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Abstract

We give an explicit description of the boundary maps appearing in the Witt complexes

of [1, 2]; providing an affirmative answer to the question posed by Balmer & Walter

[1] as to whether or not their Witt complex agrees with that appearing in unpublished

work [3] by Pardon. Our description of these boundary maps is made in terms of a

generalisation of the classical second residue homomorphisms for Witt groups found

in [4] - unlike the constructions of [1, 2] which are based on Balmer’s triangular Witt

groups [5], our definition of generalised second residue homormophisms does not require

any assumption on the charcteristic nor any derived machinery.

Our constructions are performed using only the data of a Noetherian schemeX equipped

with a residual complex R - see [6]. In this situation we define, for each immediate

specialisation x y in X an abelian group homomorphism

∂R2 = resx,y
W

(R) : W
(
x, x\(R)

)
−→W

(
y, y\(R)

)
where we have written for example x\(R) for the one-dimensional κ(x)-vector space

HomOX,x
(
κ(x),Rµ(x)

x

)
- here µ(x) denotes the codimension of x according to the resid-

ual complex R. This definition does not require any normalisation process as in similar

generalisations such as Schmid’s work [7]. It is these maps which we assemble to form

a sequence of abelian group homorphisms

...→
⊕

µ(x)=p−1

W
(
x, x\(R)

)
−→

⊕
µ(x)=p

W
(
x, x\(R)

)
−→

⊕
µ(x)=p+1

W
(
x, x\(R)

)
→ ...

that we verify agrees with the Witt-complex of [2] under the further assumption that

1/2 ∈ Γ(X,OX). The basic idea behind our definition of the residue maps ∂R2 is also

used to define further group homomorphisms

resx,y
GW

(R) : GW
(
x, x\(R)

)
−→W

(
y, y\(R)

)
resx,y

V
(R) : V

(
x, x\(R)

)
−→ GW

(
y, y\(R)

)
where V denotes the V -theory of [8]; the V -theory of a field F provides a description

of KMW
1 (F ) in terms of symmetric spaces rather than the defining presentation of [9].

With these residue maps in hand we are able to provide a definition of the Chow-Witt

group C̃H(X,R) of a Noetherian scheme X equipped with a residual complex R and

with 1/2 ∈ Γ(X,OX).



Chapter 0

Introduction

Given an integral scheme V (let’s say of finite type over a field k) the notion of the

order of vanishing of a rational function on V along a subvariety Z of codimension 1 is

a fundamental construction in algebraic geometry. For example, after writing F for the

field of rational functions on V , in the case when the local ring R = OV,Z of functions

of V along Z is a discrete valuation ring, the order of vanishing

ordZ = v : F ∗ −→ Z

is simply given by the valuation v on R. If X now denotes a possibly non-integral

scheme, then we denote by Zp(X) the free abelian group generated by the symbols [Z];

one for each codimension p integral subvariety Z ↪→ X. In this group, the elements of

the form

div(f) :=
∑

ordZ(f)[Z] ∈ Zp(X)

where f is some rational function on a codimension p − 1 subvariety of X, are called

rationally equivalent to zero - and the quotient of Zp(X) by these cycles is the Chow

group CHp(X) of codimension p cycles on X; this is the main object of study in [10]

and is the group on which most intersection theoretic operations act.

This thesis presents some new descriptions of analogous maps in the hermitian set-

ting - briefly - returning to our integral scheme V this means that instead of rational

functions on V we work with finite dimensional inner product spaces over the field of

rational functions on V and the residue of such a space along a codimension 1 subva-

riety Z will be an inner product space over the rational function field of Z.

We study inner product spaces as elements of certain Grothendieck-Witt groups; for

example to any field F we can associate the Witt group W (F ) whose elements can be

represented by isometry classes [M,ψ] of inner product spaces

1



ψ : M
'

−−−−−→ HomF (M,F )

and in which we set [M,ψ] = 0 whenever M admits a submodule N = N⊥. For

these Witt groups and our discrete valuation ring R the residue map of interest is

well-understood; it is given by the second residue homomorphism of [4] - which after

chosing a uniformiser π and writing κ for the residue field of the valuation is the map

∂π2 : W (F ) −→W (κ) defined by 〈α〉 7→

{ 〈
α

πv(α)

〉
if v(α) is even

0 otherwise

where the symbol 〈α〉 ∈ W (F ) denotes the inner product space F × F → F given

by (x, y) 7→ αxy and similar remarks describe the element
〈
α/πv(α)

〉
of W (κ). As

suggested by the notation, these residue maps do depend on the choice of uniformizer;

a problem which is resolved in [7] by having the inner products of elements in W (F )

and W (κ) take values in cleverly chosen 1-dimensional vector spaces. In loc. cit. the

above residue homomorphism is further extended to one-dimensional local domains of

essentially finite type over some field of characteristic different from 2 by passing to

normalisations as in [11]. In this way Schmid [7] obtains, after assuming further that

char(k) 6= 2, for our integral scheme V and any codimension one subvariety Z ↪→ V a

well-defined residue map

∂2 : W
(
F,Ωtop

F/k

)
−→W

(
κ(Z),Ωtop

κ(Z)/k

)
where κ(Z) denotes the field of rational functions on Z and Ωtop

F/k the highest non-zero

exterior power of the module ΩF/k of cotangent vectors of F over k.

However these residue maps for Witt groups are defined one desires, especially in order

to establish a hermitian analogue C̃Hp(X) of the Chow group, that for our scheme X

they assemble to form a Gersten-type complex

...→
⊕

x∈Xp−1

W
(
κ(x)

)
−→

⊕
x∈Xp

W
(
κ(x)

)
−→

⊕
x∈Xp+1

W
(
κ(x)

)
→ ...

where each Xi denotes the set of codimension i points of X. Quillen [12] constructs

a Gersten complex for K-theory via devissage and localisations sequences - and these

ideas are refined to give a Witt complex as above in [1] for regular schemes and [2] for

singular schemes. The advantage of this approach is that one obtains immediately a

Witt complex for X and the second residue homomorphisms would then be defined to

be whatever appears in this complex - the disadvantages are that the constructions of

[1, 2] require the assumption that 1/2 ∈ Γ(X,OX) and some derived machinery to be

carried out. While Schmid’s residue maps [7] do not require any derived techniques

to be defined there then remains some difficulty in establishing that his residue maps
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assemble to form a Gersten complex as above.

The generalised second residue homomorphisms we define do not require any assump-

tion on the characteristic nor derived techniques to be defined - though we will make

sure that they agree with those of [1, 2]. Here is a taste of what our definition ends up

being; take (A,m, κ) to be a one dimensional local domain - which is hence a Cohen

Macaulay ring - and suppose it has a canonical module ωA. This canonical module

then has a minimal injective resolution

0→ ωA −→ F
d−→ EA(κ)→ 0→ ...

where F denotes the field of fractions of A and EA(κ) is some injective hull of the

residue field κ. Let’s take an element [V, ψ] ∈ W (F ) - so that 〈·, ·〉ψ : V × V → F

is a non-degenerate symmetric bilinear form. Take a finitely generated A-submodule

L ↪→ V such that F ⊗A L = V - this will be called an A-lattice inside V . It’s possible

to choose L such that the dual-lattice

L[ := {v ∈ V |〈v, L〉ψ ⊆ ωA}

contains L. After writing f.l.ModA for the category of finite length A-modules, the

functor

∗ = HomA

(
−, EA(κ)

)
: f.l.ModopA −→ f.l.ModA

together with the evaluation natural transformation ev : id → ∗∗ gives f.l.ModA the

structure of an exact category with duality - on which one may again define Witt groups.

The quotient L[/L is a finite length A-module, which together with the bilinear map

L[/L× L[/L −→ EA(κ) given by (x, y) 7→ d
(
〈x, y, 〉ψ

)
represents an element in the Witt group W

(
f.l.ModA, ∗

)
. This element does not de-

pend on the choice of lattice L - and further since we can find an isomorphism W (κ) ∼=
W
(
f.l.ModA, ∗

)
we have hence given a suitable residue homomorphism W (F )→W (κ).

Our main result is that this map we construct agrees with the residue maps defined in

[1, 2] - providing a positive answer to the question posed by Balmer & Walter [1] as to

whether or not the boundary maps of their Witt complex agree with those produced

by Pardon in the unpublished work [3]. We don’t go into any detail of the construction

of loc. cit. but mention that our residue map does indeed have the same basic idea of

Pardon’s construction - with differences including that we don’t need the assumptions

that our schemes be Cohen-Macaulay (we only need our schemes to admit residual

complexes) and don’t rely upon Witt groups defined in some new setting (i.e. the cat-

egories Q
(
Spi (X); C

)
of loc. cit.) not already covered by the literature; the knowledge
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of Witt groups our construction requires is all very standard and long established. Our

main contribution to the literature is hence a new and simpler (in for example that it

doesn’t require any knowledge of derived categories) description of the Witt complexes

of [1, 2]. It is also not immediate that residue homomorphisms for Witt groups, like

those of [7] or those we construct, can be extended to maps

KMW
1

(
F
)
−→ KMW

0

(
κ(Z)

)
KMW

0

(
F
)
−→ KMW

−1

(
κ(Z)

)
between the few degrees of Milnor-Witt K-theory which are required to define the

Chow-Witt group. Using the same ideas underlying our explicit description of the

residue maps for Witt groups coming from [1, 2] we do define residue maps as above -

in particular our definition of these low degree residue maps for Milnor-Witt K-theory

continues to be made in terms of symmetric spaces and not, as is perhaps more com-

mon, any presentations of Milnor-Witt K-theory - such as the defining relations of [9].

We are hence able to provide, assuming that 1/2 ∈ Γ(X,OX), a definition of the Chow-

Witt group C̃H(X) which is valid for any schemes X admitting a residual complex -

we are not aware of such a definition available in this generality. Unlike the work of

[1, 2], since our residue maps did not need the assumption that 2 be invertible to be

defined, it is possible that our defintion of the Chow-Witt group could also make sense

in the characteristic 2 case.

The structure of this work is as follows.

The first background chapter is to some degree an extended version of this introduction.

Its aim is to put everything into a historical setting, together with some mathematical

motivation behind the objectives we’ve outlined so far. Hopefully, this chapter should

provide an early graduate student who somehow stumbles across this text, should they

need it, some insulation against feeling at a loss as to what is being discussed. We

have not in this first chapter made a huge effort give the kind of level of detail such a

graduate student might require to really understand every idea they come across here

- but we provide references that do so. Of course not everything in this background is

purely motivational - there are a few structures we really want to work with later but

nothing non-standard.

The second chapter introduces the more technical machinery we want to use - in short

this consists of the settings in which we will work with Grothendieck-Witt groups and

of course some elementary properties these groups enjoy. All of the dualities we make

use of are extracted from, or given directly by, residual complexes - which the first sec-

tion tries to present an understanding of in terms of their appearance in Grothendieck

duality [6]. The only (we think) new result here is Proposition 2.3.5; though we do
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also in this chapter introduce a few very non-standard notations.

Having understood how to extract dualities from the terms of residual complexes, the

third chapter describes how the second residue homorphism can be extracted from the

boundary maps of residual complexes. Roughly the first half of this chapter is devoted

to defining our residue map - without any regularity or characteristic assumption - and

giving a few basic properties. We of course check that our residue map agrees with

those of [4] given above, before in the second half of the chapter checking that we have

agreement, when 2 is invertible, with the residue maps of [1, 2].

In the final chapter we write down how to repeat the basic ideas in our construc-

tion of a generalised second residue homomorphism for Witt groups to obtain a map

which really would be an analogue of the order of vanishing of a rational function.

We hence obtain a reasonable definition of the Chow-Witt group C̃H(X) of singular

schemes X, oringinally defined with some smoothness assumption in [13]. Given how

all of our work rests upon the structure of residual complexes which are intimately in-

volved in the constructive approach of [6] to the exceptional inverse image functor it is

then natural to in our situation write down the covariant functorality of our Chow-Witt

groups along proper morphisms.

One could argue that it is possible to roughly divide approaches to building Gersten

complexes for K-theory, Witt groups, and Milnor-Witt K-theory into two styles - firstly

those modeled on Rost’s construction of cycle complexes for Milnor K-theory [11] in

which residue maps are defined before the complex is assembled such as [7, 9], and

secondly those following Quillen’s more global construction [12], for example [1, 2] in

which the complex is found without any explicit construction of the residue maps in-

volved. We really lie in this second camp and do not compare our maps with those

of [7, 9] - aside from making a few remarks which make it seem likely that we have

agreement with [7]. In particular nothing we do is defined on the level of Milnor-Witt

K-theory - there is ongoing work [14] which aims to generalise Rost’s construction [11]

of a cycle complex for Milnor K-theory to a cycle complex for Milnor-Witt K-theory

for singular schemes. It appears that the work of [14] should provide definition of the

Chow-Witt group of singular schemes even in characteristic 2. There is hence some

overlap between the objectives of this thesis and loc. cit. - though in terms of how we

work towards this overlap our approaches are distinct.

Notations and Conventions:

1. The term scheme will always refer to a universally caternary and finite dimen-

sional Noetherian scheme. We denote by Xr and Xr respectively the dimension

and codimension r points of X. For points x, y ∈ X we use the notation y  x to

5



denote that x is an immediate specialisation of y - meaning that x is a codimension

1 point in the closure of y in X.

2. For an irreducible scheme X we denote by ζX its generic point. The term va-

riety will mean an integral scheme, and a subvariety of a scheme X is a closed

embedding Z ↪→ X of a variety Z into X.

3. For any scheme X we denote by QCohX , CohX , and VectX the categories of quasi-

coherent, coherent, and finite rank locally free OX -modules.

4. For a point x of a scheme X, we denote by mx the maximal ideal of OX,x and by

κ(x) the residue field OX,x/mx. We denote by Xx the local scheme Spec(OX,x)

and by πx,X : Spec(κ(x)) → Xx the embedding of the closed point. So if Z is

a variety then κ(ζZ ) is the field of rational functions on Z, and if Z ↪→ X is a

subvariety then we will also use OX,Z to denote the local ring OX,ζ
Z

of functions

along Z.

5. For a ring A we denote by f.g.ModA and f.l.ModA the categories of finitely

generated and finite length A-modules respectively. If F is a field then VectF is

the category of finite-dimensional F -vector spaces.

6



Chapter 1

Historical Setting &

Mathematical Background

While the reader may feel that any permutation of the adjectives in the above title

would not greatly change its meaning, we nonetheless make clear the intended impli-

cation of our choice on the coming subject matter - this chapter aims to in a precise

manner set out some of the mathematical technology required by later chapters, while

simultaneously and imprecisely sketching the evolution of these ideas through (quite

recent) history. Part of this latter goal is to also provide motivation for the overall

objectives of this thesis. As a result, many of the mathematical statements in this

chapter are, from the perspective of this work at least, purely motivational, and are

hence here not rigorously set out - but we provide references where more proper levels

of detail can be found.

1.1 Chow groups and K-theory

The book [10] contains an overview of the development of intersection theory, from

which we have here extracted a story most relevant to our particular topic. For schemes

smooth over a field, the Chow groups are the underlying additive structure of the

intersection rings in algebraic geometry. Indeed, for each subvariety V ↪→ X of such a

smooth scheme X there corresponds an element [V ] ∈ CH(X) in such a way that for

another subvariety W ↪→ X the product [V ]× [W ] ∈ CH(X) is in some way built from

components of V ∩W - a little more descriptively; if V is regularly embedded in X and

meets W properly, then one has

[V ]× [W ] =
N∑
j=1

i (Cj , V ·W ↪→ X) [Cj ] ∈ CH(X) (∗)

where the Cj are the irreducible components of the intersection V ∩W , and the integers

i(Cj , V · W ↪→ X) are called intersection multiplicities - they depend on how V ,W

and Cj are embedded in X. Recognisation of the importance of such intersection
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multiplicities probably goes back to Bezout’s Theorem circa 1779, though in the interest

of historical accuracy we should note (see [15, Chapter 3.1]) that Bezout’s proof was

neither the first, nor a correct proof of this classical result. Indifferent to a proper and

timely attribution of mathematicians to theorems, the formula (∗) became the guiding

principle in the construction of intersection rings.

Definition 1.1.1. Let X be any scheme satisfying our standard assumptions. We

write Zp(X) for the free abelian group generated by the codimension p subvarieties of

X. If V ↪→ X is such a subvariety, then we write [V ] ∈ Zp(X) for the corresponding

generator. An element α ∈ Zp(X) may hence be written

α =
∑
V ∈Xp

nV [V ]

where all but finitely many of the nV ∈ Z are zero. We call Zp(X) the group of codi-

mension p cycles on X, and similarly define Zp(X) to be the group of p-dimensional

cycles on X.

The issue with an approach to intersection theory via the formula (∗) is finding an

appropriate definition of the intersection multiplicities. But if X is a d-dimensional

variety over the complex numbers, then any two subvarieties V ↪→ X and W ↪→ X

of codimensions p and q determine topological homology classes [V ] ∈ H2d−p(X,Z)

and [W ] ∈ H2d−q(X,Z) respectively. Viewed via the Poincaré Duality isomorphism as

elements in the cohomology ring H∗(X,Z), an intersection product

[V ]× [W ] ∈ Hp+q(X,Z)

can be defined. In the case when V and W meet transversally, one really then has

[V ]×[W ] = [V ∩W ] ∈ Hp+q(X,Z), and the product may be computed for general cycles

by slightly deforming one of V and W until they do meet transversally. Stimulated by

this analogy, Wei-Liang Chow felt that the obstruction to extending the formula (∗)
to arbitrary cycles was the lack of an equivalence relation on Z∗(X) which could move

any pair of cycles in X to a pair for which the required intersection multiplicities could

be defined. Chow demonstrated that such equivalence relations do exist in [16], where

he focussed on the relation of rational equivalence - which according to loc. cit. had

hitherto not been given much attention.

Definition 1.1.2. Let X be a variety, and V ↪→ X be a codimension 1 subvariety. We

define the order of vanishing along V to be the group homomorphism

ordV : κ(ζX )∗ −→ Z

which for an element f ∈ OX,V - the local ring of functions along V - is given by

ordV (f) = lengthOX,V
(
OX,V /f · OX,V

)
8



One may then define the group homomorphism div : κ(ζX )∗ −→ Z1(X) to be given by

div(f) =
∑
V ∈X1

ordV (f)[V ]

Definition 1.1.3. Let X be a scheme. Then we define the subgroup Ratp(X) ≤ Zp(X)

of cycles rationally equivalent to zero to be that generated by the elements div(f)

as f ranges over all the rational functions of codimension p− 1 subvarieties of X. The

Chow group of codimension p cycles on X is defined to be the quotient

CHp(X) = Zp(X)/Ratp(X)

The groups Ratp(X) and CHp(X) are defined in the same way but using dimension

instead of codimension to obtain the grading.

The result of Chow’s paper [16] was, for smooth quasi-projective X, a well-defined ring

structure on CH∗(X) constructed via (∗) where possible. A weakness in this approach

is that it is not at all clear for general cycles V,W ↪→ X that the intersection product

[V ] × [W ] ∈ CH∗(X) could be written as a cycle supported on the actual intersection

V ∩ W ; each cycle has potentially been moved to different subvarieties which while

meeting properly do so perhaps outside of the original intersection.

Fulton & MacPherson’s approach [10] radically differs from earlier approaches such

as [16] in that the ring structure on CH∗(X) is constructed first, without requiring any

quasi-projectivity hypothesis, before intersection multiplicities are defined.

Proposition 1.1.4. Let f : X → Y be a proper morphism of schemes of finite type

over some ground field. Then we write

f∗ : Zp(X) −→ CHp(Y )

for the additive group homomorphism defined by

f∗([V ]) =

{
[κ(ζV ) : κ(f(ζV ))] [f(V )] if dim(V ) = dim(f(V ))

0 otherwise

Then f∗(Ratp(X)) = {0}, allowing us to define (and denote by the same symbol) a

pushforward map

f∗ : CHp(X) −→ CHp(Y )

Definition 1.1.5. If Z ↪→ X is a closed subscheme of X, then we write [Z] for the

cycle

[Z] =

N∑
i=1

length (OZ,Ci) [Ci] ∈ Z∗(X)

9



where C1, C2, ..., CN are the irreducible components of Z, and each of the above lengths

are taken over the Artinian local rings OZ,Ci themselves. Abusing notation, we also

write [Z] for the image of this cycle in CH∗(X).

Proposition 1.1.6. Suppose that f : X → Y is a flat morphism of schemes of finite

type over some ground field, with constant relative dimension. Then we write

f∗ : Zp(Y ) −→ CHp(X)

for the additive group homomorphism defined by setting

f∗([Z]) = [f−1(Z)]

Then f∗(Ratp(Y )) = {0}, allowing us to define (and denote by the same symbol) a

pullback map

f∗ : CHp(Y ) −→ CHp(X)

The modern approach to intersection theory found in [10] is developed from a construc-

tion of Chern class actions of vector bundles on the Chow group of their base. Of all

the higher Chern classes, we explicitly define here only the top Chern class of a vector

bundle, as it is geometrically simplest to understand and has the greatest relevance to

our story.

Proposition 1.1.7. Let p : E → X be a vector bundle of rank r on a scheme X of

finite type over a field. Then the flat pullback

p∗ : CHn(X) −→ CHn−r(E)

is an isomorphism for all n.

Proof. See Theorem 3.3 of [10].

This isomorphism allows one to perform an intersection theoretic operation important

to the development of [10]. The inverse of the pullback isomorphism above can be

thought of as intersecting cycles in E with the image of X under the zero section

embedding s : X → E. Note that it is irrelevant how a cycle in α ∈ CHn(E) meets

this zero section - the intersection (p∗)−1(α) is defined and is supported in X. The top

Chern class cr(E) is a particular example of such an intersection - see Example 3.3.2

of loc. cit. for the below definition.

Definition 1.1.8. Let p : E → X be a rank r vector bundle on a scheme X, and let

s : X ↪→ E be the zero-section embedding. Then we define the top (or rth) Chern

class action of E to be the group homomorphism

cr(E) ∩ (−) : CH∗(X) −→ CH∗+r(X)
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given by α 7→ (p∗)−1s∗(α) ∈ CHn+r(X) for each α ∈ CHn(X). We also write simply

cr(E) for the top Chern class cr(E) ∩ [X] ∈ CHr(X).

In the third chapter of [10], all the higher Chern classes ci(E) of a vector bundle E

are defined, and they can be assembled into the Chern character of E, denoted ch(E).

This Chern character takes values in the Chow group CH∗(X)Q := CH∗(X)⊗ZQ with

rational coefficients - for a precise definition, see Example 3.2.3 of [10]. This Chern

character is additive on short exact sequences of vector bundles. Precisely, if

0→ F ′ −→ F −→ F ′′ → 0

is a short exact sequence of finite rank locally free sheaves on X, then we have

ch(F ) = ch(F ′) + ch(F ′′) ∈ CH∗(X)Q

Hence, the Chern character defines a group homomorphism from the Grothendieck

group K0 of locally free sheaves on X to the Chow group CH∗(X)Q with rational

coefficients.

Definition 1.1.9. We use the term exact category to refer to an additive category E
equipped with a collection of admissible exact sequences which are pairs of morphisms

M ′
α−→M

β−→M ′′ (∗∗)

in E . We require of these sequences that there exists some abelian category A and

a fully faithful embedding ι : E → A of E as an extension closed subcategory of an

abelian category A such that (∗∗) is an exact sequence in E if and only if

0→ ι(M ′)
ι(α)−→ ι(M)

ι(β)−→ ι(M ′′)→ 0

is a short exact sequence in A. In the exact sequence (∗∗) we call α an admissible

monomorphism and β an admissible epimorphism. An admissible monomorphism is

depicted by the arrow “�” while admissible epimorphisms are depicted “�”.

Example 1.1.10. For any scheme X, each of the subcategories QCohX , CohX , and

VectX are exact subcategories of the abelian category of all OX -modules. The category

ChbCoh(X) of bounded chain complexes of quasicoherent OX -modules having coherent

cohomology is an exact subcategory of the category of all chain complexes of OX -

modules.

Definition 1.1.11. Let E be an exact category. Then the Grothendieck group of E ,

denoted K0(E), is defined to be the free abelian group generated by the isomorphism

classes [E] of objects E ∈ E , modulo the relations

[E] = [E′] + [E′′]

11



for each short exact sequence 0→ E′ −→ E −→ E′′ → 0 in E .

From Example 15.2.16(b) of [10], one learns that for smooth X the Chern character

map induces an isomorphism ch : K0(VectX) ⊗Z Q −→ CH∗(X)Q. It can be argued

[17] that algebraic K-theory began in part in 1957, with Grothendieck’s reformulation

of the Riemann-Roch theorem in terms of the correction factor required to make this

Chern character commute with the pushforwards for K0 and Chow groups. As charted

in [17], higher K-groups were gradually defined over the next 20 years - mostly only for

affine schemes. According to loc. cit., the study of algebraic cycles via these higher K-

groups was initiated by Spencer Bloch who established [18, Thm 5.15] the first instance,

namely when p = dim(X) = 2, of the general formula

Hp(X,Kp) ∼= CHp(X)

which is valid for any regular scheme X of finite type over a field, and in which Kp is the

sheaf of abelian groups on X associated to the presheaf U 7→ Kp(Γ(U,OX)). The first

proof of Bloch’s formula in this generality came from Quillen’s work [12, §7 Thm 5.19]

which defined the higher algebraic K-groups as functors on exact categories. We’ll give

here an overview in broad strokes of Quillen’s proof - a more detailed description will

in later chapters be given of the analogous constructions of [1, 2] in which the higher

K-groups are replaced by Balmer’s shifted Witt groups [5].

Proposition 1.1.12. Let B be a Serre subcategory (meaning closed under extensions,

subobjects and quotients) of an abelian category A. Then there is a long exact sequence

... −→ Ki+1

(
A/B

) ∂i+1

−−−−→ Ki(B) −→ Ki(A) −→ Ki

(
A/B

) ∂i
−−−−→ Ki−1(B) −→ ...

Proof. This is [12, §5 Thm 5] - two thirds of the maps in the above sequence come from

the canonical maps B → A → A/B while, as Quillen remarks, the proof gives little

information on the nature of the boundary maps ∂i.

Consider now, if X is our finite-type regular k-scheme, the Serre subcategories Coh≥iX ↪→
CohX consisting of those coherent sheaves whose support is a closed subset of codimen-

sion at least i in X. From the above proposition we have boundary maps

... −→ Kp−i

(
Coh≥iX
Coh≥i+1

X

)
∂p−i
−−−−→ Kp−i−1

(
Coh≥i+1

X

)
−→ Kp−i−1

(
Coh≥iX

)
−→ ...

from which a complex may be built on the terms Kp−i

(
Coh≥iX
Coh≥i+1

X

)
- below it appears as

the diagonal maps.
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Kp−(i−1)

(
Coh≥i−1

X

Coh≥iX

)
Kp−i

(
Coh≥iX

)

Kp−i

(
Coh≥iX
Coh≥i+1

X

)

Kp−(i+1)

(
Coh≥i+1

X

)
Kp−(i+1)

(
Coh≥i+1

X

Coh≥i+2
X

)

∂p−(i−1)

∂p−i

By devissage [12, §5 Thm 4] Quillen identifies these terms with the groups below

Kq

(
Coh≥iX
Coh≥i+1

X

)
'
⊕
x∈Xi

Kq(x)

where Kq(x) denotes the qth K-group of the exact category of finite dimensional κ(x)-

vector spaces - a notational convention we will stick to in various settings throughout

this thesis. Given our regularity assumption, Quillen establishes that taking these

sequences over each open set of X induces a flasque resolution

0→ Kp −→ ι
ζX

(
Kp(κ(ζX))

)
−→ ... −→

⊕
x∈Xp−1

ιx
(
K1(κ(x))

)
−→

⊕
x∈Xp

ιx
(
K0(κ(x))

)
→ 0

of the sheaf Kp; our “ιx” notation explained below will continue to be used in later

chapters.

Definition 1.1.13. Let X be a scheme and x ∈ X a point. Then for any abelian group

(respectively OX,x-module) M , we denote by ιx(M) the sheaf of abelian groups on X

(respectively theOX -module) (ix)∗(M), where ix is the canonical map Spec(OX,x)→ X

and in the case that M is an abelian group we have denoted the constant sheaf on

Spec(OX,x) associated to M again by the symbol M .

Noting that the map K0(F ) → Z which sends the isomorphism class of an F -vector

space to the common rank of any of its representatives is an isomorphism, we see that

the final non-zero term of the above complex naturally identifies itself with Zp(X); the

group of codimension p cycles on X. For the previous term, one learns from [17] that

constructions for the K1 of rings had been realised by Bass and Schanuel roughly 10

years earlier in 1962. Their definition for a ring A was to take the abelianisation

K1(A) = GL(A)/ [GL(A),GL(A)]

of the group of matrices GL(A) = lim−→GLn(A). For any field F , the determinant map

induces an isomorphism K1(F ) ∼= F ∗, so that Quillen’s proof of Bloch’s formula may

then conclude by identifying the last non-zero map in the above flasque resolution with
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the coproduct of the divisor maps in Definition 1.1.2. We would refer to the resolu-

tion itself (by which we mean the above complex with the first term Kp replaced by

zero) as the pth Gersten complex for Quillen’s K-theory because it was Gersten who

originally conjectured (see Working Hypothesis 7.3 of [19]) that it would give the de-

sired resolution. The Gersten complex itself may be constructed without any regularity

assumption on X, and one still obtains essentially the definition of Chow groups by

taking (co)homology in the appropriate place. This sets the precedent which leads to

most definitions of Chow-Witt groups - one first constructs a Gersten-type complex,

in effect for Milnor-Witt K-theory [9], and then takes (co)homology in the appropriate

degree. Most of the effort in this thesis is devoted to giving an explicit description of

Balmer’s analogue [5] of the boundary maps ∂i of Proposition 1.1.12 in the setting

of shifted Witt groups as they appear in [1, 2].

Among the assemblage of definitions of the higher K-groups of rings prior to Quillen’s

1973 paper [12] is the below presentation for a field F of K2(F ) which is given in [20].

K2(F ) =
Z[F ∗ ⊗Z F ∗]

〈a⊗ b | a, b ∈ F ∗ and a+ b = 1〉

In [21] Milnor takes the above relation, which is commonly referred to as the Steinberg

relation, to be the basis for defining an approximation to the K-theory of fields - which,

despite the ad hoc nature of its definition in higher degrees, has become an important

algebra in its own right.

Definition 1.1.14. The Milnor K-theory of a field F is defined to be the graded ring

obtained as the quotient

KM
∗ (F ) = TensZ(F ∗)/ 〈St〉

of the tensor algebra by the two sided ideal generated by the Steinberg relations

St = {a⊗ b | a, b ∈ F ∗ and a+ b = 1}

We denote the image of a1 ⊗ a2 ⊗ ...⊗ an in KM
n (F ) by {a1, a2, ..., an}.

Clearly by design the Milnor K-theory of fields agrees with actual K-theory in degrees

0,1 and 2. Further, Bloch’s formula is known to hold between Milnor K-theory and

the Chow group in certain situations; see [22] for the case of zero dimensional cycles

and [23] for cycles of any dimension on regular schemes over an infinite field. The

construction of the Gersten complex for Milnor K-theory made in [22] is somewhat of a

template for later constructions of other Gersten-type complexes. The ingredients for

this template are the following residue and norm maps - which are defined in [21] and

[24] respectively.

Definition 1.1.15. Let F be a field and v : F ∗ → Z a discrete valuation on F with ring

of integers Ov and residue field κ(v). Then we define the residue homomorphism
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for Milnor K-theory (for each integer n) to be the unique group homomorphism

∂n+1
v : KM

n+1(F )→ KM
n (κ(v))

which takes {f, u1, ..., un} 7→ v(f){u1, ..., un} for any f ∈ F ∗ and units u1, ..., un ∈ O∗v .

Definition 1.1.16. For each integer n, there exists a unique family of natural homo-

morphisms, which we’ll call the norm maps for Milnor K-theory

Nn
L/F : KM

n (L)→ KM
n (F )

indexed by finite field extensions L/F such that NF/F = idF , and for any field F the

sum ∑
v

Nn
κ(v)/F∂

n+1
v = 0

taken over all discrete valuations v of F (t) which are trivial on F ∗, vanishes as above.

Remark 1. For any finite extension L/F the norm N0
L/F is multiplication by the degree

[L : F ], while N1
L/F is given by the usual norm function - a generator {l} ∈ KM

1 (L) is

sent to the generator of KM
1 (F ) corresponding to the determinant of the F-linear map

L→ L given by multiplication with l.

The boundary maps⊕
x∈Xr

ιx
(
KM
n (κ(x))

)
−→

⊕
x∈Xr−1

ιx
(
KM
n−1(κ(x))

)
of the Gersten complex for Milnor K-theory are constructed in [22] via a normalisation

process which is repeated in at least [7, 11].

Definition 1.1.17. If x and y are points of a scheme X with y an immediate special-

isation of x, then for each integer n we denote by

dM,x
n,y : KM

n

(
κ(x)

)
−→ KM

n−1

(
κ(y)

)
the group homomorphism defined by taking a normalisation η : Z → {x} and setting

dM,x
n,y to be the following sum

dM,x
n,y =

∑
η(ỹ)=y

Nn−1
κ(ỹ)/κ(y) ◦ ∂

n
ỹ

where each ∂nỹ denotes the residue homomorphism for Milnor K-theory attached to the

discrete valuation on κ(x) given by the order of vanishing along ỹ. We commit the

abuse of notation which is to denote the corresponding morphism between sheaves

dM,x
n,y : ιx

(
KM
n (κ(x))

)
−→ ιy

(
KM
n−1(κ(y))

)
15



in exactly the same way.

Definition 1.1.18. For a scheme X we define the Gersten complex for Milnor K-

theory (in degree n) to be the cochain complex C∗
(
X,KM

n

)
consisting of the sheaves

of abelian groups

C∗
(
X,KM

n

)r
=
⊕
x∈Xr

ιx
(
KM
n−r(κ(x))

)
with boundary maps

drC∗(X,KM
n ) =

⊕
x∈Xr

∑
x y

dM,x
n,y

That the above really does define a complex was first written down in [22], and later

Rost [11] identifies the properties cycle modules (of which Milnor K-theory is the prin-

cipal example) need to have in order for a complex to be constructed via such a normal-

isation process. In Chapter 3, we construct a similar residue map after replacing Milnor

K-theory by Witt groups - while in our situation we do have a notion of “norm maps”

we won’t need them to construct the residue map; there is no normalisation process

required. Despite the fact that we explicitly construct this residue map for Witt groups

before trying to put them together into a complex, our approach to constructing the

resulting Gersten-Witt complex is really closer to Quillen’s construction of the Gersten

complex for K-theory via localilsation and devisage - indeed after defining our residue

maps (for which we do not require any assumption on the characteristic) we check that

they agree with those obtained for Witt groups in [1, 2] via an argument analogous

to Quillen’s. All of the constructions of [1, 2, 5] involve triangular Witt groups and

hence require some assumption that 2 be invertible for anything to even be defined -

hence we ultimately also have to make the assumption that 1/2 ∈ Γ(X,OX). There is

ongoing work [14] which aims to construct similar residue maps by generalising, even

for singular schemes, Rost’s axoims for Milnor K-theory to Milnor-Witt K-theory. It

appears that this work will produce a definition of the Chow-Witt group for singular

schemes without requiring any assumption on the characteristic. Our definitions prob-

ably agree, but we only make a few scattered, non-commital remarks comparing our

work with the approaches [7, 9, 14] built on Rost’s cycle-complex type arguments.

1.2 A quadratic refinement - the oriented Chow groups of

Barge and Morel

The top Chern class

cr(E) ∩ [X] ∈ CHr(X)

of Definition 1.1.8 will vanish if E has a nowhere vanishing global section, and con-

versely Murthy [25] has shown that for smooth affine X over an algebraically closed

field the vanishing of this top Chern class is also sufficient for E to have such a section.

This result does not hold over general fields however - a counterexample is given by the
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tangent bundle to the real 2-sphere.

Barge and Morel [13] proposed a modification to the Chow groups which they conjec-

tured would make them suitable target for Euler classes. Their Chow group of oriented

cycles (also called the Chow-Witt groups) of X, which in codimension d is written

C̃Hd(X), can be roughly described as codimension d cycles on X with quadratic forms

(instead of integers) for coefficients, satisfying some compatibility condition and modulo

a quadratic analogue of rational equivalence. The definition of loc. cit. is to construct

a Gersten complex for what would later be identified as Milnor-Witt K-theory [9] and

then take cohomology. The complex is obtained as a fibre product between the Ger-

sten complex for Milnor K-theory of Definition 1.1.18 and a subcomplex of the Witt

complex of X.

Definition 1.2.1. If L is a one-dimensional F -vector space, then we call a pair (V, ψ)

where V is a finite dimensional F -vector space and ψ : V × V → L is a non-degenerate

symmetric bilinear map a symmetric space over (F,L). The collection of all such

symmetric spaces is denoted Sym(F,L). Two symmetric spaces (V1, ψ1) and (V2, ψ2)

are called isometric when there exists an isomorphism f : V1 → V2 such that

ψ2 ◦ (f × f) = ψ1

We define the sum

[V, ψ] + [V ′ψ′] = [V ⊕ V ′, ψ ⊕ ψ′]

of two isometry classes of symmetric spaces to be the above orthogonal sum.

Definition 1.2.2. Let L be a one-dimensional F -vector space, and (V, ψ) ∈ Sym(F,L).

Then for any subspace N ≤ V we define its orthogonal to be

N⊥ = {v ∈ V | ψ(v, n) = 0 for any n ∈ N}

we call the space (V, ψ) metabolic when it has a subspace N ≤ V with N = N⊥. We

define the Witt group of F with values in L, or sometimes the Witt group twisted

by L, written W (F,L), to be the quotient of the Grothendieck group of the abelian

monoid of isometry classes [V, ψ] of symmetric spaces (V, ψ) under the orthogonal sum

of the previous definition by the subgroup generated by the metabolic spaces.

We write simply W (F ) for the ring W (F, F ) in which multiplication is given by tensor

product - for each one-dimensional F -vector space L we have further that W (F,L) is

under the tensor product a free W (F )-module of rank 1. The spaces L which arise

for us will sometimes be referred to as the twisting space of the Witt group; this is

non-standard terminology we’ve just made up on the spot. Our main reference for the

Witt groups of fields is [4], the fourth chapter of which contains the following structural

presentation and resulting residue map.
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Proposition 1.2.3. The group W (F ) is additively generated by the spaces 〈α〉 - which

denotes for α ∈ F ∗ the 1-dimensional space (x, y) 7→ αxy - modulo the relations

1. For any α, β ∈ F ∗ we have 〈αβ2〉 = 〈α〉.

2. For any α ∈ F ∗ we have 〈α〉+ 〈−α〉 = 0.

3. For any α, β ∈ F ∗ with α+ β 6= 0 we have 〈α〉+ 〈β〉 = 〈α+ β〉+ 〈αβ(α+ β)〉.

Definition 1.2.4. Let v : F ∗ → Z be a discrete valuation on a field F with valuation

ring Ov, maximal ideal mv, and residue field κ(v). Then fixing a uniformizer π we have

a second residue homomorphism ∂π2 : W (F ) → W (κ(v)), which is defined to be

the group homomorphism sending for i ∈ Z and unit u of the valuation

〈πiu〉 7→

{
〈u〉 if i is odd

0 otherwise

Note that if π and uπ are two uniformizers of v then

〈u〉∂π2 = ∂uπ2

so these maps really do depend on the choice of uniformizer - unlike the corresponding

residue maps for Milnor K-theory of Definition 1.1.15. For this reason Witt groups do

not form a cycle module as in [11] and the Witt complex of a scheme is not immediately

obtained from the arguments therein. The residue maps can be made canonical by

twisting the Witt groups involved by certain one dimensional vector spaces after which

the boundary maps of the Witt complex may be defined via the normalisation process

of loc. cit. - this approach is carried out in [7].

Definition 1.2.5. Let A → B be a ring map. Then we write ΩB/A for the module

of cotangent vectors of B over A. In the case when ΩB/A is a free B-module of finite

rank, we write Ωtop
B/A for the highest non-zero exterior power of ΩB/A.

The approach of [7] to constructing a canonical second residue map extending that of

Definition 1.2.4 is to fix some perfect ground field k and then to, for each finitely

generated field extension k ↪→ F , work with the Witt group W
(
F,Ωtop

F/k

)
. A quick

description of the resulting residue map relies on the below lemma 2.2.7 of loc. cit.

which we supply a proof of for no particular reason.

Lemma 1.2.6. Suppose that F is a finitely generated field extension of a ground field

k, with transcendence degree n+1. Let v : F ∗ → Z be a discrete valuation, vanishing on

k, with valuation ring Ov, maximal ideal mv, and residue field κ(v). If s1, s2, ..., sn ∈
O∗v lift to elements which form a κ(v)-basis ds1, ds2, ..., dsn of Ωκ(v)/k, and π is any

uniformizer of v, then dπ, ds1, ..., dsn form an Ov-basis of ΩOv/k.
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Proof. Since it is a localisation of a finitely generated k-algebra, ΩOv/k is a finitely

generated Ov-module. The conormal exact sequence

κ(v)⊗Ov mv

1⊗dOv/k
−−−−−−→ κ(v)⊗ ΩOv/k

f⊗da7→fdκ(v)/ka
−−−−−−−→ Ωκ(v)/k → 0

tells us that the Ov-module

ΩOv/k

mv · ΩOv/k + dOv/k(mv)

is generated by ds1, ..., dsn. Hence any element of

ΩOv/k

mv · ΩOv/k

may be written as an Ov-linear combination of ds1, ..., dsn plus some element of d(mv).

An arbitrary element of d(mv) may be written d(uπm) = muπm−1udπ+πmdu, for some

unit u ∈ O∗v and positive integer m. Modulo mv · ΩOv/k, this is simply muπm−1u · dπ.

Hence the Ov-module κ(v)⊗ΩOv/k is generated by the images of dπ, ds1, ..., dsn. Hence

by Nakayama’s lemma, ΩOv/k is generated by dπ, ds1, ..., dsn.

Immediately after the aforementioned lemma in [7], we obtain the following description

of the generalisation of the second residue map constructed in loc.cit.

Definition 1.2.7. Let F be a finitely generated, transcendence degree n + 1 field

extension of some ground field k, and v : F ∗ → Z a discrete valuation trivial on k as

above. Then there is a second residue map

∂2 : W
(
F,Ωtop

F/k

)
−→W

(
κ(v),Ωtop

κ(v)/k

)
which is the unique group homomorphism with

〈α〉〈dπ ∧ ds1 ∧ ... ∧ dsn〉 7→ ∂π2 (〈α〉) 〈ds1 ∧ ds2 ∧ ... ∧ dsn〉

for any uniformizer π of v and s1, ..., sn ∈ O∗v which lift to a basis ds1, ds2, ..., dsn of

Ωκ(v)/k.

Note that above we’ve extended the notation of Proposition 1.2.3 - to each l ∈ Ωtop
F/k

we denote by 〈l〉 ∈ W
(
F,Ωtop

F/k

)
the space F × F → Ωtop

F/k given by (x, y) 7→ xyl. After

constructing similarly twisted norm maps for Witt groups analogous to those for Milnor

K-theory of Definition 1.1.16, a Witt complex

...→
⊕
x∈Xr

W
(
κ(x),Ωtop

κ(x)/k

)
−→

⊕
x∈Xr+1

W
(
κ(x),Ωtop

κ(x)/k

)
→ ...

is constructed in [7] for schemes X of finite type over some perfect ground field k whose

characteristic is different from 2 using the same normalisation process of Definition

19



1.1.17. To distinguish this complex from our later generalisation we adopt the following

non-standard terminology.

Definition 1.2.8. For a scheme X of finite type over a perfect ground field k with

char(k) 6= 2, we write C(X,W,Ω) for the Witt complex of X with Ω twisting to

be the cochain complex

C(X,W,Ω)r =
⊕
x∈Xr

W
(
κ(x),Ωtop

κ(x)/k

)
with the boundary maps of [7, Ch.3].

Perhaps the main construction of this thesis is that of a similar Witt complex, whose

boundary maps are defined without passing to any normalisations - they are rather

inherited from the residual complexes from which we also obtain our local twisting

spaces to use in place of the Ωtop
κ(x)/k above. The construction of the Witt complex of

[7] is modelled around Rost’s construction of the Gersten complex for Milnor K-theory

of Definition 1.1.18. Our construction is closest to those of [1, 2] which is why we

don’t expend much energy describing the norm maps of [7].

For any field F , the Witt ring W (F ) has a unique ideal I(F ) for which the quotient

W (F )/I(F ) is isomorphic to Z/2Z [4, Ch.III §3]. This ideal consists precisely of the

isometry classes of symmetric spaces with even rank; note that while the rank of a

symmetric space in the Witt group is not well defined, since any metabolic space has

even rank [4, Ch.III lem.1.2], the parity of its rank is well defined.

Definition 1.2.9. For any field F we define the rank homomorphism

rk : W (F,L) −→ Z/2Z

to be the ring homomorphism which takes each symmetric space [V, ψ] to the dimension

of V modulo 2. We denote the kernel of this homomorphism by I(F,L) and call it the

fundamental ideal of the Witt ring W (F ). When L = F , we denote by In(F ) the

nth power of this ideal. In general we write In(F,L) for In(F ) ·W (F,L).

Proposition 1.2.10. For each non-negative integer n, there is a unique surjective

group homomorphism, which we’ll call the Pfister form map,

sn : KM
n (F )→ In(F )/In+1(F )

defined by sending each symbol {a1, a2, ..., an} to the associated Pfister form

{a1, a2, ..., an} 7→ 〈〈a1, a2, ..., an〉〉 :=
n∏
i=1

(〈1〉 − 〈ai〉) (mod In+1(F ))

Proof. This is [21, Thm 4.1].
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For our first encounter with the Chow-Witt groups we adopt the notation of [13]. There,

the quotient group In(F )/In+1(F ) is denoted by jn(F ) and it is observed that for any

one-dimensional F -vector space L there is a canonical surjective map In(F,L)→ jn(F ).

The limit of the diagram

KM
n (F ) jn(F )

In(F,L)

(∗)

of abelian groups is written Jn(F,L). The cases when n = 0, 1, or −1 will become of

particular importance to us. Clearly for any negative n we can identify Jn(F,L) with

the Witt group W (F,L). For n = 0, the lowest degree in which the Milnor K-theory

of the above diagram is non-zero, we have the following description.

Definition 1.2.11. For a field F and one-dimensional F -vector space L, we define the

Grothendieck-Witt group of F with values in L, written GW (F,L), to be the

Grothendieck group of the abelian monoid of isometry classes [V, ψ] of symmetric spaces

(V, ψ) ∈ Sym(F,L) under orthogonal sum. To be precise, the elements of GW (F,L)

are formal differences [V, ψ]− [V ′, ψ′] of such isometry classes, and we identify

[V, ψ]− [V ′, ψ′] = [U, φ]− [U ′, φ′]

when there is a third space (P, θ) ∈ Sym(F,L) such that

[V, ψ] + [U ′, φ′] + [P, θ] = [U, φ] + [V ′, ψ′] + [P, θ]

in the abelian monoid structure.

This definition gives the wrong impression of what the Grothendieck-Witt group should

be in more general situations - it is on account of VectF being a split exact category

that we do not need to enforce any further relations between metabolic spaces. Note

then that the Witt group W (F,L) is then the quotient of GW (F,L) by the subgroup

generated by metabolic spaces. Hence we have a canonical epimorphism GW (F,L)�

W (F,L).

Proposition 1.2.12. The group GW (F ) is additively generated by the spaces 〈α〉 for

α ∈ F ∗, modulo the relations

1. For any α, β ∈ F ∗ we have 〈αβ2〉 = 〈α〉.

2. For any α ∈ F ∗ we have 〈α〉+ 〈−α〉 = 〈1〉+ 〈−1〉.

3. For any α, β ∈ F ∗ with α+ β 6= 0 we have 〈α〉+ 〈β〉 = 〈α+ β〉+ 〈αβ(α+ β)〉.

Proof. This follows immediately from the slightly more economical presentation of [26,

Ch.1, Thm 4.7].
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Because metabolic spaces are not declared to be zero in the Grothendieck-Witt group,

the natural way to take the rank of elements of GW (F,L) is well defined - as the reader

can quickly verify by glancing at the above presentation.

Definition 1.2.13. For any field F we define the rank homomorphism

rk : GW (F,L) −→ Z

to be the group homomorphism induced by taking each symmetric space [V, ψ] to the

dimension of V as an F -vector space.

Note the abuse of notation that the symbol “rk” also denotes the rank map of Defini-

tion 1.2.9. Hopefully this will not lead to any confusion, even in the below cartesian

square

GW (F,L) W (F,L)

KM
0 (F ) Z/2Z

s0

rkrk

which allows us to identify J0(F,L) with GW (F,L) - as we do in the soon to come

diagram which concludes this section. A glaring difference between the Witt complex

of Definition 1.2.8 and the Gersten complex for Milnor K-theory is that the Witt

groups do not come with any grading. The following result claimed in [13] allows us to

extract graded subcomplexes from the Witt complex.

Proposition 1.2.14. For any scheme X of finite type over a perfect field k with

char(k) 6= 2, the degree r boundary map

drC(X,W,Ω) :
⊕
x∈Xr

W
(
κ(x),Ωtop

κ(x)/k

)
−→

⊕
x∈Xr+1

W
(
κ(x),Ωtop

κ(x)/k

)
of the Witt complex with Ω twisting restricts for any integer m to a morphism⊕

x∈Xr

Im
(
κ(x),Ωtop

κ(x)/k

)
−→

⊕
x∈Xr+1

Im−1
(
κ(x),Ωtop

κ(x)/k

)
Definition 1.2.15. Let X be a scheme as in the above proposition. Then for each

integer n ∈ Z we denote by C∗(X, In,Ω) the filtered Witt complex with Ω twisting

which is defined to be the subcomplex of C∗(X,W,Ω) which in degree r is given by

C∗(X, In,Ω)r =
⊕
x∈Xr

In−r
(
x,Ωtop

κ(x)/k

)
Further we denote by C∗(X, jn,Ω) the quotient complex C∗(X, In,Ω)/C∗(X, In+1,Ω).
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We below give the original definition of the Chow-Witt group from [13]. First, we

remark that the canonical quotient and Pfister form maps of the diagram (∗) assemble

to form morphisms of complexes

C∗
(
X,KM

n

)
C∗(X, jn,Ω)

C∗(X, In,Ω)

We denote by C∗(X, Jn,Ω) the complex obtained as the limit of the diagram above - in

particular for any field F and one-dimensional F -vector space L we pick up the notation

Jn(F,L) = KM
n (F )×jn(F ) I

n(F,L). Then the first definition of the Chow-Witt group

given in [13] is as below.

Definition 1.2.16. Let X be a smooth scheme of finite type over some perfect ground

field of characteristic different from 2. The Chow-Witt group of codimension n

cycles on X is then defined to be the cohomology group Hn(C∗(X, Jn,Ω), and is

denoted C̃Hn(X).

Note that the morphism of complexes C∗(X, Jn,Ω) → C∗
(
X,KM

n

)
induces a natural

map C̃Hn(X) → CHn(X). Below we’ve given a picture of the complex C∗(X, Jn,Ω)

around degree n in which, for the sake of simplicity, we have omitted the local twists

Ωκ(x)/k. The string of triangles and horizontal bracket are the artist’s depiction of

cohomology being taken.

⊕
x∈Xn KM

0 (x)

⊕
x∈Xn GW (x)

⊕
x∈XnW (x)

⊕
x∈Xn Z/2Z

0

⊕
x∈Xn+1 W (x)

⊕
x∈Xn+1 W (x)

0

⊕
x∈Xn−1 KM

1 (x)

⊕
x∈Xn−1 J1(x)

⊕
x∈Xn−1 I(x)

⊕
x∈Xn−1 j1(x)

C̃Hn(X)

We conclude our background by remarking upon a few of the further developments

and related constructions available which are important enough that they should be

mentioned even though we shan’t pursue these ideas further. A basic point to pick

up on is that the groups J∗(F ) are given explicit presentations in [27] in terms of the

Milnor-Witt K-theory of F - which is further developed in [9].

Definition 1.2.17. For any field F , we define the Milnor-Witt K-theory of F to

be the Z-graded ring KMW
∗ (F ) generated by, for each a ∈ F ∗ a symbol [a] in degree 1,

and one symbol η in degree −1, subject to the relations
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1. For each a ∈ F ∗ not equal to 1, we have [a][1− a] = 0.

2. For each pair a, b ∈ F ∗ we have [ab] = [a] + [b] + η[a][b].

3. The generator η lies in the center of KMW
∗ (F ).

4. After writing h = η[−1] + 2, we set ηh = 0.

Proposition 1.2.18. If char(F ) 6= 2 then the graded ring map

KMW
∗ (F ) −→ J∗(F )

defined by sending, for each u ∈ F ∗

[u] 7→
(
{u},−〈〈u〉〉

)
∈ KM

1 (F )×j1(F ) I(F )

and η to 〈1〉 ∈W (F ) = J−1(F ) is an isomorphism.

Proof. This is [27, Thm 5.3].

Morel constructs [9, Ch.5] for smooth X a Rost-Schmid complex by combining Rost’s

construction of a complex for Milnor K-theory [11] with Schmid’s twisting arguments

of [7]. The Chow-Witt groups can be defined using this complex instead [9, Thm 5.47]

- which further reobtains a version of Bloch’s formula

C̃Hn(X) ∼= Hn
(
X,KMW

n

)
(∗)

for smooth X, where KMW
n Morel’s unramified Milnor-Witt K-theory sheaf.

The motivation of the original paper [13] was to define for smooth affine n-dimensional

varieties X (of finite type over a field) and oriented rank n vector bundle E on X an

Euler class e(E) ∈ C̃Hn(X) which should vanish precisely when E has a nowhere van-

ishing global section. This conjecture is verified in loc. cit. when X is 2-dimensional

and has since been established in many other cases. If n ≥ 4 then Morel constructs an

Euler class

e(E) ∈ Hn
Nis

(
X,KMW

n

)
and proves [9, Thm 8.14] that it is a suitable obstruction to E having a trivial factor.

Note that there is no assumption that 2 be invertible here - Morel remarks that when

2 is invertible then via the version of Bloch’s formula (∗) above, his Euler class agrees

with that of [13]. If 2 is invertible then Fasel and V.Srinivas establish the case n = 3

in [28] - which finally gives an affirmative answer to the conjecture of [13]. Finally,

Schlichting [29, Thm 6.18] extends Morel’s result to the case when n ≥ 2 and X is only

supposed to be the spectrum of a Noetherian ring with infinite residue fields - there’s

no regularity assumption and X need not be defined over a field.
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In the case when X is not even regular, the groups Hn
(
X,KMW

n

)
in which the Euler

classes of [29] live are not the Chow-Witt groups of X - but the reader will hopefully

anyway feel well-motivated to study these groups and also be disappointed to learn

that in this thesis we do not at all investigate any further geometric applications they

may have. We only aim to give the Chow-Witt groups a new, and ideally simpler, defi-

nition - most of which focusses on building appropriate analogs to the residue maps for

Milnor-Witt K-theory found in [9], as well as those of Definitions 1.1.15 and 1.2.4.

All of these maps are defined in terms of some presentation; part of the reason we move

away from Milnor-Witt K-theory is that we prefer to work directly with symmetric

spaces - this is perhaps why we are more naturally able to compare our residue maps

with those of Balmer [5].
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Chapter 2

Grothendieck-Witt groups &

Residual Complexes

We set out here some results, terminologies and non-standard notations concerning how

we extract from residual complexes local twisting spaces which replace the Ω-twisting

of Definition 1.2.8. Spaces with symmetric structure with respect to the dualities

induced by these residual complexes are stuided in the Grothendieck-Witt groups -

which we define in two situations; firstly in the setting of exact categories with weak

equivalences [30] (though we don’t require the higher Grothendieck-Witt groups found

therein) and secondly in the derived/triangular setting of [5]. The former is all we

technically require to define second residue maps but we appeal to the latter to show

that when 2 is invertible these second residue maps assemble to form a chain complex.

2.1 Residual Complexes in Grothendieck Duality

The main mathematical structure we exploit in this work is that of residual complexes,

which as the reader will see neatly package together sufficient data to construct Witt

complexes as in Definition 1.2.8. They arise as minimal injective resolutions of du-

alising complexes and play a central role in the original constructive approach to the

exceptional inverse image pseudofunctor found in [6]. Despite the more polished real-

isations of this functor available at the time of writing, from the greatly detailed [31]

to the non-constructive abstract approach in [32], our main reference for the subject

of Grothendieck duality remains [6] as it deals in a very hands on way with residual

complexes. Since the only thing we will in the later chapters require of our schemes

is that they have residual complexes, we begin this section with a sketch of how they

arise in Grothendieck duality.
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2.1.1 Symmetric monoidal structure on Chb(X)

For any scheme X we denote by Chb(X) the category of bounded cochain complexes

of quasi-coherent OX -modules. If F ∈ QCohX then we denote by F [0] the chain

complex which is F in degree zero and 0 elsewhere. We adopt the usual notation

Zi(F ) := ker(diF ) and Bi(F ) = im(dFi+1) for the cycles and boundaries of a chain

complex. The tensor product and internal hom give Chb(X) the structure of a closed

symmetric monoidal category - the most delicate point being the choice of signs in the

boundary maps in each of these chain complexes. Different choices for these signs are

possible; the main motivation behind what we set out here is that our internal hom and

translation agree with those of Balmer [1, 5] and Gille [2]. Such a collection of signs is

detailed in [33] which we adopt.

Definition 2.1.1. For a scheme X, we define the internal-hom functor

[−,−]X : Chb(X)op × Chb(X) −→ Chb(X)

by setting for each pair A,B ∈ Chb(X)

[A,B]n =
∏
s∈Z

[As, Bn+s]OX

where each [As, Bn+s]OX denotes the sheaf-hom HomOX (As, Bn+s), having the bound-

ary maps

dn[A,B]X

(
f(s)

)
s∈Z =

(
f(s+1)d

s
A − (−1)ndn+s

B f(s)

)
s∈Z

for each collection f(s) : As → Bn+s of morphisms of OX -modules. Given sufficient

space, we will also write HomX(A,B) for the internal hom [A,B]X .

We define the tensor product to be the functor

(−)⊗X (−) : Chb(X)× Chb(X) −→ Chb(X)

by setting (
A⊗X B

)n
=
⊕
i+j=n

Ai ⊗OX B
j

where each Ai⊗OXBj denotes the ordinary tensor product of OX -modules, with bound-

ary map defined by

dnA⊗XB(a⊗ b) = diA(a)⊗ b+ (−1)ia⊗ djB(b)

whenever a ∈ Ai and b ∈ Bj with i + j = n. The functorial nature of [−,−]X and

(−)⊗X (−) is defined in the natural way without any intervention of signs.

It is worth highlighting notation we intend to stick to - if f ∈ [A,B]n then we write
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f(s) : As → Bn+s for the sth component of f . For transparency we remark that the

definition of the boundary maps of the tensor product has been made in terms of the

presheaf tensor product which of course uniquely defines the actual boundary map on

the level of sheaves. When checking the commutativity of some diagrams involving these

tensor products it suffices to consider the maps on the level of these presheaves. With

these boundary maps, the associativity of tensor product transformation is defined to

be the natural isomorphism

ass(A,B,C) : (A⊗X B)⊗X C −→ A⊗X (B ⊗X C)

given in the natural way without any intervention of signs. The switch map however is

the natural isomorphism

swA,B : A⊗X B → B ⊗X A defined by swi+j
A,B(ai ⊗ bj) = (−1)ij bj ⊗ ai

for each pair ai ∈ Ai, bj ∈ Bj . The identity object for the tensor product is the

structure sheaf of X concentrated in degree zero, for which we write 1X = OX [0]. The

natural isomorphisms 1X ⊗X A→ A and A⊗X 1X → A are defined without any signs.

Unfortunately, our boundary maps of the internal-hom has forced our evaluation and

coevaluation maps to involve some rather awkward signs; for any A,B ∈ Chb(X), we

write

evA,B : [A,B]X ⊗X A −→ B

for the evaluation map defined by

fs ⊗ at 7→ (−1)s(s+1)/2f s(t)(a
t)

for each pair fs ∈ [A,B]s and at ∈ At. Finally we write

∇A,B : A −→ [B,A⊗X B]X

for the coevaluation map defined by

∇nA,B(a)(t)(b) = (−1)n(n+1)/2a⊗ b

for each a ∈ An, t ∈ Z and b ∈ Bt. With the maps defined so far we have given Chb(X)

the structure of a closed symmetric monoidal category in the sense of [34]. In particular

we obtain the tensor-hom andjunction map

adjA,B,C : HomChb(X) (A⊗X B,C) −→ HomChb(X) (A, [B,C])

defined by setting for β : A ⊗X B → C the chain complex map adjA,B,C(β) : A →
[B,C]X to be the composition
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A [B,A⊗X B] [B,C]X
∇A,B [id, β]

Explicitly then, the adjunction has the following signs.

Definition 2.1.2. For any A,B,C ∈ Chb(X) and β : A⊗X B → C we write β̂ : A→
[B,C]X for the adjoint map which is given by the formula

β̂n(a)(s)(−) = (−1)
n(n+1)

2 βn+s(a⊗ (−))

Similarly, for ψ : A→ [B,C]X the map adj−1
A,B,C(ψ) is defined to be the composite

A⊗X B
ψ⊗id−→ [B,C]X ⊗X B

evB,C−→ C

which we again write out explicitly.

Definition 2.1.3. For any chain complex map ψ : A → [B,C]X , we write βψ : A ⊗X
B → C for the adjoint map, which is given in degree i+ j by

βψ(a⊗ b) = (−1)
i(i+1)

2 ψi(a)(j)(b)

for each pair a ∈ Ai and b ∈ Bj .

We also obtain the signs for later double dual identifications by studying the composite

A
[
[A,B], A⊗ [A,B]

]

[
[A,B], [A,B]⊗A

]
[[A,B], B]

∇A,[A,B]

[
id, swA,[A,B]

]
[id, evA,B]

ηA,B

from which we initially obtain the following signs

ηnA,B(a)(s)(f) = (−1)
1
2

(n(n+1)+s(s+1))+nsf(n)(a)

for each a ∈ An and f ∈ [A,B]s. A quick computation reveals that these signs agree

with those given in [2] which we write out below.

Definition 2.1.4. For any pair A,B ∈ Chb(X) we write

ηA,B : A −→
[
[A,B], B

]
for the transformation given by

ηnA,B(a)(s)(f) = (−1)
(n+s)(n+s+1)

2 f(n)(a)

for each a ∈ An and f ∈ [A,B]s.
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Definition 2.1.5. For any F ∈ Chb(X) we write F [1] for the shifted complex with

boundary maps dnF [1] = −dn+1
F . If f : A → B is a morphism of chain complexes then

we define its cone to be the chain complex cone(f) ∈ Chb(X) given in degree n by

An+1 ⊕Bn with boundary maps(
−dn+1

A 0

fn+1 dnB

)
: An+1 ⊕Bn −→ An+2 ⊕Bn+1

2.1.2 Dualising and Residual complexes

We write D(X) for the derived category of Ch(X) - the additional decorations on this

notation we will use can be described as follows; superscripts refer to some bounded-

ness condition on the complexes involved while subscripts enforce conditions on their

cohomology groups. For example D+(X) is the full subcategory of D(x) consisting of

those complexes F ∈ D(X) for which there exists some N ∈ Z such that Fn = 0 for

all n < N . We denote by Db
Coh(X) the full subcategory of those F ∈ D(X) which

are bounded chain complexes whose cohomology groups are coherent. For a complex

ω ∈ D+
Coh(X) of finite injective dimension the derived functor

R HomX(−,ω) : D(X)op −→ D(X)

of HomX(−,ω) interchanges D+
Coh(X) and D−Coh(X), and takes Db

Coh(X) to itself [6,

Ch.II Prop.3.3]. We denote by #ω the restriction

#ω = R HomX(−,ω) : DCoh(X)op −→ DCoh(X)

After taking some quasi-isomorphism ω → I of ω into a bounded complex I of in-

jective OX -modules we may, adopting the signs of Definition 2.1.4, define a natural

transformation ηω : idDCoh(X) → (#ω)2 by associating to each F ∈ DCoh(X) the map

of chain complexes

ηω(F ) : F −→ R HomX(R HomX(F,ω),ω)

which is given in degree n by

(ηω(F ))n : Fn −→
∏
s,t∈Z

HomOX (HomOX (F s, Is+t), It+n)

to be (−1)
(n+t)(n+t+1)

2 times the evaluation morphism if s = n and zero otherwise.

Definition 2.1.6. A complex ω ∈ D+
Coh(X) of finite injective dimension is called

a dualising complex for X if the transformation ηω described above is a natural

isomorphism. We say ω ∈ D+
Coh(ModA) is a dualising complex for a ring A if it is a

dualising complex for Spec(A).
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To establish that a complexω ∈ D+
Coh(X) is dualising it suffices to check that ηω(OX [0])

is an isomorphism in D(X) [6, Ch.V Prop. 2.1].

Example 2.1.7.

1. If F is a field, then F [0] is a dualising complex for F .

2. If X is regular, then OX [0] is a dualising complex on X, see [6, Ch.V, 2.2].

3. If f : X → Y is finite type and ω is a dualising complex on Y , then there is a

dualising complex f !(ω) on X.

The Ideal Theorem of the introduction to [6] aspires to define a functor f ! : D+
Coh(Y )→

D+
Coh(X) (sometimes called the exceptional inverse image) for any finite type map

f : X → Y between general schemes in a manner behaving well with respect to com-

positions of morphisms. If f is further assumed to be proper, then f ! should be right

adjoint to the pushforward Rf∗ : D+(X) → D+(Y ). In this case the counit of the

adjunction is called the trace map and written

trf : (Rf∗)f
! −→ idD+

Coh(Y )

This Ideal Theorem is established in [6] for schemes which admit dualising complexes.

The definition of f ! in this case is to first construct for each dualising complex ω

over Y a dualising complex f !(ω) on X, as alluded to in the third item of the above

example, and then f ! is given for more general complexes as a twist of the pullback

Lf∗ : D−Coh(Y )→ D−Coh(X) by the dualities #ω and #f !(ω) - explicitly the definition is

f ! = R HomX

(
(Lf∗)R HomY (−,ω), f !(ω)

)
Given suitable conditions on f the exceptional inverse image often has, and for more

general morphisms is built from, easier descriptions (see point (a) of the Ideal Theorem).

For example we have the following definition [6, Ch.III §2].

Definition 2.1.8. If f : X → Y is a smooth morphism of relative dimension n, then

we define f ! : D(Y )→ D(X) to be

f !(−) = f∗(−)⊗X
(

Ωtop
X/Y

)
[n]

where ΩX/Y is the module of cotangent vectors of X over Y , and Ωtop
X/Y is its highest

non-zero exterior power.

Example 2.1.9.

1. For an open embedding i : U ↪→ X we hence have that i! is the usual restriction

i∗ to the open subset U .
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2. When working in the category Smk of smooth schemes over some field k, it

becomes natural to use canonical line bundles as dualising complexes since for

a smooth n-dimensional variety f : X → Spec(k) we have f !(k[0]) = Ωtop
X/k[n].

This should essentially give the connection between our Witt complex in the next

chapter and that of Definition 1.2.8.

The property of being a dualising complex is preserved (and may be checked) by local-

isation to the points of a scheme.

Lemma 2.1.10. For a scheme X, we have that a complex C ∈ D+
Coh(X) of finite

injective dimension is a dualising complex for X if and only if for each point x ∈ X
the localisation Cx ∈ D+

Coh(Spec(OX,x)) is a dualising complex for the local ring OX,x.

Proof. This is Corollary 2.3 of Chapter V in [6], which uses results from Chapters I

and II to first establish that each Cx is also of finite injective dimension, so that the

result then follows by observing that ηC(OX [0]) is an isomorphism if and only if it is

locally.

For closed embeddings, the exceptional inverse image is defined as follows [6, Ch.III

§6].

Definition 2.1.11. Let j : Z ↪→ X be a closed embedding. Then we define j! :

D+
Coh(X)→ D+

Coh(Z) to be

j!(−) = R HomX(j∗OZ [0],−)

In the above definition we are viewing HomX(j∗OZ [0],−) as a functor Ch+
Coh(X) →

Ch+
Coh(Z) and then deriving it to obtain j!. In this case the pushforward j∗ : ModOZ →

ModOX is exact and we have that the composition j∗j
! is given by the usual R HomX(j∗OZ [0],−)

viewed as the right derived functor of HomX(j∗OZ [0],−) : Ch+
Coh(X) → Ch+

Coh(X).

Continuing from our signs for the evaluation map of the previous subsection, we hence

describe the trace map as below.

Definition 2.1.12. Let j : Z ↪→ X be a closed embedding. Then the trace map

trj : j∗j
! −→ idD+

Coh(X)

is defined to be the transformation which on a bounded below complex I of injectives

is given in degree d to be (−1)d(d+1)/2 times the “evaluation at one” morphism

trj(I)d : HomX(j∗OZ [0], I)d = HomOX (j∗OZ , Id)
ψ 7→(−1)d(d+1)/2ψ(1)

−−−−−−−→ Id

Precisely, over an open set U we send the sheaf morphism ψ : j∗OZ |U → Id|U to

(−1)d(d+1)/2ψ(U)(1).
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So for a point z ∈ X whose closure is the subvariety j : Z ↪→ X, a combination of j!

and localisation to z allows us to extract from a global dualising complex ω on X a

dualising complex over the point Spec(κ(z)).

Theorem 2.1.13. Let X be a connected scheme and ω ∈ D+
Coh(X) be a dualising

complex for X and C ∈ D+
Coh(X) be any other complex. Then C is dualising if and

only if there exists an invertible sheaf L and integer n ∈ Z such that C ∼= ω ⊗X L[n]

in D(X). Further the integer n is uniquely determined by the isomorphism classes of

ω and C - precisely we have L[n] ∼= R HomX(ω, C).

Proof. This is Theorem 3.1 in [6, Ch.V].

Since κ(z)[0] ∈ D+
Coh(Spec(κ(z))) is also a dualising complex over κ(z), if we denote

by πz,X : Spec(κ(z)) → Spec(OX,z) the embedding of the closed point, as is standard

in our notation, then by this uniqueness theorem there must exist some integer d such

that

π!
z,X(ωz) = R HomOX,z(κ(z),ωz) ∼= κ(z)[d]

in D(Spec(κ(z))), or in other words ExtiOX,z(κ(z),ωz) is a one-dimensional κ(z)-vector

space if i = −d and zero otherwise. In fact, this property characterises dualising

complexes over local rings [6, Ch.V Prop.3.4].

Proposition 2.1.14. Let (A,m, κ) be a local ring and C ∈ D+
Coh(Spec(A)). Then C

is a dualising complex for A if and only if there is an integer d such that

ExtiA(κ,C) ∼=

{
κ if i = d

0 otherwise

Definition 2.1.15. If ω is a dualising complex on X then we define a map µω :

X → Z on the points of X by sending each x ∈ X to the unique integer d such that

ExtdOX,x(κ(x),ωx) is non-zero. For a subvariety Z ↪→ X we will also write µω(Z) for

µω(ζZ ).

Up to notation, for a subvariety Z ↪→ X the coefficients of the cycle [Z] in our Chow-

Witt group C̃Hp(X,ω) are bilinear forms defined on finite dimensional κ(ζZ )-vector

spaces taking values in the one-dimensional κ(ζZ )-vector space Ext
µω(Z)
OX,Z (κ(ζZ ),ωζ

Z
).

The following proposition [6, Ch.V Prop.7.1] justifies calling µω the codimension

function of the dualising complex.

Proposition 2.1.16. Let x, y be points of a scheme X equipped with dualising complex

ω, and suppose that x is an immediate specialisation of y. Then

µω(x) = µω(y) + 1
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Since dualising complexes have finite injective dimension the codimension function of

any dualising complex takes only finitely many values, so from the above proposition

we learn that a scheme which admits a dualising complex must be finite dimensional

and caternary. In [6, Ch.V §7] the notion of a pointwise dualising complex is defined for

schemes with possibly infinite dimension - though again a codimension function defined

in the same way forces schemes with pointwise dualising complexes to be caternary.

Note that on each connected component of a scheme the codimension function of a

dualising complex differs from the usual codimension function by some integer.

Definition 2.1.17. A dualising complex ω on a scheme X is called normalised if

µω(x) = codim(x,X) for every point x ∈ X.

This terminology differs from that of [6] in which a dualising complex over a local

ring is called normalised when its codimension function is zero at the closed point.

The codimension function of a dualising complex ω affords some structural analysis on

injective resolutions of ω. In the proposition below, we give the result of taking such

a resolution, and trimming it down to a minimal form.

Definition 2.1.18. For a schemeX and point x ∈ X we define a functor Γx : ModOX →
ModOX,x by sending F ∈ModOX to the OX,x-submodule of Fx consisting of those germs

whose support is contained in the closed point {x} of Spec(OX,x). This functor is left

exact, and we write H i
x(−) : ModOX → ModOX,x for the cohomology groups of its

derived functor RΓx : D+(X)→ D+(ModOX,x).

We are using below the notation of Definition 1.1.13.

Proposition 2.1.19. Let ω be a dualising complex on X with codimension function

µ. Then there is a bounded chain complex E(ω) of quasicohernt injective OX-modules

E(ω) = · · · →
⊕
µ(x)=p

ιx(Hp
x(ω)) −→

⊕
µ(x)=p+1

ιx(Hp+1
x (ω))→ . . .

which is isomorphic to ω in D(X).

Proof. This is a combination of several results from Chapters IV and V of [6]. Since

it is ultimately the boundary maps of the complex E(ω) and local dualities arising

from Hp
x(ω) which define for example our generalised second residue homomorphism

for Witt groups, we’ll go into a little more detail.

Let Zp = {x ∈ X|µ(x) ≥ p}, so that if e is the minimum value of µ we have a

finite filtration

∅ ⊆ Ze+d ⊆ ... ⊆ Ze+1 ⊆ Ze = X

of the points of X, where d = dim(X). For an OX -module F , we write [6, Ch.III

Var.3] ΓZp(F ) for the OX -module which over an open set U consists of those sections
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of F (U) whose support is contained in some finite union of closures of points in Zp; i.e.

the sections whose support is of codimension at least p according to µ. Then we have

inclusions ΓZp+1(F ) ↪→ ΓZp(F ) and so can write

ΓZp/Zp+1(F ) := ΓZp(F )/ΓZp+1(F ) ∈ModOX

As in [6, Ch.III], the cohomology of the derived functor of ΓZp/Zp+1 is denotedH i
Zp/Zp+1 .

Now if ω→ I is an isomorphism in D(X) with I a bounded chain complex of injectives,

then we have a filtration

I = ΓZe(I) ⊇ ΓZe+1(I) ⊇ ... ⊇ ΓZe+d(I) ⊇ 0

of the chain complex I. To such a filtration, one may associate a spectral sequence [35,

5.4], which appears as Motif G in [6, Ch.III]. The zeroth page has

Ep,q0 =
ΓZp(I

p+q)

ΓZp+1(Ip+q)
= ΓZp/Zp+1(Ip+q)

dp,q0−→ ΓZp/Zp+1(Ip+q+1)

with the boundary maps dp,q0 being dp+qI restricted to the subquotient ΓZp/Zp+1(Ip+q).

So on the first page we have

Ep,q1 = Hp+q
Zp/Zp+1(ω)

dp,q1−→ Hp+q+1
Zp+1/Zp+2(ω)

where the boundary map dp,q1 is again dp+qI restricted to a subquotient of Ip+q. The

zeroth row of this page is called the Cousin complex ofω with respect to the filtration

Z• [6, Ch.III §3]. We write E(ω) for this complex

E(ω) = ...→ Hp
Zp/Zp+1(ω)

dp,01−→ Hp+1
Zp+1/Zp+2(ω)→ ...

Since the terms of E(ω) may be realised as subquotients of terms of an injective

resolution I of ω we have that E(ω) is a bounded complex. Proposition 7.3 of [6,

Ch.V] says in part that E(ω) is a complex of injectives, isomorphic in D(X) to E(ω).

Finally Motif F of [6, Ch.III] gives canonical functorial isomorphisms

Hp
Zp/Zp+1(ω)

'−→
⊕
µ(x)=p

ιx(Hp
x(ω))

The resolution E(ω) is also called a minimal dualising complex in the language of

[2]. Because of this minimality, the components H i
x(ω) of its terms manage to retain

some duality properties of ω - we will examine these at the end of this chapter.

Definition 2.1.20. For a ring A and A-module M an A-injective hull of M is an

injective A-module I for which there exists an embedding i : M ↪→ I which is essential
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- meaning that for any non-zero A-submodule N ≤ I we have i(M)∩N 6= 0. We denote

A-injective hulls of M by EA(M).

While any A-module admits injective hulls, they are only unique up to non-canonical

isomorphism - hence the notation EA(M) is descriptive rather than definitive.

Lemma 2.1.21. Let A be a Noetherian ring. Then

1. For any p ∈ Spec(A) the annhilator of any non-zero element e ∈ EA(A/p) is a

p-primary ideal in A.

2. For any p ∈ Spec(A) any element f ∈ A\p acts on EA(A/p) as an automorphism;

in other words EA(A/p) is already an Ap-module.

3. If ι : M → EA(M) is an injective hull of M and S ⊆ A a multiplicatively closed

subset in A then S−1ι : S−1M → S−1EA(M) is an S−1A-injective hull of S−1M .

Proof. For the first two statements see [36, Lem.3.2], the third is [37, Lem.3.2.5].

It is remarked [6, Ch.IV §3] that for complexes F which are isomorphic in D(X) to

their cousin complex E(F ), one does not in general have a unique or functorial choice

for these isomorphisms F ∼= E(F ). If F is a dualising complex however, then E(F ) is

a residual complex - for these complexes a functorial choice is possible.

Definition 2.1.22. A codimension function on a scheme X is a set map µ : X → Z
for which we have

µ(y) = µ(x) + 1

whenever y an immediate specialisation of x. A residual complex R on X is a

bounded complex of quasi-coherent injective OX -modules having coherent cohomology,

together with a codimension function µ such that whenever µ(x) = p we have that Rpx
is an OX,x-injective hull of κ(x). We further require that for each p ∈ Z the map

Rp −→
⊕
µ(x)=p

R(x)

induced by localisation, where eachR(x) denotes the quasi-coherentOX -module ιx(Rpx),

is an isomorphism. We write Res(X) for the subcategory of residual complexes in

Ch(X).

Definition 2.1.23. Let (X,R) be a scheme with residual complex, and x ∈ X be

a point with µ(x) = p. Then we write ρ(x,X) : R(x) ↪→ Rp for the embedding of

OX -modules which is the inclusion R(x) ↪→
⊕

µ(y)=pR(y) followed by the inverse to

the localisation isomorphism Rp →
⊕

µ(y)=pR(y).

Example 2.1.24. (Taken from [38]) Let D be a Dedekind domain with field of fractions

F . Then the complex
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F
⊕

m∈max(D) F/Dm0 0. . . . . .

concentrated in degrees 0 and 1 is a normalised residual complex for D.

It is clear that any translate of a residual complex is again a residual complex but with

a different codimension function. As in Definition 2.1.17, when the codimension

function µ of a residual complex R agrees with the actual codimension function - that

is we have for each point x ∈ X that µ(x) is the Krull dimension of OX,x - we call R a

normalised residual complex.

Definition 2.1.25. Let µ : X → Z be a codimension function. Then we write Xp
µ for

the set of points x ∈ X with µ(x) = p. We describe a subvariety Z ↪→ X as being of

µ-codimension p when its generic point lies in Xp
µ.

In our finite dimensional setting the relationship between residual and dualising com-

plexes set out in [39, Lem.3.2.1] is as follows.

Proposition 2.1.26. Let µ : X → Z be a codimension function. Denote by Q :

Ch(X)→ D(X) the localisation functor. Then

1. If R is a residual complex on X then Q(R) is a dualising complex on X.

2. If ω is a dualising complex on X then E(ω) is a residual complex on X.

In the situation where X admits a dualising complex, we obtain an equivalence of cat-

egories

Dualµ(X) Resµ(X)
E

Q

where Dualµ(X) denotes the subcategory of dualising complexes in D(X) whose asso-

ciated codimension function is µ, while Resµ(X) denotes the subcategory of residual

complexes in Ch(X) again having codimension function µ.

Since the maps in Res(X) are ordinary morphisms of chain complexes, global residual

complexes may be obtained by glueing together a collection of residual complexes given

locally on an open cover in the usual way. Hence by the above equivalence the same

is true for dualising complexes in the derived category. Knowing for a finite type map

f : X → Y that f ! carries Dual(Y ) into Dual(X) one obtains, in the notation of [6], a

functor fM : Res(Y ) → Res(X) via fM = Ef !Q. If the reader’s viewpoint is that f ! is

obtained via the constructive approach of loc. cit. then this is a bit backwards - f ! is

defined for dualising complexes by building fM first; though again, even locally on X

this requires in general some application of an injective resolution functor E. The point

we draw the reader’s attention to now is that in the situation of Definition 2.1.11 -
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that is when f is a finite map - one has that for R ∈ Res(Y ) that f !(R) defined as in

Proposition 2.1.28 naturally appears as a residual complex without any need to take

the injective resolution E(f !(R)).

Proposition 2.1.27. Let f : X → Y be a finite morphism and R a residual complex

on Y with codimension function µY . Then we define fM(R) by setting for each affine

open U = Spec(B) ⊆ Y with f−1(U) = Spec(A) the restriction of fM(R) to f−1(U) to

be the chain complex of A-modules

fM(R)A = HomB(A[0],RB) = [A[0],RB]U

with the obvious A-module structure. Then fM(R) ∈ Res(X) and the codimension

functions satisfy µX(x) = µY (f(x)).

We then have f∗f
M(R) ' [f∗OX ,R]Y so that we obtain the trace map with signs as

in Definition 2.1.12 which we reiterate below - this is also a building block of the

construction for the general trace map for residual complexes [6, Ch. VI, §4].

Definition 2.1.28. For a finite morphism f : X → Y and residual complex R ∈
Res(Y ), we write

trf (R) : f∗f
M(R) : f∗f

M(R) −→ R

for the morphism of chain complexes of OY -modules given over an open set U in degree

d by

trf (R)d : HomOY (f∗OX ,Rd)
ψ 7→(−1)

d(d+1)
2 ψU (1)

−−−−−−−→ Rd

Proposition 2.1.29. Let i : U → X be the localisation to a point, inclusion of an open

subset, or localisation map Spec(S−1A) → Spec(A) for some multiplicatively closed

subset S of A. Then for any residual complex R on X with codimension function µX we

have that i∗(R) is a residual complex on U with codimension function µ(u) = µX(i(u)).

Proof. These results follow immediately from Lemma 2.1.21.

Suppose that R is a (for simplicity normalised) residual complex on X. Then for each

point x ∈ Xp we have a residual complex

0→ R0
x −→ R1

x −→ ... −→ Rpx → 0

over the local ring OX,x. Each term decomposes

Rix ∼=
⊕

p∈Spec(OX,x)i

EOX,x (OX,x/p)

so on account of Proposition 2.1.27 we have that

HomOX,x
(
κ(x),Rix

) ∼= { 0 if i 6= p

κ(x) if i = p
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Recalling our standard notation πx,X : Spec(κ(x))→ Spec(OX,x) for the embedding of

the closed point, then we read from the above that πMX,x(Rx) is a complex concentrated

in degree p - and further that the degree p term is isomorphic to κ(x).

Definition 2.1.30. If R is a residual complex on a scheme X and x ∈ Xp
µ, then we

write x\(R) for the one-dimensional κ(x)-vector space

x\(R) = HomOX,x (κ(x),Rpx)

The embedding

x\(R) ↪→ Rpx

given by (−1)p(p+1)/2 times the evaluation at one morphism is a particular example of

the trace map of Grothendieck duality - c.f. Definition 2.1.28.

Lemma 2.1.31. Let X
f→ Y

g→ Z be a pair of closed embeddings and R ∈ Res(Z).

Then we have a canonical isomorphism

cf,g : fMgM(R)
'−→ (fg)M(R)

fitting into a commutative diagram

g∗f∗f
MgM(R) g∗g

M(R)

(gf)∗(gf)M(R) R

g∗ trf (gM(R))

(gf)∗cf,g trg(R)

trgf (R)

Proof. That there is an isomorphism between fMgM(R) and (gf)M(R) is clear - we only

mention that there are some signs forced upon it by those of the trace maps. Supposing

that X,Y and Z are the spectra of rings A,B and C respectively, we set

cf,g : HomB

(
A,HomC(B,R)

)
−→ HomC(A,R)

to be the chain map given in degree p by

cpf,g(ψ)(a) = (−1)p(p+1)/2ψ(a)(aB)

for each a ∈ A and ψ ∈ HomB

(
A,HomC(B,R)

)
.

2.2 Grothendieck-Witt groups

We define in this section Grothendieck-Witt groups in two settings - firstly for exact cat-

egories with weak equivalences and secondly we define the Witt groups of triangulated
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categories. Both situations can be thought of as generalisations of that of simply exact

categories with duality; but the latter requires some assumption that 2 be invertible.

In the triangular setting we only define Witt groups, though the Grothendieck-Witt

group can still be constructed in this setting - see [40].

2.2.1 Of exact categories with weak equivalences

Our main references for the Grothendieck-Witt groups of this section are [30, 41].

The latter we refer to for some properties of the Grothendieck-Witt groups of exact

categories, while we rely on the former to make the appropriate definition of these

groups given the structure below.

Definition 2.2.1. An exact category with weak equivalences (E , ω) consists of

an exact category E together with a collection ω of maps in E such that the following

properties hold.

1. The collection ω contains all identity morphisms and is closed under composition

and isomorphism.

2. If the composition A
s→ B

r→ A is the identity and s ∈ ω then r ∈ ω also.

3. If

A B

A′ B′

q

q′

is a pushout square with q ∈ ω, then q′ ∈ ω also. The dual statement - that

weak equivalences are closed under pullback along admissible epimorphisms is

also true.

4. If f, g are composable morphisms in E and any two of {f, g, fg} are in ω then so

is the third.

We use the arrow
∼−→ to denote weak equivalences in diagrams.

Example 2.2.2. Any exact category E may be viewed as an exact category with weak

equivalences by taking the weak equivalences to be the isomorphisms in E . If X is any

scheme then the category ChbCoh(X) is an exact category by virtue of its embedding

in Ch(X), in which the quasi-isomorphisms (chain maps inducing isomorphisms on

cohomology) form a collection of weak equivalences.

Definition 2.2.3. If (E , ω) and (E ′, ω′) are two exact categories with weak equivalences

then an additive functor F : E → E ′ is called exact when it takes exact sequences to

exact sequences and weak equivalences to weak equivalences.
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Definition 2.2.4. A duality on an exact category with weak equivalences (E , ω) is a

pair (∗, η) where ∗ : E → E is an exact contravariant functor and η : id→ ∗∗ a natural

weak equivalence. The quadruple (E , ω, ∗, η) is called an exact category with weak

equivalences and duality. When ω is the isomorphisms in E we omit it from the

quadruple and call (E , ∗, η) an exact category with duality.

Unless stated otherwise, from now on any quadruple with notation in similar spirit to

(E , ω, ∗, η) is an exact category with weak equivalences and duality as above.

Definition 2.2.5. A symmetric space in (E , ω, ∗, η) is a pair (P, φ) where P is an

object of E and φ : P
∼→ P ∗ a weak equivalence satisfying φ∗ηP = φ. We say two

symmetric spaces (P1, φ1) and (P2, φ2) are isometric and write (P1, φ1) ' (P2, φ2)

when there is a weak equivalence f : P1
∼−→ P2 for which f∗φ2f = φ1. The map f is

called an isometry between (P1, φ1) and (P2, φ2).

Definition 2.2.6. We define the Grothendieck-Witt group of (E , ω, ∗, η), written

GW (E , ω, ∗, η), to be the free abelian group on the isometry classes [P, φ] of symmetric

spaces in (E , ω, ∗, η) modulo the relations

1. For any pair of symmetric spaces (Pi, φi), we have [P1, φ1] + [P2, φ2] = [(P1, φ1) ⊥
(P2, φ2)].

2. For each admissible exact sequence P−1
α
� P0

β
� P1, weak equivalences φ−1, φ0

and φ1 fitting into a commutative diagram

P−1 P0 P1

P ∗1 P ∗0 P ∗−1

φ1φ0φ−1 ooo

α β

β∗ α∗

with (P0, φ0) a symmetric space, φ∗−1ηP1 = φ1 and φ∗1ηP−1 = φ−1, we have

[P0, φ0] =

[
P−1 ⊕ P1,

(
0 φ1

φ−1 0

)]

The definition of the Witt group W (E , ω, ∗, η) is the same, except that in relation (2.)

one sets

[P0, φ0] =

[
P−1 ⊕ P1,

(
0 φ1

φ−1 0

)]
= 0

Note that there is a quotient map GW (E , ω, ∗, η) � W (E , ω, ∗, η). It is established in

[41] that the below is enough structure with which to establish the functorial nature

for all higher Grothendieck-Witt groups.
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Definition 2.2.7. An exact form functor

(F,ψ) : (A, ω, ∗, α) −→ (B, ω, ∗, β)

consists of an exact functor F : (A, ω)→ (B, ω) together with a duality compatibility

morphism ψ : F∗ → ∗F such that for any A ∈ A the diagram

F (A) F (A)∗∗

F (A∗∗) F (A∗)∗

βF (A)

F (αA)

ψA∗

ψ∗A

commutes. The exact form functor is further called non-singular when ψ is a natural

weak equivalence.

Proposition 2.2.8. Any non-singular exact form functor

(F,ψ) : (A, ω, ∗, α) −→ (B, ω, ∗, β)

between exact categories with weak equivalences and duality induces group homomor-

phisms

(F,ψ)∗ : GW (A, ω, ∗, α) −→ GW (B, ω, ∗, β)

(F,ψ)∗ : W (A, ω, ∗, α) −→W (B, ω, ∗, β)

defined by setting

(F,ψ)∗ ([P, φ]) = [P,ψPF (φ)]

Most of our Grothendieck-Witt groups will be those of exact categories with duality -

i.e. the collection of weak equivalences will be simply the isomorphisms. In particular,

we adopt the following shorthand.

Notation 2.2.9. Let A be a ring and M ↪→ ModA some subcategory of A-modules

exact by virtue of its embedding into ModA. If E ∈ ModA is such that the func-

tor HomA(−, E) : M → M is well defined and the evaluation functor ev : id →
HomA(HomA(−, E), E) a natural isomorphism, then we write simply (M, E) for the

resulting exact category with duality.

Further, in this situation, symmetric spaces φ : P
∼=−→ HomA(P,E) may be identi-

fied with non-degenerate symmetric bilinear maps P ×P → E. For a symmetric space

(P,ψ) we write 〈·,·〉ψ for the bilinear form associated.
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When working in an exact category with duality, we make the following repetition of

Definition 1.2.2.

Definition 2.2.10. Let (P, φ) be a symmetric space in (E , ∗, η), and α : L � P be

an admissible monomorphism. Then we define the orthogonal to L in P to be the

admissible monomorphism L⊥ = ker(α∗φ)� P . Precisely, let L
α−→ P

β−→ P/L be an

exact sequence in E . Then φ−1β∗ : (P/L)∗ → P is a kernel of α∗φ.

Definition 2.2.11. Let (P, φ) be a symmetric space in (E , ∗, η). Then an admissible

monomorphism α : L � P is called a sublagrangian of (P, φ) when α∗φα = 0 and

the induced map L → L⊥ is an admissible monomorphism. We call α a Lagrangian

of (P, φ) when this induced monomorphism L� L⊥ is an isomorphism. We say that

(P, φ) is metabolic when it has a Lagrangian.

In an exact category with weak equivalences and duality (E , ω, ∗, η) one can recover

symmetric spaces from objects of E . The symmetric spaces obtained in this way are

called hyperbolic.

Definition 2.2.12. Let P be an object of E . Then the hyperbolic space associated

to P , denoted H(P ), is the symmetric space with underlying object P ⊕ P ∗ and form

given by

P ⊕ P ∗ P ∗ ⊕ P ∗∗

(
0 id

ηP 0

)

Note that in an exact category with duality any hyperbolic space H(P ) is metabolic

with a Lagrangian given by the first component P � P ⊕ P ∗. Further, a space (P, φ)

is metabolic if and only if the sequence

0→ L
α−→ P

α∗φ−→ L∗ → 0

is exact in E . These exact sequences play the role of the arbitrary exact sequences

of Definition 1.1.11 in the definition of the Grothendieck-Witt group of an exact

category with duality. Indeed, the defining relation of GW (E , ∗, η) in Definition 2.2.6

reads that for any metabolic space (P, φ) as above we have

[P, φ] = H(L) =

[
L⊕ L∗,

(
0 id

ηP 0

)]
which on underlying spaces reads as the defining relation of K0(E). To be clear we

have the following description of the Witt and Grothendieck-Witt groups of an exact

category with duality

Lemma 2.2.13. Let (E , ∗, η) be an exact category with duality. Then its Grothendieck-

Witt group can be identified with the Grothendieck group of the abelian monoid of isom-

etry classes [P,ψ] of symmetric spaces (P,ψ) ∈ Sym(E , ∗, η) modulo the subgroup of
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elements [M,φ] − [H(L)] for each metabolic space (M,φ) with Lagrangian L � M .

Similarly, its Witt group is the quotient of GW (E , ∗, η) by the subgroup generated by

the hyperbolic spaces.

The above redefinition is essentially that of [42, Ch.I §4], which establishes that if E is

the category of finitely generated modules over some ring, then the subgroup cut out by

the defining relations [M,φ]− [H(L)] is zero. We hence obtain in this case agreement

with Definition 1.2.2 and Definition 1.2.11. The following classical result is part

of [41, Lem.2.8], for example.

Proposition 2.2.14. (Sublagrangian reduction) Let (E , ∗, η) be an exact category with

duality, (P,ψ) ∈ Sym(E , ∗, η) with L� P a sublagrangian. Let q : L⊥ � L⊥/L denote

the quotient map. Then there is a unique form

ψ : L⊥/L
∼=−→
(
L⊥/L

)∗
with ψ|

L⊥
= q∗ψq. Further, in GW (E , ∗, η) we have the equation

[P,ψ] = [L⊥/L, ψ ] + [H(L)]

We will make such frequent use of the following non-singular exact form functor that

it is worth highlighting and giving special notation to now. Let f : A → B be a ring

map, and let MA ⊆ModA and MB ⊆ModB be a pair of full exact subcategories such

that the forgetful functor induced by f restricts to a forgetful functor F :MB →MA.

Suppose further that objects I ∈ ModA and J ∈ ModB give exact categories with

duality (MA, I) and (MB, J) and that we have an A-module map s : J → I which is

such that the induced postcomposition with s map s∗ : HomB(M,J)→ HomA(M, I) is

an isomorphism of A-modules for any M ∈MB. Then the pair (F, s∗) is a non-singular

exact form functor

(F, s∗) : (MB, J) −→ (MA, I)

so that we hence obtain the following transfer maps - sometimes referred to as Schar-

lau transfers in the literature.

Definition 2.2.15. In the situation just described, we denote by

s∗ : GW (MB, J)→ GW (MA, I)

s∗ : W (MB, J)→W (MA, I)

the group homomorphisms induced by the non-singular exact form functor (F, s∗).

Note that our notation doesn’t distinguish between the transfer for Grothendieck-Witt

groups and that for Witt groups - we hope it will be clear what is meant from context.

A further abuse of notation is that the symbol s∗ not only denotes both the group
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homomorphisms, but also the duality compatibility map HomB(M,J)→ HomA(M, I).

So we have for a symmetric space (P,ψ) in (MB, J)

s∗([P,ψ]) = [P, s∗ψ]

for both the Witt and Grothendieck-Witt groups.

2.2.2 Overview of derived Witt groups

The first published construction of Witt complexes for some class of schemes was made

by Balmer & Walter in [1] for regular schemes, and their argument was later repeated

to cover the singular case [2]. The strategy follows that of Quillen’s construction of

a Gersten sequence for K-theory; localisation sequences are developed for short exact

sequences of suitable categories and then repeatedly applied to a coniveau filtration of

an appropriate category. The categories in question are the bounded derived categories

of vector bundles in the regular case and of coherent sheaves in the singular case. A

generalisation of Witt groups to such triangular framework, including the localisation

sequence, is constructed in [5]. To define this localisation sequence Balmer requires

that the triangulated categories in question have uniquely 2-divisible hom-groups. In

the context of a derived category of a scheme X, the resulting restriction is that 1/2 ∈
Γ(X,OX). We begin our overview by recalling the definition of Balmer’s shifted Witt

groups of triangulated categories following [5] - from which we also obtain the following

quick recollection of the basic properties of triangulated categories.

Definition 2.2.16. A pre-triangulated category (K,T ) consists of an additive cat-

egory K together with an automorphism T : K → K called the translation functor

and a collection

A
u−→ B

v−→ C
w−→ T (A) (∗)

of triples of morphisms, called exact triangles, satisfying the following properties.

• (TR1) For any A ∈ K the sequence

A
idA−→ A −→ 0 −→ T (A)

is an exact triangle. For any morphism u : A→ B in K there exists some C ∈ K
and morphisms v, w such that

A
u−→ B

v−→ C
w−→ T (A)

is an exact triangle.

• (TR2) A sequence as in (∗) is an exact triangle if and only if the sequence
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B
v−→ C

w−→ T (A)
−T (u)−→ T (B)

is an exact triangle.

• (TR3) For any diagram

A B C T (A)

D E F T (D)

u v w

u′ v′ w′

f g T (f)

in which both rows are exact triangles and the left square commutes, there exists

a morphism h : C → F filling in the dotted line making the whole diagram

commute.

We stress that the morphism h in the above definition is not uniquely determined. The

property of triangulated categories most important for us already holds on the level of

pre-triangulated categories.

Lemma 2.2.17. Let (K,T ) be a triangulated category and

A B C T (A)

D E F T (D)

u v w

u′ v′ w′

f g h T (f)

be a commutative diagram with both rows exact triangles. Then if any two of f, g and

h are isomorphisms, so is the third.

An important implication is that the object C appearing in any extension of the mor-

phism u : A → B to an exact triangle as in (TR1) is unique up to non-canonical

isomorphism. Such an object C is usually referred to as the cone of u, and the only

property that a triangulated category requires over those of a pre-triangulated cate-

gory is the octahedral axiom which captures how cones should behave over compositions

of morphisms. Balmer further requires triangulated categories to adhere to an enriched

version of this axiom in order to construct a triangular analogue of sublagrangians

which are used in establishing that the localisation sequence really is exact. Since our

overview won’t go into these details we don’t repeat these axioms here - if necessary

the reader can find them as (TR4) and (TR4+) of [5, §0]. Whenever we talk about

a triangulated category we assume it satisfies both the octahedral axiom and its

enhancement; certainly every example of a triangulated category we want to use does.
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Definition 2.2.18. Let (K1, T1) and (K2, T2) be two triangulated categories. Then

a triangulated functor (F, c) : (K1, T1) → (K2, T2) consists of an additive functor

F : K1 → K2 together witha natural isomorphism c : FT1 → T2F such that for any

exact triangle

A
u−→ B

v−→ C
w−→ T (A)

in K1, the sequence

F (A)
F (u)−→ F (B)

F (v)−→ F (C)
cAF (w)−→ T (F (A))

is an exact triangle in K2.

Definition 2.2.19. For a triangulated category (K,T ) and δ = ±1, an additive functor

# : Kop → K is said to be δ-exact if T#T = # and for any exact triangle

A
u−→ B

v−→ C
w−→ T (A)

the sequence

C# v#−→ B# u#−→ A# δT (w#)−→ T (C#)

is again an exact triangle. If ω : idK → ## is a natural isomorphism such that

ωT (M) = T (ωM ) and (ωM )# ◦ ωM# = idM# for any M ∈ K then we call the quadruple

(K,#, δ, ω) a triangulated category with δ-duality.

If the δ being used is in some way clear from context we omit it from the terminology

and refer to simply a triangulated category with duality. The above is the structure on

which the 0th derived Witt groups is defined; a sequence of Witt groups behaving in

some ways like a cohomology theory is obtained by taking the 0th derived Witt group

of the same triangulated category but with a shifted duality attached.

Definition 2.2.20. Let (K,#, δ, ω) be a triangulated category with duality. Then we

define

#n = Tn#, δn = (−1)nδ, ωn = (−1)
n(n+1)

2 δnω

for which the quadruple (K,#n, δn, ωn) is a triangulated category with δn-duality. The

triple (#n, δn, ωn) is called the nth-shifted duality of (#, δ, ω).

Definition 2.2.21. Let (K,#, δ, ω) be a triangulated category with duality. Then a

morphism u : A → A# is called symmetric when u = u#ω. A symmetric space

(P,ψ) consists of an object P ∈ K together with a symmetric isomorphism ψ : P → P#

which is as usual called the symmetric form on P .

An isometry of symmetric spaces is defined in the usual way; it is simply an isomorphism

inK commuting with the symmetric forms. Orthogonal sums are again defined as usual.
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Definition 2.2.22. For any additive category C we write 1/2 ∈ C to mean that for

any A,B ∈ C the group HomC(A,B) is uniquely 2 divisible; precisely this means that

for any f ∈ HomC(A,B) there exists a unique g ∈ HomC(A,B) such that f = g + g.

The below is [5, Thm 1.6] and plays a central role not only in the definition of triangular

Witt groups themselves but also in the definition of the connecting homomorphism in

the localisation sequence attached to short exact sequences of triangulated categories.

Proposition 2.2.23. Let (K,#, δ, ω) be a triangulated category with duality and sup-

pose that 1/2 ∈ K. Then for any morphism u : A→ A#n−1 symmetric with respect to

the (n − 1)st-shifted duality there exists an isomorphism ψ fitting into a commutative

diagram

A A#n−1 C T (A)

A#n−1#n−1 A#n−1 C#n T (A#n−1#n−1)

u v w

δn−1ωn−1 id ψ δn−1T (ωn−1)

δn−1u
#n−1 −w#n v#n

in which both rows are exact triangles, and further (C,ψ) is a symmetric space with

respect to the nth-shifted duality. The space (C,ψ) is uniquely determined by u up to

isometry.

Definition 2.2.24. Let (K,#, δ, ω) be a triangulated category with duality and u :

A→ A#n−1 a morphism symmetric with respect to the (n− 1)st-shifted duality. Then

we define the cone of u to be the symmetric space

cone(u) = (C,ψ)

appearing in the above proposition.

These cones play the role of metabolic spaces in the definition of triangular Witt groups.

Precisely, we call two spaces (P,ψ1) and (P2, ψ2) symmetric with respect to the nth-

shifted duality Witt-equivalent when there exists morphisms u1 and u2 symmetric with

respect to the (n− 1)st-shifted duality and an isometry

(P1, ψ1) ⊥ cone(u1) ' (P2, ψ2) ⊥ cone(u2)

Definition 2.2.25. Let (K,#, δ, ω) be a triangulated category with duality. Then we

define its nth-shifted Witt group, written Wn(K,#, δ, ω) to be the group of Witt

equivalence classes [P,ψ] of spaces symmetric with respect to the nth-shifted duality

under orthogonal sum.

Below we give framework, analogous to Definition 2.2.7 and taken from [43], on which

functorial properties of these triangular Witt groups can be defined.
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Definition 2.2.26. For i = 1, 2 let (Ki,#i, δi, ωi) be a triangulated category with

duality. Then a duality preserving functor

(F, τ) : (K1,#1, δ1, ω1) −→ (K2,#2, δ2, ω2)

consists of a covariant triangulated functor F : K1 → K2 together with a natural

isomorphism

τ : F#1
'−→ #2F

such that for any A ∈ K1 we have the following.

1. The commutative diagram

F (A) F (A#1#1)

F (A)#2#2 F (A#1)#2

F (ω1(A))

ω2(F (A))

τ(A)#2

τ(A#1)

2. The identity T−1
2 τ(A) = δ1δ2ω(T1(A)) in which T1 and T2 denote the translation

functors of K1 and K2 respectively.

That these functors induce homomorphisms on all the shifted Witt groups associated

to these triangulated categories with duality is established by [43, Thm 2.7] - which

gives us the result below. Note that as in loc. cit. our notation for the induced map

on Witt groups suppresses the shift and duality compatibility transformation.

Proposition 2.2.27. Let

(F, τ) : (K1,#1, δ1, ω1) −→ (K2,#2, δ2, ω2)

be a duality preserving functor between triangulated categories with duality. Then we

obtain group homomorphisms

F∗ : W i(K1,#1, δ1, ω1) −→W i(K2,#2, δ2, ω2)

by setting F∗([A,ψ]) = [F (A), τ(A) ◦F (ψ)]. If F is further an equivalence of categories

then each F∗ is an isomorphism.

To understand these triangular Witt groups as a generalisation of the ordinary Witt

groups of exact categories, we ideally would like an isomorphism between the Witt

groups of an exact category with duality (E , ∗, η) and one of the Witt groups of a re-

lated triangulated category. This is established in [44] under the assumption that E
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be semi-saturated ; meaning that any morphism in E which admits a right inverse is

an admissible epimorphism. It is remarked upon in the outset of [1] that the result of

[44] in fact holds for any exact category - which while being a greater generality than

we actually need, this does make for a simpler statement of the isomorphism between

usual and derived Witt groups.

Following [44], we observe that for an exact category with duality (E , ∗, η) we obtain

an exact category with duality
(
Chb(E),#, ω

)
when for each A ∈ Chb(E) we set

(A#)n = (A−n)∗ with boundary maps dnA# =
(
d−n−1
A

)∗
and the double dual identification to be ωnA = ηAn in degree n. Being exact functors

these localise immediately to the derived category Db(E) which is the usual localisation

of Chb(E) by the collection of quasi-isomorphisms. The category Db(E) obtains the

structure of a triangulated category with duality in terms of the “ordinary” cones of

chain complex morphisms as those described in Definition 2.1.5, see [31, Ex.1.4.4]

for example. Briefly, we define a translation functor T : Chb(E) → Chb(E) by setting

T (A) = A[1] to be the chain complex with dnT (A) = −dn+1
A for boundary maps - this

functor immediately localises to Db(E). Then the cone of any chain complex morphism

f : A→ B extends canonically to a diagram

A
f→ B ↪→ cone(f)� T (A)

and the triangulation of Db(E) is defined by taking the exact triangles to be any diagram

in Db(E) isomorphic to the image of the sequence above for some morphism f of chain

complexes. We hence obtain from (E , ∗η) a triangulated category (Db(E),#, 1, ω) with

1-exact duality; its Witt group is related to the ordinary Witt group W (E , ∗, η) by the

below proposition - which is the main result of [44].

Proposition 2.2.28. Let (E , ∗, η) be an exact category with duality and suppose that

1/2 ∈ E. Then the functor

c0 : E −→ Db(E), E 7→ E[0]

which concentrates E in degree zero induces an isomorphism

c0∗ : W (E , ∗, η) −→W 0(Db(E),#, 1, ω)

on Witt groups. Precisely, an isometry class of ψ : P → P ∗ is sent to the Witt

equivalence class of c0(ψ) : P [0]→ P [0]# = P ∗[0], where c0(ψ) is simply the morphism

ψ concentrated in degree zero.

Let us now set up the context in which we can consider a localisation sequence, following

the notation of [1]. Suppose that C is a triangulated category and D a strictly full
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triangulated subcategory. Then we call D saturated in C when it is closed under direct

summands. We write C/D for the triangulated category obtained as the localisation

of C by the class S(D) of those morphisms in C that have their cone in D. Our

reference for these localisations is [45] - briefly C/D may be constructed via a calculus

of fractions; its objects are the same as those of C and the morphisms MorC/D(X,Y )

are the equivalence classes, as described in Definition 2.1.11 of loc. cit., of diagrams

X
u←− Z f−→ Y

with u ∈ S(D). We have the localisation functor q : C→ C/D which is the identity on

objects and takes f ∈ MorC(X,Y ) to X
id←− X

f−→ Y . We give C/D a triangulation

by setting the exact triangles to be the sequences which are isomorphic to the image

under q of some exact triangle in C. The functor q : C → C/D is then initial among

all triangulated functors carrying morphisms in S(D) to isomorphisms.

Definition 2.2.29. By a short exact sequence of triangulated categories we

mean a sequence

D ↪→ C
q→ C/D

where D ↪→ C is a saturated strictly full triangulated subcategory of C and q is the

universal localisation functor.

The following terminology is taken from [5, Def.4.4].

Definition 2.2.30. Let (C,#, δ, ω) be a triangulated category with duality and D ⊆ C

be a triangulated subcategory. Then an S(D)-space in C is a pair (A, s) with s : A→
A# a symmetric morphism lying in S(D). Two S(D)-spaces (A1, s1) and (A2, s2) are

called isometric when there exists an object B ∈ C and morphisms u : B → A1 and

v : B → A2, both lying in S(D), such that u#s1u = v#s2v.

Suppose that our triangulated subcategory D ⊆ C is stable with respect to # - i.e.

suppose that #(D) ⊆ D. Then the triple (#, δ, ω) restricts to a duality on D and

localises to a duality on C/D. As in [1] we denote this restriction and the localisation

by the same symbols (#, δ, ω) and also omit this triple from our notation when it is

clear what duality is being used. The following description [5, Prop.4.5] of the Witt

groups of C/D in terms of S(D)-spaces allows the connecting homomorphism in the

localisation sequence to be defined in terms of the cones of S(D)-spaces [5, Thm 4.8].

Proposition 2.2.31. Let (C,#, δ, ω) be a triangulated category with duality and sup-

pose that 1/2 ∈ C. We write D ⊆ C for some saturated full triangulated subcategory of

C and denote by q : C → C/D the localisation map. Then any element of W 0(C/D)

can be written [q(A), q(s)] for some S(D)-space (A, s). Further, we have a well defined

group homomorphism
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∂0 : W 0 (C/D) −→W 1(D)

given by [q(A), q(s)] 7→ cone(s) for each S(D)-space (A, s).

For clarification, the form on the above cone(s) is taken as in Definition 2.2.24 so

that cone(s) really makes sense as an element of W 1(C/D). One of course equally

defines

∂n : Wn (C/D) −→Wn+1(D)

by using the nth-shifted duality in place of (#, δ, ω).

Theorem 2.2.32. Let (C,#, δ, ω) be a triangulated category with duality and suppose

that 1/2 ∈ C. Then for any full saturated triangulated subcategory D ⊆ C stable under

# we obtain a long exact sequence

...→Wn−1

(
C

D

)
∂n−1

−→ Wn(D) −→Wn(C) −→Wn

(
C

D

)
∂n−→Wn+1(D)→ ...

Proof. If C/D is assumed to be weakly cancelative then this is the main result (Theorem

5.2) of [5]. This assumption is removed in [1, §2].

2.3 Matlis Duality from Residual Complexes

Let us first remark that if X is a scheme with a residual complex R then since this

residual complex is in the derived category a dualising complex we obtain immediately

that (
ChbCoh(X), ∗R, qis, η

)
is an exact category with weak equivalences (being the quasi-isomorphisms of chain

complexes) and duality given by

∗R = HomOX (−,R) : ChbCoh(X)op −→ ChbCoh(X)

with η defined as in Definition 2.1.6. One might suggest that it is due to the mini-

mality of R as a chain complex, in the sense of [2], that the individual terms of R also

induce local dualities on X.

Recall that we call a scheme X Cohen-Macaulay when the sections of OX over any

affine open set are a Cohen-Macaulay ring, or equivalently when all the local rings

OX,x are Cohen-Macaulay.

Definition 2.3.1. A dualising module/sheaf for a Cohen-Macaulay scheme X is a

sheaf ωX ∈ CohX such that for each x ∈ X the stalk ωX,x is a canonical module for the

Cohen-Macaulay local ring OX,x.
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We avoid refering to a dualising sheaf as a “canonical” sheaf because it is only unique

up to tensoring with line bundles, see [37, Ch.3.3] or Theorem 2.1.13. However we

will use the term canonical module when working with a Cohen-Macaulay local ring.

Proposition 2.3.2. Let A be a Cohen Macaulay ring of finite dimension. If A has a

canonical module ωA, then any minimal injective resolution of ωA is a residual complex

for Spec(A). Conversely, any residual complex on A is a minimal injective resolution

of a canonical module.

Proof. This is a restatement of [46, Thm 6.2].

Proposition 2.3.3. Let R be a residual complex on a scheme X and x ∈ X a point

with codimension p according to R. Then the functor

HomOX,x (−Rpx) : ModopOX,x −→ModOX,x

is length preserving, and forms an exact category with duality

(
f.l.ModOX,x ,R

p
x

)
Further, the trace map

trπx,X (Rx)p : x\(R) −→ Rpx

induces an isomorphism

(
trπx,X

)
∗ : GW

(
x, x\(R)

)
−→ GW

(
f.l.ModOX,x ,R

p
x

)
and again for Witt groups.

Proof. Since by definition Rpx is an OX,x-injective hull of κ(x), this is part of Matlis

duality - see [37, Prop.3.2.12]. It is further clear that the trace map is a suitable

transfer map as in Definition 2.2.15, and the fact that one obtains the above devisage

isomorphisms is contained in [47] for example.

Corollary 2.3.3.1. Let (X,R) be a scheme with a residual complex and j : Z ↪→ X a

closed embedding. Then for any point z ∈ Z with µ(z) = p say, we have a commutative

square of isomorphisms

GW
(
f.l.ModOX,z ,R

p
z

)
GW

(
f.l.ModOZ,z , j

M(R)pz
)

GW
(
z, z\(R)

)
GW

(
z, z\(jM(R))

)

(trj(R)pz)∗

(
trπz,X (R)pz

)
∗

(
trπz,Z (jM(R))pz

)
∗

and the same again for Witt groups.
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Proof. Given that the vertical maps are isomorphisms, the remaining statement follows

by the compatibility Lemma 2.1.31.

Slightly more generally, the above devisage result also holds for semi-local rings.

Proposition 2.3.4. Let X = Spec(A) with A a semi-local ring that has maximal ide-

als p1, p2, ..., pn, all of the same height, and let R be a residual complex on X with

codimension function µ, and let’s fix d = µ(pi). We write πi : Spec(κ(pi)) → X for

the closed embedding, similar to our standard notation πpi,X : Spec(κ(pi))→ Spec(Api).

Then
(
f.l.ModA,Rd

)
and each of the

(
f.l.ModApi ,R

d
pi

)
are exact categories with dual-

ity, and we denote by

loci :
(
f.l.ModA,Rd

)
−→

(
f.l.ModApi ,R

d
pi

)
the non-singular exact form functor induced by localisation to the point pi, and by

(si)∗ :
(
f.l.ModApi ,R

d
pi

)
→
(
f.l.ModA,Rd

)
the nonsingular exact form functor attached to the section si = ρ(pi) : Rdpi → Rd

induced by the isomorphism Rd '−→
⊕
Rdpi. Then we have a commutative triangle of

isomorphisms

⊕n
i=1GW

(
pi, π

M
i (R)d

) ⊕n
i=1GW

(
f.l.ModApi ,R

d
pi

)

GW
(
f.l.ModA,Rd

)

⊕(
trπpi,X (R)d

)
∗

⊕(
trπi(R)d

)
∗ ∑

(loci)∗
⊕

(si)∗

in which
∑

(loci)∗ and
⊕

(si)∗ are inverse to eachother. The same is true with Witt

groups in place of Grothendieck-Witt groups.

The next result extends the spirit of the information in Proposition 3.2.5 to the

non-derived, characteristic 2 inclusive case. We have included it here, despite the fact

that we won’t make use of it in this thesis, because it seems not to have been clearly

written out and potentially useful - especially given how useful Proposition 3.2.5 will

be to us.

Proposition 2.3.5. Let (A,m, κ) be a local ring with residual complex R for which

we suppose µ(m) = 0. Then any symmetric space (M,ψ) ∈ Sym
(

Chbf.l.(ModA),R
)

induces canonical isomorphisms

θn : Hn(M) −→ HomA(H−n(M),R0)
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satisfying for each n the symmetry condition

θn = (θ−n)∗0ev

where ∗0 = HomA(−,R0) is the Matlis duality functor and ev the evaluation map.

Proof. Take some α ∈ Zn(M) so that ψ(α) ∈ Zn(HomA(M,R)) is a morphism M −→
R[n] of chain complexes; we’ll denote by gi : M i → Rn+i the components of this

morphism. We begin by constructing, for each i ≥ 0, a map

s−n−i : M−n−i −→ R[n]−n−i−1

such that

g−n−i = s−n−i+1d−n−iM + d−n−i−1
R[n] s−n−i (∗)

whenever i ≥ 1. The maps s−n−i themselves will not be uniquely determined, however

the restrictions of d−n−i−1
R[n] s−n−i to the kernels Z−n−i(M) will be for all i ≥ 0.

We may fix an integer N ≥ 1 such that M−n−i = 0 whenever i > N , and we set

s−n−i = 0 for all i ≥ N ; we have then equation (∗) trivially for i > N . Further, if

i ≥ N then the modules Z−n−i(M) = H−n−i(M) are finite length, so because N ≥ 1

the only maps Z−n−i → R−i−1 are zero - hence that the restrictions of the maps s−n−i

themselves to these kernels are unique.

Suppose that the maps s−n−i have been constructed for i ≥ k ≥ 1 and they satisfy (∗)
for i ≥ k + 1. So we have in particular

g−n−k−1 = s−n−kd−n−k−1
M + d−n−k−2

R[n] s−n−k−1

into which we may substitute d−n−k−1
R[n] g−n−k−1 = g−n−kd−n−k−1

M to obtain

g−n−kd−n−k−1
M = d−n−k−1

R[n] s−n−kd−n−k−1
M

Hence the map

g−n−k − d−n−k−1
R[n] s−n−k : M−n−k −→ R−k

vanishes on B−n−k(M) and hence also on Z−n−k(M). Thus g−n−k − d−n−k−1
R[n] s−n−k

lifts to a map B−n−k+1(M)→ R−k which, because R−k is injective, extends uniquely

to a map Z−n−k+1(M)→ R−k but non-uniquely to a map

s−n−k+1 : M−n−k+1 −→ R−k

Different choices of this extension will differ by fd−n−k+1
M for some map f : B−n−k+2(M)→
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R−k. We complete our construction by checking that when k ≥ 2 the map

d−n−k+1
R[n] s−n−k+2 : M−n−k+2 −→ R−k+2

restricted to Z−n−k+2(M) does not depend on the choice of s−n−k+1 above. It suffices

to show that the map d−n−k+1
R[n] s−n−k+2 restricted to the boundary B−n−k+2(M) is

uniquely determined. To that end, take a map f : B−n−k+2(M)→ R−k so that

s−n−k+1 + fd−n−k+1
M : M−n−k+1 −→ R−k

represents a different choice of s−n−k+1. Our construction of a map s−n−k+2 from this

new choice starts by lifting the map

g−n−k+1 − d−n−kR[n]

(
s−n−k+1 + fd−n−k+1

M

)
: M−n−k+1 −→ R−k+1

to B−n−k+2(M). This lift can be written

s−n−k+2|B−n−k+2(M) + d−n−kR[n] f

where s−n−k+2 : M−n−k+2 −→ R−k+1 denotes any extension of

g−n−k+1 − d−n−kR[n] s
−n−k+1 : B−n−k+2(M) −→ R−k+1

Now it is immediate that

d−n−k+1
R[n]

(
s−n−k+2|B−n−k+2(M) + d−n−kR[n] f

)
= d−n−k+1

R[n] s−n−k+2|B−n−k+2(M)

The upshot of this construction is that we obtain a well defined map

(
g−n − d−n−1

R[n] s
−n
)
|Z−n(M) : Z−n(M) −→ R0

which vanishes on B−n(M). We set θn(α) to be the lift of this map to H−n(M). Of

course we must mention why this assignment carries Bn(M) to zero - if α ∈ Bn(M)

then ψ(α) ∈ Bn(HomA(M,R)) is a chain map M → R[n] homotopic to zero. In this

case our maps s−n−i can be taken to form a chain homotopy; in particular including a

map s−n+1 : M−n+1 → R0. We have then

g−n − d−n−1
R[n] s

−n = s−n+1d−nM

so that (g−n − d−n−1
R[n] s

−n)|Z−n(M) = 0. Conversely, we observe that if θn(α) = 0, then

g−n − d−n−1
R[n] s

−n : M−n −→ R0

vanishes on Z−n(M) hence lifting to a map B−n(M) → R0 which may be extended

to a final term s−n+1 : M−n+1 → R0 of a chain homotopy for ψ(α). Hence ψ(α) ∈
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Bn(HomA(M,R)) so that α ∈ Bn(M) because ψ is a quasi-isomorphism. So our map

θn is injective.

Conversely again, if g : H−n(M)→ R0 is any map then we obtain a map g : Z−n(M)→
R0 which can be extended to a map g−n : M−n → R0. Setting gt : M t → Rn+t to be

the zero map if t 6= n, we obtain a chain map M → R[n], which must equal ψn(α) for

some α ∈ Zn(M). When computing θn(α), we may take s−n−i = 0 for all i ≥ 0 - so

we do have θn(α) = g. Observe a consequence of this surjectivity argument; for any

element α ∈ Hn(M), one may choose a representative α ∈ Zn(M) such that the chain

map ψn(α) is zero in all degrees but −n.

Finally, we extract our symmetry condition for θn from the symmetry of ψ - which

reads for any x ∈M l and y ∈M t as below.

[ψl(x)](t)(y) = (−1)(l+t)(l+t+1)/2[ψt(y)](l)(x) (∗ ∗ ∗)

Now take α ∈ Hn(M) and β ∈ H−n(M) - we aim to show that θn(α) = (−1)nθ−n(β).

To this end, take representatives α ∈ Zn(M) and β ∈ Z−n(M) such that ψ(α) and

ψ(β) are chain maps zero outside of the degrees −n and n respectively. Then θn(α)

is induced by the map ψ−n(α) while θ−n(β) is induced by the map ψn(β), so that

our desired symmetry result for the θn can now be read off from (∗ ∗ ∗) by setting

x = α, y = β where then of course l = n while t = −n.

We conclude this chapter with a diagram which may help describe how the residue

homomorphism of the next section fits into a residual complex. The setup for the

following commutative diagram is that X is a scheme with residual complex R, we

denote by j : Z ↪→ X a subvariety of X with generic point z and x ∈ Z1. We have

then (as is standard in our notation) the maps πx,X : Spec(κ(x)) → Spec(OX,x) and

πx,Z : Spec(κ(x))→ Spec(OZ,x) which denote the embeddings of the closed points, and

we have written jx : Spec(OZ,x) → Spec(OX,x) for the localisation of j at x. Finally

we write p for the codimension of z according to R.

57



. . . Rp−1 Rp Rp+1 Rp+2 . . .

. . . 0 jM(R)p jM(R)p+1 jM(R)p+2 . . .

. . . Rp−1
x Rpx Rp+1

x 0 . . .

. . . 0 jM(R)px jM(R)p+1
x 0 . . .

dpjM(R)x

x\(R)

z\(R)
'

trπx,Z(jM(R)x)p+1

trjx(Rx)p

trj(R)p trj(R)p+1 trj(R)p+2

trjx(Rx)p+1 trπx,X(Rx)p+1

We have extracted from R a residual complex jM(R)x over the 1-dimensional local ring

OZ,x. If 〈·, ·〉 : V ×V → jM(R)px is some symmetric space over κ(z) then, up to devisage,

the form on the image of
(
V, 〈·, ·〉

)
under our residue map

∂2 : W
(
z, z\(R)

)
−→W

(
x, x\(R))

)
will be given by dpjM(R)x

(
〈·, ·〉

)
. In total then, our useage of the structure (X,R) of a

residual complex on a scheme can be summarised as follows; from the terms R∗ of R we

extract the local twisting spaces (−)\(R) which replace the Ω-twisting of Definition

1.2.8 and then from the boundary maps d∗R extract the second residue maps.
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Chapter 3

The Witt Complex

Let X be a scheme with a residual complex R that has a codimension function µ. We

construct in this section a sequence of abelian group homomorphisms

...→
⊕
µ(x)=p

W
(
x, x\(R)

)
−→

⊕
µ(x)=p+1

W
(
x, x\(R)

)
→ ... (3.1)

which we’ll denote W (X,R). The maps are defined as a coproduct over second residue

homomorphisms

∂2 : W
(
z, z\(R)

)
−→W

(
x, x\(R)

)
generalising those of Definition 1.2.4, taken over the immediate specialisations z  x

with µ(z) = p. In the case when 1/2 ∈ Γ(X,OX), we are able to show that our residue

maps agree with those of [2] - hence in this case W (X,R) really forms a complex. The

difference between the residue maps we define in this chapter and those of [5] which are

used to construct the Witt complexes of [1, 2] is that they don’t need the assumption

1/2 ∈ Γ(X,OX) or any machinery of derived categories to be defined.

3.1 A generalised second residue homomorphism

Let’s suppose for a moment that F is the fraction field of a 1-dimensional Noetherian

local domain (A,m, κ) which has a residual complex R that is concentrated in degrees

p and p + 1. We’ll write X = Spec(A) and then ζ for the generic point of X. In

this situation, our second residue homomorphism ∂R2 is defined so that it sits in a

commutative diagram as below.
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W
(
F,Rp

)
W
(
f.l.ModA,Rp+1

)

W
(
F, ζ\(R)

)
W
(
κ,m\(R)

)

dW (R)

(
trπζ,X (Rζ)p

)
∗

(
trπm,X (R)p+1

)
∗

∂R2

Both vertical maps are isomorphisms by Proposition 2.3.4; the right hand isomor-

phism being non-trivial while the one on the left is essentially just an annoyance of the

signs

trπζ,X (Rζ)p : ζ\(R) = HomF

(
F,Rpζ

) (−1)p(p+1)/2ev@1F
−−−−−−−−−→ Rpζ = Rp

intervening from Proposition 2.1.28. So our main construction is really of the map

dW (R) : W
(
F,Rp

)
→ W

(
f.l.ModA,Rp+1

)
- the most difficult thing involved being

choosing the right generality on which it should be defined.

There are two ways one might try create a more general setting from what we have so far

- firstly one can drop the assumption that X be connected and replace the Witt group

W
(
F,Rp

)
with the group W

(
f.l.ModS−1A,Rp

)
; here S is the collection of elements of

the maximal ideal m not contained in any of the minimal primes q1, ..., qn of A. Denot-

ing by ji : Spec(A/qi) ↪→ X the irreducible components of X, the resulting map dW (R)

is then a simple description of the sum of the maps dW
(
jMi (R)

)
we would define anyway.

Secondly, one might decide that A is only supposed to be a semi-local ring - for which

the group W
(
f.l.ModA,Rp+1

)
makes sense without any notational change. Again, in

this instance the resulting map dW (R) describes the sum, after denoting by mi the

maximal ideals in A, of the maps dW (Rmi) defined in both cases.

In either situation, the construction can be performed in exactly the same way and

knowledge of both generalities has at various points in the production of this work

appeared at least potentially useful - hence we mention both possibilities in this intro-

duction. Ultimately, only the latter case appears to be in some sense “needed” for the

remainder of our objectives; in the interest of brevity that is the one we work towards.

3.1.1 Finite length modules and OX-lattices

Arguably all the real action of our second residue map happens along the morphism

dW (R) described above. One outcome of this subsection is the definition of, for a

scheme X equipped with a residual complex R and immediate specialisation x  x′

with µ(x) = p, a homomorphism
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dx,x
′

W
(R) : W

(
f.l.ModOX,x ,R

p
x

)
−→W

(
f.l.ModOX,x′ ,R

p+1
x′
)

of which the map dW (R) appearing in the most recent commutative square above is an

example obtained by taking X = Spec(A). Perhaps more importantly, the construction

really describes for each x ∈ Xp
µ the sum, taken over all the immediate specialisations

x x′ in X, of the maps

∑
x x′

dx,x
′

W
(R) : W

(
f.l.ModOX,x ,R

p
x

)
−→

⊕
µ(y)=p+1

W
(
f.l.ModOX,y ,R

p+1
y

)
in terms of a single OX -bilinear map on a coherent module. In this subsection, we will

write ∗p for the exact functor

∗p = HomOX
(
−,Rp

)
: QCohopX −→ QCohX

Given a symmetric space (M,φ) ∈ Sym
(
f.l.ModOX,x ,R

p
x

)
we obtain an isomorphism

(ix)∗(φ) : ιx(M)→ ιx
(
HomOX,x (M,Rpx)

)
of quasi-coherent OX -modules, where ix : Spec(OX,x)→ X is the canonical map.

Lemma 3.1.1. Let M be a finite length OX,x-module. Then we have canonical iso-

morphisms

ιx
(
HomOX,x (M,Rpx)

) '
−−−−→
h(x)

HomOX (ιx(M),R(x))
'

−−−−−−−→
(ρ(x))∗

HomOX (ιx(M),Rp)

Proof. We describe first the map

h(x)U : ιx
(
HomOX,x(M,Rpx)

)
(U) −→ HomOX

(
ιx(M),R(x)

)
(U)

of the OX -module map h(x) over some open set U . If x /∈ U then both sides are zero

so h(x)U = 0. Otherwise we define h(x)U (f) for each f ∈ HomOX,x(M,Rpx) to be the

sheaf morphism ιx(M)|U → R(x)|U which over each open V ⊆ U is f if x ∈ V and zero

otherwise.

Secondly, let us note that the map

(
ρ(x)

)
∗ : HomOX

(
ιx(M),R(x)

)
−→ HomOX

(
ιx(M),Rp

)
given by postcomposition with ρ(x) : R(x) ↪→ Rp is certainly injective. Suppose that

U is some open neighbourhood of x and take some f ∈ HomOX
(
ιx(M),Rp

)
(U). We

have an isomorphism
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Rp|U
'−→

⊕
y∈Upµ

R(y)|U

of sheaves of OU -modules coming straight from the definition of residual complexes; so

for each y ∈ Upµ not equal to x we may consider the map

f(y) : ιx(M)|U −→ R(y)|U

which is f postcomposed with the projection Rp|U � R(y)|U . Since µ(x) = µ(y) , we

can find some open neighbourhood V ⊆ U of y not containing x. Then for any open

set x ∈ U ′ ⊆ U and m ∈M = ιx(M)(U ′) we have

f(y)U ′(m)|V ∩U ′ = f(y)V ∩U ′(m|V ∩U ′) = 0

so f(y) = 0 for any y ∈ Upµ not equal to x and hence f is in the image of (ρ(x))∗.

It is only up to this isomorphism that our ιx notation does not just refer to the push-

forward along the canonical map Spec(OX,x)→ X.

Definition 3.1.2. If (M,φ) ∈ Sym
(
f.l.ModOX,x ,R

p
x

)
is a symmetric space, then we

write

ιx(φ) : ιx(M) −→ HomOX
(
ιx(M),Rp

)
for the isomorphism of quasi-coherent OX -modules which is the postcomposition of

(ix)∗(φ) by the isomorphism of the above lemma.

Definition 3.1.3. If M is a finite length OX,x-module, then we define an OX-lattice

inside M to be an inclusion i : L ↪→ ιx(M) of a coherent submodule such that the

localisation ix : Lx →M is an isomorphism.

Remark 2. It is clear that any finite length OX,x-module admits an OX-lattice. In-

deed, for any generating set of M as an OX,x-module the submodule of ιx(M) globally

generated as an OX-module by that generating set is an OX-lattice inside M .

It may be helpful to also note that the property of a coherent submodule L ↪→ ιx(M)

being a lattice may be checked affine locally around x; we simply require for any

(equivalently an) affine open neighbourhood U = Spec(A) of x and m ∈M that there

exists some a ∈ A \ x such that am ∈ L(U).

Definition 3.1.4. Let (M,φ) ∈ Sym
(
f.l.ModOX,x ,R

p
x

)
, and suppose that i : L ↪→

ιx(M) is an OX -lattice. Then we define its dual (with respect to φ) to be the preimage

of HomOX
(
L, Zp(R)

)
under the map

i∗pιx(φ) : ιx(M) HomOX
(
L,Rp

)
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We denote this submodule by i[ : L[ ↪→ ιx(M).

Proposition 3.1.5. For any symmetric space (M,φ) ∈ Sym
(
f.l.ModOX,x ,R

p
x

)
and

OX-lattice i : L ↪→ ιx(M) we have that the dual L[ ↪→ ιx(M) is again an OX-lattice

inside M . Further, the map i∗pιx(φ) induces an isomorphism

i∗pιx(φ)i[ : L[ '−→ HomOX
(
L, Zp(R)

)
of OX-modules.

Proof. Everything in the statement can be checked affine locally; so let’s suppose that

X = Spec(A). As depicted in Definition 3.1.4 the map

i∗pιx(φ)i[ : L[ → HomA

(
L, Zp(R)

)
is an epimorphism because Rp is injective. Since the A-module L contains a generating

set for M as an Ax-module, the non-degeneracy of φ further implies that it is injective.

Next suppose that M has length N as an Ax-module, and write I for the N th power of

the ideal in A corresponding to x. Write j : Z = Spec(A/I) ↪→ X for the closed embed-

ding so that by Proposition 2.1.27 we have that jM(R) = HomA(A/I,R) is a residual

complex over Z. Since L is a module over A/I we have a canonical isomorphism

(
trj(R)p

)
∗ : HomA/I

(
L, jM(R)p

) '−→ HomA

(
L,Rp

)
induced by postcomposition with trj(R)p. Since trj(R) is a monomorphism of chain

complexes, the submodule of interest HomA

(
L, Zp(R)

)
corresponds under this isomor-

phism to HomA

(
L, Zp(jM(R)

)
. Further, the generic point of Z has codimension p ac-

cording to jM(R), so we have that Zp(jM(R)) = Hp(jM(R)) is a coherent A/I-module;

hence also a coherent A-module. We may now conclude that HomA

(
L, Zp(R)

)
is a

coherent A-module, so too must L[ be given that they are isomorphic.

On account of this proposition, we are justified in referring to L[ as the dual lattice

of L with respect to φ. For each affine open neighbourhood U = Spec(A) of x we can

describe L[|U as being the A-submodule of M consisting of those m ∈M such that

〈m, l〉φ ∈ Zp
(
Rp|U

)
for any l ∈ L(U).

Definition 3.1.6. Let (M,φ) ∈ Sym
(
f.l.ModOX,x ,R

p
x

)
be a symmetric space and L

an OX -lattice inside M . Then when L ≤ L[ we call L self-dual with respect to φ. If

L = L[[ then we call L non-degenerate with respect to φ.

Lemma 3.1.7. Let (M,φ) be a symmetric space in
(
f.l.ModOX,x ,Rx

)
and y ∈ X be

a specialisation of x. Then for any lattice i : L ↪→ ιx(M) we have that the localisation
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i[y : L[y ↪→ M is precisely the dual lattice of iy : Ly ↪→ M with respect to φ on the

local scheme Xy = Spec(OX,y). In particular the properties of being non-degenerate or

self-dual are both stable under localisation to y.

The non-degenerate self-dual OX -lattices are the ones of greatest utility for us. It is

hence essential to establish that they can always be found and the remaining items

below are used to establish that our construction of dx,x
′

W
(R)(M,φ) is independent of

the choice of lattice involved.

Proposition 3.1.8. For any symmetric space (M,φ) ∈ Sym
(
f.l.ModOX,x ,R

p
x

)
we have

the following relations for any pair of OX-lattices L1 and L2 inside M .

1. If L1 ≤ L2 then the reverse containment L[2 ≤ L[1 holds on dual lattices.

2. The containment L1 ≤ L[[1 always holds.

3. The intersection L1 ∩L2 is again a lattice, which is non-degenerate and self dual

if both L1 and L2 are.

Finally, there exists an OX-lattice non-degenerate and self-dual with respect to φ.

Proof. The first two items are clear. For the third we suppose that L1 and L2 are both

non-degenerate and self-dual. Then taking the dual of the outer terms in the inclusions

L1 ∩ L2 ≤ L1 ≤ L[1

we obtain (L1 ∩ L2)[ ≥ L[[1 = L1 ≥ (L1 ∩ L2) which reveals that L1 ∩ L2 is self-dual.

Secondly, taking the double dual of the inclusion L1 ∩ L2 ≤ L1 and using that L1 is

non-degenerate we obtain that (L1∩L2)[[ ≤ L1. Similarly one obtains (L1∩L2)[[ ≤ L2

- revealing that L1 ∩ L2 is also non-degenerate.

For the final point we prove that given any lattice L the intersection L[ ∩ L[[ is self-

dual and non-degenerate. Since M certainly admits a lattice, this gives us the required

existence. First, we take the dual of the inclusion L[ ∩ L[[ ≤ L[ to learn that

L[ ∩ L[[ ≤ L[[ ≤ (L[ ∩ L[[)[

and so that L[ ∩ L[[ is self-dual. Further, since L ≤ L[[ we have from the above that

L ≤ (L[ ∩ L[[)[, the dual of which is

(L[ ∩ L[[)[[ ≤ L[

We secondly take the dual of the inclusion L[ ∩ L[[ ≤ L[[ to obtain

L[ ≤ L[[[ ≤ (L[ ∩ L[[)[
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Taking the dual of the outer most inclusion above we obtain that also

(L[ ∩ L[[)[[ ≤ L[[

so that (L[ ∩ L[[) is non-degenerate.

If L is anOX -lattice insideM self-dual with respect to some form φ : M → HomA

(
M,Rpx

)
,

then the map

(i[)∗pιx(φ)i[ : L[ −→ HomOX
(
L[,Rp

)
where i[ : L[ ↪→ ιx(M) is the embedding of the dual lattice, has an image consisting of

those morphisms L[ → Rp which carry L into Zp(R).

Definition 3.1.9. Let (M,φ) ∈ Sym
(
f.l.ModOX,x ,R

p
x

)
be a symmetric space with

respect to which we suppose that L is a self-dual OX -lattice. Then we write φL for the

morphism

φL = (i[)∗pιx(φ)i[ :
L[

L
−→ HomOX

(
L[

L
,
Rp

Zp(R)

)
lifting that described above. We similarly write

〈·, ·〉Lφ :
L[

L
× L

[

L
−→ Rp

Zp(R)

for the associated bilinear map of OX -modules. Finally, we write

(
dpR
)
∗ φ
L : L[/L −→ HomOX

(
L[/L, Rp+1

)
for the map φL followed by the map

(
dpR
)
∗ = HomOX

(
L[/L, dpR

)
and similarly we

obtain a bilinear map

dpR
(
〈·, ·〉Lφ

)
: L[/L × L[/L −→ Rp+1

Note that the coherent module L[/L is supported in µ-codimension ≥ p + 1. Indeed,

the only point of µ-codimension less than p+ 1 at which the stalk of L[ didn’t vanish

was x - so since both L and L[ localise at x to give M we have that L[/L vanishes at

x. Secondly, we note that if L is further taken to be non-degenerate the map φL, and

hence also
(
dpR
)
∗φ
L, is an injective morphism of OX -modules.

Definition 3.1.10. For a space (M,φ) ∈ Sym
(
f.l.ModOX,x ,R

p
x

)
and self-dual OX -

lattice L inside M , we write dpR
(
L ↪→ (M,φ)

)
for the pair

(
L[/L, (−1)p+1dpR

(
〈·, ·〉Lφ

))
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For any immediate specialisation x x′ we write dpR
(
L ↪→ (M,φ)

)
x′

for the localisation

of the above; explicitly then, this is the map

(−1)p+1dpRx′
(
〈·, ·〉Lx′φ

)
:
L[x′
Lx′
×
L[x′
Lx′

(α,β)7→(−1)p+1dpRx′

(
ρ(x,Xx′ )

(
〈α,β〉φ

))
−−−−−−−−−−−−−−−−−−−−−→ Rp+1

x′

In the above explicit description, the use of the map ρ(x,Xx′) : Rpx ↪→ Rpx′ is perhaps

a little pedantic; the fact that this map should in theory be included could’ve been

deduced from the use of the boundary map dpRx′
immediately afterwards. In the future,

we will omit such appearances of ρ-maps whenever, as above, the gained ease of notation

outweighs the additional potential for confusion. In this description, we were also

driving at highlighting that we have

dpR
(
L ↪→ (M,φ)

)
x′

= dpRx′
(
Lx′ ↪→ (M,φ)

)
and we further note that if the lattice L in the above definition is taken to be non-

degenerate, then the map

(
dpRx′

)
∗φ
Lx′ :

L[x′
Lx′
−→ HomOX,x′

(
L[x′
Lx′

,Rp+1
x′

)
associated to the bilinear map dpR

(
L ↪→ (M,φ)

)
x′

is non-degenerate. Indeed, the non-

degeneracy of φ ensures that this map is injective and it is then further seen to be

surjective because the functor HomOX,x′
(
−,Rp+1

x′
)

preserves lengths.

Proposition 3.1.11. For any (M,φ) ∈ Sym
(
f.l.ModOX,x ,R

p
x

)
the isometry class of

the symmetric space dpR
(
L ↪→ (M,φ)

)
x′

in the Witt group W
(
f.l.ModOX,x′ ,R

p+1
x′
)

does

not depend on the self-dual non-degenerate OX-lattice L ↪→ ιx(M).

Proof. We may assume that X = Spec(OX,x′), and first suppose we have an inclusion

P ≤ L of non-degenerate self-dual OX,x′-lattices in M . Then we have P ≤ L ≤ L[ ≤ P [

and since L is self-dual, L/P is a sublagrangian of dpR
(
P ↪→ (M,φ)

)
with orthogonal

L[/P . The sublagrangian reduction Proposition 2.2.14 then yields

dpR
(
P ↪→ (M,φ)

)
= dpR

(
L ↪→ (M,φ)

)
∈W

(
f.l.ModOX,x′ ,R

p+1
)

For two non-degenerate self-dual lattices L1 and L2, we may apply this result to the

pair of inclusions L1 ∩ L2 ≤ L1, L2 to obtain the statement for L1 and L2.

For a symmetric space (M,φ) ∈ Sym
(
f.l.ModOX,x ,R

p
x

)
, we may hence write sim-

ply dpR(M,φ)x′ for the class in W
(
f.l.ModOX,x′ ,R

p+1
x′
)

of dpR
(
L ↪→ (M,φ)

)
x′

where

L ↪→ ιx(M) is some OX -lattice non-degenerate and self-dual with respect to φ. It is

immediately seen that the map (M,φ) 7→ dpR(M,φ)x′ respects isometry and orthogonal

sums.
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Proposition 3.1.12. The assignment

[M,ψ] 7→ dpR(M,ψ)x′ ∈W
(
f.l.ModOX,x′ ,R

p+1
x′
)

of isometry classes of symmetric spaces in
(
f.l.ModOX,x ,R

p
x

)
induces group homomor-

phisms

dx,x
′

W
(R) : W

(
f.l.ModOX,x ,R

p
x

)
−→W

(
f.l.ModOX,x′ ,R

p+1
x′
)

dx,x
′

GW
(R) : GW

(
f.l.ModOX,x ,R

p
x

)
−→W

(
f.l.ModOX,x′ ,R

p+1
x′
)

Proof. We only need to check that metabolic spaces are carried to zero in the common

Witt groups on the right hand side, and it suffices to suppose that X = Spec(R)

where R = OX,x′ . So take (M,ψ) ∈ Sym
(
f.l.ModRx ,R

p
x

)
to be such a space, having

Lagrangian

0→ F
i−→M

i∗ψ−→ F ∗ → 0

and take some R-lattice L ↪→M non-degenerate and self-dual with respect to ψ. Then

we obtain the short exact sequence of short exact sequences below.

L ∩ F L i∗ψ(L)

L[ ∩ F L[ i∗ψ(L[)

L[∩F
L∩F

L[

L
i∗ψ(L[)
i∗ψ(L)

The submodule

L[ ∩ F
L ∩ F

=
L[ ∩ F + L

L
−→ L[/L

is a sublagrangian in the space dpR
(
L ↪→ (M,ψ)

)
. We observe P = L[ ∩ F + L ≤ M

is again a lattice in M , for which we have the inclusions L ≤ P ≤ P [ ≤ L[. The

submodule P [/L ≤ L[/L is the orthogonal space to the sublagrangian P/L, hence by

sublagrangian reduction we simultaneously learn that P must be non-degenerate and

reobtain the well-definedness result of the previous proposition for the lattices L and

P , namely that

dpR
(
L ↪→ (M,ψ)

)
= dpR

(
P ↪→ (M,ψ)

)
We now consider two possibilities; if P = L then

L[ = P [ =
{
x ∈ L[|〈x, L[ ∩ F 〉ψ ⊆ Zp(R)

}
(∗)
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and from the lowest short exact sequence in our short exact sequence of short exact

sequences, we obtain in this case an isometry

dpR
(
M,ψ

)
=

[
i∗ψ(L[)

i∗ψ(L)
,
(
dpR
)
∗

]
where

(
dpR
)
∗ denotes postcomposition with dpR. But from the condition (∗) we read

that
(
dpR
)
∗(i
∗ψ(L[)) = 0, so we’re done in this case.

Otherwise, we repeat the argument with L replaced by P . On account of the in-

clusions L � P ≤ P [ � L[ we have that the length of the R-module P [/P is strictly

less than that of L[/L. So with repetition of this argument we are bound to eventually

win.

Definition 3.1.13. Let (X,R) be a scheme with a residual complex. Then for any

immediate specialisation x x′ in X with µ(x) = p say, we write

resx,x
′

GW
(R) : GW

(
x, x\(R)

)
−→W

(
x′, x′\(R)

)
for the residue homomorphism which is defined to be the map forming a commu-

tative diagram

GW
(
f.l.ModOX,x ,R

p
x

)
W
(
f.l.ModOX,x′ ,R

p+1
x′
)

W
(
x, x\(R)

)
W
(
x′, x′\(R)

)

dx,x
′

GW
(R)

(
trπx,X (Rx)p

)
∗

(
trπx′,X (Rx′)p+1

)
∗

resx,x
′

GW
(R)

We define the map

resx,x
′

W
(R) : W

(
x, x\(R)

)
−→W

(
x′, x′\(R)

)
in the same way.

Proposition 3.1.14. Let j : Z ↪→ X be a closed embedding containing the immediate

specialisation x x′, and let (M,φ) ∈ Sym
(
f.l.ModOZ,x , j

M(R)px
)
. Then for any OZ-

lattice L inside M we have that j∗L is an OX-lattice inside M with

(
j∗L
)[(

(trj(R)px)∗φ) = j∗
(
L[(φ)

)
As a result, we obtain the following commutative square.
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GW
(
f.l.ModOX,x ,R

p
x

)

GW
(
f.l.ModOZ,x , j

M(R)px
)

W
(
f.l.ModOX,x′ ,R

p+1
x′
)

W
(
f.l.ModOZ,x′ , j

M(R)p+1
x′
)

dx,x
′

GW
(R)

dx,x
′

GW

(
jM(R)

)
(

trj(R)px
)
∗

(
trj(R)p+1

x′
)
∗

Proof. It is perhaps inconvenient that our ιx notation does not distinguish between the

schemes Z and X. Nonetheless, we make further abuses of notation by writing the

identity ιx(M) = j∗ιx(M) where on the left hand side it might have been more correct

to write ιx
(
(jx)∗(M)

)
in which jx : Spec(OZ,x) → Spec(OX,x) is the fibre of j. It is

then clear that j∗L ↪→ j∗ιx(M) = ιx(M) is an OX -lattice inside M . After noting that

in the below commutative square

j∗j
M(R)(x) j∗j

M(R)p

R(x) Rp

j∗ρ(x, Z)

ρ(x,X)

trj(R)p

the map j∗j
M(R)(x)→ R(x) is over each open neighbourhood of x given by the local-

isation trj(R)px, we find that we have a commutative diagram

j∗ιx(M) j∗
[
ιx(M), jM(R)p

]
OZ

j∗
[
L, jM(R)p

]
OZ

j∗
[
L, Zp(jM(R))

]
OZ

[
j∗ιx(M), j∗j

M(R)p
]
OX

ιx(M)
[
ιx(M),Rp

]
OX

[
j∗L,Rp

]
OX

[
j∗L, Zp(R)

]
OX

j∗ιx(φ)

(
trj(R)p

)
∗

(
trj(R)p

)
∗

ιx

(
trj(Rpx)

)
∗φ
)

(
trj(R)p

)
∗

in which every vertical map is an isomorphism. In detail, the commutative square we

gave above is used to build the square on the left, while the fact the every vertical

map is an isomorphism follows from two observations - firstly that because j is a

closed embedding the pushforward j∗ commutes with the sheaf-homs, and secondly

that because the j∗j
M(R) is affine locally isomorphic to the subcomplex of elements

annihilated by the ideal sheaf of Z we can factor any morphism ιx(M) → Rp or

j∗L → Rp through the trace map trj(R)p. Now since
(
j∗(L)

)[(
(trj(R)px)∗φ

)
is the

preimage of the lower rightmost term
[
j∗L, Zp(R)

]
OX

under the epimorphism ιx(M)�
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[
j∗L,Rp

]
OX

while j∗
(
L[(φ)

)
is the preimage under the epimorphism along the top of

the diagram of the upper rightmost term j∗
[
L, Zp(jM(R))

]
OZ

we do indeed have

(
j∗L
)[(

(trj(R)px)∗φ) = j∗
(
L[(φ)

)
To check the commutativity of the remaining square, let’s continue with our symmetric

space (M,φ) ∈ Sym
(
f.l.ModOZ,x , j

M(R)px
)

and take an OZ-lattice L non-degenerate

and self-dual with respect to φ. So we have that
(

trj(R)p+1
x′
)
∗
(
dx,x

′

GW
(jM(R))(M,φ)

)
is

the form on L[x′/Lx′ given by

〈α, β〉 = (−1)p+1 trj(Rx′)p+1
(
dpjM(R)x′

(
ρ
(
x, Zx′

)(
〈α, β〉φ

)))
To compare this space with dx,x

′

GW
(R)

(
M,
(

trj(R)px
)
∗φ
)

we of course use j∗L as our

non-degenerate self-dual OX lattice. We find then that this second space is the form

on j∗Lx′/j∗Lx′ - which as an OX,x′ is just the OZ,x′-module L[x′/Lx′ viewed as an

OX,x′-module - given by

〈α, β〉′ = (−1)p+1dpRx′

(
ρ
(
x,Xx′

)(
trj(R)px

(
〈α, β〉φ

)))
After confirming that the map ρ

(
x, Zx′

)
: HomOX,x

(
OZ,x,Rpx

)
→ HomOx,x′

(
OZ,x′ ,Rpx′

)
is given by precomposition with the localisation mapOZ,x′ → OZ,x and postcomposition

with ρ
(
x,Xx′

)
one finds that trj(R)px′◦ρ

(
x, Zx′

)
= ρ
(
x,Xx′

)
◦trj(R)px. This observation,

together with the fact that trj(Rx′) is a morphism of chain complexes reveals that the

two forms just given are the same.

The reader will note that we have not yet checked that the condition our lattices

be non-degenerate is not superfluous. In defining an analogue of rational equivalence

for the Chow-Witt group, we will require a residue map whose domain is V-theory ;

the elements of which are isometry classes of spaces equipped with not one but two

symmetric forms. It does not appear to be clear that one can always find a lattice

non-degenerate and self-dual with respect to both forms at once; the following result,

as well as being a slight simplification to our description of the residue maps we have

so far, is hence also of structural necessity for our later definition of Chow-Witt groups.

Proposition 3.1.15. Let (V, ψ) ∈ Sym
(
f.l.ModOX,x ,R

p
x

)
be a symmetric space with V

a κ(x)-vector space. Then for any OX-lattice L ↪→ ιx(V ) and immediate specialisation

x x′ we have that the OX,x′-lattice Lx′ is non-degenerate with respect to ψ. Hence if

L is only supposed to be self-dual, then

dx,x
′

GW
(R)(V, ψ) = dpR

(
L ↪→ (V, ψ)

)
x′

Proof. We can suppose that X = Spec(OX,x′) and for ease of notation write OX,x′ = R

and Lx′ = L for the R-lattice coming from L. Then we have the closed embedding of

the subvariety j : Spec(R/x) ↪→ X with generic point x - by the previous proposition
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we can further replace R by R/x and hence X by Spec(R/x).

Now R is a Cohen Macaulay local ring, hence by Proposition 2.3.2 we know that

R is an injective resolution of a canonical module. So let’s write ωR for the module

Zp(R). Then as in Proposition 3.1.5 we have isomorphisms L[ ∼= HomR(L, ωR) and

L[[ ∼= HomR(HomR(L, ωR), ωR) induced by ψ. Using this isomorphism, we see that the

natural inclusion L ↪→ L[[ factors

HomR(HomR(L, ωR), ωR)

L L[[

'
ev

∼=

Here, we have noted that since L is a maximal Cohen-Macaulay R-module, the evalu-

ation map is an isomorphism by [37, Thm 3.3.10].

Notation 3.1.16. When X = Spec(R) with (R,m, κ) a DVR having field of fractions

F and ζ denoting the zero ideal, we also write

∂R2 : W
(
F, ζ\(R)

)
−→W

(
κ,m\(R)

)
for the map resζ,m

W
(R).

We’ve included this piece of special notation to respect the fact that this is the setting

in which both this work and [4] have a second residue homomorphism defined for Witt

groups. Indeed, the notation is supposed to be reminiscent of the ∂π2 notation of loc.

cit. - the map ∂π2 depends on a choice of uniformizer π while our map ∂R2 depends on

the choice of residual complex R. Then c.f. Example 2.1.24 we have the following

comparison result.

Lemma 3.1.17. Let (R,m, κ) be a DVR with field of fractions F and write π :

Spec(κ)→ Spec(R) for the embedding of the closed point. Let R be the residual complex

...→ 0→ F −→ F/R→ 0→ ...

concentrated in degrees −1 and 0, and take λ ∈ m to be some uniformizer. Then,

denoting by ζ the zero ideal of R, we have a commutative square

W
(
ζ, ζ\(R)

)
W
(
κ,m\(R)

)

W (F ) W (κ)

∂R2

=

∂λ2

λ∗
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where ∂λ2 is the residue map of [4] and λ∗ is the isomorphism attached to the transfer

map λ∗ : κ→ m\(R) defined by

trπ(R)0
(
λ∗(r)

)
=
r

λ
∈ F/R

for each r ∈ κ.

Proof. The equals sign on the lefthand side of the square is a slight abuse of notation

which we have made because the trace map

trπζ,Spec(R)
(Rζ)−1 : ζ\(Rζ) = HomF (F, F ) −→ F = R−1

has positive sign - that is it is simply the evaluation at one morphism. Let u ∈ R∗ and

consider the generator 〈uλn〉 of W (F ). A self-dual lattice is here given by

L = R · λd−
n
2
e ↪→ F

We may then compute that

L[ = R · λd−n−d−
n
2
ee ↪→ F

So if n is even, we have L[ = L and hence ∂R2 (〈uλn〉) = 0. If n is odd, then let’s set

m = −(n + 1)/2 so that L = R · λm+1 and L[ = R · λm, revealing that L[/L ∼= κ;

precisely we take the isomorphism κ → L[/L given by sending 1 ∈ κ to the image of

λm in L[/L. Since in the space 〈uλn〉 we have

〈λm, λm〉 = uλnλ2m = u/λ

we learn that ∂R2 (〈uλn〉) = λ∗
(
〈u〉
)

when n is even.

Remark 3. Huang [38] provides an explicit construction of residual complexes which

may be the simplest way to compare our twisting by residual complexes with the argu-

ments of Schmid [7] which we in our background chapter christened Ω-twisting.

Let X = Spec(A) with (A,m, κ) a one-dimensional local domain with field of fractions

F , and R be a residual complex on A concentrated in degrees −1 and 0. Again,

we denote by π : Spec(κ) → X the embedding of the closed point and write ζ for

the zero ideal of A. Then as in [4, Ch.1, 5.4] one may check that the tensor product

gives both W
(
F, ζ\(R)

)
and W

(
κ,m\(R)

)
the structure of W (A)-modules. For clarity

we elucidate the first of these structure, the second being defined in the same way. If

B : M×M → A is some non-degenerate symmetric bilinear form on a finitely generated

free A-module M , and [V, ψ] ∈ W
(
F, ζ\(R)

)
, then we set [M,B][V, ψ] ∈ W

(
F, ζ\(R)

)
to be the inner product space over F with underlying vector space M ⊗A V and form

defined by
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〈m1 ⊗ v1,m2 ⊗ v2〉 = B(m1,m2)〈v1, v2〉ψ ∈ ζ\(R)

Lemma 3.1.18. If (A,m, κ) is a one-dimensional local domain as described in the

paragraph above, then the second residue homomorphism

∂R2 : W
(
F, ζ\(R)

)
−→W

(
κ,m\(R)

)
is W (A)-linear.

Proof. It is clear that W
(
f.l.ModA,R0

)
inherits a W (A)-module structure via the trace

map from W
(
κ,m\(R)

)
, and one may check that this module structure is again given

by the tensor product over A. We hence have that the isomorphism

(
trπ(R)0

)
∗ : W

(
κ,m\(R)

)
−→W

(
f.l.ModA,R0

)
is W (A)-linear so it suffices to check that dζ,m

W
(R) is similarly linear. For this it is

convenient to fix an isomorphism R−1 ∼= F , and it suffices to consider a rank one space

〈α〉 ∈W (F,R−1). Since A is Cohen-Macaulay, the kernel Z−1(R) is a canonical mod-

ule for A - let’s denote it by ω. Further, without loss of generality, we may assume that

α · ω E A - thus we may assume that ω ↪→ F is a self-dual A-lattice inside the space

〈α〉.

Now let B : M × M → A be an inner product on a finite rank free A-module M .

We’ll write

B〈·, ·〉ψ : M ⊗A F ×M ⊗A F −→ R−1

for the inner product of [M,B] · [V, ψ]. One may quickly check that M ⊗ ω ↪→M ⊗ F
is a self-dual A-lattice inside this inner product space. We hence have that

d−1
R
(
[M,B] · [V, ψ]

)
=

[
(M ⊗ ω)[

M ⊗ ω
, d−1
R

((
B〈·, ·〉ψ

)M⊗ω)] ∈W (
f.l.ModA,R0

)
On the other hand, we may write

[M,B] · d−1
R
(
[V, ψ]

)
=

[
M ⊗ ω[

ω
,Bd−1

R
(
〈·, ·〉ωψ

)]
∈W

(
f.l.ModA,R0

)
Note that the composition

M ⊗ ω[

ω
M⊗ω[
M⊗ω

(M⊗ω)[

M⊗ω

∼=
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respects these symmetric forms, where the first map comes from the exactness of M ⊗
(−), while the second comes from the natural inclusion of A-lattices M⊗ω[ ≤ (M⊗ω)[

in [M,B] · [V, ψ]. It hence suffices to show that this composition is an isomorphism, for

which it in turn suffices to show that the inclusion M⊗ω[ ≤ (M⊗ω)[ is the identity. We

establish this by observing that the inclusion fits into the below commutative diagram

M ⊗ ω[ (M ⊗ ω)[

M ⊗HomA(ω, ω)

HomA (M ⊗ ω, ω)

HomA (M,HomA(ω, ω))

M HomA(M,A)

∼ =
∼ =

B

∼=
∼=

∼=

Prop. 3.1.5

Prop. 3.1.5

[37, Thm 3.3.4]

[37, Thm 3.3.4]

adj

where the maps are isomorphisms for the reasons referenced.

While the map of OX -modules

(−1)p+1
(
dpR
)
∗ φ
L : L[/L −→ HomOX

(
L[/L,Rp+1

)
(∗)

represents a compact description of the sum

∑
x x′

dx,x
′

W
(R)(M,φ)

it is not immediately clear how to identify a useful category with duality in which (∗)
becomes a genuine symmetric space. A tempting candidate would be the exact category

QCoh≥p+1
X of quasi-coherent sheaves supported in codimension p+ 1 with duality given

by HomOX (−,Rp+1) and weak equivalences being those morphisms of OX -modules

whose stalks are isomorphisms at any point of µ-codimension p+ 1. The problem here

is that localisation to points of codimension p + 1 is not a non-singular form functor.

Such localisations are form functors

(
Chb,≥p+1

Coh (X), qis,RX [p+ 1], ηRX [p+1]

)
−→

(
Chbf.l.(ModOX,x′ ), qis,R

p+1
X,x′ , ev

)
but concentrating (−1)p+1dpR

(
φL
)

in degree zero does not form a symmetric space in

the left hand side above - essentially because the module L[/L could admit maps into

some RiX with i > p + 1. Our comparison with Balmer’s residue maps will identify
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a suitable symmetric space in the derived analogue of the left hand side. First, we

give the following special case in which the object dpR
(
L ↪→ (M,φ)

)
can be naturally

identified as a symmetric space.

Proposition 3.1.19. Let A be a semi-local domain with residual complex R concen-

trated in degrees p and p + 1 and field of fractions F . Then after writing ζ for the

zero ideal and m1, ...,mn for the maximal ideals of A we have morphisms on Witt and

Grothendieck-Witt groups

dGW (R) : GW
(
F,Rp

)
−→W

(
f.l.ModA,Rp+1

)
defined by [V, ψ] 7→ dpR

(
L ↪→ (V, ψ)

)
∈ W

(
f.l.ModA,Rp+1

)
. These maps fit into com-

mutative diagrams

GW
(
F,Rp

)
W
(
f.l.ModA,Rp+1

)

GW
(
F,Rp

) ⊕n
i=1W

(
f.l.ModAmi ,R

p+1
mi

)

dGW (R)

∑
dζ,mi
GW

(R)

⊕
(ρ(mi)

)
∗

As usual, we also write dW (R) for the lift of the above map to the Witt group W
(
F,Rp

)
.

Proof. The well-definedness of dGW (R) follows exactly as in Propositions 3.1.11 and

3.1.12. By the devisage Proposition 2.3.4 the map
⊕(

ρ(mi)
)
∗ is an isomorphism

whose inverse is given by the sum of localisation maps. The commutativity of the

square hence follows immediately from the definition of dζ,mi
GW

(R).

3.2 Comparison with Balmer’s residue maps

Let’s fix for this section (X,R) to be a scheme with a residual complex R that has codi-

mension function µ which for simplicity we assume to be normalised. Then after writing

# = [−,R]X we have that the quadruple
(
Db
Coh(X),#, 1, η

)
is a triangulated category

with duality as in Definition 2.2.19, with the double dual identification η being as

in Definition 2.1.6. We write as usual (#i, δi, ηi) for the ith shift of this duality as in

Definition 2.2.20. To save space we’ll denote this quadruple simply as
(
Db
Coh(X),R

)
.

We begin with an overview of the results of [2] to understand how Balmer’s residue

map of Proposition 2.2.31 can be used to construct a Witt complex on X, and then

argue that our residue map agrees with - or in other words is an explicit/alternative de-

scription of - the boundary maps appearing in this complex. We hence further assume

throughout this section that 1/2 ∈ Γ(X,OX).
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Definition 3.2.1. For each n ∈ Z, we denote by D≥n(X) the full subcategory of

Db
Coh(X) consisting of those complexes supported in codimension at least n according

to µ, precisely the objects are

D≥n(X) := {M ∈ Db
Coh(X)| Mx is acyclic whenever µ(x) < n}

Each D≥n(X) is then a saturated strictly full triangulated subcategory of Db
Coh(X)

preserved by the duality (#, 1, η). We hence have in the sense of Definition 2.2.29

short exact sequences

D≥n+1(X) −→ D≥n(X) −→ D≥n(X)/D≥n+1(X)

of triangulated categories with duality - and we continue our shorthand notation (−,R)

for these categories. We write

∂n : Wn

(
D≥n(X)

D≥n+1(X)
,R
)
−→Wn+1

(
D≥n+1(X),R

)
for the connecting homomorphism of Proposition 2.2.31 appearing in the localisation

sequence associated to the above short exact sequence. If we replaced X by Spec(OX,x)

and R by its localisation at x, then as a particular case of the fact that # preserves

the subcategories D≥n(X) we are justified in making the following definition.

Definition 3.2.2. For each point x ∈ X, we write
(
Db
f.l.(OX,x),Rx

)
for the triangu-

lated category with duality on the full subcategory Db
f.l.(OX,x) of D(ModOX,x) which

consists of those complexes whose cohomology groups are all finite length, together

with the 1-exact duality [−,Rx]Xx and usual double dual identification.

Proposition 3.2.3. For each n ∈ Z we have an isomorphism

locn : Wn

(
D≥n(X)

D≥n+1(X)
,R
)
−→

⊕
µ(x)=n

Wn
(
Db
f.l.(OX,x),Rx

)
induced by localisation.

Proof. The fact that we have this isomorphism is covered in [2, §5] - we here just describe

how the map locn is defined. Certainly, we have for each x ∈ Xn
µ that localisation to x

is a 1-exact functor

locx : D≥n(X) −→ Db
f.l.(OX,x)

between triangulated categories with dualities on each; the pair (locx, id) is a du-

ality preserving functor in the sense of Definition 2.2.26. Note further that if

M ∈ D≥n(X), then the points x ∈ Xn
µ with locx(M) = Mx 6= 0 ∈ Db

f.l.(OX,x) are

among the generic points of the irreducible components of the support of the closed

subset
⋃
i∈Z Supp(H i(M)) of X. Hence locx(M) vanishes for all but finitely many
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x ∈ Xn
µ .

If f is a morphism in D≥n(X) with cone lying in D≥n+1(X), then for each x ∈ Xn
µ we

have that cone(fx) = cone(f)x = 0 so that fx is an isomorphism in Db
f.l.(OX,x). Hence

each localisation map lifts to a morphism

locx : D≥n(X)/D≥n+1(X) −→ Db
f.l.(OX,x)

still a duality preserving functor in the sense of Definition 2.2.26. We hence obtain

the map

locn :=
⊕

µ(x)=n

(locx)∗ : Wn

(
D≥n(X)

D≥n+1(X)
,R
)
−→

⊕
µ(x)=n

Wn
(
Db
f.l.(OX,x),R

)
in the statement of the proposition.

Lemma 3.2.4. For any point x ∈ X we have that the inclusion

Db(f.l.ModOX,x) ↪→ Db
f.l.(OX,x)

is an equivalence of triangulated categories.

Proof. We can factor the inclusion in question as

Db
f.l.

(
f.g.ModOX,x

)
Db
f.l.(OX,x)

Db(f.l.ModOX,x)

where Db
f.l.(f.g.ModOX,x) is the full subcategory of Db(f.g.ModOX,x) consisting of those

complexes whose cohomology groups are finite length. We have by [48, §1.15, Example

(b)] that the inclusion Db(f.l.ModOX,x) → Db
f.l.(f.g.ModOX,x) is an equivalence. By

[49, Prop.3.5] we have that the inclusion Db(f.g.ModOX,x) → Db
f.g.(ModOX,x) is an

equivalence - hence so is its restriction to Db
f.l.

(
f.g.ModOX,x

)
→ Db

f.l.(OX,x).

Proposition 3.2.5. Let x ∈ X with µ(x) = n. Then we have an isomorphism

∆x : W
(
f.l.ModOX,x ,R

n
x

)
−→Wn

(
Db
f.l.(OX,x),Rx

)
which sends an isometry class of a symmetric space ψ : M → HomOX,x(M,Rnx) to the

class of

ψ[0] : M [0] −→
[
M [0],Rx

]
[n]

77



where [M [0],Rx] denotes the internal hom of chain complexes of OX,x-modules and we

have identified
[
M [0],Rx

]
[n] = HomOX,x

(
M,Rnx

)
.

Proof. The map written down is just a description of the composition of isomorphisms

W
(
f.l.ModOX,x ,Rnx

)

W
(
Db(f.l.ModOX,x), ∗

)
Wn

(
Db
f.l.(OX,x),Rx

)
∆x

(c0)∗

where the map

(c0)∗ : W
(
f.l.ModOX,x ,R

n
x

)
−→W

(
Db(f.l.ModOX,x), ∗

)
is the isomorphism between a “usual” and its derived Witt group of [44] - which we

gave in Proposition 2.2.28 - while the map

W
(
Db(f.l.ModOX,x), ∗

)
−→Wn

(
Db
f.l.(OX,x),Rx

)
is induced by the equivalence Db(f.l.ModOX,x) ↪→ Db

f.l.(OX,x) of the previous lemma

- with the duality compatibility transformation as specified in [2, §3]. Precisely, if

C ∈ Db(f.l.ModOX,x) then for each degree i we have

(
C∗
)i

= HomOX,x(C−i,Rnx) =
(

[C,Rx][n]
)i

and the duality compatibility map C∗ → [C,Rx][n] is given in degree i to be (−1)in

times the identity map. Note in particular that if C were concentrated in degree 0,

then this duality compatibility introduces no extra signs - hence none are present in

our description of ∆x.

We hence have for each n ∈ Z an isomorphism

⊕
µ(x)=nW

(
f.l.ModOX,x ,Rnx

)
Wn

(
D≥n(X)
D≥n+1(X)

,R
)(

locn
)−1 ◦

⊕
µ(x)=n

∆x

so the boundary maps of a Witt complex can be defined in terms of the connecting

homomorphisms ∂n of Balmer’s localisation sequence. Precisely, the boundary maps

are those appearing in the picture below where we have omitted the R’s in the notation

for each of the Witt groups W (?,R).
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Wn−1
(
D≥n−1(X)
D≥n(X)

)
Wn

(
D≥n(X)

)

Wn
(

D≥n(X)
D≥n+1(X)

)

Wn+1
(
D≥n+1(X)

)
Wn+1

(
D≥n+1(X)
D≥n+2(X)

)

∂n−1

∂n

dn−1
W (X,R)

dnW (X,R)

(1)

(2)

(3)

In this picture, along each of the dashed lines (1),(2) and (3) we have part of the

localisation sequences of Definition 2.2.32 attached to the short exact sequences

D≥n(X)→D≥n−1(X)→ D≥n−1(X)/D≥n(X)

D≥n+1(X)→D≥n(X)→ D≥n(X)/D≥n+1(X)

D≥n+2(X)→D≥n+1(X)→ D≥n+1(X)/D≥n+2(X)

respectively. Note that the fact that dnW (X,R)d
n−1
W (X,R) = 0 follows immediately from the

composition along the dashed line (2) being zero.

Definition 3.2.6. If x y is some immediate specialisation in X with µ(x) = n say,

then we write

dx,y∆ : W
(
f.l.ModOX,x ,R

n
x

)
−→W

(
f.l.ModOX,y ,R

n+1
y

)
for the map

locn+1 ∂n(locn)−1∆x : W
(
f.l.ModOX,x ,R

n
x

)
−→

⊕
µ(x′)=n+1

W
(
Db
f.l.(OX,x′),Rx′

)
followed by projection onto the component of the right hand side indexed by y and

then by the inverse to the isomorphism

∆y : W
(
f.l.ModOX,y ,R

n+1
y

)
−→Wn+1

(
Db
f.l.(OX,y),Ry

)
For the remainder of this section we suppose that X is affine, let’s say X = Spec(A), and

take a point p ∈ Xn−1
µ . Consider now a symmetric space (V, ψ) ∈ Sym

(
f.l.ModAp ,Rn−1

p

)
- our objective now is to show that for any immediate specialisation p q we have
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dp,q
W

(R)(M,ψ) = dp,q∆ (M,ψ)

Since the map

(
trπp,X (Rp)n−1

)
∗ : W (p, p\(R)) −→W

(
f.l.ModAp ,Rn−1

p

)
is an isomorphism, we may assume that V is a one-dimensional κ(p)-vector space. We

then take an OX lattice

i : L ↪→ ιp(V )

self-dual with respect to ψ in the sense of Definition 3.1.4. Let’s quickly argue that

we can take L to be generated by a single element.

Lemma 3.2.7. There exists a non-zero v ∈ V such that the image of 〈v, v〉ψ under the

inclusion ρ(p) : Rn−1
p ↪→ Rn−1 lies inside Zn−1(R).

Proof. Take any non-zero v ∈ V , then since Zn−1(R)p = Rp we have that there is

some f ∈ A \ p such that f〈v, v〉ψ = z ∈ Zn−1(R). Then fv 6= 0 and 〈fv, fv〉ψ = fz ∈
Zn−1(R).

The A-submodule L of V generated by an element v as in the above lemma is self-dual

and further isomorphic to A/p. We may view this lattice as a complex concentrated in

degree zero, obtaining an element L[0] ∈ D≥n−1(X) and via ψ a map

θ : L[0] −→ L[0]#n−1

Precisely, we define θ0 : L → (L[0]#n−1)0 = HomA(L,Rn−1) to be i∗ιp(ψ)i where i∗

denotes the epimorphism HomA(i,Rn−1). Explicitly then, for each l ∈ L we have that

θ0(l) is the restriction of ψ(l) : V → Rn−1
p to L viewed as a map into Rn−1. The

self-dual nature of L ensures that θ really is a morphism of chain complexes.

Lemma 3.2.8. A chain complex morphism θ : M → M#i is symmetric with respect

to the ith-shifted duality if and only if

(−1)
i(i+1)

2 θs(α)(t)(β) = (−1)
(i+t+s)(i+t+s+1)

2 θt(β)(s)(α)

for any α ∈M i and β ∈M j.

Proof. The definition of i-symmetry reads that

θs(α)(t)(β) =
(

(θ#i)sηsi (α)
)

(t)
(β)

and all we’re doing is expanding the term on the right. To be clear; we’re using that if

g ∈ (M#i)k then

80



ηsi (α)(k)(g) = (−1)
i(i+1)

2 ηs(α)(k+i)(g)

with the term on the right involving

ηs(α)k+i(g) = (−1)
(k+s+i)(k+s+i+1)

2 g(s)(α)

while the map (θ#i)s : M#i#i →M#i is precomposition with θ.

With this lemma, one sees that θ is a symmetric morphism with respect to the (n−1)th-

shifted duality.

Lemma 3.2.9. The chain complex map θ : L[0] → L[0]#n−1 is an S(D≥n(X))-space

for the (n− 1)th-shifted duality of (#, 1, η) on D≥n−1(X).

Proof. It only remains to show that cone(θ) ∈ D≥n(X) - or equivalently that θx is a

quasi-isomorphism for any x ∈ X with µ(x) < n. If x is any such point other than

p then the localisations to x of both L[0] and L[0]#n−1 are zero - so θx is trivially a

quasi-isomorphism here. At p we have (L[0])p = V [0] and θp is just ψ concentrated in

degree zero - which is again a quasi-isomorphism.

So after writing Q : D≥n−1(X) → D≥n−1(X)/D≥n(X) for the localisation map we

have as in Proposition 2.2.31 that the pair (Q(L[0]), Q(θ)) represents an element of

Wn−1
(
D≥n−1(X)/D≥n(X),R

)
, for which we have

locn−1
(
[Q(L[0]), Q(θ)]

)
=

∑
µ(x)=n−1

[
L[0]x, θx

]
∈

⊕
µ(x)=n−1

Wn−1
(
Db
f.l.(OX,x),Rx

)
The proof of the above lemma essentially just observes that

locn−1
(
[Q(L[0]), Q(θ)]

)
=
[
V [0], ψ[0]

]
∈Wn−1

(
Db
f.l.(OX,p),Rp

)
So
(

locn−1
)−1
∆p(M,ψ) = [Q(L[0]), Q(θ)] telling us that to compute dp,q∆ (M,ψ) we

should find the cone of θ as in Definition 2.2.24. Below we give an explicit description

of this cone - after replacing L[0] by an arbitrary complex M .

Proposition 3.2.10. Let θ : M →M#n−1 be a morphism in Ch(X) which is symmetric

with respect to the (n−1)th-shifted duality. Then denoting by cone(θ) the standard cone

of a morphism of chain complexes, we define the morphism

χ : cone(θ) −→ cone(θ)#n

to be given in degree N by setting for each m ∈ MN+1 and λ ∈
(
M#n−1

)N
the image

of (m,λ) ∈ cone(θ)N under χN to be the collection of morphisms cone(θ)k → RN+n+k

χN (m,λ)(k)(α, f) = −λ(k+1)(α) + (−1)[N,k]f(N+1)(m)
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for each pair α ∈Mk+1 and f ∈
(
M#n−1

)k
, where

[N, k] =
1

2

(
(n− 1)(n+ 2) + (N + k + n)(N + k + n+ 1)

)
Then χ is a quasi-isomorphism of chain complexes, symmetric with respect to the nth-

shifted duality, fitting into the commutative diagram

M M#n−1 cone(θ) T (M)

M#n−1#n−1 M#n−1 cone(θ)#n T (M#n−1#n−1)

θ u e

δn−1ηn−1 id χ δn−1T (ηn−1)

δn−1θ
#n−1 −e#n u#n

where the top row is the “standard” exact triangle extending θ.

Proof. The hardest part to check is that χ is a morphism of chain complexes - so that’s

the part we’ll write down here; to ease notation we put ∗ = #n−1. Take m ∈ MN+1

and λ ∈ (M∗)N so that (m,λ) represents an arbitrary object of cone(θ)N . Then

dNcone(θ)(m,λ) =
(
− dN+1

M (m), θN+1(m) + dNM∗(λ)
)

So for each (β, g) ∈ cone(θ)k we have

Λ1 := χN+1
(
dNcone(θ)(m,λ)

)
(k)

(β, g) = −
(
θN+1(m) + dNM∗(λ)

)
(k+1)

(β)

+ (−1)[N+1,k]g(N+2)

(
− dN+1

M (m)
)

The most complicated term on the right hand side can be written out as

dNM∗(λ)(k+1)(β) = (−1)n−1dN+n−1
M# (λ)(k+1)(β)

= (−1)n−1
(
λ(k+2)d

k+1
M (β)− (−1)N+n−1dk+N+n

R λ(k+1)(β)
)

dNM∗(λ)(k+1)(β) = (−1)n−1λ(k+2)d
k+1
M (β) + (−1)N+1dk+N+n

R λ(k+1)(β)

So we obtain the following expression for χN+1
(
dcone(θ)(m,λ)

)

Λ1 = −θN+1(m)(k+1)(β) + (−1)nλ(k+2)d
k+1
M (β) + (−1)Ndk+N+n

R λ(k+1)(β)

+ (−1)[N+1,k]+1g(N+2)

(
dN+1
M (m)

)
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which we aim to compare with dN
cone(θ)#n

(
χN (m,λ)

)
. One carefully finds that

dNcone(θ)#n

(
χN (m,λ)

)
= (−1)ndn+N

cone(θ)#

(
χN (m,λ)

)
= (−1)n

(
χN (m,λ)(t+1)d

t
cone(θ) − (−1)n+Ndt+n+N

R χN (m,λ)(t)

)
t∈Z

To evaluate the kth component of this collection of morphisms at (β, g) ∈ cone(θ)k, we

first compute that

χN (m,λ)(k+1)d
k
cone(θ)(β, g) = χN (m,λ)(k+1)

(
− dk+1

M (β), θk+1(β) + dkM∗(g)
)

χN (m,λ)(k+1)d
k
cone(θ)(β, g) = λ(k+2)

(
dk+1
M (β)

)
+ (−1)[N,k+1]

(
θk+1(β) + dkM∗(g)

)
(N+1)

(m)

The rightmost term above is given by

dkM∗(g)(N+1)(m) = (−1)n−1dk+n−1
M# (g)(N+1)(m)

= (−1)n−1
(
g(N+2)d

N+1
M (m)− (−1)k+n−1dN+k+n

R g(N+1)(m)
)

dkM∗(g)(N+1)(m) = (−1)n−1g(N+2)d
N+1
M (m) + (−1)k+1dN+k+n

R g(N+1)(m)

So we have

χN (m,λ)(k+1)d
k
cone(θ)(β, g) = λ(k+2)

(
dk+1
M (β)

)
+ (−1)[N,k+1]θk+1(β)(N+1)(m)

+ (−1)[N,k+1]+n−1g(N+2)d
N+1
M (m)

+ (−1)[N,k+1]+k+1dN+k+n
R g(N+1)(m)

After reminding ourselves that χN (m,λ)(k)(β, g) = −λ(k+1)(β) + (−1)[N,k]g(N+1)(m)

we obtain the expression

Λ2 = (−1)nλ(k+2)

(
dk+1
M (β)

)
+ (−1)n+[N,k+1]θk+1(β)(N+1)(m)

+ (−1)[N,k+1]−1g(N+2)d
N+1
M (m) + (−1)[N,k+1]+n+k+1dN+k+n

R g(N+1)(m)

+ (−1)Ndk+n+N
R λ(k+1)(β) + (−1)[N,k]+N+1dk+n+N

R g(N+1)(m)

The reader can check that the dk+n+N
R g(N+1)(m) terms above cancel out, and further

that every other term not involving θ agrees with the corresponding term in Λ1. So to
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see that χ is a morphism of chain complexes, it only remains to see that

θN+1(m)(k+1)(β) = (−1)n+1+[N,k+1]θk+1(β)(N+1)(m)

which follows from the (n− 1)-symmetry of θ using Lemma 3.2.8 above - which one

can also use to check that χ is symmetric with respect to the nth shifted duality.

So our element ∂n−1
(

locn−1
)−1
∆x(M,ψ) ∈ Wn

(
D≥n(X),R

)
is represented by the

isometry class of the quasi-isomorphism

cone(θ) =

cone(θ)#n =

...

...

0

0

L [L,Rn−1] [L,Rn] [L,Rn+1] ...

...(cone(θ)#n)−1 (cone(θ)#n)0 (cone(θ)#n)1 (cone(θ)#n)2

χ χ−1 χ0 χ1 χ2

i∗ιp(ψ)i

The component of locn ∂n−1∆p(M,ψ) corresponding to q is then just the localisation

of χ at q. Note that in the localisation of cone(θ) at q, all terms in degree greater than

1 vanishes, i.e.

cone(θ)q = ...→ 0→ Lq −→
[
Lq,Rn−1

q

]
−→

[
Lq,Rnq

]
→ 0→ ...

Lemma 3.2.11. Let CL ∈ Db
f.l.(OX,q) be the complex

CL = ...→ 0→ Lq −→ L[q → 0→ ...

concentrated in degrees -1 and 0, where i[ : L[ ↪→ V is the dual lattice of Definition

3.1.4 and d−1
CL

is the natural inclusion obtained from the self-dual nature of L. Then

the map

CL = ... 0 Lq L[q 0 0 ...

cone(θ)q = ... 0 Lq
[
Lq,Rn−1

q

] [
Lq,Rnq

]
0 ...

Φ id i∗qιp(ψ)qi
[
q

is a quasi-isomorphism.

Proof. It is immediate that Φ is a morphism of chain complexes inducing isomorphisms

on cohomology in degrees ≤ 0. The only tricky point now is seeing that H1(cone(θ)q) =

0 - for which we remind ourselves that L was taken to be isomorphic to A/p, so that

the truncated complex

...→ 0→
[
Lq,Rn−1

q

]
−→

[
Lq,Rnq

]
→ 0→ ...
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is from Proposition 2.1.27 a residual complex over the Cohen-Macaulay local ring

(A/p)q. Hence by Proposition 2.3.2 it has non-zero cohomology only in degree 0.

We hence have that

[
cone(θ)q, χq

]
=
[
CL,Φ

?χqΦ
]
∈Wn

(
Db
f.l.(OX,q)Rq

)
where ? denotes the nth-shift of the duality

[
−,Rq

]
obtained by localising the duality

(#, 1, η) at q.

Lemma 3.2.12. The map Φ?χqΦ : CL −→ C?L is given by

(
Φ?χqΦ

)−1
(l)(k) =

{
(−1)[−1,0]〈l,−〉ψ|L[q : C0

L = L[q → Rn−1
q if k = 0

0 otherwise(
Φ?χqΦ

)0
(l[)(k) =

{
−〈l[,−〉ψ|Lq : C−1

L = Lq → Rn−1
q if k = −1

0 otherwise

Proof. This is an exercise in unraveling the formula of Proposition 3.2.10 for our map

θ : L[0]→
(
L[0]

)#n−1 after localisation at q. Let’s begin with degree −1, where the map

Φ−1 : Lq → cone(θ)−1
q = Lq⊕(L[0]#n−1)−1

q is the inclusion into the first component. Of

course (L[0]#n−1)−1=0 but we include this second component in our notation so that

it is easier to read off the formula for χ−1; we have for any l ∈ Lq = C−1
L that

Φ−1(l) = (l, 0) ∈ Lq ⊕ (L[0]#n−1)−1
q = cone(θ)−1

q

so χ−1
q Φ−1(l) ∈ cone(θ)#n

q is the collection of maps cone(θ)kq → Rk+n−1
q

χ−1
q Φ−1(l)(k)(α, f) = (−1)[−1,k]f(0)(l)

for each α ∈ L[0]k+1 and f ∈
(
L#n−1

)k
q

= HomAq

(
Lq,Rn+k−1

)
. Much of the informa-

tion here is redundant - if k ≤ −1 then there are no non-zero maps cone(θ)k → Rk+n−1

while if k > 1 then Rk+n−1
q = 0. This leaves only the components with k = 0, 1 and in

both of these cases L[0]k+1 = 0. So χ−1
q Φ−1(l) consists of two maps

χ−1
q Φ−1(l)(0) : cone(θ)0

q −→ Rn−1
q , f ∈

(
L#n−1

)0
q
7→ (−1)[−1,0]f(0)(l)

χ−1
q Φ−1(l)(1) : cone(θ)1

q −→ Rnq , f ∈
(
L#n−1

)1
q
7→ (−1)[−1,1]f(0)(l)

The collection of maps
(
Φ?
)−1

χ−1
q Φ−1(l)(k) : CkL → Rk+n−1

q is given by precompositions

with Φk. We hence have that

(
Φ?χqΦ

)−1
(l)(−1) : C−1

L = Lq −→ Rn−2
q
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is zero because
(
χqΦ

)−1
(l)(−1) = 0 while

(
Φ?χqΦ

)−1
(l)(0) = (−1)[−1,0]〈l,−〉ψ : CL0 = L[q −→ Rn−1

q

exactly as in the statement of the lemma.

Now in degree 0 we have for each l[ ∈ L[q = C0
L that Φ0(l[) ∈ cone(θ)0

q =
(
L[0]

)1
q
⊕(

L[0]#n−1
)0
q

is given by

Φ0(l[) =
(

0, 〈l[,−〉ψ|Lq : Lq → Rn−1
q

)
Then χ0

qΦ
0(l[) is the collection of maps cone(θ)kq → Rk+n

q

(
χqΦ

)0
(l[)(k)(α, f) = −

(
〈l[,−〉ψ|Lq

)
(k+1)

(α)

for any α ∈ L[0]k+1 and f ∈
(
L#n−1

)k
q
. The only component which survives is that

with k = −1, for which we have f = 0 and

(
χqΦ

)0
(l[)(−1)(α) = −〈l[, l〉ψ ∈ Rn−1

q

Again, we obtain
(
Φ?χqΦ

)0
(l[) as precomposition with Φ−1 which gives us the stated

formula in degree zero.

Taking stock, we now know that after writing χ = Φ?χqΦ we have

dp,q∆ (V, ψ) = ∆−1
q

(
[CL, χ]

)
∈Wn

(
Db
f.l.(OX,q),Rq

)
Meanwhile, we have from Proposition 3.1.15 that

dp,q
W

(R)(V, ψ) = dpR
(
L ↪→ (V, ψ)

)
q

where we recall from Definition 3.1.10 that the form on this space is the map

(−1)n
(
dn−1
Rq
)
∗ψ

L
q : L[q/Lq −→ HomAq

(
L[q/Lq,Rnq

)
which written out explicitly is given by

l[ 7→ (−1)ndn−1
Rq
(
〈l[,−〉ψ

)
As defined in Proposition 3.2.5 we have that ∆q

(
dp,q
W

(R)(V, ψ)
)

is the above map

concentrated in degree 0. We have an obvious quasi-isomorphism e : CL → L[/L[0]

and hence that

∆q
(
dp,q
W

(R)(V, ψ)
)

=
[
CL, (−1)ne?

(
dn−1
Rq
)
∗ψ

L
q e
]
∈Wn

(
Db
f.l.(OX,q),Rq

)
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Lemma 3.2.13. The chain complex maps (−1)ne?
(
dn−1
Rq
)
∗ψ

L
q e : CL → C?L and χ :

CL → C?L are homotopic.

Proof. The map e?
(
dn−1
Rq
)
∗ψ

L
q e : CL → C?L is zero in degree −1 while in degree 0 we

have for each l[ ∈ L[q = C0
L that

(
e?
(
dn−1
Rq
)
∗ψ

L
q e
)0

(l[) is the collection of morphisms

CkL → Rn+k
q which are zero for every non-zero value of k while the map C0

L : L[q → Rnq
is given by dn−1

Rq
(
〈l[,−〉ψ

)
. We hence have that the difference χ− (−1)ne?

(
dn−1
Rq
)
∗ψ

L
q e

is the chain complex map as written out below.

CL =

CL
? =

...

...

0

0

Lq L[q 0

[
L[q,Rn−1

q

] [
Lq,Rn−1

q

]
⊕
[
L[q,Rnq

] [
Lq,Rnq

]
l

(−1)[−1,0]〈l,−〉ψ

l[

−
(
〈l[,−〉ψ|Lq , (−1)ndn−1

Rq 〈l
[,−〉ψ|L[

)s0

and to give a chain homotopy we only need to specify the map s0 : L[q →
[
L[q,Rn−1

q

]
;

we take

s0(l[) := (−1)n+1〈l[,−〉ψ

It is then straightforward to verify that this defines the desired chain homotopy.

In total, we have proved the following comparison result.

Theorem 3.2.14. Let (X,R) be an affine scheme equipped with a residual complex that

has codimension function µ. Then for any point p ∈ Xn−1
µ and immediate specialisation

p  q we have that the maps dp,q∆ of Definition 3.2.6 and dp,q
W

(R) of Proposition

3.1.12 are identically equal.

3.3 The Witt complex

Let X be a scheme with a residual complex R that has codimension function µ. Then

for each immediate specialisation z  x we have from Definition 3.1.13 a group

homomorphism

resz,x
W

(R) : W
(
z, z\(R)

)
−→W

(
x, x\(R)

)
From these residue maps we build our Witt complex in the usual way.

Notation 3.3.1. When the global residual complex R is clearly understood, we will

denote the residue map resz,x
W

(R) simply as resz,x
W

. Similarly, we write dz,x
W

in place of

the maps dz,x
W

(R) of Proposition 3.1.12.
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Definition 3.3.2. For X a scheme with residual complex R that has codimension

function µ, we define the boundary map

dpW (X,R) :
⊕
µ(x)=p

W
(
x, x\(R)

)
−→

⊕
µ(x)=p+1

W
(
x, x\(R)

)
by the formula

dpW (X,R) =
⊕
µ(z)=p

∑
z x

resz,x
W

Of course, we must now check that dpW (X,R) really takes values in the coproduct.

Proposition 3.3.3. Let (X,R) be a scheme with a residual complex x ∈ X be a point

with µ-codimension p and (V, ψ) ∈ Sym
(
x, x\(R)

)
. Then there are only finitely many

points x′ ∈ Xp+1
µ with resx,x

′

W

(
[V, ψ]) 6= 0.

Proof. Let L ↪→ ιx(V ) be an OX -lattice self-dual with respect to ιx(ψ) in the sense of

Definition 3.1.4. Then we have from Definition 3.1.13 for any x′ ∈ Xp+1
µ that

(
trπx′,X (Rx′)p+1

)
∗ resx,x

′

W
([V, ψ]) = dx,x

′

W
(R)

(
trπx,X (Rx)p

)
∗([V, ψ]) ∈W

(
f.l.ModOX,x′ ,R

p+1
x′
)

If we take L to be some OX -lattice self-dual with respect to ιx(ψ) then the space on

the righthand side is defined on the localisation of L[/L at x′. Hence the x′ ∈ Xp+1
µ

with resx,x
′

W

(
[V, ψ]) 6= 0 are among the irreducible components of the support of L[/L

- of which there are finitely many.

Proposition 3.3.4. Let (X,R) be a scheme with a residual complex and suppose that

1/2 ∈ Γ(X,OX). Then the sequence of maps W (X,R) (3.1) forms a complex of abelian

groups.

Proof. As we pointed out in the proof of the previous proposition, via the trace maps(
trπx,X (Rx)µ(x)

)
∗ : W

(
x, x\(R)

)
→ W

(
f.l.ModOX,x ,R

µ(x)
x

)
we have that W (X,R) is

isomorphic to the sequence of maps

...→
⊕
µ(x)=p

W
(
f.l.ModOX,x ,R

p
x

) ⊕
x

∑
x x′

dx,x
′

W
(R)

−−−−−−−−−→
⊕

µ(x′)=p+1

W
(
f.l.ModOX,x′ ,R

p+1
x′
)
→ ...

Our comparison result Theorem 3.2.14 tells us that the residue maps forming the

complex above agree with those defined by Balmer i.e. those of Definition 3.2.6.
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Chapter 4

The Chow-Witt Group

As an application of the residue maps of the previous chapter we give a definition of

the Chow-Witt group of a scheme X equipped with a residual complex R. Our con-

struction is based on that of Definition 1.2.16 - though we don’t build an entire

complex on the fiber product between the Witt complex restricted to powers of the

fundamental ideal and the Gersten complex for Milnor K-theory. Instead, we focus

on decribing the few terms which are relevant; looking back at the diagram following

the aforementioned definition one sees that we already understand a candidate map to

play the role of the boundary map dnC∗(X,Jn,Ω) - and after suitably describing the fiber

products J1(x) the residue maps we already know only need slight tweaking to obtain

an analogue of dn+1
C∗(X,Jn,Ω). Our resulting notation and terminology is then reminiscent

of Definition 1.1.3 of the ordinary Chow group in terms of cycles modulo rational

equivalence. Indeed, we quotient out from a group of compatible cycles - so named be-

case the coefficients of cycles in the Chow-Witt group cannot be taken independently

of eachother as in Definition 1.1.1 - a subgroup of cycles which we call rationally

equivalent to zero for no other reason than to repeat the terminology of Definition

1.1.2. That cycles rationally equivalent to zero are compatible requires us to know

that our residue maps for Witt groups really assemble to form a complex - i.e. we need

the result of Proposition 3.3.4.

We hence assume throughout this final chapter that all schemes admit 1/2

in their global sections.

Let (X,R) be a scheme equipped with a residual complex. Then for each subvari-

ety j : Z ↪→ X with generic point z that has µ(z) = p, and for each point x ∈ Z1, we

have from Definition 3.1.13 a residue map

resj
M(R)x
GW

: GW
(
z, z\(R)

)
−→W

(
x, x\(R

)
Notation 4.0.1. When the residual complex R is understood, we record in the super-

script only the immediate specialisation of points z  x over which this residue map
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is defined, that is we denote resj
M(R)x
GW

simply as resZ,x
GW

or resz,x
GW

.

We have by Proposition 3.3.3 that the summation of these residue maps over all

x ∈ Z1 takes values in the coproduct on the right hand side below

∑
x∈Z1

resz,x
GW

: GW
(
z, z\(R)

)
−→

⊕
x∈Z1

W
(
x, x\(R)

)
Definition 4.0.2. Let (X,R) be a scheme with a residual complex. Then we write

Z̃p(X,R) for the group of codimension p compatible cycles on X, which is defined

to be the kernel of the group homomorphism

⊕
µ(z)=p

∑
z x

resz,x
GW

:
⊕
µ(z)=p

GW
(
z, z\(R)

)
−→

⊕
µ(x)=p+1

W
(
x, x\(R)

)

4.1 V-theory and Rational Equivalence

Two compatible cycles should be called rationally equivalent in a sense determined by

Definition 1.2.16 - namely the subgroup of cycles rationally equivalent to zero in

Z̃p(X,R) should be those in the image of a map

⊕
µ(x)=p−1

J1
(
x, x\(R)

) ⊕
resx,x

′

J1

−−−−−−−→
⊕
µ(x)=p

GW
(
x′, x′\(R)

)
fitting into the diagram concluding the first chapter. Our departure from the aforemen-

tioned definition is that we prefer to give an explicit description of the fiber products

J1(x) and define the residue maps resx,x
′

J1 in terms of that description, rather than ob-

taining resx,x
′

J1 as a fiber product between residue maps for Milnor K-theory and Witt

groups. Of course a possible description of the groups J1(x) is as the Milnor-Witt K-

theory group KMW
1 (x) - but given how we’ve taken to working directly with symmetric

spaces rather than the presentations of Propositions 1.2.3 and 1.2.12, this descrip-

tion is rather unnatural for us. A description of the fiber products J1(x) in terms of

symmetric space is provided by the V -theory of [8, §4.5].

Definition 4.1.1. Let (E , ∗, η) be an exact category with duality. Then we call a triple

(M,ψ1, ψ2) a 1-symmetric space in (E , ∗, η) when each pair (M,ψ1) and (M,ψ2) are

ordinary symmetric spaces. We denote by Sym1(E , ∗, η) the collection of 1-symmetric

spaces in (E , ∗, η).

We call two 1-symmetric spaces (M,ψ1, ψ2) and (M ′, ψ′1, ψ
′
2) isometric when there is

an isomorphism f : M →M ′ which gives isometries (M,ψ1)→ (M,ψ′1) and (M,ψ2)→
(M,ψ′2). We will denote the isometry class of (M,ψ1, ψ2) by [ψ1, ψ2]. The orthogonal

sum of two 1-symmetric spaces is defined componentwise, that is we set

(M,ψ1, ψ2) ⊥ (M ′, ψ′1, ψ
′
2) := (M ⊕M ′, ψ1 ⊕ ψ′1, ψ2,⊕ψ′2)
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Definition 4.1.2. We define the V-theory of (E , ∗, η), denoted V (E , ∗), to be the

Grothendieck group of the abelian monoid of isometry classes [M,ψ1, ψ2] of 1-symmetric

spaces in (E , ∗, η) under the orthogonal summation above, modulo the relation

[M,ψ1, ψ2] + [M,ψ2, ψ3] = [M,ψ1, ψ3]

for any M ∈ E with symmetric forms ψ1, ψ2, ψ3 : M →M∗.

An element [ψ1, ψ2] ∈ V (E , ∗) is supposed to represent formally the difference ψ2 − ψ1

of the two symmetric spaces. As in [8, §4.5] we immediately note that in V (E , ∗) we

have the relations [ψ,ψ] = 0 and hence [ψ1, ψ2] = −[ψ2, ψ1]. An arbitrary element

of the Grothendieck group of the monoid of isometry classes of 1-symmetric spaces in

(E , ∗) is a formal difference [M,ψ1, ψ2]− [N,φ1, φ2]. In V (E , ∗) we then have

[M,ψ1, ψ2]− [N,φ1, φ2] = [M,ψ1, ψ2] + [N,φ2, φ1] = [M ⊕N,ψ1 ⊕ φ2, ψ2 ⊕ φ1]

and hence that any element in V -theory may be represented by a single isomorphism

class of something in Sym1(E , ∗).

Definition 4.1.3. Let F be a field, and L a one-dimensional F -vector space. Then

we define the determinant map to be the group morphism det : V (F,L) → F ∗

by sending the class of a space (M,ψ1, ψ2) ∈ Sym1(F,L) to the determinant of the

isomorphism (ψ2)−1ψ1 : M →M .

Proposition 4.1.4. Let F be a field, and L a one-dimensional F -vector space. Then

we have a cartesian square

V (F,L)

F ∗

I(F,L)

I(F )/I(F )2

det

[ψ1, ψ2] 7→ [ψ2]− [ψ1]

α 7→ 1− 〈α〉

where I(F,L) and I(F ) respectively denote the fundamental ideals in W (F ) and W (F,L).

Proof. This result is [8, Cor. 4.5.1.5] but for transparancey we note that our definition

of the determinant map det : V (F,L)→ F ∗ is actually the negative of that defined in

loc. cit. which further uses F ∗/(F ∗)2 in place of I(F )/I(F )2. We have applied the

Milnor isomorphism F ∗/(F ∗)2 → I(F )/I(F )2 defined by α 7→ 1 − 〈α〉 to obtain the

stated result.

Let (E1, ∗1, η1) and (E2, ∗2, η2) be exact categories with duality - in other words exact

categories with weak equivalences and duality where the weak equivalences are the

isomorphisms. In this setting we have that a non-singular exact form functor

(F,ψ) : (E1, ∗1, η1) −→ (E2, ∗2, η2)
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is a functor F together with a natural isomorphism ψ : F∗1 → ∗2F fitting into the

commutative diagram of Definition 2.2.7.

Definition 4.1.5. Let (F,ψ) be a non-singular exact form functor as above. Then we

write

(F,ψ)∗ : V (E1, ∗1, η1) −→ V (E2, ∗2, η2)

for the group homomorphism defined by
[
M,φ1, φ2

]
7→
[
F (M), ψMF (φ1), ψMF (φ2)

]
.

Recalling Proposition 2.2.8 we see that the notation (F,ψ)∗ now denotes all of the

pushforward maps induced on the Witt, Grothendieck-Witt and V -groups of the exact

categories (E1, ∗1, η1) and (E2, ∗2, η2). We adopt further the notation of Definition

2.2.15 - which is the only setting we will actually need any functorality of V -theory.

Let’s take now (X,R) to be a scheme equipped with a residual complex that has

codimension function µ and take a point x ∈ Xp
µ. We can construct residue maps

dx,x
′

V
(R) : V

(
x,Rpx

)
−→ GW

(
f.l.ModOX,x′ ,R

p+1
x′

)
with the same methods as those used to obtain the residue maps of Proposition

3.1.12. Note the difference in the domain - on the left hand side we are using the

exact category of κ(x)-vector spaces with duality HomOX,x(−,Rpx). The reason for

this change is that V -theory does not have a sublagrangian reduction result and hence

no devisage allowing us to use the category of finite length OX,x-modules in place of

κ(x)-vector spaces. We have an isomorphism

(
trπx,X (Rx)p

)
∗ : V

(
x, x\(R)

)
−→ V

(
x,Rpx

)
and still ultimately want to write down a residue map whose domain is the left hand

side above, but it is notationally easier to again define first the map dx,x
′

V
(R) above.

Lemma 4.1.6. For any space (V, ψ1, ψ2) ∈ Sym1

(
x,Rpx

)
there exists an OX-lattice

L ↪→ ιx(V ) which is self-dual with respect to both ιx(ψ1) and ιx(ψ2).

Proof. Any sublattice of a self-dual lattice is again self-dual. So intersecting a self dual

lattice for ψ1 with another for ψ2 will do.

Note that by Proposition 3.1.15 we know that the lattice of the above lemma is also

non-degenerate with respect to both forms. For a space (V, ψ1, ψ2) ∈ Sym1

(
x,Rpx

)
and OX -lattice L ↪→ ιx(V ) self-dual with respect to both ψ1 and ψ2 we are, for any

immediate specialisation x x′, hence allowed to write dpR
(
L ↪→ (V, ψ1, ψ2)

)
x′

for the

element

dpR
(
L ↪→ (M,ψ2)

)
x′
− dpR

(
L ↪→ (M,ψ1)

)
x′
∈ GW

(
f.l.ModOX,x′ ,R

p+1
x′

)
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which we remind the reader picks up the signs of Definition 3.1.10.

Proposition 4.1.7. For a symmetric space (V, ψ1, ψ2) ∈ Sym1

(
x,Rpx) the element

dpR
(
L ↪→ (V, ψ1, ψ2)

)
x′
∈ GW

(
f.l.ModOX,x′ ,R

p+1
x′
)

does not depend on the choice of

self-dual lattice L.

Proof. We may suppose that X = Spec(OX,x′), and take P ≤ L to be two Ox,x′-lattices

inside M self-dual with respect to both ψ1 and ψ2. Then we have the containments

P ≤ L ≤ L[(ψ1) ≤ P [(ψ1) and may observe that L/P ↪→ P [(ψ1)/P is a sublagrangian

of the space dpR
(
P ↪→ (M,ψ1)

)
with orthogonal L[(ψ1)/P . Hence by the sublagrangian

reduction Proposition 2.2.14 in GW
(
f.l.ModOX,x′ ,R

p+1
x′
)

we have

dpR
(
P ↪→ (M,ψ1)

)
= dpR

(
L ↪→ (M,ψ1)

)
+H(L/P )

Similarly one obtains

dpR
(
P ↪→ (M,ψ2)

)
= dpR

(
L ↪→ (M,ψ2)

)
+H(L/P )

and subtracting the two equations gives the result for lattices P ≤ L. One obtains the

result for general lattices L1, L2 since the invariance has been established for both pairs

L1 ∩ L2 ≤ L1 and L1 ∩ L2 ≤ L2.

Definition 4.1.8. Let (X,R) be a scheme with a residual complex, x ∈ Xp
µ and x x′

be an immediate specialisation. Then we write

dx,x
′

V
(R) : V

(
x,Rpx

)
−→ V

(
f.l.ModOX,x′ ,R

p+1
x′
)

for the group homomorphism defined by

[V, ψ1, ψ2] 7→ dpR
(
L ↪→ (V, ψ1, ψ2)

)
x′

for some OX -lattice L self-dual with respect to both ψ1 and ψ2.

As is by now automatic, the notation of Definition 3.1.13 continues; we write

resx,x
′

V
(R) : V

(
x, x\(R)

)
−→ V

(
x′, x′\(R)

)
for the map

(
trπx′,X (Rx′)p+1

)−1

∗ dx,x
′

V
(R)

(
trπx,X (Rx)p

)
∗ and usually drop the residual

complex from its appearance in our notation for any of these residue maps. We again

obtain, with the same arguments, the results of Propositions 3.1.14 and 3.1.19 in

this setting - for the former, we have that if j : Z ↪→ X is a closed embedding containing

the immediate specialisation x x′ then we have the commutative diagram
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V
(
x,Rpx

)

V
(
x, jM(R)px

)
GW

(
f.l.ModOX,x′ ,R

p+1
x′
)

GW
(
f.l.ModOZ,x′ , j

M(R)p+1
x′
)

dx,x
′

V
(R)

dx,x
′

V

(
jM(R)

)
(

trj(R)px
)
∗

(
trj(R)p+1

x′
)
∗

and for the latter we have the below result.

Proposition 4.1.9. Let A be a semi-local domain with residual complex R concentrated

in degrees p and p+ 1 and field of fractions F . Then after writing ζ for the zero ideal

and m1, ...,mn for the maximal ideals of A we have a group homomorphism

dV (R) : V
(
F,Rp

)
−→ GW

(
f.l.ModA,Rp+1

)
defined by

[V, ψ1, ψ2] 7→ dpR
(
L ↪→ (V, ψ1, ψ2)

)
∈ GW

(
f.l.ModA,Rp+1

)
for some A-lattice self-dual with respect to both ψ1 and ψ2. This map fits into a com-

mutative diagram

V
(
F,Rp

)
GW

(
f.l.ModA,Rp+1

)

V
(
F,Rp

) ⊕n
i=1GW

(
f.l.ModAmi ,R

p+1
mi

)

dV (R)

∑
dζ,mi
V

(R)

⊕
(ρ(mi)

)
∗

Proof. This goes exactly as Proposition 3.1.19 - the well-definedness of dV (R) follows

by the same argument as that of Proposition 4.1.7 and the commutativity of the

diagram comes straight from the definition of the maps dζ,mi
V

(R).

Proposition 4.1.10. Let x ∈ Xp
µ and (V, ψ1, ψ2) ∈ Sym1

(
x, x\(R)

)
. Then there are

at most finitely many points x′ ∈ Xp+1
µ with resx,x

′

V
(V, ψ1, ψ2) 6= 0.

Proof. Repeating the idea of the proof of Proposition 3.3.3, we see that the points

x′ ∈ Xp+1
µ with resx,x

′

V
(V, ψ1, ψ2) 6= 0 are among the irreducible components of the

supports of coherent modules L[(ψ2)/L and L[(ψ1)/L - hence there are finitely many.

Definition 4.1.11. Let (X,R) be a scheme equipped with a residual complex. Then

we have a map
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⊕
µ(z)=p−1

∑
z x

resz,x
V

:
⊕

µ(z)=p−1

V
(
z, z\(R)

)
−→

⊕
µ(x)=p

GW
(
x, x\(R)

)
whose image we denote by R̃atp(X,R) and call the cycles rationally equivalent to

zero.

Lemma 4.1.12. Cycles rationally equivalent to zero are compatible cycles on X, that

is we have R̃atp(X,R) ≤ Z̃p(X,R).

Proof. We have a commutative diagram

⊕
µ(z)=p−1

V
(
z, z\(R)

) ⊕
µ(x)=p

GW
(
x, x\(R)

) ⊕
µ(y)=p+1

W
(
z, z\(R)

)

⊕
µ(z)=p−1

I
(
z, z\(R)

) ⊕
µ(x)=p

W
(
x, x\(R)

) ⊕
µ(y)=p+1

W
(
z, z\(R)

)

⊕
z

∑
z x

resz,x
V

⊕
x

∑
x y

resx,y
GW

dp−1
W (X,R) dpW (X,R)

where the vertical map on the left is the coproduct of the corresponding maps of

Proposition 4.1.4 - the result hence follows from Proposition 3.3.4.

Definition 4.1.13. For a scheme X equipped with a residual complex R, we define

the Chow-Witt group of codimension p cycles on X to be the quotient

C̃Hp(X,R) = Z̃p(X,R)/R̃atp(X,R)

Note that the grading on the Chow-Witt group C̃H∗(X,R) is given by the codimension

function of the residual complex R.

4.2 Pushforward along Proper maps

If f : X → Y is a proper morphism between schemes which admit residual complexes,

we construct in this section a pushforward

f∗ : C̃H(X,RX) −→ C̃H(Y,RY )

in terms of additional compatibility data between the dualities HomX(−RX) and

HomY (−,RY ). In the same way, one obtains pushforwards of the Witt complex of

the previous chapter.

Definition 4.2.1. If f : X → Y is any morphism, we write Ef for the full subcategory

of Ch(X) consisting of those complexes whose terms are acyclic for the pushforward

f∗ : QCohX → QCohY , precisely
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Ef = {M ∈ Ch(X) | (Rpf∗)(M
n) = 0 for any n ∈ Z and p ≥ 1}

We further write Ebf,Coh for the intersection of this category with ChbCoh(X).

Lemma 4.2.2. The category Ef defined above is exact. Further, if RX is any residual

complex on X we have that the functor HomX(−,RX) preserves Ef ∩ Ch−(X).

Proof. That Ef is closed under extensions in Ch(X) can be checked in each degree,

where it follows from the long exact sequence for the right derived functors Rpf∗. If

RX ∈ Res(X), then appealing to [50, Ch.II, Lem.7.3.2] one learns that for any bounded

above complex M ∈ Ef the dual object HomX(M,RX) is a bounded complex of flasque

sheaves and hence again lies in Ef .

We hence have an exact category with duality (Ebf,Coh,RX) where the double dual

identification is as in Definition 2.1.6.

Lemma 4.2.3. If f : X → Y is proper, then the functor

f∗ : Ebf,Coh −→ ChbCoh(Y )

is exact.

Proof. That f∗ is exact follows immediately from the definition of Ef . Since all our

schemes are Noetherian we apply [6, Ch.II, Prop.2.2] to see that if M ∈ Ebf,Coh then the

cohomology groups of f∗M are coherent.

Lemma 4.2.4. For any morphism f : X → Y there is a natural transformation

Rf∗R HomX(−,−) −→ R HomY

(
Rf∗(−),Rf∗(−)

)
between the above bifunctors D−(X)op ×D+(X)→ D(Y ).

Proof. This is [6, Ch.II, Prop.5.5] - we overview the details here. Writing K(Ef ) for the

full subcategory of the homotopy category K
(

Ch(X)
)

consisting of those complexes

lying in Ef , we have that the natural map K(Ef )qis → D(X) from the localisation of

K(Ef ) by the quasi-isomorphisms is an equivalence, and the functor

Rf∗ : D(X) −→ D(Y )

may be constructed by first taking an inverse to this equivalence and applying f∗. To

define this natural transformation then, we may assume that we have a bounded above

complex F ∈ Ef and bounded below complex G of injective quasi-coherentOX -modules.

Since both F and G lie in Ef we can identify, up to canonical isomorphism in D(Y ),

Rf∗F = f∗F and Rf∗G = f∗G. Similarly we identify R HomX(F,G) = HomX(F,G)
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which, by the lemma above again lies in Ef - allowing us to, up to canonical isomorphism

in D(Y ), write

Rf∗R HomX(F,G) = f∗HomX(F,G)

So we obtain the transformation by taking

Rf∗R HomX(F,G) = f∗HomX(F,G) −→ HomY (f∗F, f∗G) −→ R HomY

(
Rf∗F,Rf∗G

)
in which the first map is the natural extension of the transformation f∗HomOX (−,−)→
HomOY (f∗(−), f∗(−)) on the level of sheaves, and the second map is that of the defi-

nition of the right derived functor R HomY (−,−).

Definition 4.2.5. Let (X,RX) and (Y,RY ) be schemes with residual complexes whose

codimension functions we assume to satisfy

µY (y) = µX(x) + tr. deg(κ(x)/κ(y))

whenever f(x) = y. Then a proper map

(f, τ) : (X,RX) −→ (Y,RY )

consists of a proper morphism f : X → Y together with a duality compatibility map

τ : f∗RX −→ RY

between chain complexes of OY -modules which is such that the natural transformation

τ∗, defined for any M ∈ Db
Coh(X) by the below composition,

Rf∗R HomX(M,RX) R HomY

(
Rf∗M,Rf∗RX

)

R HomY

(
Rf∗M,RY

)τ∗(M)
R HomY

(
Rf∗M, τ

)

is a natural isomorphism - where to be clear the map across the top is the transformation

of Lemma 4.2.4 and we have slightly abused notation by writing on the vertical map

τ : Rf∗RX → RY again for the map obtained from τ via the canonical isomorphism

f∗RX → Rf∗RX .

Remark 4. From the Duality Theorem [6, Ch.VII Thm3.3] we obtain the main example

of such data - if RX = fM(RY ) is the exceptional inverse image of RY , then the trace

map constructed in [6, Ch.VI] gives a duality compatibility as above.
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Example 4.2.6. Let (X,R) be a scheme with a residual complex, and j : Z ↪→ X a

closed embedding. Then the pair

(
j, trj(R)

)
: (Z, jM(R)) −→ (X,RX)

is a proper map, where trj(R) is as in Definition 2.1.28. In fact, in this case

trj(R)∗ : j∗HomZ(−, jM(R)) −→ HomX(j∗(−),R)

is a natural isomorphism.

If (f, τ) : (X,RX) → (Y,RY ) is a proper map, then we obtain a non-singular exact

form functor

(f∗, τ∗) : (Ef ,RX) −→
(

ChbCoh(Y ),RY
)

Observe that in each degree the morphism

τp :
⊕

µX(x)=p

f∗RX(x) −→
⊕

µY (y)=p

RY (y)

must be given by a coproduct of maps τ(x) : f∗RX(x) → RY (y), where y = f(x),

taken over points x ∈ X such that tr. deg(κ(x)/κ(y)) = 0. Indeed, any component

f∗RX(x)→ RY (y) of τp will be zero unless y lies in the closure of f(x), and under our

condition µY (f(x)) = µX(x) + tr. deg(κ(x)/κ(f(x))) this is only possible if y = f(x).

We similarly observe that there are no chain homotopies between f∗RX and RY - so

while our convention is to take the map τ : f∗RX → RY to be a morphism of chain

complexes we can equivalently give τ as a morphism in the derived category.

Notation 4.2.7. Suppose (f, τ) is a proper map as in the discussion above, and that

x ∈ X is a point of codimension p with tr. deg(κ(x)/κ(y)) = 0, where y = f(x). Then

we write

τ(x) : f∗RX(x)→ RY (y)

for the morphism of OY -modules which appears as a component of τp, and we write

τx : RpX,x → R
p
Y,y

for the stalk of τ(x) at y.

Lemma 4.2.8. Let (f, τ) : (X,RX)→ (Y,RY ) be a proper map, and i : U → Y be the

inclusion of an open subset or localisation to a point. Let i′ : V = f−1(U)→ X be the

induced map. Then we have a proper map

(
f |V , i′∗τ

)
:
(
V, i′∗(RX)

)
−→

(
U, i∗RY

)
Proof. The statement with U being an open set is clear enough, so we just consider the
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case U = Spec(Yp) for some point p in Y ; and it suffices to suppose that Y = Spec(A)

is affine. The fact that i′∗
(
RX

)
is again a residual complex over V does follow from i′

being a residually stable morphism [6, Ch.VI] but we find it helpful to give some details

establishing this part of the result explicitly.

The fibre V = f−1(Yp) is covered by affine open subsets Spec(Ap⊗AB) where Spec(B)

is an affine open subset of X. It hence becomes clear that i′∗(RX) is a bounded complex

of injectives with coherent cohomology on V - and further that for any point q ∈ Xn
µ we

have that i′∗(RnX)q = RnX,q is still an OX,q-injective hull of κ(q); hence the codimension

function for i′∗(RX) agrees with that of RX . One further with this affine description

sees that the map

i′∗(RX) −→
⊕
x∈V nµ

ιx
(
Rnx
)

induced by localisation to the points x ∈ V n
µ is an isomorphism. It only remains to

understand the abuse of notation which allows us to view the map

i∗τ : i∗f∗RX −→ i∗RY

as a suitable duality compatibility
(
f |V
)
∗i
′∗RX → i∗RY . Let us first note that by [6,

Ch.II Prop.5.12] we have that the canonical map i∗f∗RX →
(
f |V
)
∗i
′∗RX is a quasi-

isomorphism. Hence there is a unique map
(
f |V
)
∗i
′∗RX → i∗RY in D(U) fitting into

the diagram

i∗f∗RX i∗RY

(
f |V
)
∗i
′∗RX

'

i∗τ

which we continue to denote by i∗τ . To see that the induced transformation
(
i∗τ
)
∗

between functors Db
Coh(V ) → Db

Coh(U) is a natural isomorphism it suffices by the

lemma on way out functors [6, Ch.I Prop.7.1] to check that τ∗(OV ) = τ∗(i
′∗OX) is an

isomorphism - which follows from the compatibilities of [6, Prop.5.8, 5.12].

Lemma 4.2.9. Let (f, τ) : (X,RX) → (Y,RY ) be a proper map of schemes with

residual complexes, j : Z ↪→ X be a subvariety of X and write j′ : W ↪→ Y for the

subvariety W = f(Z) of Y . Denoting by g : Z →W the restriction of f to Z, we set

τ |Z : g∗j
M(RX) −→ j′M(RY )

to be the morphism of chain complexes of OW -modules with trj′(RY ) ◦ j′∗τ |Z = τ ◦
f∗ trj(RX). Then the pair (g, τ |Z) is a proper map (Z, jM(RX))→ (W, j′M(RY )).
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Proof. To check that the map
(
τ |Z
)
∗ is a natural isomorphism, it suffices to suppose

that M ∈ Eg is some bounded above complex and see that the map j′∗(τ |Z)∗(M)

depicted below is a quasi-isomorphism.

j′∗g∗HomZ(M, jM(RX)) j′∗HomW (g∗M, g∗j
M(RX))

j′∗HomW (g∗M, j′M(RY ))

j′∗(τ |Z)∗(M)
j′∗Hom(g∗M, τ |Z)

Since j′ is a closed embedding, it commutes with the internal chain complex Homs

above. So we may move both of the j′∗ on the right side of the above diagram on the

inside of the HomW , and then identify j′∗g∗ = f∗j∗ to see that our map j′∗(τ |Z)∗(M)

fits into the diagram below.

f∗j∗HomZ(M, jM(RX)) HomY (f∗j∗M,f∗j∗j
M(RX))

HomY (j′∗g∗M, j′∗j
′M(RY ))

j′∗(τ |Z)∗(M)
HomY (f∗j∗M, j′∗(τ |Z))

As in Example 4.2.6 we have an isomorphism

HomY (j′∗g∗M, trj′(RY )) : HomY (j′∗g∗M, j′∗j
′M(RY ))

'−→ HomY (j′∗g∗M,RY )

and similarly the isomorphism

HomX(j∗M, trj(RX)) : HomX(j∗M, jMj∗(RX))
'−→ HomX(j∗M,RX)

We use these isomorphisms to extend our above triangle for j′∗(τ |Z)∗(M) to the diagram

below, in which the two trace-map-isomorphisms we just wrote down are used to give

the three horizontal isomorphisms.
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f∗ [j∗M, j∗j
M(RX)]

X
f∗ [j∗M,RX ]

X

f∗j∗ [M, jM(RX)]
Z

[f∗j∗M,f∗j∗j
M(RX)]

Y
[f∗j∗M,f∗RX ]

Y

[f∗j∗M, j′∗j
′M(RY )]

Y
[f∗j∗M,RY ]

Y

'

'

'

[f∗j∗M, j′∗(τ |Z)]
Y

[f∗j∗M, τ ]
Y

'

f∗ [j∗M, trj(RX)]
X

[
f∗j∗M, trj′(RY )

]
Y

j′∗(τ |Z)∗(M)

On account of our condition trj′(RY ) ◦ j′∗τ |Z = τ ◦ f∗ trj(RX) this diagram is commu-

tative. Then since the right hand side vertical composition

f∗ [j∗M,RX ]
X
−→ [f∗j∗M,f∗RX ]

Y
−→ [f∗j∗M,RY ]

Y

is the quasi-isomorphism τ∗(j∗M), we have as desired that j′∗(τ |Z)∗(M) is also a quasi-

isomorphism.

Note, as has become standard in our notation, that in the below we do not distinguish

whether the pushforward in question is for Witt, Grothendieck-Witt groups or for V-

theory. Hopefully it will in practice be clear what is meant.

Lemma 4.2.10. Let (f, τ) : (X,RX) → (Y,RY ) be a proper morphism and suppose

w = f(z) are points with µ(z) = µ(w) = p. Then postcomposition with the OY,w-linear

map τz : RpX,z → R
p
Y,w induces for any finite length OX,z-module M an isomorphism

(
τz
)
∗ : HomOX,z

(
M,RpX,z

)
−→ HomOY,w

(
M,RpY,w

)
Hence τz induces as in Definition 2.2.15 a pushforward map

(
τz
)
∗ : T

(
f.l.ModOX,z ,R

p
X,z

)
−→ T

(
f.l.ModOY,w ,R

p
Y,w

)
where T is either of GW or W and as in Definition 4.1.5 a map

(
τz
)
∗ : V

(
z,RpX,z

)
−→ V

(
w,RpY,w

)
Proof. Let’s write j : Z ↪→ X for the subvariety of X with generic point z, and j′ : W ↪→
Y for the image of Z under f , and finally g : Z →W for the restriction of f . Then as

in Proposition 4.2.9 we obtain a proper map (g, τ |Z) : (Z, jM(RX))→ (W, j′M(RY )).

The stalk at w of both complexes g∗j
M(RX) and j′M(RY ) are concentrated in degree
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p, and by localising the commutative square trj′(RY )p ◦ j′∗(τ |Z)p = τp ◦ f∗ trj(RX)p at

w, we obtain the diagram

z\(RX)

⊕
µ(x)=p,f(x)=w

RpX,x

w\(RY ) RpY,w

f∗ trj(RX)pw

(
τ |Z
)p
w

trj′(RY )pw

⊕τx

of OY,w-modules. We have now by Lemma 4.2.8 a proper map (g−1(w), jM(RX)z)→
(w, j′M(RY )w), hence the map

(
τ |Z
)p
w

is non-zero. Hence for any finite dimensional

κ(z)-vector space, postcompostion with the map (τ |Z)pw induces an isomorphism

Homκ(z)

(
V, jM(RX)pz

)
−→ Homκ(w)

(
V, j′M(RY )pw

)
Note that this in particular gives the statement of the proposition when M has length

1 as an OX,z-module. The result in full follows by induction on this length.

Notation 4.2.11. Suppose that (f, τ) : (X,RX) → (Y,RY ) is a proper map and

y = f(x) are points with µ(x) = µ(y) = p say. Then we denote the map(
τ |{x}

)p
y

: z\
(
RX

)
−→ w\

(
RY
)

by τ |xy - so we have the commutative square trπy,Y (RY,y)p ◦ τ |xy = τx ◦ trπx,X
(
RX,x

)p
.

Definition 4.2.12. Let (f, τ) : (X,RX)→ (Y,RY ) be a proper map, and T be any of

GW,W or V . Then we write

f∗ :
⊕
µ(x)=p

T
(
x, x\(R)

)
−→

⊕
µ(y)=p

T
(
y, y\(R)

)
for the group homomorphism which on each component of the lefthand side is

(
τ |xf(x)

)
∗

: T
(
x, x\(R)

)
−→ T

(
f(x), f(x)\(R)

)
if µ(x) = µ(f(x)) and zero otherwise.

We will argue that this construction induces a pushforward map on Chow-Witt groups;

in particular we also get a pushforward for the Witt complex. The geometric arguments

reducing the problem to a few special cases are those of the proof of the Residue Theorem

[6, Ch.VII Thm 2.1] - which is the result that the trace map for residual complexes of

loc. cit. really is a morphism of complexes; all we need to do is watch what happens

to our lattices in these cases.
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Proposition 4.2.13. Let (f, τ) : (X,RX)→ (Y,RY ) be a proper map between schemes

with residual complexes. Then the map

f∗ :
⊕
µ(x)=p

GW
(
x, x\(R)

)
−→

⊕
µ(y)=p

GW
(
y, y\(R)

)
induces a morphism

f∗ : C̃Hp(X,RX) −→ C̃Hp(Y,RY )

Proof. If T is V then let T − 1 denote GW , while if T is GW , let T − 1 denote W .

We aim to show that in either case the square

⊕
µ(x)=p

T
(
x, x\(R)

) ⊕
µ(x′)=p+1

(T− 1)
(
x′, x′\(R)

)

⊕
µ(y)=p

T
(
y, y\(R)

) ⊕
µ(y′)=p+1

(T− 1)
(
y′\(R)

)

⊕
µ(x)=p

∑
x x′

resx,x
′

T

f∗ f∗

⊕
µ(y)=p

∑
y y′

resy,y
′

T

commutes. It suffices to focus on a single point x ∈ X with µ(x) = p, so we will show

that the below square commutes

T
(
x, x\(R)

) ⊕
x x′

(T− 1)
(
x′, x′\(R)

)

⊕
µ(y)=p

T
(
y, y\(R)

) ⊕
µ(y′)=p+1

(T− 1)
(
y′, y′\(R)

)

∑
x x′

resx,x
′

T

f∗ f∗

⊕
µ(y)=p

∑
y y′

resy,y
′

T

where we have written again f∗ on each of the vertical maps for the restriction of the

pushforwards in Definition 4.2.12. If tr.deg
(
κ(x)/κ(f(x))

)
≥ 2 then there is nothing

to show as both the maps f∗ above will be zero.

Case 1. Setting y = f(x), we have tr.deg(κ(x)/κ(y)) = 0 - hence µ(x) = µ(y).

Replacing X with the closure of the point x, Y by the closure of the point y, and

the proper map (f, τ) by its restriction as in Proposition 4.2.9 we see that we must

in this case show that the diagram
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T
(
x,RpX,x

) ⊕
x′∈X1

(T− 1)
(
x′, x′\(R)

)

T
(
y,RpY,y

) ⊕
y′∈Y 1

(T− 1)
(
y′, y′\(R)

)

∑
x′∈X1

resx,x
′

T

(τx)∗ f∗

∑
y′∈Y 1

resy,y
′

T

commutes, where x and y are now the generic points of the varieties X and Y respec-

tively. We consider each y′ separately, so let’s set i : U → X to be f−1(Spec(OY,y′)).
Let us note that since f is surjective the points of X mapping to y′ are of codimension

at least 1 in X, and since dim(X) = dim(Y ) they must indeed be of codimension 1.

Further, as f is proper, f |U is a finite morphism by [51, III 4.4.11] so we may write

U = Spec(A) where A is the one-dimensional semi-local ring of points mapping to y′.

We have by now a proper map (f |U , i∗(τ)) : (U, i∗RX) → (Spec(OY,y),RY,y), with f

finite and i∗(τ) being the morphism between chain complexes concentrated in degrees

p and p+ 1 appearing below

RpA Rp+1
A

RpY,y Rp+1
Y,y′

⊕
f(x′)=y′

x′\
(
RX

)

y′\
(
RY
)

trπy′,Y
(
RY,y′

)p+1

τx

dpRA

(τ |U )p+1

⊕
trπx′,X (RX,x′)p+1

⊕
τ |x′y′

as a map between residual complexes over one-dimensional (semi) local rings. Here, RA
denotes the residual complex i∗(RX) over the semi local ring A - so we have RpA = RpX,x
while Rp+1

A =
⊕

f(x′)=y′ R
p+1
X,x′ . We require the commutativity of the diagram

T
(
x,RpX,x

) ⊕
x′∈f−1(y′)

(T− 1)
(
x′, x′\(R)

)

T
(
y,RpY,y

)
(T− 1)

(
y′, y′\(R)

)

∑
x′∈f−1(y′)

dx,x
′

T

(τx)∗ f∗

dy,y
′

T

Since
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(
τy′
)p+1

=
⊕

f(x′)=y′

τx′

one may check by localising at each of the x′ that
(
τ |y′
)p+1

induces a pushforward

(
τp+1
y′
)
∗ : (T− 1)

(
f.l.ModA,Rp+1

A

)
−→ (T− 1)

(
f.l.ModOY,y′ ,R

p+1
Y,y′

)
By applying Proposition 3.1.19 to the semi local ring A we see that when T = GW

it suffices to show that the below diagram commutes.

GW
(
x,RpA

)
W
(
f.l.ModA,Rp+1

A

)

GW
(
y,RpY,y

)
W
(
f.l.ModOY,y′ ,R

p+1
Y,y′

)

dGW (RA)

(τx)∗

dy,y
′

GW
(RY,y′)

(τp+1
y′ )∗ (∗)

Let’s consider then a symmetric space
(
V, 〈·, ·〉

)
∈ Sym

(
κ(x),RpA

)
. Since the ring map

OY,y′ → A is finite, any A-lattice L ↪→ V self-dual in the sense of Definition 3.1.4

is also an OY,y′-lattice self dual with respect to the inner product of the pushforward

τx〈·, ·〉. Let’s fix such a lattice L ↪→ V , and observe that the inclusion between dual

lattices below

L[
(
〈·, ·〉

)
L[
(
τx〈·, ·〉

)

HomA(L,Zp(RA)) HomOY,y′ (L,Z
p(RY,y′))

Hp
(
HomA(L[0],RA)

)
Hp
(
HomOY,y′ (L[0],RY,y′)

)

∼ = ∼ =

∼=

is an isomorphism for the reasons depicted above. The vertical arrows are isomorphisms

by Proposition 3.1.5 and the lowest horizontal map is an isomorphism since

(
τy′
)
∗
(
L[0]

)
: HomA(L[0],RA) −→ HomOY,y′ (L[0],RY,y′)

is a quasi-isomorphism. Writing simply L[ for this common dual lattice, we see that

(τ |U )∗dGW (RA)
(
V, 〈·, ·〉

)
=
[
L[/L, (−1)p+1(τy′)

p+1dpRA
(
〈·, ·〉L

)]
while

d
RY,y′
GW (τx)∗

(
V, 〈·, ·〉

)
=
[
L[/L, (−1)p+1dpRY,y′

(
τx〈·, ·〉

)L]
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which are equal so that we have the required commutativity of (∗). If T = V then

commutativity follows by taking applying for each generator [ψ0, ψ1] ∈ V
(
x,RpX,x

)
this

argument to each of ψ0 and ψ1 separately.

Case 2. Setting y = f(x), we have tr.deg(κ(x)/κ(y)) = 1 - hence µ(x) + 1 = µ(y).

As before we replace X by the closure of the point x and Y by the closure of the

point y. We have to show in this case that the triangle

T
(
x, x\

(
X

)) ⊕
x′∈X1

(T− 1)
(
x′, x′\(R)

)

(T− 1)
(
y,Rp+1

Y,y

)

∑
x′∈X1 resx,x

′

T

f∗0

commutes. The map f∗ above is zero on any component of the coproduct with f(x′) 6= y.

As in the previous case it suffices to localise at the point y ∈ Y - that is we now replace

Y by the point Spec(κ(y)) and X by the preimage of y; so that X is now a proper

curve over κ(y).

Now let (V, ψ) ∈ Sym
(
x,RpX,x

)
be any symmetric space, and take an OX -lattice L

self-dual with respect to ψ. Then because the support of L[/L is zero dimensional we

have that the complex L[/L lies in Ef - hence we obtain a symmetric space

(−− 1)p+1τp+1 ◦ dpRX ◦
(
〈·, ·〉Lψ

)
: L[/L × L[/L −→ Rp+1

Y

over κ(y). Further, the below sum of localisation maps

L[/L −→
⊕
x′∈X1

(
L[/L

)
x′

is an isometry between this space and
∑

x′∈X1(τx′)∗d
x,x′

GW
(RX)([V, ψ]). Since τp+1 ◦

dpRX = 0 this isometry completes our argument when T = GW . Again, for T = V

one takes a generator [V, ψ0, ψ1] and repeats this argument for each of ψ1 and ψ2

separately.
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Chapter 5

Suggestions for Further

Developments

5.1 Connection with Milnor-Witt K-theory

Perhaps the easiest way to see whether our construction of residue maps for Witt

groups can be extended to describe residue maps for Milnor-Witt K-theory would be

to first establish that our boundary maps for the Witt complex respect the filtration by

powers of the fundamental ideal; precisely one should try to prove a version of [2, Thm

6.6]. It appears that Gille’s argument for loc. cit. can be written down almost exactly

as it is to give the result in our setting. In charactersitic different from 2 then, our

residue maps do define some kind of Gersten complex for Milnor-Witt K-theory. The

hardest part in seeing that it agrees with that of [9] might well be in understanding

how our twisting by residual complexes agrees with Schmid’s Ω-twisting. Assuming that

this new Gersten complex for Milnor-Witt K-theory did agree with the Rost-Schmid

complex of [9], one would have agreement between our definition of a Chow-Witt group

and Fasel’s Chow-Witt groups appearing in [52].

5.2 Follow Fulton’s Intersection Theory

The quickest way to establish new properties that our Chow-Witt groups enjoy could

be to see how to lift some of Fulton’s constructions [10] to the Chow-Witt group.

For example by defining an exterior product and Gysin homomorphisms for closed

embeddings, Fasel has constructed a ring structure on the “usual” Chow-Witt group

of a smooth scheme [53]. The constructions of loc. cit. involve the Witt groups of

some derived categories; it may be possible to continue the spirit of this thesis and

find some way of describing these constructions without having any derived categories

intervening.
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5.3 Characteristic 2

The main result we would’ve liked to have found is that Definition 4.1.13 actually

makes sense even in the case when 1/2 ∈ Γ(X,OX). This will be the case if we can show

that one can remove the assumption 1/2 /∈ Γ(X,OX) in Proposition 3.3.4; which is

perhaps best done by exploiting the fact that Proposition 3.2.10 does not require

any assumption on the characteristic.
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