1 HI%O)

y. (R) = hOCOlimVCHoo S|V\ (VR 1 Hl%o)

By Lemma A.9, the homotopy colimit to colimit maps are weak equivalences of
presheaves of simplicial sets

(5.1) G100 > GrOo, S0 S,
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The natural transformation of functors H — Cat which at V' € H is the inclusion
of zero-simplices GrO|y|(V L H*) — 8y|(V L H*>) defines a map of presheaves
of categories

(5.2) GrO¢ — S
Furthermore, the inclusion H C Z defines a functor
hocolimy ey Sjy|(V L H*) — hocolimy ¢z Sjv|(V L H*),
that is, a map of presheaves of categories
(5.3) S — GW.
Write AR for the simplicial ring with n — A™R = R[Ty, ..., T,,)]/(To+- - -+T,—1).

Theorem 5.2. Let R be a commutative connected regular noetherian ring with
1 € R. Then the maps (5.2) and (5.3) induce weak equivalences of simplicial sets

GrO.(AR) = 7, (AR) = 9W(AR).

The proof is in Corollary 7.3 and Proposition 7.4 in view of the weak equivalences
(5.1).

6. SETTING UP THE PROOF OF THEOREM 5.2

Let R be a commutative ring, V an inner product space of constant rank over
R, and U an R-module equipped with a symmetric bilinear form. Denote by

GTOV(U) C GTOW‘ (U)

the subset of those non-degenerate subspaces W C U which are isometric to V.
Scalar extension makes GrOy (U) into a presheaf on affine R-schemes. Similarly,
denote by
Sy(U) C Sy (U)

the presheaf of full subcategories of those non-degenerate subspaces W C U which
are isometric to V. The presheaf of objects of Sy (U) is GrOy (U).

Let Iso4(R) denote the set of isometry classes of inner product spaces over R of
constant rank d. We define a map of sets

GrO4(V L HF) — Isoq(R) : E — [E)]

by sending a finitely generated non-degenerate subspace F of V' L HE to its
isometry class [E] € Isoq(R). Similarly, we define a map of categories

Sa(V L HY) — Isoq(R) : E — [E].

For an inner product space V over R of constant rank d, denote by V' : x — Isog(R)
the map sending the point * to the class [V] of V in Iso4(R). By definition, we
have a cartesian diagram of sets

(6.1) GrOoy(V L HE) —= GrOp(V L HYY)

|

* v ISO|V‘ (R)




10 M. SCHLICHTING AND G. S. TRIPATHI

and of categories

(6.2) Sv(V L Hyy) —> Sy (V L HY)

| |

* 4V>ISO|V|(R).

Taking the colimit over the non-degenerate subspaces V' C H with transition
maps as in Definitions 2.3 and 3.2, we obtain the cartesian diagrams of simplicial
sets

GrOjg(R) — GrO.(R) S (R) —— Se(R)
l GWo(R) Jk GWo(R)

where the upper left corners are GrO(R) = colimycpg GrOv(V L H%) and
Sio)(R) = colimy e Sy (V L HE).

Lemma 6.1. Let R be a connected reqular ring with % € R. Then the cartesian
diagrams of simplicial sets

GrO|g (AR) ——= GrO.(AR) N (AR) ——= S,(AR)
l GWo(AR) l GWo(AR)

are homotopy cartesian, and the lower right corners are constant simplicial sets.

Proof. The Grothendieck-Witt group GW)j is homotopy invariant for regular rings
(with 2 a unit). For connected rings, the kernel GW of the rank map GWy — Z
is therefore also homotopy invariant. It follows that the lower right corner of the
diagram is a constant simplicial set. Hence, the lower horizontal map is a fibration
of (constant) simplicial sets. O

Diagram (6.1) maps to diagram (6.2) via the inclusion of zero simplices. By
Lemma 6.1, we have a map of homotopy fibrations

(6.3) GrO)(AR) — GrOJ(AR) — GW,(AR)
S (AR) S.(AR) GWo(AR).

The rest of this section is devoted to the proof of the following.

Proposition 6.2. Let R be a commutative ring with % € R and V' an inner product
space over R. Then we have weak equivalences of simplicial sets
GTOV(V 1L HZOR) = BSV(V 1 HZOR) & BO(VAR),

where the first map is inclusion of zero-simplices and the second map is the inclusion
of the endomorphism category of the object V into Sy (V L H®). In particular, we
have weak equivalences of simplicial sets

GrOyg(AR) = BSjg/(AR) < BO(AR).
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Let
O(V 1 Hoo) = COlichVLHoc O(W)

be the infinite orthogonal group based on V' 1. H°. It is the filtered colimit over
the poset of finitely generated non-degenerate subspaces W of V' 1 H* of the
isometry groups O(W) of W where for an inclusion W C W', we embed O(W)
into O(W’) via @ — a L idw_w. Our next aim is to identify the simplicial set
GrOvy (V L HZ) with the simplicial set BO(Var), up to homotopy. We will need
the following lemma.

Lemma 6.3. Let V' be an inner product space over a commutative ring R with
% € R. Then the inclusion H*® C V L H* induces a homotopy equivalence of
simplicial groups

O(HxRr) — OV LHX,): A1y L A

Proof. We first prove the claim when V = H. So, we need to show that j :
O(HY,) — O(HX,) : A+ 1y L Ais a homotopy equivalence. The point is
that the two inclusions j : O(H") — O(H?*"*2) : A~ 1y L A L 1ga and
i:O(H™) — O(H?"*2): A A L 1gn+i2 are naively Al-homotopic (see Appendix
A.10 for a definition). This is because i = ¢4 0 j where ¢ = H(h® h™'), H :
GLony2(R) — O(H?"t2) is the hyperbolic map and h = (£ §) € GLp+1(R) with
I, € GL,(R) the identity matrix and ¢, : O(H*""2) — O(H?*"*?) : 2 > gzg~!
denotes conjugation by g. Now, by the well-known formula

(6,2) =GN (LD EHGEHUED G

the element h@@h™! € G Ly, 12(R) is a product of elementary matrices each of which
is naively A'-homotopic to the identity by an elementary A'-homotopy. Therefore,
¢ is naively A'-homotopic to the identity and the inclusions j = cgoi: O(HRR) —
O(HZ'F?) and i : O(HRR) — O(HX?) are simplicially homotopic via a base-
point preserving homotopy, by Lemma A.11. It follows that j : mO(HXR) =
colim,, 7O (HR p) — mO(HZR) is the identity map, hence an isomorphism for all
k> 0. Since O(HZ%) is an H-group, this implies the claim for V = H.

By induction, the claim is true for V' = H™. For general V', choose an embedding
V' C H™. Then the composition of the first two and the composition of the last two
maps in the following diagram are homotopy equivalences

O(HXR) = O(V L HX,) — O(H" L HSR) — O(H" LV L HZ,)
since V' L H* = H*. This finishes the proof of the Lemma. (]

Let V = (V,¢y) be an inner product space over a commutative ring R, and
let U = (U, ¢y) be an R-module equipped with a symmetric bilinear form. For a
commutative R-algebra A, let

St(V,U)(A)
be the set of isometric embeddings f : V4 — Uyx over A, that is, the set of those
A-linear maps f : V4 — Uy such that ¢y = f*¢yf. Then St(V,U) is a presheaf
on affine R-schemes.

For every commutative ring R with % € R, the group O(V L HfY) acts transi-
tively from the left on the set St(V,V L H) via (f,g) — fog. The action is tran-
sitive because any isometry between non-degenerate subspaces M, N of V' L H"
can be extended to an isometry of V' L H"*™ for some m as (V L H") — M
and (V L H™) — N are stably isometric. For the action above, the stabilizer of
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the element iy : V. — V L H*® : v — (v,0) of St(V,V L H®) is the subgroup
O(H™>®) Cc O(V L H®): A~ 1y L A. Therefore, we obtain an isomorphism of
presheaves of sets

(6.4) O(H®)\O(V L H®) = St(V,V L H®): f s foiy.

Proposition 6.4. Let V be an inner product space over a commutative ring R with
% € R. Then the simplicial set
St(V,V L HXR)

is a contractible Kan set.

Proof. Contractibility follows from Proposition A.6 applied to the O(HX ) equi-
variant homotopy equivalence O(HRXvp) C O(V L HX\p) of Lemma 6.3 together
with the isomorphism (6.4). The simplicial set is fibrant, by Proposition A.5. O

The group O(V) of isometries of V' acts from the right on St(V,U) via (fg) — fg
for f € St(V,U) and g € O(V). The map St(V,U) — GrOvy (U) : f — Im(f) factors
through the quotient map St(V,U) — St(V,U)/O(V) and yields an isomorphism
of (presheaves of) sets
(6.5) St(V,U)/O(V) 2 GrOv (U) : f + Im(f).

For an inner product space V over R and a symmetric bilinear form R-module U,
let &y (U) be the category whose objects are the R-module maps V' — U respecting
forms and where a map from a: V — U tob: V — U is a map ¢ : Im(a) — Im(b)
of inner product spaces such that the diagram

V —% Tm(a)

RN

Tm(b)
commutes. Note that the set of objects of &y (U) is the set St(V,U). The group
O(V) acts freely from the right on &y (U) via
Ev(U) x O(V) = &v(U) : (a,9) — ag,
the inclusion of zero simplices St(V,U) — &y (U) is O(V)-equivariant, and the
functor &y (U) — Sy (U) : a — Im(a) induces an isomorphism of simplicial sets
(BEv(U))/0(V) = BSy (U).
Lemma 6.5. The category Eyv(V L H™) is contractible.

Proof. The category &y (V' L H*) is non-empty asithasV — V L H*® : v — (v,0)
as object. Every object in &(V L H) is an initial object. Hence, this category
is contractible. O

Proof of Proposition 6.2. The map of simplicial sets
St(V,V L H®)(AR) — &y (V L H®)(AR)

is O(VaRg)-equivariant, the simplicial group O(Vag) acts freely on both sides, and
the map is a non-equivariant weak equivalence (of contractible simplicial sets), by
Proposition 6.4 and Lemma 6.5. By Lemma A.6, the map on quotient simplicial
sets GrOy(V L HR) — Sv(V L HZ) is also a weak equivalence. Finally, the
inclusion BO(V) C BSy(V L H*) is a weak equivalence as it is the nerve of an



GEOMETRIC MODELS FOR GROTHENDIECK-WITT GROUPS 13

equivalence of categories since Sy (V L H*) is a connected groupoid and O(V) is
the set of automorphisms of the object V.C V 1L H™. O

7. Eo-SPACES AND THE END OF THE PROOF OF THEOREM 5.2

Even though diagram (6.3) is a map of homotopy fibrations which is a weak
equivalence of simplicial sets on base and fibres, we can’t conclude yet that the
map on total spaces is a weak equivalence as well. This will be done by establishing
that all maps in diagram (6.3) are maps of F.-spaces; see Proposition 7.2.

Informally, the “linear isometries” operad & has n-th space the space of isometric
embeddings of (H>°)™ into H* with X, permuting the n factors in (H°°)™. More
precisely, for a commutative ring R, let &(n)(R) be the set

— ] n o0
En)(R) = VICHI{IIEC St(V™ HY).
The inverse limit ranges over (a cofinal subset of) the category H of all finitely gen-
erated non degenerate V C Hg’, and V" =V L ... L V denotes n-fold orthogonal
sum. The permutation group ¥, on n-letters acts on &(n) by permuting the fac-
tors of V™. This action is free. By Proposition 6.4, the simplicial sets St(V"™, H%)
are contractible Kan sets. By Proposition A.5, for W C V, the transition maps

St(V", HXR) — St(W", HYR) are Kan fibrations in view of the identification (6.4).
It follows that

&(n)(AR) = lim St(H* L ... L H*, H*)(AR)
is a contractible Kan set with a free ¥,,-action. We define the structure maps of
the operad & by
E(k) x E(j1) X -+ X E(Gr) = EGL+ -+ k) fr91, 98— folgr L ... Lgk)
Thus, we have proved the following lemma.

Lemma 7.1. Let R be a commutative ring with + € R. Then the operad &(AR)
defined above is an E..-operad. ([

Proposition 7.2. For any commutative ring R with % € R, the map
GrO.(AR) — S.(AR)
is a map of group complete E.-spaces.

Proof. We make So(R) into a module over the operad &. The inclusion of zero-
simplices GrOq(R) — So(R) will respect this action. So, the proposition will follow
from Lemma 7.1.

To define the action of the operad &, write S, as

S, = colimy o Sy (V- LVT)

where V™ and VT are two copies of V and for V' C W the transition map is defined
by

SyiVo LV = SwW™ LW Ewm (W—=V)" LE, g 1law_v)- Lg.
Now, the action of & on S, is defined by
St(Vi Lo L Vi, WSy (Vim L Vi) xe oo xSy (Vi LV — Swy(W— L W)
where for g € St(Vy L ... L Vi, W), the functor
Sy (Vim L) x oo x Sy (Ve LV — Sw(W— L W)
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sends the object (E, ..., E) to
(W—g(Vi L. LVy))” Lg(Br L ... LEYy)
and the map (e, ...,ex) : (E1,..., Ey) — (Ef, ..., E}) to

1(W—g(V1L...LVk))* 1 g|E; 0€e10 g‘_Ell 1L L 9g|E;, © €k © g\_Elk.

Corollary 7.3. Let R be a connected regular ring with % € R. Then the map
GrO.(AR) — S.(AR)
is a weak equivalence of simplicial sets.

Proof. This follows from the map of homotopy fibrations (6.3) in view of Proposi-
tions 6.2 and 7.2. O

Proposition 7.4. Let R be a connected regular noetherian ring with % € R. Then
the map (5.3) induces a weak equivalence of simplicial sets

ZW(AR) = GW(AR).
Proof. By the Group Completion Theorem [Gra76, Theorem, p. 221], the map
Z(R) — 9W (R)

induces an isomorphism on integral homology groups. It follows that the map
in the proposition is an isomorphism on integral homology groups as well. It is
well-known that GW(AR) ~ GW(R) and hence YW (AR) ~ YW (R) are group
complete H-spaces. By Proposition 7.2, the same is true for #(AR). Therefore,
the map in the proposition is indeed a weak equivalence of simplicial sets. (|

8. GEOMETRIC MODELS FOR GW™
In this section we will prove Theorem 1.3.

Proposition 8.1. Let R be a reqular noetherian ring with % € R. Then the map
(3.2) induces a weak equivalence of simplicial sets

GrOJ(AR) > (B.;0)(AR).

In particular, for any regular noetherian scheme S with % € I'(S,Og), the canonical
map GrOe — Be;O is isomorphism in J,(S).

Proof. For connected R, this follows from Corollary 7.3 in view of Lemma 3.1. Since
both sides convert finite disjoint unions into cartesian products, we are done. [

Write Z for the constant sheaf associated with the constant presheaf Z. Recall
that the presheaf myB¢:O is homotopy invariant on regular noetherian rings R
with % € R since on affine schemes it is the kernel of the rank map GW — Z.
Similarly, the presheaves mgB.;GL and myB.;Sp are also homotopy invariant on
affine schemes.

Note that in the next theorem, we have B.,;G = By;sG = Bz.-G for G = GL
and Sp but not for O since GL,, and Sp,-torsors are Zariski-locally trivial whereas
this is not the case for orthogonal groups.
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Theorem 8.2. The canonical maps of presheaves of simplicial sets

Z x B, O — GW, 0] — QaGW,
Z x B4GL — K, GL — QakK,
Z x BySp — GW?2, Sp — QaGW?

are weak equivalences of simplicial sets when evaluated at AR for any reqular noe-
therian ring R (with % € R in case of O and Sp). In particular, all these maps are
Al-weak equivalences.

Proof. The first statement for the orthogonal group was proved for connected rings
in Theorem 5.2 (see also Lemma 4.4, diagram (5.1) and Proposition 8.1). Source
and target of the map convert finite disjoint unions into cartesian products. So,
the case of non-connected rings follows. For the second statement, consider the
sequence

BO — B, O — myBe: O

which is section-wise a homotopy fibration. Since the base of the fibration is ho-
motopy invariant on affine schemes, the sequence of simplicial sets

(BO)(AR) = (BetO)(AR) — (m0Be:0))(AR)

is a homotopy fibration with discrete base; see Proposition A.7. It follows that the
spaces (BO)(AR) = B(O(AR)), (BetO)(AR) and (Z x B.:O)(AR) ~ GW(AR)
all have equivalent S'-loop spaces. But Qg1 B(O(AR)) ~ O(AR) as is the case for
any simplicial group in place of O(AR).

The case of the symplectic groups is mutatis mutandis the same as the orthogonal
case replacing symmetric forms with alternating forms through-out.

The case of the general linear group is also mutatis mutandis the same provided
one uses the correct dictionary. “Inner product spaces” should be replaced by
“finitely generated projective modules”. “Maps respecting forms” (V, @) — (V' ¢')
are replaced by direct maps (i,q) : P — P’, that is, pairs of maps i : P — P/,
q : PP — P such that ¢¢ = 1p. Composition of direct maps are composition
of the ’s and ¢’s. A direct submodule of a projective module @) therefore is a
submodule i : P C @ together with a retract ¢ : @ — P such that ¢i = 1. The
direct complement of a direct submodule (i,q) : P C @ is the direct submodule
Q—P =1Im(lg —ig) C Q equipped with the retraction ¢ —ig : @ — (Q — P). Note
that P®(Q—P) = Q (as submodules of Q). The index category H = {V C H*®} in
the definition of GrO, and S, gets replaced by the category H’ of finitely generated
direct submodules of R>* = @y R. Direct inclusions, that is inclusions together
with retracts, make H’ into a filtered category. With these definitions, the details
of the proof for GL are left as an exercise. ([l

The following lemma applies to groups such as GL, O, Sp and the various for-
getful and hyperbolic maps between them. Note that (B G)(AR) is an E-space
for G = GL, O, Sp, by Theorem 8.2, or Propositions 7.2 and 8.1 and their analogs
for Sp and GL.

Lemma 8.3. Let G be a presheaf of groups on Smg, and let H < G be a presheaf
of subgroups. Assume that for Spec R € Smg the map (Bt H)(AR) — (Be:G)(AR)
is a map of group complete Eo.-spaces. Assume further that the presheaves mgBe:G
and mgBetH are homotopy invariant on affines. Then the canonical sequence

(G/H)et — BetH — BetG
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is a homotopy fibration of simplicial sets when evaluated at AR for any affine
Spec R € Smg.

Proof. Write BH for (EG)/H and recall that the map BH = (EH)/H — (EG)/H =
BH is a weak equivalence on all sections; see Proposition A.6. The sequence of
presheaves G/H — BH — BG is a fibration sequence of simplicial sets on all sec-
tions; see Proposition A.5. Taking fibrant replacements in the etale topology (or
any other topology, say, with enough points) preserves section-wise homotopy fibra-
tions. Therefore, the sequence (G/H)e; — BeyH — BeyG is a homotopy fibration
on all sections. Consider the commutative diagram of simplicial presheaves

G/H BH BG
(G/L)et B}tﬂ BeltG

b

X —— gyByH — moBatG

where X is the homotopy fibre (in this case, the kernel) of 0Bt H — moBe:G. In
this diagram, all rows and columns are homotopy fibrations, and the bottom row is
homotopy invariant on affines. Moreover, the lower vertical maps are surjective on
mo (the left one because of the long exact sequence of homotopy groups associated
with the middle row). For Spec R € Smg, we therefore obtain a commutative
diagram of simplicial sets

(G/H)(AR) ——= (BH)(AR) ——= (BG)(AR)

| | |

(G/H)et(AR) — (B H)(AR) — (BuG)(AR)

| | |

X(AR) —— (mBetH)(AR) — (m0BetG)(AR)

in which the columns are homotopy fibrations, by Proposition A.7. The bottom
row is a homotopy fibration since it is the same as the bottom row of the pre-
vious diagram. The top row is a homotopy fibration, by Proposition A.5, since
(BN)(AR) = B(N(AR)) for any presheaf of groups N. Furthermore, the lower
vertical maps are surjective on 7y since this was also the case in the previous dia-
gram. The left column homotopy fibration maps to the homotopy fibration obtained
by taking the homotopy fibres of the right horizontal maps. By the five lemma ap-
plied to the long exact sequence of homotopy groups (in which all homotopy groups
and sets are abelian groups as all spaces involved are group complete F.-spaces,
and the last non-trivial maps in the long exact sequences of homotopy groups are
surjective) these two homotopy fibrations are weakly equivalent. It follows that the
middle row is also a homotopy fibration. Since BH — BH is a section wise weak
equivalence, the same is true for B H — B.:H and Singﬁ*1 B H — Sing‘}1 B..H.
This proves the claim. [
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In the following theorem, the sheafification map Sp/GL — (Sp/GL)z4r =
(Sp/GL)Nis = (Sp/GL)t is a weak equivalence in the Zariski-topology and hence
an Al-weak equivalence; similarly for O/GL and GL/Sp. Thus, the following the-
orem together with Theorem 8.2 implies Theorem 1.3 from the Introduction.

Theorem 8.4. There are canonical maps of simplicial presheaves

(Sp/GL)e; — GW, (GL/O)ey — QgiGW,
(0/GL)ey — GW?, (GL/Sp)et — Qs1GW?

which are weak equivalences of simplicial sets when evaluated at AR where R is
any regular noetherian ring with % € R. In particular, all these maps are A'-weak
equivalences.

Proof. For n € Z there are homotopy fibrations GW" KB Gwnrt! where F
and H denote forgetful and hyperbolic functor, respectively [Sch12, Theorem 6.1].
Since GW™ and K are homotopy invariant on regular rings [Sch12, Theorem 9.8],
we have homotopy fibrations

GW™(AR) £ K(AR) & GW™t(AR)

for any regular noetherian R with % € R. The results now follow from Theorem
8.2 and Lemma 8.3. (Il

Remark 8.5. The proof given in [MV99] that Z x Gre & Z x BGL = K in J,(S)
formally rests on [MV99, Proposition 1.9, p.126]. This proposition, however, is false
as the following example shows.

Let T be the one-point-site, so that .7 (T) is the homotopy category of simplicial
sets. Let R be a non-zero ring and M = | |, BGL,(R) be the monoid defined
by BGLy, x BGL, — BGLy4n : (A,B) — (4 %). This monoid is commutative
in J4(T) because it is the classifying space of the symmetric monoidal category
of finite rank free R-modules with isomorphisms as morphisms. Alternatively, the
monoid multiplication is commutative because (4 %) = (93)(5 %) (9 ™! and
conjugation ¢y : G — G : h — ghg™' induces a map ¢, : BG — BG on classifying
spaces which is homotopic to the identity map. If we believe the conclusion of
[MV99, Proposition 1.9, p.126], then we would have a weak equivalence of simplicial
sets Z x BGL(R) ~ QB(M) which cannot exist since m; of the left hand side is
non-abelian whereas 7, of the right hand side is abelian.

APPENDIX A. SIMPLICIAL SETS

We collect a few well-known facts about simplicial sets which are used throughout
the paper. The standard reference nowadays is [GJ99].

Lemma A.1. Given a sequence X — Y — Z of simplicial sets in which X — Y
i a surjective fibration and the composition X — Z is a fibration. Then the map
Y — Z is a fibration.

Proof. One checks that Y — Z has the right lifting property with respect to the
maps A C A,,. Any map A¥ — Y lifts to a map A¥ — X. This is because we can
lift the image of a zero simplex in Ak (as X — Y is surjective) and extend this lift
to all of AX since X — Y is a fibration and the inclusion of a point into A¥ is an
acyclic cofibration. Then the map A, — Z lifts to X since X — Z is a fibration.
Composing this lift with the map X — Y yields the required map. O
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Lemma A.2. Given a cartesian square of simplicial sets

X —Y

|

Z—=W

in which the right (and hence the left) vertical map is a surjective fibration. Then
the upper horizontal map is a weak equivalence if and only if the lower horizontal
map is a weak equivalence.

Proof. By properness of the model category of simplicial sets, if Z — W is a weak
equivalence then so is X — Y.

Assume that X — Y is a weak equivalence. Factoring Z — W into an acyclic
cofibration and a fibration and pulling Y — W along that fibration, we can reduce
to showing the claim in case Z — W is a fibration (and X — Y an acyclic fibration).
Then we need to show that Z — W has the right lifting property with respect to
all inclusions 0A,, C A,,.

Given a map from 04, C A, to Z — W. Choose a lift of A,, — W to Y which
exists since Y — W is surjective. The universal property of Y as a pull-back yields
a lift of 0A,, — Z to X making all diagrams commute. Since X — Y is an acyclic
fibration, the map A,, — Y lifts to X. Composing this map with X — Z yields
the required lift. O

Lemma A.3. [GJ99, Lemma 1.3.4] Let G be a simplicial group. Then G is fibrant
as simplicial set.

Proposition A.4. Let G be a simplicial group acting freely from the right on a
sitmplicial set X. Then the quotient map X — X/G is a Kan fibration.

Proof. We need to show that the map X — X/G has the right lifting property
with respect to the standard generating acyclic cofibrations A} C A™. Take a
commutative square for which we have to find a lift. Pulling back along the map
A"™ — E/G, we see that it suffices to show the claim of the proposition in case
X/G = A™. In this case, choose a section s : A™ — X and define the map A" xG —
X : (z,9) — s(x)g. Since G acts freely on X, this map is an isomorphism. Finally,
the projection map A™ x G =2 X — A" is a fibration because G is fibrant. (]

Proposition A.5. Let G be a simplicial group and let H < G be a simplicial
subgroup. Let X be a simplicial set with a free G-action from the right. Then the
map X/H — X/G is a Kan fibration. In particular, the map G — G/H is a Kan
fibration, and the simplicial set G/H ‘s fibrant.

Proof. We apply Lemma A.1 to the sequence X — X/H — X /G using Proposition
A4. So, X/H — X/@G is a Kan fibration. Applied to X = G and the inclusion of
subgroups {e} C H, we obtain the Kan fibration G — G/H. Applied to X = G and
the inclusion of groups H C G, we obtain the Kan fibration G/H — G/G = . O

Proposition A.6. Let G be a simplicial group acting freely on the right on the
simplicial sets X and Y. Let X — Y be a G-equivariant map which is a non-
equivariant weak equivalence (that is, a weak equivalence forgetting the action).
Then X/G — Y/G is a weak equivalence.
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Proof. Apply Lemma A.2 with Z — W the map X/G — Y/G and vertical maps
the quotient maps. The diagram is cartesian because G acts freely on X and Y,
and the right vertical map is a surjective fibration, by Proposition A.4. O

For a bisimplicial set X, denote by diag X the diagonal simplicial set (diag X),, =
Xn,n. The following proposition follows from the Bousfield-Friedlander theorem
[GJ99, Theorem IV.4.9] or from Mather’s Cube Theorem [Mat76].

Proposition A.7. Let Xeo — Yoo — Zee be a sequence of bisimplicial sets such
that for all p € N, the sequence of simplicial sets Xpe — Ype — Zpe is a homotopy
fibration, and Ze, is constant in the p-direction, that is, Zp, o« — Zp, e 5 the identity
for all simplicial operators [pa] — [p1]. Then the sequence of diagonal simplicial
sets

diag X — diagY — diag Z

is a homotopy fibration.

In order to construct certain maps in the body of our paper we will have to
use homotopy colimits. The reason is that the K-theory and hermitian K-theory
spaces are homotopy colimits themselves; see Remark 4.5. Below we recall the
construction within the category of small categories, and in Lemma A.9 we recall
a well-known basic fact that we will need.

Definition A.8 (Homotopy colimits). Let € be a small category and .7 : € — Cat
a functor from % to the category Cat of small categories. The homotopy colimit

hocolimy F#

is the category whose objects are pairs (X, A) with X and object of ¥ and A an
object of #(X). A map from (X, A) to (Y, B) is a pair (x,a) where z : X — Y is
amap in € and a : Z(x)A — B is a map in .#(Y). Composition (y,b) o (z,a) of
(y,b) : (Y,B) — (Z,C) and (z,a) : (X,A) — (Y, B) is the map (yoz,bo F(y)a).

By a result of Thomason [Tho79], the nerve simplicial set IV, hocolime .% is nat-
urally homotopy equivalent to the Bousfield-Kan homotopy colimit of the diagram
N, : ¢ — A°P Sets of simplicial sets. We won’t need this fact, but we will need
the following special case. For that, recall that a poset (£, <) is considered a
category with objects the elements of the poset and a unique map from P € & to
Qe 2 if P <Q. The poset (£,<) is filtering if for every P,Q € £ there is a
R e & with P,Q < R.

Lemma A.9. Let (£, <) be a filtering poset and let F : & — Cat be a functor
from & into the category Cat of small categories. Then the functor of categories
¢ : hocolimg .# — colimg F : (P, A) — [P, 4]

is a homotopy equivalence of simplicial sets.

Proof. By Quillen’s theorem A [Qui73], it suffices to show that for every object
[P, A] of the category colimg %, the comma category (¢ | [P, A]) is contractible.
For A € #(P) and P < @ write Ag for the object .Z# (P < Q)A in % (Q) which is

the image of A under the functor .#(P < Q) : F#(P) — % (Q). Contractibility of
the comma category now follows from the equivalence of categories

COlimPSQey(id l, (Q,AQ)) = (¢ l [Pv A])
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where for @ < R, the functor (id | (Q,Ag) — (id | (R, Ar) sends ¢t : (T, B) —
(Q,Ag) tocot: (T,B) — (R,Ar) with ¢ : (Q,Ag) — (R, Ar) the map given by
id: Ap = F(Q < R)Ag — Ag. The left-hand category is a filtered colimit over
categories with initial objects, hence a filtered colimit over contractible categories.
Therefore, the left-hand category is contractible, and so is the right-hand category.

O

Definition A.10. Let k£ be a commutative ring and F, G be simplicial presheaves
on smooth affine k-schemes. An elementary A'-homotopy between two maps hg, h1 :
F — G of presheaves is a map of presheaves h : A! x F — G such that h; = ho j;,
i = 0,1 where j; : Spec(k) — A! corresponds to the evaluation k[t] — k : t — i.
Elementary homotopy generates an equivalence relation called naive A'-homotopy.
The following is a well-known fundamental fact from A'-homotopy theory.

Lemma A.11. Ifhg, h1 : F — G are naively A*-homotopic then for every k-algebra
R, the maps ho, hy : F(AR) — G(AR) are simplicially homotopic.

Proof. Tt suffices to prove the claim for elementary A'-homotopy. Let h : Al x
F — G be an elementary homotopy between hy and h;. The 1-simplex id €
AY(AY) =2 AY(AY) of the simplicial set A*(A) defines a map of simplicial sets Al —
AY(Ay) — A'(AR) which induces the required homotopy H : Al x F(Ag) —
AY(AR) x F(AR) 2 G(AR). O
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