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1 Introduction and Notation

1.1 Introduction

This dissertation will prove vanishing theorems for the low dimensional mod p (where p is

prime) group homology of three classes of finite simple groups.

Usually, group homology is introduced with integral (integer) coefficients where it measures

the failure of a particular functor from Z[G]-modules to abelian groups. Group homology

with general coefficients in some module can then be defined via the previous construction

with a tensor functor applied [1, §III.1]. We take a different approach and define homology

with coefficients in the finite field of p elements in §2 (mod p homology) without reference

to integral homology. We reach these definitions from a homological algebra perspective,

rather than from a topological perspective which is briefly outlined at the end of §2.3. The

end of our second chapter is spent discussing the functoriality of group homology.

In [7, §11], Quillen proved that the mod p cohomology of the general linear groups over

finite fields of characteristic p vanishes in low positive dimensions. We translate this result

and corresponding proof into homology and also strengthen it to obtain an analogous

statement for the special linear groups. In §3 we establish some preliminaries for these

results, appealing to the aforementioned Quillen paper and [6, §7]. Then §4.1 is dedicated

to proving vanishing theorems for low dimensional mod p homology of the general and

special linear groups.

We adapt Quillen’s proof to other classical groups over our finite field. Namely, we prove

statements for the low dimensional mod p homology of the symplectic and orthogonal

groups (or more precisely, the even degree special orthogonal groups of plus type - for

these we only look at the case p 6= 2) in §4.2 and §4.3 respectively. The symplectic and

special orthogonal cases have been proven independently by Friedlander in [3, §4], but our

proofs are more elementary and much truer to Quillen’s original methods. We also go

further and explore the index 2 subgroup of the special orthogonal group.

The importance of the special linear, symplectic, and special orthogonal groups is that

they are a source of finite simple groups (as explained in [9, §3]) - each one of these

‘classical’ groups provides us with an infinite class of finite simple groups. In fact, they

give us three out of the four infinite classes of Chevalley groups (these can be thought of

as Lie groups over k rather than R, an good reference for these is given by [2]). Through

this correspondence we use the results of §4 to prove vanishing statements for the low

dimensional mod p homology of these finite simple groups in §5.

1



1.2 Background and notational conventions

As is usual in homological algebra, the notation C∗ will refer to a sequence of abelian groups

(Ci)i>0. A chain complex (C∗, ∂), is a sequence of abelian groups C∗, with homomorphisms

∂i : Ci → Ci−1, satisfying ∂i∂i+1 = 0 for each i > 0 (the abelian group C−1 is set to be

zero). The homology groups H∗(C∗), of a chain complex (C∗, ∂) is given by the quotients

Hi(C∗) = ker(∂i)/im(∂i+1). We sometimes call Hi(C∗) the ith dimensional homology

group of the chain complex.

A chain map τ , between chain complexes (C∗, ∂) and (C ′∗, ∂
′), is a sequence of homo-

morphisms τi : Ci → C ′i, such that τi∂i+1 = ∂′iτi+1 for all i > 0. A chain map induces

homomorphisms Hi(C∗)→ Hi(C
′
∗) for each i > 0.

Let (C∗, ∂) and (C ′∗, ∂
′) be chain complexes. A chain homotopy h, between chain maps

τ, ρ : (C∗, ∂) → (C ′∗, ∂
′), is a sequence of homomorphisms hi : Ci → C ′i+1 satisfying

hi−1∂i + ∂′i+1hi = τ − ρ. We say that τ and ρ are chain homotopy equivalent, or simply

homotopic. Homotopic chain maps induce the same homomorphisms on homology.

Throughout this dissertation p is assumed to be a fixed prime. We denote the finite

field with p elements by Fp, and also write Fp for the underlying abelian group. By the

homology of a group G we will mean the group homology of G with coefficients in Fp, as

defined in §2. This is also called the mod p group homology of G. We write H∗(G) for

the homology of G, usually written H∗(G,Fp) in the literature. We will use the phrase

topological homology if we ever refer to the usual homology groups of a topological space.

If k is any field, then k∗ denotes the multiplicative group obtained from k by removing

zero. We denote by k2∗ the subgroup of k∗ consisting of squares in k∗. As is usual, we

write In for the n× n idenity matrix over k. We denote the transpose of a matrix A over

k by Aτ .

2 Mod p Group Homology

Later in this essay we compute the homology of many finite groups. We first need to

understand what group homology is. Much like in [1], we opt for a homological algebra

point of view. None of the content in this section is new, although defining homology with

coefficients in Fp without reference to integral coefficients first is my own approach - it is

more appropriate however, as mod p homology is all we will work with.

2.1 Constructing abelian groups from Fp

If S is a finite set we write Fp[S] for the abelian group underlying the vector space generated

by S over Fp, we call Fp[S] the abelian group generated by S over Fp accordingly. Explicitly,
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we view Fp[S] as formal sums of elements of S with coefficients in Fp:

Fp[S] =

{∑
s∈S

ass : as ∈ Fp

}
.

Addition is defined termwise. As a group Fp[S] ∼= F|S|p .

If G is a finite group then Fp[G] naturally has the structure of a ring with multiplication

determined completely by (1g) ·(1h) = 1gh for all g, h ∈ G. Thus in this case we may treat

Fp[G] as a ring, allowing us to talk about Fp[G]-modules (meaning left modules) without

issue. The ring Fp[G] is often called the group ring of G over Fp.

Recall that given abelian groups A and B, we can form the tensor product A
⊗
B, by the

following steps: Let F be the free abelian group on the elements of A
⊕
B. Let R be the

subgroup of F generated by elements

(a+ a′, b)− (a, b)− (a′, b), (a, b+ b′)− (a, b)− (a, b′),

where a, a′ ranges over A and b, b′ ranges over B. Then A
⊗
B = F/R. If θ : F → A

⊗
B

is the quotient map we write a⊗ b for θ(a, b).

There is a universal property for tensor products. Indeed suppose A,B and C are abelian

groups and there is a map of sets ψ : A
⊕
B → C satisfying

ψ(a+ a′, b) = ψ(a, b) + ψ(a′, b), ψ(a, b+ b′) = ψ(a, b) + ψ(a, b′), (2.1)

for all a, a′ ∈ A and b, b′ ∈ B. Then there is a unique homomorphism of abelian groups

ψ̄ : A
⊗
B → C such that ψ = ψ̄ ◦ θ.

It is known that the tensor product is commutative and distributes over direct sum. In

other words if A,A′ and B are abelian groups then

A
⊗

B ∼= B
⊗

A,
(
A
⊕

A′
)⊗

B ∼=
(
A
⊗

B
)⊕(

A′
⊗

B
)
.

Both of the isomorphisms are natural - the first is given by a⊗ b↔ b⊗ a and the second

is given by (a, a′) ⊗ b ↔ (a ⊗ b, a′ ⊗ b). One uses the universal property to check these

maps are well defined group homomorphisms.

As an example, suppose A is a finite abelian group. Let’s consider the tensor product

Fp
⊕
A. Since |A| <∞, the classification of finitely generated abelian groups implies that

A ∼=
t⊕
i=1

Z/paii Z,

where the pi are primes, the ai are positive integers and t > 1. It is known that if m,n
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are positive integers then Z/mZ
⊗

Z/nZ ∼= Z/dZ, where d = gcd(m,n). Since Fp ∼= Z/pZ
as a group, we deduce that Fp

⊗
A is isomorphic to a direct sum of copies of Fp, with one

copy for each pi equal to p.

If S is a finite set and A an abelian group, both Fp[S] and Fp
⊗
A are abelian groups

with each non-identity element having order p. Such groups are called elementary abelian

p-groups. We will make use of the following analogue of the universal property for free

abelian groups (recall that all abelian groups are Z-modules):

Proposition 2.1 Let S be a set and ι : S → Fp[S] be the map s 7→ 1s. Let E be an

elementary abelian p-group. Then for any map of sets φ : S → E, there is a unique

homomorphism of abelian groups φ̄ : Fp[S]→ E such that φ̄ ◦ ι = φ.

Proof. Let Z[S] be the free abelian group generated by S. By the usual universal property

for free abelian groups, the map φ extends uniquely to a homomorphism φ′ : Z[S] → E.

Since E is an elementary abelian p group, φ′(p · x) = p · φ′(x) = 0 for each x ∈ Z[S]. In

other words the Z-submodule of Z[S] generated by p lies in the kernel of φ′. We thus get a

well-defined homomorphism Z[S]/pZ[S]→ E. It is easily checked that Z[S]/pZ[S] ∼= Fp[S]

and this homomorphism is the desired φ̄. Uniqueness follows from the uniqueness of φ′.

�

Suppose that S is a finite set and E is an elementary abelian p-group. The above propo-

sition allows us to define homomorphisms from Fp[S] to E just by stating the images of

the 1s for each s ∈ S. We will often do this.

2.2 The homological algbra - defining H∗(G)

We now begin to work towards the definition of group homology with coefficients in Fp.
To do this we develop a more general scenario. Our definition is then a special case.

Let R be a ring and let M be an R-module. A resolution P∗, of M over R is an exact

sequence

· · · → P2
∂2−→ P1

∂1−→ P0
ε−→M −→ 0, (2.2)

where the Pi are all R-modules and the maps ∂i, ε are R-module homomorphisms. An

R-module P is called projective if there is an R-module Q such that P
⊕
Q is a free

R-module. The above resolution is said to be projective if the Pi are all projective. It is

shown in [1, §I.7] that there is exactly one projective resolution of M over R up to chain

homotopy equivalence.

Let C be the category of Fp-modules and D the category of abelian groups. Both C and

D are preadditive categories. For C this means that if M,N ∈ Obj(C ), then the set of

R-module homomorphisms from M to N , HomR(M,N), has the structure of an abelian
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group, and that composition of morphisms is bilinear in the sense that

f ◦ (g + h) = (f ◦ g) + (f ◦ h), (f + g) ◦ h = (f ◦ h) + (g ◦ h),

wherever f, g and h are morphisms and the compositions are defined. The statements for

D being preadditive are similar. A covariant functor F : C → D is called additive if the

maps

HomR(M,N)→ Hom(FM,FN),

determined by F are homomorphisms of abelian groups for all M,N ∈ Obj(C ).

Suppose F : C → D is a covariant functor. Applying F termwise to (2.2) yields a chain

complex

· · · → FP2
F∂2−→ FP1

F∂1−→ FP0
Fε−→ FM −→ 0. (2.3)

The homology groups of this complex, in general, can be thought of as measuring the

failure of F to be exact - if F were an exact functor then (2.3) would be an exact sequence

and all of its homology groups would be zero.

Assume further that F is an additive functor. Then if f, g ∈ HomR(M,N), for objects

M,N of C , we have F (f +g) = F (f)+F (g). It follows that F preserves chain homotopies

and thus the uniqueness of projective resolutions up to chain homotopy passes to the chain

complexes (2.3) obtained by applying F . The homology groups of (2.3) are thus uniquely

determined by F and M (and R). In particular they are independent of P∗.

Now let G be any group. In the above we let R = Fp[G], whose ring structure is explained

in §2.1. We let M = Fp with Fp[G] action determined by (1g) ·x = x for each g ∈ G, x ∈ Fp
(so G acts trivially on Fp). Let F be the ‘coinvariants’ functor sending an Fp[G]-module

to its largest quotient on which G acts trivially. Explicitly, given an object M of C we

have

FM = MG = M/N ∈ Obj(D), N = 〈m− g ·m : g ∈ G,m ∈M〉.

If f ∈ HomR(M,M ′), for Fp[G]-modules M,M ′, then f(m − g · m) = f(m) − g · f(m)

for any g ∈ G,m ∈ M . This implies that f induces a homomorphism of abelian groups

MG →M ′G. This induced homomorphism is precisely Ff . It follows that F is an additive

functor. We are now ready to define H∗(G). Let

· · · → P2
∂2−→ P1

∂1−→ P0
ε−→ Fp −→ 0

be any projective resolution of Fp over Fp[G]. Then the group homology of G with co-

efficients in Fp, H∗(G), is the homology of the chain complex obtained by applying our

functor F to the above resolution and dropping the augmentation map ε. In other words
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it is the homology of the complex

· · · → (P2)G
∂2−→ (P1)G

∂1−→ (P0)G −→ 0.

Note we have slightly abused notation and written ∂i for F∂i. We have already justified

that H∗(G) depends only on G and Fp, and not P∗. Notice that each Pi is an elementary

abelian p group and hence each Hi(G) is as well.

2.3 The standard resolution

The purpose of this section is to construct a projective resolution for Fp over Fp[G] for a

finite group G. By definition, such a resolution can then be used to compute H∗(G). This

resolution arises from a topological space constructed from G [1, §I.5].

Let X be the (|G| + 1)-simplex with vertex set given by G as a set. There is a natural

∆-complex structure (see [5, §2.1]) on X with each finite subset H ⊂ G defining a (|H|+1)-

simplex in this structure. Let (∆∗(X), ∂) be the ordered simplicial chain complex of X

with coefficients in Fp. In other words, for each i > 0, let ∆i(X) = Fp[Gi+1]. We are

viewing Gi+1 as a set, giving no attention to its structure as a group (so we are not

viewing ∆i(X) as a ring).

We make each ∆i(X) into a Fp[G] module by defining

(1g) · 1(g0, g1, . . . , gi) = 1(gg0, gg1, . . . , gi), g, gj ∈ G.

Each ∆i(X) is then a free (and hence projective) Fp[G]-module with an Fp[G]-basis given

by the elements of the form (1, g1, . . . , gi), gj ∈ G. It is easily checked that these span

∆i(X) and are Fp[G]-linearly independent. The boundary maps ∂i : ∆i(X) → ∆i−1(X),

for i > 1, are given by

∂i =
i∑

j=0

(−1)jdj , dj (1(g0, g1, . . . , gi)) = 1(g0, g1, . . . , gj−1, gj+1, . . . , gi).

The augmentation map ε : ∆0(X) → Fp is determined by ε(1g) = 1 for each g ∈ G. It is

easily seen from these formulae that the ∂i, ε are Fp[G]-module homomorphisms. We thus

have a sequence

· · · → ∆2(X)
∂2−→ ∆1(X)

∂1−→ ∆0(X)
ε−→ Fp −→ 0. (2.4)

Using §4.3 in [8], we see that that the homology of this chain complex coincides with the

reduced topological homology of X with coefficients in Fp. Since X is contractible (it is

just a (|G| + 1)-dimensional simplex), these homology groups are all zero implying that

(2.4) is exact and therefore gives a projective resolution of Fp over Fp[G]. This resolution
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is called the standard resolution.

We now apply the coinvariants functor F , as in §2.2, to the standard resolution and perform

some computations. In particular we will obtain descriptions of H0(G) and H1(G). We

shall use the following proposition:

Proposition 2.2. Suppose P is a free Fp[G]-module with Fp[G]-basis B = {b1, . . . , bi}.
Let N be the subgroup of P such that FP = PG = P/N . Write b̄j for the coset bj +N in

PG and let B̄ = {b̄1, . . . , b̄i}. Then PG is the abelian group generated by B̄ over Fp, i.e.

PG ∼= Fp[B̄].

Proof. Define a group homomorphism φ : P → Fp[B̄] by

φ

 i∑
j=1

∑
g∈G

ajgg

 bj

 =
i∑

j=1

∑
g∈G

ajg b̄j

 .

It can be seen from this formula that bj − gbj ∈ ker(φ) for all j, 1 6 j 6 i, and all g ∈ G.

Hence as N is generated by these elements, φ induces a homomorphism φ̄ : PG → Fp[B̄].

The homomorphism ψ : Fp[B̄] → PG defined by b̄j 7→ b̄j is an inverse to φ̄, finishing the

proof. �

We’ve already pointed out that for i > 0, ∆i(X) is a free Fp[G] module. Its basis is given

by the set Si where

Si = {(1, g1, . . . , gi) : gj ∈ G}.

Proposition 2.2 tells us that ∆i(X)G ∼= Fp[S̄i]. We write (1 : g1 : · · · : gi) for the image

of (1, g1, . . . , gi) in ∆(X)G (one may notice the analogy with homogeneous coordinates in

projective geometry) and identify Fp[S0] with Fp in the obvious way. The sequence

· · · → ∆2(X)G
∂2−→ ∆1(X)G

∂1−→ ∆0(X)G −→ 0

defining group homology becomes the sequence

· · · → Fp[S2]
∂2−→ Fp[S1]

∂1−→ Fp −→ 0.

Notice that if g ∈ G then ∂1(1 : g) = (g)− (1) = 0 ∈ ∆0(X)G, implying that ∂1 = 0. This

gives us H0(G) ∼= Fp. If g1, g2 ∈ G we have

∂2(1 : g1 : g2) = (g1 : g2)− (1 : g2) + (1 : g1) = (1 : g−1
1 g2)− (1 : g2) + (1 : g1).

Recall that the abelianisation of G, Gab, is the largest quotient of G which is abelian.

Explicitly, define [g1, g2] = g−1
1 g−1

2 g1g2 for each pair g1, g2 ∈ G, then

Gab = G/[G,G], [G,G] = 〈[g1, g2] : g1, g2 ∈ G〉.
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The element [g1, g2] is called the commutator of g1 and g2 and [G,G] is called the com-

mutator subgroup of G.

Proposition 2.3. We have H1(G) ∼= Fp
⊗
Gab.

Proof. By definition we have

H1(G) = Fp[S1]/R, R =
〈
(1 : g−1

1 g2)− (1, g2) + (1, g1)
〉
.

Hence in H1(G) we can deduce the following identities for each g ∈ G:

(1 : g) = (1 : 1g) = (1 : g)− (1 : 1) =⇒ (1 : 1) = 0,

(1 : g) = (1 : g1) = (1 : 1)− (1 : g−1) = −(1 : g−1).

These can in turn be used to obtain

(1 : g1g2) = (1 : g2)− (1 : g−1
1 ) = (1 : g1) + (1 : g2),

(1 : g−1
1 g−1

2 g1g2) = (1 : g1g2)− (1 : g2g1) = 0
(2.5)

whenever g1, g2 ∈ G. If g1[G,G] = g2[G,G] then one can write g2 = c1 . . . ctg1 where

the ci are commutators. This is because g1g
−1
2 is in [G,G], and is hence a product of

commutators and their inverses, but the inverse of a commutator is another commutator.

Using (2.5) we get

(1 : g1) = (1 : c1 . . . ctg2) = (1 : c1) + · · ·+ (1 : ct) + (1 : g2) = (1 : g2).

We define a homomorphism (using Proposition 2.1) φ : Fp[S1]→ Fp
⊗
Gab by 1(1 : g) 7→

1 ⊗ g[G,G]. Notice that R ⊂ ker(φ) since g−1
1 g2[G,G] − g2[G,G] + g1[G,G] = 0 ∈ Gab.

Hence φ induces a homomorphism φ̄ : H1(G)→ Fp
⊗
Gab.

Now define a map of sets ψ : Fp
⊕
Gab → H1(G) by ψ(a, g[G,G]) = a(1 : g). This is

well defined because we have already seen that g1[G,G] = g2[G,G] ⇒ (1 : g1) = (1 :

g2). We can also check the equations (2.1) hold for ψ and hence we get a unique group

homomorphism ψ̄ : Fp
⊗
Gab → H1(G) satisfying ψ̄(a ⊗ g[G,G]) = a(1 : g). One can see

that φ̄ and ψ̄ are inverse to each other so we are done. �

The construction of projective resolutions from topological spaces isn’t a coincidence -

group homology was initially motivated from topology. In fact, a topologist may define

mod p homology to be the topological homology groups of a K(G, 1) space with coefficients

in Fp ([1, §II.2-4] [5, §1.B & p. 153])
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2.4 Induced maps on homology - functoriality

We have seen that group homology assigns to each group G a sequence of abelian groups

H∗(G). We now look at how group homology assigns certain maps of groups G → G′

(not just homomorphisms) to induced homomorphisms on homology Hi(G)→ Hi(G
′). In

particular group homomorphisms G → G′, satisfy this construction. The map sending a

group G to its ith homology group Hi(G) can then be viewed as a covariant functor from

the category of groups to the category of abelian groups for each i > 0.

Let G,G′ be groups and φ : G → G′ a map of sets. Let X be the topological space

constructed from G as in §2.3 and let X ′ be the equivalent space for G′. For each i > 0,

suppose we have an abelian group homomorphism

τi : ∆i(X) −→ ∆i(X
′) satisfying τi(g · x) = φ(g) · τi(x), g ∈ G, x ∈ ∆i(X). (2.6)

Suppose the τi also make the following diagram commute:

· · · ∆2(X) ∆1(X) ∆0(X) Fp 0

· · · ∆2(X ′) ∆1(X ′) ∆0(X ′) Fp 0

∂2 ∂1 ε

∂′2 ∂′1 ε′

τ2 τ1 τ0 1

.

(2.7)

The τi then form a chain map τ , between the standard resolution of G and the stan-

dard resolution of G′, compatible with φ. Since the standard resolutions are projective

and exact chain complexes, we can use [1, Lemma I.7.4] to state that τ is unique up to

chain homotopy. The fact that τi(x − g · x) = τi(x) − φ(g) · τi(x) for each i > 0, g ∈ G
and x ∈ ∆i(X) implies that the τi induce homomorphisms τ̄i : ∆i(X)G → ∆i(X)G′ .

We can therefore apply the coinvariants functor F to the above diagram, discarding the

augmentation maps ε, ε′, to yield the following commutative diagram:

· · · ∆2(X)G ∆1(X)G ∆0(X)G 0

· · · ∆2(X ′)G′ ∆1(X ′)G′ ∆0(X ′)G′ 0

∂2 ∂1

∂′2 ∂′1

τ̄2 τ̄1 τ̄0

.

(2.8)

The τ̄i form a chain map τ̄ , from the chain complex (∆∗(X)G, ∂), to the chain complex

(∆∗(X
′)G′ , ∂

′). This chain map induces homomorphisms on homology. The uniqueness of

the chain map τ up to homotopy implies that these homomorphisms are independent of

the choice of τ and thus depend only on φ. We write φ∗ for these induced homomorphisms.
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It is easy to see that

(φ ◦ ψ)∗ = φ∗ ◦ ψ∗, (idG)∗ = idHi(G),

whenever φ : G→ G′, ψ : G′ → G′′ are so that φ∗ and ψ∗ are defined.

Now suppose that φ : G→ G′ is a group homomorphism. Then we define our chain map

τ by

τi(1(g0, g1, . . . , gi)) = 1(φ(g0), φ(g1), . . . , φ(gi)).

This satisfies (2.6) and makes the diagram (2.7) commute. We obtain homomorphisms

φ∗ : Hi(G)→ Hi(G
′). In light of the composition identities above, we deduce the promised

functoriality of group homology.

Proposition 2.4. Suppose that G is a group and g ∈ G. The conjugation homomorphism

φ = g−1(·)g : G→ G induces the identity homomorphisms on the homology of G.

Proof. Let X be the space constructed for the standard resolution for G. For each i > 0,

define τi : ∆i(X)→ ∆i(X) by

τi(1(g0, g1, . . . , gi)) = 1(g−1g0, g
−1g1, . . . , g

−1gi).

One checks that (2.6) is satisfied and that these make (2.7) commute. The chain map

defined by the τi can then be used to construct the induced homomorphisms φ∗. If F is

the coinvariants functor then clearly τ̄i = Fτi = id for each i > 0, and so the induced

homomorphisms φ are the identity homomorphisms. �

Now suppose that G is a group and T is a group which acts on G via group homomor-

phisms. That is to say the map t : G → G, g 7→ t · g is a group homomorphism for

each t ∈ T . Then each t in T induces homomorphisms t∗ : Hi(G) → Hi(G). Using the

functoriality, T acts on each Hi(G) via group homomorphisms with t · z = t∗(z) for each

t ∈ T, z ∈ Hi(G). We can then talk of the fixed points of Hi(G) under the action of T ,

i.e. the subgroup

Hi(G)T = {z ∈ Hi(G) : t · z = z for all t ∈ T} 6 Hi(G).

This allows us to construct representations of T over any field. In §3 we explore these

constructions in order to use them later.

3 Constructing Representations from Homology

Let G and T be groups. At the end of the previous section, we discussed how an action of

T on G via group homomorphisms induced an action of T on homology. If we also have a

field k then for any fixed i > 0, Hi(G)
⊗
k is a representation of T over k, or equivalently

10



a k[T ]-module. This representation is determined by

λt · (z ⊗ x) = t∗(z)⊗ λx, λ, x ∈ k, t ∈ T, z ∈ Hi(G).

The purpose of this section is to prove some results for this construction in the case that

T is abelian with order prime to p. None of the results in this section are my own.

Let k be the finite field of size pd for some d > 1. Let k̄ be an algebraic closure of k. The

characteristic of k̄, char(k̄), is equal to char(k) = p. Suppose that T is a finite abelian group

with p - |T |. Let M = Mk̄(T ) be the semiring of isomorphism classes of representations

over k̄. The addition operation in M is the direct sum and the product operation is the

tensor product. As T is abelian with order prime to char(k̄), all irreducible representations

of T over k̄ have dimension one. Note that this uses the fact k̄ is algebraically closed. The

condition p - |T | is also necessary to invoke Maschke’s theorem. We can then identify M

with Z>0(Hom(T, k̄∗)). Indeed if V is a representation of T over k̄ we can identify

[V ] ≡
∑
χ

nχ(V )χ ∈ Z>0(Hom(T, k̄∗)). (3.1)

Here [V ] represents the isomorphism class of V in M . The index χ ranges over the

irreducible characters, and nχ(V ) is the multiplicity of the character χ in V .

Suppose G is a group on which T acts by group homomorphisms. We have already

established that Hi(G)
⊗
k̄ is a representation of T over k̄ for each i > 0. We can then

define the Poincaré series of H∗(G) to be

σ(H∗(G)) =
∑
i>0

[Hi(G)
⊗

k̄]zi ∈M [[z]].

This clearly depends on T and k̄, but these will always be clear in context.

Given any homomorphism a : T → k∗, let ka denote the abelian group k with T acting via

a. That is, t · x = a(t)x for each x ∈ k, t ∈ T . As k ⊂ k̄, the homomorphism a defines a

one-dimensional representation of T over k̄, which we will denote by Va. In the following,∧
(V ) and Γ(V ) will denote the exterior and symmetric algebras of a vector space V , over

k̄ respectively.

The proof of the following lemma is the dual to Quillen’s proof of Lemma 15 in [7] for the

group cohomology of ka. The method below is adapted to group homology and is written

more accessibly.

Lemma 3.1 Let a : T → k∗ be a homomorphism, and let ka and Va be defined as in the

11



previous paragraphs. Then

σ(H∗(ka)) =

d−1∏
b=0

(1 + ap
b
z)
∑
i>0

aip
b
z2i =

d−1∏
b=0

1 + ap
b
z

1− apbz2
.

Proof. By the classification of finite fields, ka is isomorphic as a group to K = (Z/pZ)d.

It is known that the homology of K is given by

H∗(K) ∼=

{ ∧
(Kp)

⊗
Γ (pK) if p 6= 2

Γ (Kp) if p = 2
, (3.2)

where Kp = K
⊗

Z/pZ is canonically isomorphic to H1(K) and pK = {k ∈ K : pk = 0} is

canonically isomorphic to a subgroup of H2(K) (see §V.6 in [1] for details). From Galois

theory, there is a ring isomorphism

k
⊗
Fp

k̄ ∼= (k̄)d, x⊗ y 7→ (xp
b
y)d−1
b=0 .

This becomes an isomorphism of representations ka
⊗

Fp
k̄ ∼=

⊕d−1
b=0 Vapb , since if t ∈ T, x ∈

ka and y ∈ k̄ then

t · (x⊗ y) = (a(t)x)⊗ y 7→
(

(a(t)x)p
b

y
)d−1

b=0

=
(
a(t)p

b
xp

b
y
)d−1

b=0
= t · (xpby)d−1

b=0 .

Combining this with (3.2), and using that for general representations V and W we have∧
(V
⊕
W ) ∼=

∧
(V )

⊗∧
(W ) and Γ(V

⊕
W ) ∼= Γ(V )

⊗
Γ(W ), we get

H∗(ka)
⊗
Fp

k̄ ∼=

{ ⊗d−1
b=0

∧(
(V
apb

)p
)⊗

k̄ Γ
(
p(Vapb )

)
if p 6= 2⊗d−1

b=0 Γ
(
(V
apb

)p
)

if p = 2
.

If V is any one-dimensional representation over k̄, then
∧

(V ) ∼= k̄
⊕
V and Γ(V ) ∼=⊕

i>0 V
⊗i. Since characters multiply under the tensor product of representations, the

Poincaré series of a tensor product is the product of the Poincaré series of its factors. In

other words as we pass from homology to Poincaré series, the tensor products become

multiplicative products in M . Recalling that (V
apb

)p and p(Vapb ) lie in H1(ka) and H2(ka)

respectively, we obtain

σ(H∗(ka))
⊗
Fp

k̄ ∼=

{ ∏d−1
b=0(1 + ap

b
z)
∑

i>0 a
ipbz2i if p 6= 2∏d−1

b=0

∑
i>0 a

ipbzi if p = 2
.

12



If p 6= 2 then we are done. For p = 2 we have

d−1∏
b=0

∑
i>0

aip
b
zi =

d−1∏
b=0

1

1− apbz
=

d−1∏
b=0

1 + ap
b
z

1− apb+1z2
=

d−1∏
b=0

1 + ap
b
z

1− apbz2
.

Notice that we used ap
d

= a since the order of k∗ is pd− 1. We have proved the lemma. �

For our proofs later, we require a method of comparing Poincaré series. This is because

an upper bound on the coefficient of the χzi term in a Poincaré series σ(H∗(G)) is, by

definition, an upper bound on the multiplicity of χ in Hi(G). Spectral sequences are

the key to enable such comparisons. We use the ‘Enj,k’ notation for spectral sequences as

explained by Hatcher in [4].

A group extension is a short exact sequence of groups

1 −→ N
ι−→ G

π−→ Q −→ 1.

For a group extension as above, there is a Hochschild-Serre spectral sequence of the form

E2 = H∗(N)
⊗

H∗(Q) =⇒ H∗(G). (3.3)

This is Proposition 7 in [6] followed by an application of the universal coefficient theorem

for group homology. The ith abelian group in the sequence H∗(N)
⊗
H∗(Q) is defined to

be ⊕
j+k=i

Hj(N)
⊗

Hk(Q).

If G and G′ are groups acted on by another group T , then a group homomorphism φ :

G→ G′, is called T -invariant if φ(t · g) = t · φ(g) for each t ∈ T, g ∈ G.

Lemma 3.2. Suppose we have a group extension as above. Suppose further that T acts

on N,G and Q in a way such that the group homomorphisms ι and π are T -invariant.

Then the spectral sequence (3.3) for this group extension implies that

σ(H∗(N))σ(H∗(Q))� σ(H∗(G)).

The symbol ‘�’ means that each coefficient on the right hand side is less than or equal to

the corresponding coefficient on the left hand side, working in Z>0.

Proof. Fix a point (j, k) and consider the sequence of groups (Enj,k)n>1 in the Hochschild-

Serre spectral sequence. Each En+1
j,k is a subquotient (denoted by ≺) of Enj,k, hence E∞j,k ≺

E2
j,k. As such

Hi(G) =
⊕
j+k=i

E∞j,k ≺
⊕
j+k=i

E2
j,k =

⊕
j+k=i

Hj(N)
⊗

Hk(Q).

13



We know that if W and V are representations with W ≺ V , and if χ is a (irreducible)

character, then the multiplicity of χ in W is at most the multiplicity of χ in V . In terms

of the notation in (3.1), nχ(W ) 6 nχ(V ). The lemma follows. �

4 Homology of Some Finite Classical Groups

Let k to be the field of size pd for some d > 1. We use the tools developed in §3 to prove

some vanishing statements for the low dimensional homology of some classical groups over

k. We first look at the general linear and special linear groups over k in §4.1. Theorem

4.1 on the general linear groups is proved by Quillen. I have strengthened this result

to include the special linear case. The proofs in §4.2 and §4.3 for the symplectic and

orthogonal groups over k are also my own, though draw on Quillen’s methods. The results

of Theorems 4.5 and 4.6 themselves are not new however, and are proved independently

by Friedlander in [3]. The result of Theorem 4.7 is not covered by any of these works

however.

4.1 General linear and special linear groups

Fix n ∈ N. As usual we write GLn(k) and SLn(k) for the general linear and special linear

groups of degree n over k respectively. Recall that GLn(k) is the group of invertible n×n
matrices in k, and SLn(k) is the normal subgroup of GLn(k) consisting of such matrices

with determinant 1.

Theorem 4.1 [7, Theorem 6]. We have Hi(GLn(k)) = 0 whenever 0 < i < d(p− 1).

As indicated in the introduction to this section, we prove the following, stronger, theorem.

Theorem 4.2 We have Hi(GLn(k)) = 0 = Hi(SLn(k)) whenever 0 < i < d(p− 1).

To begin the proof, let Qn be the subgroup of SLn(k) (and GLn(k)) consisting of upper

triangular matrices with 1s in each diagonal entry. Let Tn be the subgroup of SLn(k)

consisting of diagonal matrices. Notice that Tn acts on Qn, SLn(k) and GLn(k) by con-

jugation. Since |Tn| = (pd − 1)n−1 is prime to char(k) = p the results of §3 hold for

T = Tn.

Fix i > 0. The orders of GLn(k), SLn(k) and Qn are given respectively by

|GLn(k)| = p
dn(n−1)

2

n∏
j=1

(pdj − 1), |SLn(k)| = 1

pd − 1
|GLn(k)|, |Qn| = p

dn(n−1)
2 .

We see that Qn is a Sylow p-subgroup of GLn(k). This implies the homomorphism

Hi(Qn) → Hi(GLn(k)) induced by inclusion in surjective [1, §III.9]. Taking fixed points
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of this homomorphism under the action of Tn, we get a surjective map

Hi(Qn)Tn −→ Hi(GLn(k))Tn = Hi(GLn(k)).

The equality on the right is because Tn is a subgroup of GLn(k), so we can appeal to

Proposition 2.4. The order formulas above imply that Qn is a Sylow p-subgroup of SLn(k),

so by the same arguement we have a surjective map Hi(Qn)Tn → Hi(SLn(k)). Proving

Theorem 4.2 is now just a case of showing that Hi(Qn)Tn = 0.

Let k̄ be an algebraic closure of k. From §3 we know that Hi(Qn)
⊗
k̄ is a representation

of Tn over k̄. Then the largest trivial subrepresentation is(
Hi(Qn)

⊗
k̄
)Tn

= Hi(Qn)Tn
⊗

k̄.

The right hand side of the above is zero if and only if Hi(Qn)Tn = 0 (this uses the fact that

Hi(Qn) is an elementary abelian p group). Showing that Hi(Qn)Tn is zero is equivalent to

showing that the multiplicity of the trivial character ε, in Hi(Qn)
⊗
k̄ is zero. This is the

same as showing that the coefficient of εzi is zero in the Poincaré series σ(H∗(Qn)).

We want to find an upper bound for the coefficients of σ(H∗(Qn)). To do this we make

use of Lemmas 3.1 and 3.2. Let ∆ = {(i, j) : 1 6 j < i 6 n}, and identify each (i, j) ∈ ∆

with the homomorphism

Tn −→ k∗, t = diag(tk)
n
k=1 7→

ti
tj
.

We switch between viewing ∆ as a set of pairs and as a set of homomorphisms as appro-

priate. We put a total order on ∆ by setting (i, j) 6 (i′, j′) if either i < i′, or i = i′ and

j 6 j′. Introduce the notation mkl(x) for the n× n matrix with (k, l)-entry x ∈ k and all

other entries equal to zero.

Recall that for a homomorphism a : T → k∗, ka denotes k as an abelian group with T

acting via a. The reason why we associate the homomorphism a : t 7→ ti
tj

to each (i, j) is

so that the following group homomorphism is T -invariant for each a ≡ (i, j) ∈ ∆:

φa : ka −→ Qn, x 7→ In +mji(x).

Denote by Qan the subgroup of Qn generated by the images of all the φc with c > a.

Proposition 4.3. If a, a′, c ∈ ∆ with a, a′ > c and c ≡ (i, j), then the (j, i)-entry of

φa(x)φa′(y) is zero for all x, y ∈ k.
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Proof. Let a ≡ (k, l), a′ ≡ (k′, l′) and let x, y ∈ k. Then

φa(x)φa′(y) = (In +mlk(x))(In +ml′k′(y))

= In +mlk(x) +ml′k′(y) +mlk(x)ml′k′(y).

We see that the (j, i)-entry being non-zero implies that mlk(x)ml′k′(y) has non-zero (j, i)-

entry. The (j, i)-entry of mlk(x)ml′k′(y) is given by

n∑
r=1

(mlk(x))jr(ml′k′(y))ri.

Now if i < k′, this sum is just (mlk(x))ji = 0 since (k, l) 6= (i, j). So if the sum is not zero

we must have i = k′ and j < l′ (the latter to satisfy c < a′). The sum then becomes

(mlk(x))jl′ y + (mlk(x))jk′ .

If this is non-zero then j = l necessarily, and either k = l′ or k = k′. If k = l′ then

i = k′ > l′ = k contradicts c < a. If k = k′ then (i, j) = (k′, l) = (k, l) contradicting c 6= a.

We see that in all cases, the (j, i)-entry of φa(x)φa′(y) is zero, as required. �

Proposition 4.3 makes clear the intuition that if a ≡ (i, j) ∈ ∆, then Qan is the subgroup of

Qn consisting of those matrices q = (qj′i′)j′i′ ∈ Qn with qj′i′ = 0 whenever (i′, j′) 6 (i, j)

in ∆. Furthermore, if q ∈ Qn and t = diag(tk)
n
k=1 ∈ Tn then (t · u)ji = t−1

j ujiti (it is this

calculation that shows the φa are Tn-invariant). This tells us that each Qan is an invariant

subgroup of Qn under the action of Tn. Overall we have deduced that for each a ∈ ∆ we

get a Tn-invariant group extension

1 −→ ka −→ Qn/Q
a
n −→ Qn/Q

a′
n −→ 1.

Here a′ denotes the largest element of ∆ less that a. If a is minimal in ∆ we set Qa
′
n = Qn.

The first non-trivial map in the extension is induced by φa. The second is the natural

map. Lemma 3.2 applied to this group extension gives us

σ(H∗(Qn/Q
a
n))� σ(H∗(ka))σ(H∗(Qn/Q

a′
n ))

for each a ∈ ∆. Combining these as we descend through ∆, noting that Q
(n,n−1)
n = 1, as

well as appealing the Lemma 3.1, we find

σ(H∗(Qn))�
∏
a∈∆

σ(H∗(ka)) =
∏
a,b

(1 + ap
b
z)
∑
i>0

aip
b
z2i. (4.1)

Here and throughout the rest of §4.1, a will range over ∆ whilst b ranges over the set

{0, 1, . . . , d− 1}.
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For each a ∈ ∆, define a set Ja by Ja = {((mab, nab))b ∈ ({0, 1} × Z>0)d}. Then define

Da(J) =
∑
b

(mab + 2nab), Ma(J) =
∑
b

(mab + nab)p
b,

for each J = ((mab, nab))b ∈ Ja. Then∏
b

(1 + ap
b
z)
∑
i>0

aip
b
z2i =

∑
J∈Ja

aMa(J)zDa(J). (4.2)

To see how (4.2) works, we show there is a natural bijection between Ja and a way of

choosing a term from the expanded product on the left hand side. Indeed suppose the

bth component of J ∈ Ja is (mab, nab). Then we choose ‘1’ from the bracket (1 + ap
b
z) if

mab = 0, or we choose ‘ap
b
z’ if mab = 1. We choose the nth

ab term of the series
∑

i>0 a
ipbz2i.

In this way the component (mab, nab) contributes the term

amabp
b
zmab · anabp

b
z2nab = a(mab+nab)pbzmab+2nab ,

and hence, multiplying the contribution from each of the b components, J = ((mab, nab))b

contributes aMa(J)zDa(J). Now let I =
⊔
a Ja ≡ {((mab, nab))a,b ∈ ({0, 1} × Z>0)d|∆|}.

Using (4.2), the right hand side of (4.1) is equal to

∏
a

(∑
Ja

aMa(J)zDa(J)

)
=
∑
I∈I

(∏
a

aMa(I)

)
zD(I). (4.3)

In the above we have defined, for each I = (Ja)a ∈
⊔
a Ja = I,

D(I) =
∑
a

Da(Ja), Ma(I) = Ma(Ja).

Recall that we want to show there is no occurence of the term εzi for 0 < i < d(p − 1).

We can now see this is just a case of showing that if I ∈ I, then∏
a

aMa(I) = ε, (4.4)

implies either D(I) = 0 or D(I) > d(p− 1).

Let ai ≡ (i+ 1, i) ∈ ∆ for 1 6 i 6 n− 1. Then if a ≡ (j, k) ∈ ∆ we have

a =

j−1∏
i=k

ai =
n−1∏
i=1

acaii ,
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where cai = 1 for k 6 i 6 j − 1 and cai = 0 otherwise. Then

∏
a

aMa(I) =
n−1∏
i=1

aeii , ei =
∑
a,b

cai(mab + nab)p
b. (4.5)

The homomorphism γ : Tn → (k∗)n−1 sending t to (ai(t))
n−1
i=1 is an isomorphism (remember

matrices in Tn have determinant 1) - in particular it is surjective. We claim that, since k∗

is cyclic of order pd − 1,∏
a

aMa(I) = ε =⇒
∑
a,b

cai(mab + nab)p
b ≡ 0 (mod pd − 1) (4.6)

for each i ∈ {1, 2, . . . , n − 1}. To prove this claim, let ζ be a cyclic generator of k∗ and

suppose ei′ 6≡ 0 (mod pd − 1), where 1 6 i′ 6 n − 1. Then using surjectivity, let t ∈ Tn
be so γ(t) = (xi)

n−1
i=1 , where xi = ζ if i = i′ and xi = 1 otherwise. Then

n−1∏
i=1

aeii (t) = ζei′ 6= 1 = ε(t)

which contradicts the left hand side of the implication (4.6).

Now suppose I = ((mab, nab))a,b ∈ I is such that D(I) > 0 and (4.4) holds. Since D(I) > 0

we have mab + nab > 0 for some a and b. Then
∑

a cai(mab + nab) > 0 for some b and i.

We use the following lemma:

Lemma 4.4 [7, Lemma 16]. Suppose we have non-negative integers (jb)
d−1
b=0 , not all zero,

then
d−1∑
b=0

jbp
b ≡ 0 (mod pd − 1) =⇒

d−1∑
b=0

jb > d(p− 1).

Using implication (4.6) and applying the lemma, we must have

d(p− 1) 6
∑
a,b

cai(mab + nab) 6
∑
a,b

(mab + 2nab) = D(I).

This shows that if I ∈ I satisfies (4.4), then D(I) = 0 or D(I) > d(p − 1). As remarked

immediately after (4.4) this proves Theorem 4.2.

4.2 Symplectic groups

Our proof of Theorem 4.2 spanning §4.1 started by finding a Sylow p-subgroup Q of our

group G (either GLn(k) or SLn(k)). We then introduced a subgroup T of G, with order

prime to p, that acted upon Q via conjugation. We then broke this Sylow p-subgroup

down in a sequence of group extensions. Applying Lemmas 3.1 and 3.2 to these we were

18



able to bound the coefficients of the Poincaré series σ(H∗(G)). Using this bound, we were

able to show that the εzi coefficients in σ(H∗(G)) were zero for 0 < i < d(p− 1). We now

adapt this method to yield a similar statement for the symplectic groups over k.

Again, let’s fix n ∈ N. We write Sp2n(k) for the group of 2n× 2n symplectic matrices in

k. That is,

Sp2n(k) = {g ∈ GL2n(k) : gτJg = J}, J =

(
0 In

−In 0

)
.

Theorem 4.5. We have Hi(Sp2n(k)) = 0 whenever 0 < i < d(p−1)
2 .

As for the SLn(k) and GLn(k) case, we first identify a Sylow p-subgroup of Sp2n(k). To

this end let Qn be as in §4.1, and let R2n be the subset of Sp2n(k) defined by

R2n =

{(
q A

0 (qτ )−1

)
: q ∈ Qn and (q−1A)τ = (q−1A)

}
.

A simple computation tells us that R2n is a subgroup of Sp2n(k). Let T ′n be the subgroup

of Sp2n(k) defined by

T ′n =

{(
t 0

0 t−1

)
: t ∈ GLn(k) is diagonal

}
.

It is often useful to identify T ′n with the subgroup of GLn(k) consisting of diagonal matrices.

The identification is given by(
t 0

0 t−1

)
≡ t, t = diag(tk)

n
k=1.

Notice that the Tn used in §4.1 is T ′n∩SLn(k). We can also check that T ′n acts on both R2n

and Sp2n(k) by conjugation. We can use the results of §3 with T = T ′n, as |T ′n| = (pd−1)n

is prime to p.

Fix i > 0. The order of Sp2n(k) is given by (for example, [9, §3.5])

|Sp2n(k)| = pdn
2

n∏
j=1

(p2dj − 1).

We claim that |R2n| = pdn
2
, so that R2n is a Sylow p-subgroup of Sp2n(k). Now any

element r ∈ R2n is determined uniquely by an element q ∈ Qn and a choice of symmetric

n× n matrix B, via the bijection

(q,B)←→

(
q qB

0 (qτ )−1

)
∈ R2n.
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Let Symn(k) be the abelian group of n × n symmetric matrices, whose order is p
dn(n+1)

2 .

Then |R2n| = |Qn||Symn(k)| = pdn
2

as required. Exactly as with the Qn 6 SLn(k) case,

we have a surjective map Hi(R2n)T
′
n → Hi(Sp2n(k)). We will show that Hi(R2n)T

′
n = 0 in a

similar fashion to how we showed Hi(Qn)T
′
n = 0. Namely, we show that the εzi coefficient

in the Poincaré series σ(H∗(R2n)) (now with respect to T = T ′n) is zero for 0 < i < d(p−1)
2 .

In §4.1, we defined a set ∆ of homomorphisms corresponding to how Tn acted on the

entries of matrices in Qn. To do a similar thing for T ′n on R2n, we use the calculation(
t−1 0

0 t

)(
q A

0 (qτ )−1

)(
t 0

0 t−1

)
=

(
t−1qt t−1At−1

0 t(qτ )−1t−1

)
. (4.7)

In the above equation t ∈ T ′n, q ∈ Qn and q−1A ∈ Symn(k) so that

r =

(
q A

0 (qτ )−1

)

is a general element of R2n.

Define ∆ to be the disjoint union ∆1
⊔

∆2, where

∆1 = {(k, l) : 1 6 l 6 k 6 n}, ∆2 = {(i, j)′ : 1 6 j < i 6 n}.

With each (i, j)′ ∈ ∆2 we identify the homomorphism T ′n → k∗, t 7→ ti
tj
. This corresponds

to the role of ∆ in §4.1 with Qn, except now identifying

Qn ∼= Q′n =

{(
q 0

0 (qτ )−1

)
: q ∈ Qn

}
6 R2n.

Indeed if a is the homomorphism associated with (i, j)′ ∈ ∆2, we define a group homo-

morphism φa by

φa : ka −→ R2n, x 7−→

(
In +mji(x) 0

0 ((In +mji(x))τ )−1

)
.

This is T ′n-invariant by calculation (4.7).

We want a similar construction for ∆1. If (k, l) ∈ ∆1 and x ∈ k, we let slk(x) be the n×n
symmetric matrix with (l, k) and (k, l) entries equal to x and all other entries equal to

zero. We then have group homomorphisms for each (k, l) ∈ ∆1 given by

φ(k,l) : k −→ R2n, x 7−→

(
In slk(x)

0 In

)
.

We want to identify (k, l) with a homomorphism a : T ′n → k, such that the above map φa :
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k ≡ ka → R2n, is T ′n-invariant. Looking at calculation (4.7) we see that the appropriate

homomorphism is t→ 1
tltk

.

We order both ∆1 and ∆2 individually as in §4.1 - the first component of two pairs are

compared first, and then the second. We can then put a total order on ∆ by setting the

elements in ∆1 to be larger than elements in ∆2. For each a ∈ ∆ we define Ra2n to be the

subgroup of R2n generated by the images of all φc with c > a in ∆. Much like for Qn and

Tn, we obtain T ′n-invariant group extensions

1 −→ ka −→ R2n/R
a
2n −→ R2n/R

a′
2n −→ 1,

for each a ∈ ∆. Again, a′ is the largest element of ∆ less than a and if this is not possible

we set Ra
′

2n = R2n.

For a = (i, j)′ ∈ ∆2 these exact sequences are the same as the ones in §4.1 via the

isomorphisms R2n/R
a
2n
∼= Qn/Q

a
n. Of course in the Qn case, we must restrict a to Tn 6 T ′n.

We therefore don’t need to check the exactness and T ′n-invariance of these sequences for

a ∈ ∆2.

Notice that the map

Symn(k) −→ R2n, B 7−→

(
In B

0 In

)
embeds Symn(k) as an abelian subgroup of R2n. This description makes it straightforward

to check the exactness and T ′n-invariance of the above sequences for a ∈ ∆1.

Using Lemmas 3.1 and 3.2 in conjunction, these group extensions provide the estimate

(see how we obtained (4.1) in §4.1 first)

σ(H∗(R2n))�
∏
a∈∆

σ(H∗(ka)) =
∏
a∈∆,b

(1 + ap
b
z)
∑
i>0

aip
b
z2i. (4.8)

In the above, and throughout the rest of §4.2, b ranges over {0, 1, . . . , d − 1}. Again, we

define a set I = {(mab, nab)a∈∆,b ∈ ({0, 1} × Z>0)d|∆|}. With the same justification used

to obtain (4.2) and then (4.3) we find that

σ(H∗(R2n))�
∑
I∈I

(∏
a∈∆

aMa(I)

)
zD(I),

D(I) =
∑
a∈∆,b

(mab + 2nab), Ma(I) =
∑
b

(mab + nab)p
b.

Hence to prove Theorem 4.5 we need to show that if I ∈ I, then∏
a∈∆

aMa(I) = ε (4.9)
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implies either D(I) = 0 or D(I) > d(p−1)
2 (compare this to the text surrounding (4.4)).

Let ai ≡ (i, i + 1)′ ∈ ∆2 ⊂ ∆. Then if a ≡ (j, k)′ ∈ ∆2, we have a =
∏n−1
i=1 a

cai
i where

cai = 1 for k 6 i 6 j − 1 and cai = 0 otherwise. If instead a ≡ (k, l) ∈ ∆1, we have

a(t) =
1

tltk
=

1

t2k

tk
tl

=
1

t2n

(
tn
tk

)2 tk
tl

= ana
2
(n,k)′a(k,l)′(t)

where an ≡ (n, n) and a(i,j)′ is set to be the trivial character ε if i = j. Hence for each

a ≡ (k, l) ∈ ∆1, we have

a =
n∏
i=1

afaii ,

where fan = 1; fai = 2 if k 6 i 6 n − 1; fai = 1 if l 6 i 6 k − 1; and fai = 0 otherwise.

Equation (4.9) becomes

n∏
i=1

agii = ε, gi =
∑

a∈∆2,b

cai(mab + nab)p
b +

∑
a∈∆1,b

fai(mab + nab)p
b. (4.10)

Here, all the can for a ∈ ∆2 are set to be zero. Each gi is a sum of the form

gi =
∑
a∈∆,b

gai(mab + nab)p
b,

with each gai ∈ {0, 1, 2} and, for any fixed a ∈ ∆, the (gai)
n
i=1 are not all zero. We appeal

to the surjectivity of the group homomorphism

γ′ : T ′n −→ (k∗)n−1 × k2∗, t 7−→ (ai(t))
n
i=1 (4.11)

to show that (4.10) implies (by the same justification as for implication (4.6))

gi ≡ 0 (mod pd − 1) if 1 6 i 6 n− 1, gn ≡ 0

(
mod

pd − 1

2∗

)
, (4.12)

where 2∗ = 1 if p = 2; 2∗ = 2 if p 6= 2. This is because k2∗ is cyclic of order pd−1
2∗ .

Now suppose I = (mab, nab)a∈∆,b ∈ I is so that D(I) > 0 and (4.9) holds. One possibility

is that mab + nab > 0 for some a 6= an and some b. Then
∑

a∈∆ gai(mab + nab) > 0 for

some b and some i with 1 6 i 6 n− 1. We then apply Lemma 4.4 for this gi to write

d(p− 1) 6
∑
a,b

gai(mab + nab) 6
∑
a,b

2(mab + 2nab) = 2D(I).

The other possibility is that mab = nab = 0 for each a 6= an and each b, but manb+nanb > 0
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for some b. We then have (multiplying the gn congruence in (4.12) by 2∗)

(2∗)gn = (2∗)Man(I) =
∑
b

(2∗)(manb + nanb)p
b ≡ 0 (mod pd − 1).

Applying Lemma 4.4 to this equation, we must have

d(p− 1) 6
∑
b

(2∗)(manb + nanb) 6
∑
a∈∆,b

2(mab + 2nab) = 2D(I).

In any case we have shown that if (4.9) holds for some I ∈ I then either D(I) = 0 or

D(I) > d(p−1)
2 . As remarked on the line below (4.9) this proves Theorem 4.5.

4.3 Orthogonal groups of even degree in odd characteristic

We first looked at the vanishing low dimensional homology of the groups GLn(k) and

SLn(k), strengthening a theorem proved by Quillen. Next, we adapted this method to

yield analogous results for the groups Sp2n(k). This in turn generalises to the orthogonal

groups. We will only consider the case p 6= 2 here.

Fix n ∈ N. The orthogonal group O2n(k), over k is defined by

O2n(k) = {g ∈ GL2n(k) : gτJg = J}, J =

(
0 In

In 0

)
.

The special orthogonal group SO2n(k), is then the normal subgroup of O2n(k) consisting

of such matrices with determinant 1, i.e. SO2n(k) = O2n(k) ∩ SL2n(k).

Theorem 4.6. We have Hi(O2n(k)) = 0 = Hi(SO2n(k)) whenever 0 < i < d(p−1)
2 .

Let Qn 6 GLn(k) be as defined in §4.1 and define R2n now to be the subset of SO2n(k)

(and O2n(k)) defined by

R2n =

{(
q A

0 (qτ )−1

)
: q ∈ Qn and (q−1A)τ = −(q−1A)

}
.

Note the similarity with the R2n defined in §4.2 - the matrix q−1A is now skew-symmetric,

rather than symmetric. Again, R2n is easily checked to be a subgroup of SO2n(k). We

now show that it is a Sylow p-subgroup of both SO2n(k) and O2n(k). It is known that ([9,

§3.7.2])

|O2n(k)| = 2pdn(n−1)(pdn − 1)

n−1∏
j=1

(p2dj − 1), |SO2n(k)| = 1

2
|O2n(k)|.

Much like each r ∈ R2n in §4.2 was determined uniquely by an element of Qn and a
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symmetric n× n matrix, an element of R2n here is uniquely determined by an element of

Qn and a skew-symmetric n×n matrix. This implies that |R2n| = |Qn|p
dn(n−1)

2 = pdn(n−1)

and we can see that R2n is indeed a Sylow p-subgroup of both SO2n(k) and O2n(k).

The same T ′n used in §4.2 is a subgroup of SO2n(k) acting on R2n, SO2n(k) and O2n(k) by

conjugation. By similar arguements to the SLn(k) and Sp2n(k) cases, to prove Theorem

4.6 it suffices to show that Hi(R2n)T
′
n = 0 whenever 0 < i < d(p−1)

2 .

We define ∆ = ∆1
⊔

∆2, where

∆1 = {(k, l) : 1 6 l < k 6 n}, ∆2 = {(i, j)′ : 1 6 j < i 6 n}.

In fact ∆2 here plays an identical role to the ∆2 in §4.2. Indeed we identify each (i, j)′ ∈ ∆2

with the homomorphism T ′n → k∗, t 7→ ti
tj

. If a ≡ (i, j)′ ∈ ∆2 we define a T ′n-invariant

(calculation (4.7) still holds) homomorphism φa by

φa : ka −→ R2n, x 7−→

(
In +mji(x) 0

0 ((In +mij(x))τ )−1

)
.

If (k, l) ∈ ∆1 and x ∈ k, we let slk(x) be the n×n matrix with (l, k)-entry equal to x, (k, l)-

entry equal to −x, and all other entries equal to zero. We also associate (k, l) ∈ ∆1 with

the homomorphism T ′n → k∗, t 7→ 1
tltk

. Then for a ≡ (k, l) ∈ ∆1 we define a T ′n-invariant

homomorphism φa by

ka −→ R2n, x 7−→

(
In slk(x)

0 In

)
.

We order ∆ as in §4.2, with elements of ∆1 larger than those in ∆2. The individual

sets ∆1 and ∆2 are each ordered by comparing first components first, then the second

components. For each a ∈ ∆ we define Ra2n to be the subgroup of R2n generated by the

images of all the φc with c > a in ∆. We get T ′n-invariant group extensions

1 −→ ka −→ R2n/R
a
2n −→ R2n/R

a′
2n −→ 1,

for each a ∈ ∆. As usual, a′ is the largest element of ∆ less than a and we set Ra
′

2n = R2n if

this is not possible. Applying Lemmas 3.1 and 3.2 to these extensions we get the estimate

σ(H∗(R2n))�
∏
a∈∆

σ(H∗(ka)) =
∏
a∈∆,b

(1 + ap
b
z)
∑
i>0

aip
b
z2i.

The rest of the proof is identical to the text following (4.8). The surjective homomorphism

γ′ defined by (4.11) implies the same modular congruences. The only seeming difference

is that the homomorphism an : t 7→ 1
t2n

is not in ∆ anymore, but this doesn’t matter - the

proof still applies.

Now that we have proved Theorem 4.6, we introduce the index 2 subgroup Ω2n(k) of
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SO2n(k). A more precise definition is given by [9, §3.7 & §3.9]. Let V be the vector space

k2n and define a symmetric bilinear form 〈·, ·〉 : V × V → k, by 〈u, v〉 = uτJv, where J

is the symmetric matrix in the definition of O2n(k) at the start of this section. If v ∈ V ,

we call N(v) = 〈v, v〉 the norm of v. Two vectors u, v ∈ V are called orthogonal to each

other if 〈u, v〉 = 0.

A reflection ru, of V in the plane orthogonal to a vector u with N(u) 6= 0, is characterised

by sending u to −u and fixing all vectors orthogonal to u. In other words it can be defined

by the formula

ru : v 7−→ v − 2
〈v, u〉
〈u, u〉

u.

There are two types of these reflections - either N(u) is a square in k, so N(u) ∈ k2∗,

or N(u) is not a square in k. Note that if λ 6= 0 in k, then rλu = ru. We then have

N(λu) = λ2N(u), thus we have a well-defined map

{ru : N(u) 6= 0} −→ k∗/k2∗, ru 7−→ [N(u)]

It is known that O2n(k) is generated by reflections ru with N(u) 6= 0. Since a reflection

matrix has determinant −1, a general element of SO2n(k) is the product of an even number

of these reflections. Now if g ∈ SO2n(k), we can write g = ru1ru2 . . . ru2t for some reflections

rui , with each N(ui) 6= 0. We can then define θ(g) = [N(u1)N(u2) . . . N(u2t)] ∈ k∗/k2∗.

The map θ : SO2n(k) → k∗/k2∗ is a well-defined surjective group homomorphism called

the spinor norm. Its kernel is an index 2 subgroup of SO2n(k) denoted by Ω2n(k). We can

now look to prove the following.

Theorem 4.7. We have Hi(Ω2n(k)) = 0 whenever 0 < i < d(p−1)
4 .

We already know that R2n is a Sylow p-subgroup of SO2n(k). We claim it is also a Sylow

p-subgroup of Ω2n(k). This is a particular case of the next proposition with G = SO2n(k),

N = Ω2n(k) and U = R2n.

Proposition 4.8. Let G be a group and U a Sylow p-subgroup. Let N be a normal

subgroup of G such that p - [G : N ]. Then U 6 N . In particular U is a Sylow p-subgroup

of N .

Proof. Let π : G→ G/N be the quotient map, and denote by φ its restriction to U . By the

first isomorphism theorem |U | = | ker(φ)||im(φ)|. Since im(φ) 6 G/N , and by assumption

p - G/N , we must have p - |im(φ)|. Since |U | is just a power of p, the above equation, by

primality of p, now implies that | ker(φ)| = |U |, and thus ker(φ) = U . Of course, ker(φ) is

U ∩N , so U 6 N as required. �

Since R2n is a Sylow p-subgroup of Ω2n(k), we have, for each i > 0, a surjective map

Hi(R2n) → Hi(Ω2n(k)). We can’t just take fixed points under the action of T ′n as in

previous cases however, because we don’t know whether T ′n is a subgroup of Ω2n(k). In
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fact, we have the following:

Proposition 4.9. An element t ≡ diag(tj)
n
j=1 in T ′n lies in Ω2n(k) if and only if

∏n
j=1 tj ∈

k2∗.

Proof (sketch). Let {ej}2nj=1 be the standard basis of V = k2n. Write(
t 0

0 t−1

)
= JA, A =

(
0 t−1

t 0

)
.

Consider a new basis {fj}2nj=1 of V given by

fj =

{
ej − tjej+n if j 6 n

ej + tjej+n if j > n+ 1
.

One can check the fj form an orthogonal basis with respect to 〈·, ·〉, in the sense that

〈fj , fj′〉 whenever j 6= j′. Now for j 6 n, we have N(fj) = −2tj and Afj = −fj . On the

other hand, for j > n + 1 we have Afj = fj . This implies that A = rf1rf2 . . . rfn as a

product of reflections. Now J is a special case of A with t = In, so J = rf ′1rf ′2 . . . rf ′n , where

f ′j is given by ej − ej+n for each j 6 n. Notice each N(f ′j) is equal to −2. By definition

we have

θ(t) =

 n∏
j=1

N(f ′j)
n∏
j=1

N(fj)

 =

(−2)2n
n∏
j=1

tj

 =

 n∏
j=1

tj

 ,
giving the proposition. �

Let S′n be the intersection of T ′n with Ω2n(k). Now we follow the proof for Hi(R2n)T
′
n = 0,

except with T ′n replaced by S′n. Since S′n is an index 2 subgroup of T ′n, the results in §3
for T = S′n are valid. The homomorphisms in ∆ are replaced by their restrictions to S′n.

The only issue we find is that γ′′ = γ′|S′n is not surjective.

We claim the image of γ′′ contains the set

{(x1, x2, . . . , xn−1, y
2) ∈ (k∗)n−1 × k2∗ : x1x

2
2 . . . x

n−1
n−1y

n ∈ k2∗}.

Indeed suppose (x1, x2, . . . , xn−1, y
2) lies in this set. Then

γ′′
(

1

x1x2 . . . xn−1y
,

1

x2 . . . xn−1y
, . . . ,

1

xn−1y
,

1

y

)
= (x1, x2, . . . , xn−1, y

2).

This means that, for each j with 1 6 j 6 n, the element (x′j)
n
j′=1 with xj = ζ2 and xj′ = 1

if j′ 6= j is in the image of γ′′. Here, ζ is a cyclic generator of k∗, so that ζ2 has order
pd−1

2 in k∗. Instead of (4.12) we get the congruences

2gi ≡ 0 (mod pd − 1) if 1 6 i 6 n− 1, 2gn ≡ 0

(
mod

pd − 1

2∗

)
.
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The rest of the method is the same as before, except the extra factor of 2 means we get

Hi(Ω2n(k)) = 0 only for the interval 0 < i < d(p−1)
4 . We have thus proven Theorem 4.7.

5 Homology of Some Finite Simple Groups

In this section we use our results from §4 to prove vanishing theorems for the low dimen-

sional homology of some finite simple groups. All the results and methods in this section

are my own, although we use statements from [9, §3].

Recall that a group G is a said to be simple if for any normal subgroup N of G we have

N = 1 or N = G. We also use the conventional notation Z(G) for the centre of a group

G. That is, for any group G,

Z(G) = {g ∈ G : gh = hg for any h ∈ G} 6 G.

Once more k is the finite field with pd elements for some d > 1.

5.1 Finite simple groups obtained from classical groups

We have seen some important examples of classical groups over k. We further explore the

special linear, symplectic and the index 2 subgroup of the special orthogonal groups. In

general these are not simple, but almost all of them are ‘nearly’ simple in the sense that

a relatively large quotient is simple. Let us now introduce these simple quotients.

Fix n ∈ N and consider the special linear group SLn(k). The centre of SLn(k) consists of

the scalar matrices in SLn(k) - as a set we have

Z(SLn(k)) = {λIn : λn = 1}.

The projective special linear group of degree n, PSLn(k), is then the quotient of SLn(k)

by its centre, i.e SLn(k)/Z(SLn(k)). To work out its order we need to know the order of

Z(SLn(k)). The expression above tells us this is equal to the number of λ ∈ k∗ satisfying

xn = 1. Since k∗ is cyclic with order pd − 1 this number is given by gcd(pd − 1, n). The

order of PSLn(k) is then given by

|PSLn(k)| = 1

gcd(pd − 1, n)
|SLn(k)|.

Theorem 5.1 [9, §3.3.2]. The groups PSLn(k) are simple whenever n > 2 or pd > 3.

We now turn to the symplectic groups Sp2n(k). It is known that the centre Z(Sp2n(k)),

of Sp2n(k) is formed by just the two matrices In and −In, and hence has size 1 or 2 - the
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former case only when p = 2. The projective symplectic group PSp2n(k) is the quotient

Sp2n(k)/Z(Sp2n(k)). Its order is given by

|PSp2n(k)| = 1

gcd(p, 2)
|Sp2n(k)|.

Theorem 5.2 [9, §3.5.2]. The groups PSp2n(k) are simple apart from the cases PSp2(F2),

PSp2(F3) and PSp4(F2).

Finally, we do the same for the groups Ω2n(k) defined in §4.3. Here, as in §4.3, we

only consider the case p 6= 2. The groups PΩ2n(k) are defined to be the quotients

Ω2n(k)/Z(Ω2n(k)). The order of PΩ2n(k) is not as simple to calculate as the other two

cases. In [2] via §8.6, Theorems 9.4.10 and 11.3.2, it is shown that

|PΩ2n(k)| = 1

gcd(pd − 1, 2)2
|Ω2n(k)|.

Theorem 5.3 [9, §3.7.3]. The groups PΩ2n(k) are simple whenever n > 2.

5.2 The homology of these simple groups.

In §5.1, we introduced three classes of finite simple groups. We are almost ready to

explore the low dimensional homology of these groups - the end goal of this dissertation.

Beforehand, we need one final proposition.

Proposition 5.4. Let G be a group and U a Sylow p-subgroup. Let N be a normal

subgroup of G with p - N . Let π : G → G/N be the natural map, then π(U) is a Sylow

p-subgroup isomorphic to U .

Proof. Let φ : U → G/N be the restriction of the natural map to U . Its kernel K = U ∩N
is both a subgroup of U and a subgroup of N . The order of K must then divide both

that of U and that of N . By assumption the orders of U and N are coprime, so |K| = 1

and K is trivial. By the first isomorphism theorem for groups, U is an isomorphism onto

its image π(U). The order of G/N divides that of G, so if U is a Sylow p-subgroup of G,

then |π(U)| = |U | implies that π(U) is a Sylow p-subgroup of G/N . �

Let’s start with the special linear case first, i.e. the groups PSLn(k). The symplectic and

orthogonal cases are very similar.

Theorem 5.5. We have Hi(PSLn(k)) = 0 whenever 0 < i < d(p−1)
2 .

Proof. Recall that Qn is the Sylow p-subgroup of SLn(k) consisting of upper triangular

matrices with 1s on the diagonal. If π : SLn(k)→ PSLn(k) is the quotient homomorphism,

then Proposition 5.4 and the formula for |PSLn(k)| in §5.1 tells us that π(Qn) is a Sylow

p-subgroup of PSLn(k) isomorphic to Qn via π. In §4.1 we had the diagonal subgroup

Tn acting on Qn and SLn(k) via conjugation. In the same way π(Tn) acts on π(Qn) and
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PSLn(k) via conjugation. For each t ∈ Tn we get a commutative diagram

Qn Qn

π(Qn) π(Qn)

t

π(t)

π ∼= π∼=

.

(5.1)

Here, t : Qn → Qn is the homomorphism t(u) = t·u = t−1ut, and the homomorphism π(t),

is defined similarly. The commutativity of (5.1) and the functoriality of group homology

(recall §2.4) yields the commutative diagrams

Hi(Qn) Hi(Qn)

Hi(π(Qn)) Hi(π(Qn))

t∗

π(t)∗

π∗ ∼= π∗∼=

,

(5.2)

for each i > 0. Of course, π∗ is an isomorphism since π is. The commutativity of these

diagrams imply that π∗ induces isomorphisms on the fixed point subgroups of homol-

ogy, i.e. Hi(Qn)Tn ∼= Hi(π(Qn))π(Tn) for each i > 0. Using Theorem 4.2 we must have

Hi(π(Qn))π(Tn) = 0 for 0 < i < d(p − 1). Since π(Qn) is a Sylow p-subgroup of PSLn(k)

and π(Tn) is a subgroup of PSLn(k), the map

Hi(π(Qn))π(Tn) −→ Hi(PSLn(k))π(Tn) = Hi(PSLn(k))

is surjective for each i > 0. We must therefore have Hi(PSLn(k)) = 0 whenever 0 < i <

d(p− 1). �

The method used to prove Theorem 5.5 adapts easily to PSp2n(k) and PΩ2n(k). For

PSp2n(k), replace the groups Qn and Tn in the above with the groups R2n and T ′n used in

§4.2 respectively. We get analogous versions of the commutative squares (5.1) and (5.2).

The order formula in §5.1 implies that R2n projects to a Sylow p-subgroup of PSLn(k),

and thus we obtain the following:

Theorem 5.6. We have Hi(PSp2n(k)) = 0 whenever 0 < i < d(p−1)
2 .

For PΩ2n(k), instead replace the groups Qn and Tn in the proof of Theorem 5.5 with R2n

and S′n as defined in §4.3 respectively. By similar arguements we obtain:

Theorem 5.7. We have Hi(PΩ2n(k)) = 0 whenever 0 < i < d(p−1)
4 .
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6 Final Remarks

The first part of this essay was spent defining mod p group homology via projective

resolutions of Fp over Fp[G]. One may have wondered why mod p homology was the

natural homology theory to use. The convenience of the Fp coefficients was that a Sylow

p-subgroup U , of a group G, induced surjective maps Hi(U)→ Hi(G), on mod p homology.

Now the groups we looked at naturally had significant Sylow p-subgroups that were easier

to write down explicitly than the groups themselves, using coefficients in Fp allowed us to

restrict to exploring just these subgroups.

The results in §4 can be thought of as an investigation into the remark concluding §11

in [7]. Here Quillen states that the mod p cohomology of certain linear algebraic groups

(matrix groups defined by polynomials in the entries) over finite fields of characteristic p

vanishes in dimensions i with 0 < i < Cd, for some constant C. Our results explicitly give

such vanishing ranges in the homology setting (rather than cohomology) for the special

linear, symplectic and orthogonal groups (of plus type in odd characteristic).

In §5, we showed that the vanishing ranges for the homology of the classical groups in

§4 naturally project to vanishing ranges for the closely related finite simple groups. How

expected are these results? In §2.3 we gave an explicit description of H1(G), where G is

a group, in terms of the abelianisation Gab = G/[G,G], of G. Since [G,G] is a normal

subgroup of G, and trivial if and only if G is abelian, it is clear that H1(G) = 0 whenever

G is simple and non-abelian. For i > 1, however, simplicity of G does not give any reason

for Hi(G) to vanish. For example if p = 2 and k is the field of four elements, then PSL2(k)

is simple (Theorem 5.1) and isomorphic to the alternating group on five elements A5. It is

known that H2(A5) ∼= Z/2Z, so in particular H2(PSL2(k)) 6= 0. The vanishing ranges of

our simple groups seem only a consequence of the vanishing ranges for the corresponding

classical groups, and not a consequence of simplicity itself.

As mentioned earlier, the groups PSLn(k), PSp2n(k) and PΩ2n(k) nearly give a complete

dictionary of all the non-exceptional Chevalley groups. The only such groups not consid-

ered here are the groups PΩ2n+1(k) and the groups PΩ2n(k) in even characteristic. The

definition of the orthogonal groups in even characteristic is much more complex than in

odd characteristic ([9, §3.4.7 & §3.8]), however the group PΩ2n+1(k), n ∈ N, in even char-

acteristic is isomorphic to the group PSp2n(k) [2, §1.6], so in this case we refer to Theorem

5.7. One would expect similar vanishing statements for the homology of the PΩ2n(k) in

even characteristic and the PΩ2n+1(k) in odd characteristic due to Quillen’s remark in the

second paragraph of this section. Sylow p subgroups of these last two cases are harder to

write down explicitly, hence their omission from this work.
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