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1 The Structure of SLy(k)

We are interested in the structure of the universal central extension for SLs(k) where
k denotes an infinite field. The two-dimensional special linear group is perfect over any
local ring with infinite residue field (such as k) and, as such, admits a universal central
extension. Its Schur Multiplier Ho(SLo(k)) is then the kernel of this extension from
chapter 5 of [3]. A presentation for the universal central extension and Schur multiplier
were found by [6] and [4] respectively. However, these proofs are quite computational.
A modern presentation for the Schur multiplier was given by [5] in 2017 for local rings
by considering the induced action of k* arising from conjugation by elements of G Ls(k).
On Hy(SLy(k)), this is trivial for elements of SLy(k) and so factors to an action of
GLs(k)/SLa(k) = k*. The aim of this article is to give a modern, and more conceptual
description of the universal central extension as well as to prove this new presentation for
the Schur Multiplier from the old one, without making use of the modern methods in [5].
Brown’s book [1] on the cohomology of groups was referred to for background reading
and several basic results on the homology and cohomology of groups. All group actions
of a group on another group will be by automorphisms.

This first section will briefly summarize the elements of the structure of SLs(k) that
we will be using.

Definition 1.1: An elementary matrix in SLy(k) takes the form

(1) = ((1) D or o (t) i= C ?) for ¢ € k.

We will soon introduce the free group on symbols z(t), y(t) so the " is used to distinguish
these elements. We often use z).(t) to stand for z/(t) or y/(t) where r = +a with —«

yielding v/ (t).

Multiplying on the left by a/(t),y'(t) corresponds to adding ¢ times the second row to
the first and first to the second respectively. Multiplying on the right corresponds to
adding ¢ times the first column to the second for 2/(¢) and adding the second to the first

for y/(¢).



Definition 1.2: We introduce the following elements for t € k*:

wy(t) 1= @ ()2’ (=t~ )2l (t), b (t) -= wy(twr (1)~

s T

We denote w',,(t) by w'(t) = 2/(t)y' (-t 1)a/(t) = (_?_1 é) and hl(t) by h'(t) =

(é t(_)l) . We also write w’ = w'(1). We denote by U, U,, H the subgroups generated

by the 2/(t), the y/(t) and the h.(t)’s respectively.

It immediately follows from the definition that z/.(t)z.(s) = 2. (t+s), w' (1) = w'(t)T =
w'(—t~1) and w'(t)~! = w'(—t). Moreover, h'_(t) = h'(—t71).

Theorem 1.3 (Bruhat Normal Form): [2] Every matrix in SLy(k) can be uniquely
written in the form uh or vhwu' for u,v’' € U,h € H.

Proof. 1t is clear that uh uniquely expresses every upper triangular matrix. For the second
form, note that

—a~t —a 't +a
s @) = (40 T ).

So, given an arbitrary matrix (z 3}) with z # 0, we see that z determines a, = de-

termines ¢, w determines ¢’ and the determinant formula guarantees the final value as
z is invertible. Clearly, the matrix can be expressed in this form and the expression is
unique. ]

This is actually true in any special linear group over a field and the general case follows
from row and column reducing where w can be any permutation matrix. The reason the
proof is written in this form is that we can see that this normal form will not hold in
SLy(R) for alocal ring R as it implies the lower left entry is either 0 or a unit.

Proposition 1.4: Let (R,m) be a local ring such that R/m is infinite.
1. SLa(R) is generated by elementary matrices.

2. SLy(R) is perfect.

. . b
Proof. Given a matrix A = <CCL d
unit. If ¢ is a unit, we can use row operations to change a to 1 and hence can obtain the
identity. Else, d is a unit so we can eliminate b and similarly A is a product of elementary
matrices.

> € SLy(R), as 1 ¢ m, one of a,b and ¢, d must be a

To show that SLs(R) is perfect, we have that: v/ (t(1 —u?)) = [h'(u),y'(t)]. Now, R/m
is infinite so we may choose some a € R such that 1 —a? ¢ m as this is just anything that
isn’t a root of 1 —2? € £[z]. Thus, y'(t) € [SLa(R), SLo(R)] for each t as 1 — a? is a unit
and we may take a = u. Similarly, we can get 2/(t) by transposing the formula. So, by 1,
SLy(R) is perfect. O

It follows from this proposition and chapter 5 of [3] that SLo(R) admits a universal
central extension.



Proposition 1.5: The following relations are all true in SLy(R) for any ring R:
(A): 2L (8)L(s) = al(t + ).
(B): w) ()l (s)wl (8) ' = 2’ (—st~2).

(C): BL(t) () = M. (t)

Proof. We do them for r = +« as it is analogous for —a. (A) is clear. (B)’ is just:

w0 = (5 ) (5 3) = (Lae 1) =ves

(C) is clear from the expression for h/(t) following Definition 1.2. O

Definition 1.6: SLy(k) has an action of k*, ¢, where ¢, is conjugation by <8 (1) .
Moreover, we have an involution o, conjugation by w’ = w’(1). Then, w’ = 2/(1)o(2'(1))2'(1).
Moreover, g oc, = ¢,-100, o(2'(t)) = /' (—t) and, writing x = 2'(1) ¢i(x)es(z) = crps(2).
So, SLy(k) is generated by z and the action ¢ and involution o.

2 A Presentation for SLy(k)

We aim to show that the relations in 1.5 completely determine SLg(k) and then that
the relations following 1.6 are equivalent to them.

Consider the free group on symbols z(t),y(t) for ¢t € k. Call it F. We analogously
use the notation z,(t) where r = +« and define w,(t), h,(t) with w(t) = wq(t),h(t) =
ha(t),w = w(1).

The results and many of the ideas for proofs are taken from [6] and [2]. Where it is
not indicated, I supplied the proofs myself. In all cases, the proofs have been heavily
condensed from a much more general setting.

Definition 2.1: We introduce the following expressions:

(A): xp(t)zr(8) = 2 (t + ).

(B"): w,(t)z,(s)wp(t) ™t = z_p(—st2).

(C): hp(t)hr(s) = hy(ts)
We let A be the free group on z(t), y(t) with relations (A) and (B’). Let I be A but with
relation (C) as well.

Consider the homomorphism ® : F' — SLs(k) taking z(t) — 2/(t),y(t) — /(). By
proposition 1.5, ® passes to maps m : A — SLa(k) and ¢ : I' — SLa(k) both taking
x(t) — 2/(t),y(t) — y'(t). Both maps are epimorphisms by 1.4. We note that x,y are
actually homomorphisms (k, +) — SLa(k) and h, : k* — SLa(k) is also a homomorphism.
We also have subgroups of both A and I': U, U,, H. Our goal is to prove that I' is actually
a presentation for SLy(k). That is:

Theorem 2.2: ¢ is an isomorphism.

We first require several lemmas. Any relation in A will also be true in I'. The following
all holds in A:



Lemma 2.3: w,(t)™! = w,(—t).

PTOOf. wr(t)wr<_t) = wr(t)x—r(_t_l)xr(t)xr(_t)x—r(t_l)xr(_t) =1 by (A) O

Lemma 2.4: 7.2 in [6]. w,(t)xs(u)w,(—t) = 2_s(—t°u) where c is determined by s and
r.lfr=s,c=-2,andif s=—r, c=2.

Proof. s = r is precisely relation (B’). Else, swap t with —t in (B’). This yields
w, () zs(—u't 2w, (—t) = z,.(u).

Simply take u/ = —t?u as t € k* to yield the result. O

Lemma 2.5: (Stated in [6] with a typo in (b); proof is my own) We have the following
where c is as before, and d is another integer determined by s and 7:

w(t)ws (u)w,(—t) = w-s(=tu).
r(E)hs(ww, (—t) = hos(—tu)h_g(—t°) 7.

(a)
b)
¢)
(d)
()

e

g

( (
( tzs(u)he ()~ = @(tM).
)

t)ws(u)hy ()7 = ws(t%u).

hy
hy
hy(t)hs(uw)hy(t)~ _hs(tdu)hs(td)_l.

Proof. The proofs are all quite similar and involve using Lemma 2.4 and the previous
identities.
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O

These relations are what we will use to create a similar Bruhat Normal Form in A. This
will then yield a kernel consisting entirely of elements in H which is how relation (C) gives
us that ¢ will be an isomorphism. We first note the meaning of many of these relations.
(c) implies that H acts on U by conjugation and hence UH = HU is a semidirect product
containing U as a normal subgroup. Similarly, elements w(t) act on H by conjugation
as well. This means we may freely swap the order of elements w(t) and h € H up to
replacing them with other elements of this form.

The proof of Theorem 2.2 will involve replacing elements of U, U, and H with other
elements of the respective groups. The way this is done follows from the previous lemma
in the following way: We may use (b) to move w(t)h to the form h'w(t) for h, ' € H, and
we may move z(t)h to h'z(t) for h,h’ € H. To condense notation, h with any additional
notation will always represent an element of h using these. Finally, by the definition of
w(t), any element y € U, may be expressed y = zw(t)x for some x € U. We will be doing
this in the proof. Theorem 2.2 will follow from the following analogue of Bruhat Normal
Form after remarking how (C') allows us to simplify H < T

Theorem 2.6 (Bruhat Normal Form): 7.6 in [6]. In A (and I'), every element can
uniquely be expressed in the form uh or uhw(1)u' for u,u’ € U,h € H.

Proof. (The idea is outlined in [6] but without any detail). Let A be all elements of this
form. We show that A is closed under left multiplication with elements z(¢) and w(t). By
lemma 2.4, every element y(t) can be expressed as a product of these elements and hence
we may form every element of A as such a product. This would then imply that A = A.
As z(t)U = U, we need only prove it for w(t). For w(t)z(to)ho:

ot



Then, for the second case, we have a slightly longer argument:

w(t)z(to)how(1)x(t1) = y(te)hyw(t)w(1)x(ts
= 2wt 2" hyw(t)w(1)z(t2)
= 2'yw(t ) hiw(t)w(1)x(ts2)
= 2(t)yhow(t ) w(t)w(1)x(t2)
= 2'yhow(—1)w(D)wt)w(—1)w(1)w(t)w(l)z(ts)
= 2'yhow(—1)h(—t") " Lw(=1)h(—t) " tw(1)x(ts)
= 2'yhgw(—1)z(t2)
= 2’ hgw(—1)z(t2)

But, w(—1) = h(—=1)w(1) as h(—1) = w(—1)w(—1). This gives us the required form for
the expression.

For uniqueness, apply 7 (or ¢) to the element to determine u,u’, and the existence of
w from 1.3. This then determines h. O

Definition 2.8: Denote by h4 the subgroup of H < A generated by all elements h(t).
By (C), if we view hy < T, then hy = {h(t) | t € k*}.

Lemma 2.9 (7.7 in [6] — proven in much greater generality) H = h .

Proof. Tt suffices to show that every h_,(¢) is a product of elements of h. We have, by

(a):

O

We note that our expression agrees with the corresponding formula in SLo(k). Thus,
by proposition 2.7, ker(¢) = {h(t) | h'(t) = 1} = {1}. This proves Theorem 2.2.

We can describe A in terms of different, more natural, relations.

—~—

Definition 2.9: We let SLy(k) be the free group on one generated x with an involution
o and action of k*, ¢, such that o o ¢, = c,-1 0 0, ¢4(x)es(x) = c145(x), and such that o
is conjugation by w = zo(x)x. From the end of section 1, we get an equivariant map

—_—~—

7 SLa(k) — SLao(k) taking z — 2/(1).

A also comes equipped with such an action. Consider the map ¢, : F' — A taking
x(t) — z(at), y(t) — y(a~'t). This respects relations (A) clearly and, as for relation
(B, co(w(t)) = w(at) and thus w(at)z(sa)w(at) = y(—sa= (t72)) = ca(y(—st2)). The
case for the roots swapped just follows by replacing a with a~!. Thus, this passes to a
map ¢q : A — A. We also have an involution o, conjugation by w = w(1). We have that
00cq =c,-100 by (B).



P

Theorem 2.10: A = SLs(k)

Proof. The relations in SLy(k) hold in A so we get a map ® : SLy(k) — A taking
x — x(1) that respects o and the action of k* (i.e. ®o = 0®,¢,® = Pc,). Now, we
wish to show that ® has an inverse. Define a map ¢ : F — SLo(k) taking x(t)
ct(x), y(t) — o(c_¢(x)). We show that this map respects (A), (B’) to give us a map
YA — %(k) which will be an inverse to ® as ®(¢¥(z(t))) = P(c(x)) = ce(z(1)) =
z(t), ®(¢Y(y(t))) = ®(o(c—t(x))) = o(c_pz(1)) = y(t), and to show it is a two-sided inverse:
Y(P(cr(x))) = a(x), Y (P(o(c(x)))) = Y(y(—t)) = o(ei(z)) and these elements generate
S‘E(k) as we may interchange oc, = ¢,-10.

Now, we check that 1 respects the relations:

P(x()v(x(s)) = cil@)es(z) = crps(w) = Y(a(t + 5))
and the same holds for y by the same argument. For (B’), we note that ¥ (w(t)) =
ci(z)o(ci-1(x))er(w) = ce(wo(z)x). Moreover, P(xz(s)) = (crcp-1¢5)(x) and each map ¢ is
an automorphism of SLy(k). So,
Y(w(t)z(s)w(t)™t) =

i[zo(2)z(cp-1c) (x)z o (z 1)z

The case with w_, and y(t) instead of w(t) and z(t) follows by applying o and swapping
t,s with their negatives since ¥(w_q(t)) = o((w(—t))). Thus, we get such a map
P A — SLy(k).

So, we can replace all our working with F' being the free group on one generator with
such an action. We define h(t) = ¢(w)c—1(w) and then SLs(k) is generated by the

relations in SLo(k) along with h(t)h(s) = h(ts).
O

3 Universal Central Extension for SL,(k)

The universal central extension for a perfect group G has a lifting property. Using
this, we can explain why the universal central extension of SLs(k) has all the relations

in SLy(k) except ci(z)cs(z) = ciq5(x). The difficult part is proving this one should be in
the universal central extension. The bulk of this section will be showing this result. Let
us first study lifting properties.

We start with a general set-up. Let (F,7) be a central extensions of a group Go and
f : G1 = G2 a homomorphism. We construct a central extension of Gy, f*FE satisfying
a universal property. Define f*E := E X, G1 = {(e,g) | 7(e) = f(g)}. This gives us a
map 7 : f*F — G1 such that the following diagram commutes:

E (eg)e o

G1*>G2



Moreover, m*(e,g) =1 <= ¢ = 1 so ker(n*) = ker(m) x 1 as w(e) = f(g) = 1. Thus,
they have the same kernel and we get a central extension for G called the pull-back of
G along f. It satisfies the following universal property:

Given any group () and maps ¢o, q1 to F, G respectively such that fq; = wqo, there is
a unique map u : Q — f*FE such that

G1*>G2

commutes. In our case, u is just the product of each map since we already have wqo = fq;.
Identifying H?(G, A) with central extensions of G by A up to isomorphism, [E] — f*E
is the induced homomorphism on cohomology by f. Taking G; = Go = G, E = é, for
(é 7) the universal central extension of G, and @ = G with q1 = 7, we get a unique map
u by the universal property of G and thus g = . f is determined by u and ¢ is then a
unique map f : G — G. such that fr = xf. It is unique as if q were any other such
map, we would get a v’ but v/ = u by the universal property of G and thus ¢ =f. We
have constructed: i
G %
lﬂ

G*)G

5 @

This property is enough to ascertain uniqueness of fas f,f give us amap u G — f *G
However, by the universal property of G, there is only one possible u we can have in the
diagram and it is determined by just f. So, if we had some f’, it must then be the same

as f.
Proposition 3.1: If f, g € Aut(G), then fg= f;

Proof. First apply the universal property of the pull-back to f g and 3‘5 separately to get
v : G — (fg)*G. By the universal property of G, v = u' and thus, by uniqueness of
the map above, we have our claim. ]

In particular, if H acts on G via ¢ : H — Aut(G), a — ¢4, then we get maps ¢, : G—G
satisfying ¢,¢, = cap, and 1 is certainly a lift of 1 so we get an action ¢ : H — Aut(G).

Applying this to ¢, o, we get lifts to the universal central extension (F, ) for SLy(k)
such that ooc, = ¢,-100. Moreover, we can define f : E — Z(E) viazo(z)zg(zo(x)x) " f(g) =
o(g) where x is chosen such that m(z) = 2/(1). This indeed defines a homomorphism and
f(g) € ker(m). As E is perfect, f is trivial and so o is conjugation by zo(z)z.



There is a homomorphism z : k — SLy(k) taking ¢ — 2/(t). k comes equipped with
an action of k* by multiplication. To show that the final relation in SLy(k) holds is
the same as to say that z admits an equivariant lift to F. It suffices to say that *FE
admits an equivariant section £ — z*E. To prove such a section exists, we will first find
a non-equivariant section. It suffices to prove that z* : H?(SLy(k), A) — H?(k, A) takes
the universal central extension to [0] = [A X k] where A = H(SLa(k)). This is because
t — (0,t) is the required section.

We wish to show that, considering the classes of central group extensions of a group
G by an abelian group A with trivial G-module structure (in fact the trivial structure is
what makes it central), z* takes the universal central extension to 0 via H?(SLy, K) —
H?(k,K) (where K = Hy(SLy(k))). To do this, we first make use of the universal
coefficient theorem noting that, since SLy(k) is perfect, Ext!(H;(SLa(k)), A) = 0 since
H1(SLo(k)) = 0. So, H?(SLy(k), A) = Hom(H2(SLy(k)),Z)) by the universal coefficient
theorem’s naturality with z., we get the following commutative diagram:

0 —— H2(SLy(k), A) —— Hom(H,(SLy(k),Z), A)

I |+ Jter

0 — Ext}(k,A) ——— H*(k, A) ————— Hom(Ha(k), A)

Let us show that x, takes the universal central extension in H2(SLa(k), H2(SLa(k)) to
0 € H?(k, Hy(SLy(k)). First we claim:

Lemma 3.2: Squares of units act trivially on Ha(SLa(k)).

Proof. The map ¢, : H,(SLa(k)) is induced by conjugation via any matrix in GLo(k)
with determinant u. If u = v?, we may take vl as our matrix which lies in the centre of
G Ly (k) and thus the induced map is trivial. O

Proposition 3.3: Any k*-module homomorphism f : Ho(k) — Ha(SL2(k)) is zero.

Proof. k is infinite so we may pick units u1, ... uq such that all their partial sums over sets
0#1cC{1,2,3,4},ar := ) ,c;a; are still units. Then, we will use the following element
introduced in [5]
§i=— Z (—1)Hla2.
0AIC{1,...4}

By 6.2, each a? acts as the identity on Hy(SLa(k)). The fact that s acts as the identity
then follows from the fact that (1—-1)* =1+3",. ( ). Then, Ha(k) = k A\ k, and k* acts
via Y nigi(x Ay) = > ni(giz A giy). [5] shows that it acts as 0 on k A k. We will give a
more direct proof. Consider s(z Ay). In sz, we get a sum of terms of the form either a?ac
or a;a;x. For each of these, we may expand by bilinearity to get a sum,

aac/\z ‘”2

el

aza]:L‘/\ E \II 2

i,J€1

Oor a sum



We just need to do this computation for i = 1, j = 2 to simplify notation. For the case a?,

the sum in the right hand term is precisely (omitting a? for i # 1 as these clearly cancel):
—a%—I—Sa%+2a1a2+2a1a3—|—2a1a4—(3a%+4[a1a2+a1a3+a1a4])+a%+2a1a2—|—2a1a3+2a1a4 = 0.

For terms with both an ¢ and a j # ¢, then we need only compute the right hand side for
i =1,j = 2 which is:

a%+2a1a2—|—a§—[2&%+2a%+4a1a2—|—2(a1a3+a1a4+a2a3—|—a2a4)+a§+ai]+Z ai+2 Z apa; =0
k k£l

Thus, s acts as 0 on k A\ k.

Localize the k* modules H2(SLa(k)), H2(k) at s. and consider how f passes to the

localizations via % — f(Tm This yields a commutative diagram:

Hy(k) —L— Hy(SLy)

| |

S_IHQ(]{i) E— S_IHQ(SLQ)

Now, localizing Ha(k) is just 0 as s acts as 0. Moreover, the right vertical arrow is
an isomorphism as f — s"f = f — f = 0 as s acts as the identity, and Sin # {forg#f
or else we would have s"(f —g) = 0 but s"(f — g) = f — g. Thus, the bottom arrow and
hence the top arrow are both 0.

O

We want to finish the proof that the universal central extension is taken to 0 via x*
where A = H(SLa(k)). Our diagram from the naturality of the universal coefficient
theorem comes equipped with an action of k* everywhere. The maps induced by x are all
equivariant, and the remaining maps are slightly more complicated to describe. Use the
bar resolution to obtain everything. Then, the map H?(G, A) — Hom(H2(G), A) is just
the map taking f € Homg(F,A) = Hom(Fg, A) to the map obtained by restriction to
ker 0 as fO0 = 0 so f vanishes on im@ and thus factors to a map Hs(G) — A. Restriction
is clearly equivariant so this is done. In the proof of the universal coefficient theorem,
the Ext term arises from the cokernel of the dual of an inclusion map from boundaries to
cycles and thus this map is equivariant.

Now, we may take k* fixed points. The universal central extension of SLy(k) is equiv-
ariant by its lifting property studied in the beginning of this section and thus lies in the
fixed points of H?(SLy(k), A). This is because we may choose an equivariant section o
(as a map of sets) of (A, ) such that o(1) = 1. Then, the cocycle corresponding to A, c,
will satisfy c(a='g,a='h) = a~'c(g1, g2) and thus this cocycle will be invariant under the
action a - ¢(z) = a ¢(a~'z) where ¢ is the map from the second degree group in the bar
resolution corresponding to ¢ : G2 — A.

We know that Hom(Ha(k), A)*" is 0 by 3.3. We just wish to show that the term
Exti (k, A) has no fixed points. We need to take a projective resolution of k and then
apply Hom(—, A). We can take the usual resolution of k via taking the free abelian
group on k where Fy and F} is obtained by choosing a presentation for the kernel. Call

10



0: Fy — Fy,p: Fy — k the maps. These carry an action just by multiplying the
elements of k since a € ker(p) <= xza € ker(p) for each x € k* and 0, p are then clearly
equivariant. Apply Hom(—, A) and say ¢ is the map corresponding to 0. If a € k*, then
for [f] € Ext'(k,A), af = f <= af(a'z) = f(x) + gd(z) for g : Fy — A. Pick a
to be any square so that it acts as the identity on A. So, f(z(a™! — 1)) = d(g)(z). Set
y=mx(at = 1) so f(y) = gd((a™! — 1)"ly) € imd as we may choose a to be a square
such that a=! # 1. Thus, [f] = 0. So, this is indeed 0 and thus the central extension is
mapped to 0 in H2(k, A).

Now, this yields the existence of a section from k — z*[A] of z*[A] — k and thus a
homomorphism Z : k — A such that 72 = z. However, we wish for our section to be
equivariant. To accomplish this, we define a variant of H?(G, A) for A a trivial G-module
where G and A are equipped with an action of a group N by automorphisms.

Definition 3.4: For a group G and abelian group A with action of a group IV, we define
H%(G, A) as follows. Its elements are central extensions of G, (E,p) with kernel A that
come equipped with an action of IV agreeing with the action on A and G such that p is
N-equivariant, modulo equivariant isomorphisms of extensions. On the Baer sum (with
its usual definition) we apply the action component-wise to get a well-defined abelian
group structure and, due to the identification in the Baer sum, it doesn’t matter which
component we do the action on for elements of A so it will be the correct action on A.
We will denote all actions by c.

Lemma 3.5: Equivariant homomorphisms f : G — H pass contravariantly to homo-
morphisms f* : H%(H, A) — H%,(G, A) and this is functorial.

Proof. Set f*E to be the usual pull-back with the action c¢,(e,g) = (cq(€),g). Since
f*p(e, g) = g, this clearly is an element of HJZV(G, A). Moreover, this respects the Baer sum
just as in the case of H2(G, A). Functoriality is also identical to the case of cohomology
since all we have actually done is just add an action to the pull-back (thus checking that

it lies in H%(G, A)). O

Now we reach the main point of this construction, it allows for an understanding of
cohomology with group action in terms of regular cohomology:

Theorem 3.6: There are homomorphisms between H%(G,A) and H?*(G xn N, A)
(where the action of G X N on A is given by projection G x N — N — Aut(A)), t

and " going in the forward and reverse directions respectively such that (Et) = E. That
is, " is surjective and f is injective so H% (G, A) = H%(G xy N, A)T. We note that the
action of G X N on A is just the first component acting trivially, with the action of the
second component already fixed.

Proof. We will first describe the correspondence of extensions and then check they are
well-defined inverse homomorphisms. Their definition is very natural which makes the
many checks quite straightforward. Given an exact sequence 1l + A - F -G x N — 1,
say (E, p) is the extension, consider 7 : GXN — N, the quotient map. Set F = ker(mp) =
{e|p(e) = (g,1)}. Then,set p=p|z AC Eand ple) =1 <= p(e) =1 so ker(p) = A.

So, (E,p) is a central extension of G since {(g,1) | g € G} = G. This also comes equipped
with an action of IV as follows: we have an action of £ on E via conjugation and this
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vanishes on A as elements of G x 1 act trivially on A. Therefore, the action factors to an
action of E/A > G x N via p on E. Hence, we have a homomorphism G x N — Aut(E).
Just precompose this with inclusion N — G x N via a — (1,a). More concretely, we
compute c,(e) by choosing some €' € E such that p(e’) = (1,a). Then, conjugate e by
¢/ to yield c,(e). As this is just conjugation, we have that p(cq(e)) = p(ee(e’)!) =
(1,a)e(1,a)™" = c4(e) and thus p is N-equivariant as required. Before checking that
this operation is well-defined, we will give the operation going the other direction. Let
(E,p) € H%(G,A). Then, set ET := E x N and pf(e,a) = (p(e),a) € G x N. We
know that (p(e1),a1)(p(e2),a2) = (ple1)ca, (p(e2)),aras) = pf((e1,a1)(exaz)) since p is
N-equivariant. The kernel of p' is clearly A so this defines an element of H2(G x N, A)
since conjugation by elements in A X a act as @ on A so the G x N-module structure
on A corresponds to the N-module structure. Now, we will verify that "1 are indeed
well-defined and that they are one-sided inverses.

We will do t first. If ¢ : E — E’ is an equivariant isomorphism (that is, [(F,p)] =
[(E',p)] in H%(G,A)), then define a map ¢ : E x N — E' x N, (e,a) — (¢(e),k).
Since ¢ is equivariant, this gives a homomorphism and it is clearly bijective. Lastly,
pig(e,a) = (' (p(e)),a) = (p(e),a) = p'(e,a). Thus, { is well-defined. Conversely, if ¢ is
just an isomorphism of extensions of G' x N, then ¢ |z: E — E' is well-defined since, if
e — (g,0), then p'(p(e)) = (g,1) so ¢(e) € E'. By symmetry, ¢! also restricts to such a
map and thus this yields an isomorphism. Since the action comes from conjugation, ¢ |z
is equivariant and we are done.

Now, we must show that these operations respect the Baer sum. " is the easier one
to verify. Say (FE,p),(F,q) are the extensions. On E xgun F, (e,f) — (9,1) <—
ple) =q(f) = (g,1) so E ></G;V F = E x¢ F as p,§ are just restrictions and this isn’t
affected by the identification in the Baer sum. T is slightly more subtle. Define a map
Y :ExgFxN = Ef xg.v Fvia1((e, f),a) = ((e,a), (f,a)). This is well-defined since
(p(e),a) = (q(f),a) Moreover, 1 is a homomorphism as:

Y((e; feale’, 1), ab) = ((eca(€'), ab), (fea(f'), ab)) = (e, a)(f,a))((¢",b)(f',D))

as the actions are component-wise. 9 is clearly bijective and clearly passes to the quotient
in the Baer sum. This proves the theorem.

Finally, we must check the composition: ExN = {(e;a) |a=1} =2 E.
O

In addition to these maps, we can study how they interact with functoriality. Given
an equivariant homomorphism f : G — H, we get an induced homorphism f : G x N —
H x N by setting f(g,a) = (f(g),a). In particular, we note that z : k — SLy(k) is N-
equivariant where the action on k is left multiplication since c,z(t) = x(at) = z(ca(t)). We
will quickly show that, given f as above, (f)* corresponds to f* via . f*(E) = {(e, (g, a)) |
p(e) = (f(g);a)}. The only elements mapped into G x 1 are then any (e, (g,1)) such that
e e F. Ignoring the component with the 1, this is precisely ExyG = f*E and this
projection is an isomorphism so this completes the proof. Replacing FE by E' since 1 is
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injective, we yield the following commutative diagram.

H%(G x N, A) —— H2(G, A)

A ‘l

H?(H x N, A) < H%(H,A)

—

Thus, it suffices to study (f*) = 0 to learn about f*.

There is an inclusion map ¢ : N — G x N. We claim that imt = ker:* as /" :
H?(G % N,A) — H%*(N,A). First, we show that Et € kert*. 1*(E x N) = {((e,a),t) |
e€ Aja =1t} = A x N and this isomorphism respects the extension maps as they both
just ignore the £ component.

Conversely, we have that *(FE) = {(e,t) | p(e) = (1,¢)}. Introduce the temporary
notation E' := {e € E | p(e) € 1 x N}. Thus, *(E) = E’ via (e,t) — (e) since e € E’
and e determines ¢ anyways so we have the extension e — p(e) where we ignore the first
component of p(e). Now, if ¢ : *(F) — A x N is an isomorphism, then as it is an
isomorphism of extensions, we have that ¢(a) = (a,1) for a € A, and ¢(e) = (a,t) where
p(e) = (1,t). E' acts on F by conjugation but this action is exactly the same as the action
of N on E by our working in the proof of 6.5.

Now, F is a normal subgroup of E and thus EFE < E. Moreover, p |zp, is clearly
surjective so, given e € E, if p(e) = (g,t) and we choose (eg,€’) € E x E' such that
pleoe’) = (g,t), then e = aepe’ for a € A < Z(E) so e € EE'. Moreover, ENE' = A by
their definitions. We may form E x E’ and map (e,¢’) — ee’ to yield an epimorphism.
Moreover, this has kernel {(a,a™!) | a € A} =t A’. Thus, E = EE,EI and this is an
isomorphism of extensions if we use p(e, ') = p(ee’) (this clearly vanishes on A’).

We must show that E is isomorphic, as an extension of G x N, to an extension of
the form F' x N where F is an equivariant extension of G. We will prove that it is
isomorphic to £ x N = (E)T. We will use the notation ¢(e) = (¢(e)4,t). Define a map
f:ExE — ExN via f(e,€) = (e(d(e)4)~1, p(€')). f is a homomorphism since the
action of p(¢/) on F as an element of N is the same as the action of ¢/ as an element of
E’. More explicitly:

flereq (e2), €1eh) = (erce (e2)leieh) 3", p(efed))

~

but ¢(ejes)a = ¢(ei)ace (¢(e3)a) and all these elements lie in A C Z(£). Therefore,

f((e1,€))(ea, €h)) = (e1g(e)) 1 ey (e20(eh) 41), p(ehey) as required. So f is a homomor-
phism and it is clearly surjective. Lastly, its kernel is precisely {(a,a"')} since ¢(a)s = a
for a € A. Thus, f factors to an isomorphism f : F — E x N. This proves:

Theorem 3.8: H%(G, A) is isomorphic to ker(¢*) via t and " restricted to ker(:*).
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Now, it suffices to prove that HZ (k, A) = 0 for A = Hy(SLa(k)) to get our equivariant
section. Here Hs(SLa(k)) has the action induced by ¢ : k* — Aut(SLo(k)). This is
because the universal central extension has the required lifts and thus z* will take it to
an element of H2.(k, A). This fact follows from a short exact sequence arising from the
Hochschild-Serre spectral sequence for cohomology arising from the short exact sequence
G — GxN — N. We have a filtration of the kernel of the map H?(G'x N, A) — H?(N, A)
(precisely H%,(G, A)). This yields the short exact sequence

0— HY(N,HY(G,A)) — H%(G,A) — H°(N, H*(G, A)).

We claim that the exterior terms are 0 to prove that the middle is O when N =
k*,G =k, A = Hy(SLy(k)). For the right hand term, we have already seen that the k&*
fixed points of H?(k, A) are zero.

Now we treat the left hand term. By the universal coefficient theorem applied to
calculate H'(G, A), at n = 1. Since Hy(k) = Z, we get an exact:

0 — Ext}(z,A) — HY(G, A) — Hom(k, A) — 0.

The left term is 0 using the free resolution 0 — Z — Z — 0. Applying Hom(—, A) preserves
exactness here so we get 0 since all maps are 0 or the identity. Now, H'(N,Hom(k, A)) =
Ext%[k*] (Z,Homyz(k, A)). The arguments here are both k*-modules and so the whole term
becomes a k*-module where a acts via Ext(a,1) = Ext(1,a). Take a = s for s as in
3.2. s acts trivially on Z (as this has trivial module structure) but also acts as 0 on
Hom(k, A) since it acts as 0 on k (this is just an easier version of the calculation in 3.2).
Therefore, the whole term is 0 and H7. (k, A) = 0. It follows that there is an equivariant
isomorphism z*E — k x A for (E, p) the universal central extension of SLy(k) and so we
have an equivariant homomorphism Z : k — E lifting = : K — SLa(k). So, the universal

central extension for SLo(k) satisfies all the relations in SLa(k). This gives rise to an
equivariant homomorphism ¢ : SLy(k) — E such that p o ¢ = m where 7 is the map

taking « +— 2/(1). (SL2(k), ) is an extension of SLa(k). If we show that it is central and
perfect, we will be done.

—_——

Proposition 3.9: [6] (SL2(k),7) is a central extension of SLa(k).

Proof. We need only show n(g) = 1 = x € Z(SLa(k)). It suffices to show that g
commutes with all elements ¢;(z),o(ci(x)) as these elements generate the group. In the
notation of section 2.7, these all have the form xz,(¢) and we will stick with this notation
to easily use the relations in this section. By proposition 2.7, g = h € H. g is a product of
elements TTh(t;). We know that h(t)z,(u)h(t)~! = z,(t%). Thus, gz, (v)g~" = z,.(Mtdu).
So, as 7(g) = 1, we see wgz,(u)g~* = 7(x,(u). Now, 7(x.(u) = z!.(u) and so we see that
It = 1 so gz, (u)g~! = 2, (u). Therefore, g is central. O

—~—

Proposition 3.10: [6] SLy(k) is perfect.

Proof. We assumed k was an infinite field so we may pick u € k* such that u? — 1 # 0.
Then, we examine the commutator [h(u), c;(x)].

[h(w), ce(2)] = h(u)ce()h(uw) " e(z) ™
= cu2()c—i(2) by (¢)

= C(u2-1) (:U)
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Since u? — 1 is a unit, we see that every c;(z) is a commutator and hence commutators

—_—~—

generate S Lo (k) since the commutator subgroup is characteristic and thus invariant under
. O

Putting these together, and precomposing any map from (E,p) to a central extension

over G with ¢, we get a unique homomorphism from SLs(k) to any central extension over
G (uniqueness follows from 3.10 since any two homomorphisms differ by central element

and so will agree on commutators). Thus, (SLz2(k), ) is the universal central extension

of SLQ(k’)

4 Modern Presentation for Hy(SLy(k))

In this section, we will use the notation in A as this is what [4] uses in calculating the
old presentation for the Schur multiplier.

Definition 4.1: We define the following element of Z[k*|: for r € k*, [r] = (r) — 1.

The goal of this section is to, from the presentation of Ho(S Lo (k)) given by Moore, prove
that, as a Z[k*]—module via the action induced by conjugation from GLo(k)/SLa(k) = k*,

~ I *® w1 L=
Hy(SLa(k)) g [a]@)[ak_l] fi[rka],lk—aek*

Z,{a) — 1 for each a € k*, I+ = ker(e). For now call this module A to simplify notation.

where I« is the augmentation ideal, for € : Z[k*] —

Definition 4.2: We define amap b : k* xk* — A, b(s,t) = h(s)h(t)h(st)~ = h(st) " h(s)h(t).
So, each individual b(s, t) lies in ker(m).

Lemma 4.3: The b(s,t) generate K := ker(m).

Proof. (8.11n [4]) Each element of K is of the form h = II}" , h(t;) for t; € k* by 2.7 and 2.9.
We proceed by induction on n. If n = 1, then w(h(t)) =1 <= t =1 <= h =1. Then,
we note that h(t)h(t') = b(t,t')h(tt'). So, given h as above, b(t1,t2) " h = h(t1ta) 1 5h(t;)

and the right hand side lies in the group generated by the b(t, s)’s and hence so does h. [J

One can expand on the relations holding among the b(s,t)’s but eventually it leads to
a very long computation, all the details of which are done in the appendix to [4] and it is
just a straightforward calculation. The result which we will use is the following:

Theorem 4.4: K is generated by the b(s,t) subject to the relations
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We define a map ¢ : K — A taking b(s,t) — [s] ® [r]. To show such a map exists, we
must show it satisfies these relations. (d) is clear as in A

[s] @ [t] = [s] @ [t(1 — )] = [s)(@[t] = (H)[1 — s] + [t]) = 0.
(a) is also fairly straightforward to show:

[st] @ [r] = (B)[s] @ [r] + [t] @ []
= [s] @ ([rt] = [t])

and we get (a) by just adding [s] ® [t] to each side.

Before continuing, let us examine why the action in K corresponds to this action on A.
We wish to compute ¢, (b(s,t)). We have already shown that ¢, (w(t)) = w(at) and hence
ca(h(t)) = w(at)w(—a) Thus,

but, in A, (a)[t] ® [s] = [at] ® [s] — [a] ® [s] and precisely the same argument works if we
bring the (a) to the second argument.

To prove the last two, we use a result from [5] (Lemma 4.3 and 4.4). We prove
all the necessary statements here. Note that all expressions we write down except (1)
will lie in the degree 2 part of the graded tensor algebra. For instance, [s][r] ® [t] =
((sr) — (s) — (r) + 1) ® [t]. Besides this lemma, the argument is mine.

Lemma 4.5: All the following hold in A:
L [§] = la] = ()[b] in Z[k]

2. la][b] @ [e] = [a]lc] © [b]

5. ([aJ(1+(=1)))b] @[] =0

6. [a*] @ [b] = (1+(~1))[a] @ [b]

7. [a2)(]b] ® [¢]) = 0 Or, equivalently, (a)[b] ® [c] = [b] @ [
Proof. [5]

(1) We have that [a] = [¢b] = (£)[b] + [¢] which is sufficient.

e

(2) Immediate from the Z[k*] module structure as all three elements [a], [b], [¢] lie in
I
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(3) If @ = 1 then it is immediate as [1] = 0. Else, 1—a,1—a~! are both units. Moreover,
—a(l—a™1) = 1—aso —a = 2=%. Thus, by (1), [a]®[—a] = [a]®([1—a]—(—a)[l—a"']) =

1—a—1°

0—(=a)la] @[l —a™'] = (=a){a)la™ @ [1 —a™'] = 0 as [a] = —(a)[a"].

—
=~
~—
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<
—
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~—
S
I
=
®
|
IS
=
I
—~
=N
+
—
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~
=
®
|
I
i

al @ [—ab] + (a)[b] ® [—ab] =
| + (a)[b] ® [a] Then, multiply
by (a~1).

(5) Applying (4) to [a]([b] @ [c]), [al([t] © [c]) = —(=D)[a]([c] © [b]) which, by (2) is
precisely —(—1)[a]([b] ® [c]. the LHS to yield the identity.

(6) [a%] @ [b] = [a] @ [b] + (a)[a] ® [b] = 2[a] ® [B] + [a]([a] @ [B]) = 2[a] @ [b] + [b][a] @ [a]
But, [a] ® [a] = [(-1)(=a)] ® [a] = ([-1] + (=1)[-a]) ® [a] = [-1] & [a] by (3). So
[0%] & [b] = 2[a] @ [b] + [b)([-1] @ [a]) = (1 + (=1))[a] @ [8].

O

Now we go on to finish our proof that ¢ satisfies the relations. We have just (b) and (c)
left. For (c), [s] ® [=st] — [s] @ [t] = [s] @ (t)[—s] = (t)([s] ® [=s]) = 0. (b) is the hardest
argument:

[sl@[t] = () [s]® [t
=[sJ& ([t - [t
=[sJeoit ) -[sde [t
=[s]@ [t — 1+ (=1)[s] @ [t"] by (6)
= —(—D)[s] @ [t7']
= [t @[s] by (4)

So, we have a homomorphism ¢ : K — A sending b(s,t) — [s] ® [¢]. To show that it
is an isomorphism, we construct a two-sided inverse. That is, a map ¥ : A — K sending
[s] @ [t] = b(s,t). First, I}~ has the set of all [a] for a € k*\{1} as a Z - basis. So, let 1) be
the unique Z—Dbilinear mapping Iy« X I}~ — K sending ([s], [t]) — b(s,t). We show that
this is indeed Z[k*]-bilinear and the induced map from Iy« ) I+ respects the relation
in A to give us such a map . From our calculation of ¢, (b(s,t)) it descends to a map
from the tensor product by the universal mapping property of tensors. Then, to show it
satisfies the relation, by (d), ¥(a,1—a) = b(a,1 —a) = b(a,1) = h(a)h(1)h(a)~! = 1. So,

we have proven:

T Qgpx) Lo
al®la—1] for a,1—a€k* "

Theorem 4.6: ¢ : K — Ais anisomorphism and hence Ho(SLo(k)) = [
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