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Abstract

In this work we prove that the hermitianK-theory is geometrically representable in

the A1-homotopy category of smooth schemes over a field. We also study in detail a

realization functor from the A1-homotopy category of smooth schemes over the field

R of real numbers to the category of topological spaces. This functor is determined

by taking the real points of a smooth R-scheme. There is another realization functor

induced by taking the complex points with a similar description although we have

not discussed this other functor in this thesis. Using these realization functors we

have concluded in brief the relation of hermitian K-theory of a smooth scheme over

the real numbers with the topological K-theory of the associated topological space

of the real and the complex points of that scheme: The realization of hermitian

K-theory induced taking the complex points is the topological K-theory of real

vector bundles of the topological space of complex points, whereas the realization

induced by taking the real points is a product of two copies of the topological

K-theory of real vector bundles of the topological space of real points.
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Chapter 1
Introduction

1.1 Notations and Conventions

Let me first mention some of the essential assumptions we would be making. In

the entire work k will denote a perfect field of characteristic not equal to 2. The

category of smooth schemes over the field k will be denoted by Sm/k. For a given

smooth scheme S we will denote the category of all smooth schemes over S by

Sm/S.

A few remarks on notations. For a category C, the category of simplicial presheaves

of sets on C will be denoted by ∆opPShv(C). If C is a site with respect to a

Grothendieck topology τ then the category of simplicial sheaves on C will be

denoted by ∆opShvτ (C). All the sheaves and presheaves of sets on a site can

be considered simplicial of dimension 0 and they will be denoted by the same

symbol even when considered as being simplicial. For a simplicial presheaf X ∈

∆opPShv(Sm/S) and an affine S-scheme SpecR, we will denote the simplicial set

X(SpecR) by X(R) and ocassionally by XR. For a map f of presheaves the map

f(SpecR) will be denoted by f(R) or by fR.

1.2 Introduction

A framework for considering homotopical questions in algebraic geometry in gen-

erality was laid with the introduction of A1-homotopy theory by Morel and Vo-

evodsky. They have defined realization functors from the A1-homotopy category

of smooth schemes over complex numbers and over real numbers to the ordinary

homotopy category of topological spaces. These functors were induced by taking

the associated topological space of complex points of a variety over C and the
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topological space of real points of a variety over R. One motivation for this work

was to understand the image of hermitian K-theory under these and more general

realization functors.

It was believed that the image of hermitan K-theory should be related to topo-

logical K-theory of real vector bundles. We considered a geometric representability

of hermitian K-theory similar to the case of representability of algebraic K-theory

by Grassmannians as one basic ingredient in a direct understanding this.

In this thesis, we have proved a geometric representability of hermitian K-theory

similar to the representability of algebraic K-theory by Grassmannians (although

the representability of hermitian K-theory was proved by Hornbostel in [H05],

for our purposes, we needed a geometric representability). For a nondegenerate

symmetric bilinear space (V, φ) over a field F , we have taken the open subscheme

of nonvanishing sections determined by the universal bundle on the Grassmannian

scheme Gr(V ). We have defined the orthogonal Grassmannian GrO in 5.2.3 as a

colimit of these schemes after stabilizing with respect to the addition of hyperbolic

planes. In theorem 5.7.1 we have proved that GrO represents the hermitian K-

theory in the unstable A1-homotopy category of smooth scheme over a field of

characterstic not equal to 2.

Although we haven’t discussed stable version of this representability result, it

can be extended to give the stable case as well. Also, another extension of the rep-

resentability result discussed in this paper should be with respect to the algebraic

analog of the real KR-theory of Atiyah.

It must be remarked that the organization of the proof is similar to the one for

algebraic K-theory. There is one significant difference though, since the π0 presheaf

of hermitian K-theory is not constant in contrast to the case of algebraic K-theory,
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the identification of π0 presheaves of GrO and hermitian K-theory involves some

computation.

Next, I will present the detailed contents of the first four chapters of the thesis,

for the contents of the fifth chapter see introduction of that chapter. In fact, the

last chapter can be independently read without reading the first four chapters

of the thesis. The reason for having that chapter seperate from the rest of the

thesis is the fact that the proof of H-space structure on orthogonal Grassmannian

using the machinery of Γ-spaces discussed in chapter 3 is not complete, and a

complete proof for this would have been much more complicated. It has been

proved in a different way using the theory of operads in chapter 5. While working

the details of H-space structure, it so happened that the overall presentation of

the representability theorem became much refined. But the theory of Γ-spaces in

the wider context of this work is useful and can be explored further, that’s why it

has survived in this draft. Also, there are some computational details in the first

four chapters that should help a reader in working through the fifth chapter.

In chapter 2, we have recalled some of the notions from A1-homotopy theory to

set up notations. We choose a model structure as discussed in [J87] and [MV99]

on the category ∆opPShv(Sm/k) of simplicial presheaves of sets on the category

Sm/k of smooth schemes over a field k. In a model category with an interval I, we

provide a technical result in 2.2.4 which helps us in understanding the behaviour

of I-homotopic maps under taking certain colimits. This result has been used later

to prove the H-space structures on the presheaf Fh[0,∞], and also in proving the

A1-contractibility of Stiefel presheaves in 3.1.21.

The third chapter contains the most important result of this work, namely,

the A1-representability theorem 3.3.18 (although a complete proof of this result

appears in the last chapter in theorem 5.7.1). In the first section of this chapter we

3



have recalled the definition of the usual Grassmannian scheme over a field k in 3.1.1,

and then defined an open subscheme Grk(n, H
m) in 3.1. The A1-representability

theorem states that hermitian K-theory is represented by a colimit, namely GrO,

of the schemes Grk(n, H
m) (see 3.2.2 and 3.3.18). To be able to do calculations,

we have defined the presheaves H m
n and Fhmn in 3.1.10 and proved in 3.1.11 that

the sheaf represented by Grk(n, H
m) is actually a Zariski sheafification of both of

these presheaves. Later we have used the presheaf Fhmn and it’s derivatives almost

all the times whenever we need to prove or define something with Grk(n, H
m).

We have also defined the presheaf O(Hn) of isometries of hyperbolic space in

3.1.12. The Stiefel presheaves St(Hn, Hm) have been defined in 3.1.14 and the

presheaf Gr(Hn, Hm) in 3.1.16. The name of Stiefel presheaves derives inspiration

from the fact that they have a role similar to their topological counterparts: We

have proved that O(Hn) acts on St(Hn, Hm) faithfully and transitively and the

quotient space of this action is the presheaf Gr(Hn, Hm) in 3.1.15. Later we have

proved in 3.1.23 that St(Hn, H∞) is A1-contractible. This allows us to identify

the classifying space BO(Hn) of O(Hn) with the presheaf Gr(Hn, H∞) in the

A1-homotopy category (see 3.1.25).

In section 3.2 we have defined the presheaf FhO in 3.2.1 and the sheaf GrO in

3.2.2. We have proved that the presheaf Fh[0,∞] is an H-space with the hope that

this H-space structure extends to give us an H-space structure on FhO though

we have not verified it yet. Next, in this section for sake of completeness we have

recalled the definition of hermitian K-theory presheaf Kh in 3.2.13. Later we have

defined the map } from the presheaf FhO to Kh. This is a very important map

and we prove in 3.3.18 that this is an A1-weak equivalence.

The last section collects necessary results in the proof of A1-weak equivalence of

the map }. First we define the presheaf BO in 3.3.1. We prove that there is an A1-
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weak equivalence γ : BO → Kh0 , where Kh0 is the connected component of 0 of the

hermitian K-theory (3.3.2, 3.3.3). Then we recall definition of the presheaf GW0

of Grothendieck-Witt groups in 3.3.5 and prove that the Nisnevich sheafification

of the presheaf πA1

0 (FhO) is isomorphic to the Nisnevich sheafification of GW0 in

3.3.14. The last subsection 3.3.4 proves that } is an A1-weak equivalence (theorem

3.3.18).

In chapter 4, for the smooth schemes over R, we want to study the relation of

hermitian K-theory of a smooth R-scheme with the topological K-theory of real

and complex vector bundles over the topological space of it’s real (and complex)

points (4.1.1). This chapter is not written completely yet, more precisely the section

4.4 in which we propose to compute realization of presheaves GrO and FhO

which represent the hermitian K-theory is not written yet. We have proved in the

first section that the set of real points of a smooth real scheme can be given the

structure of a smooth manifold in 4.1.3. In the next we have defined the functor

ρ∗ from the category of topological spaces to simplicial presheaves in 4.2.1, and

proved that for a topological space S the simplicial presheaf ρ∗(S) is homotopy

invariant (4.2.3) and has the BG-property (4.2.5 and 4.2.7). It is also A1-local

(4.2.11). The functor ρ∗ sends weak equivalences of topological spaces to global

weak equivalences of simplicial presheaves (4.2.12), and hence induces a map on

the homotopy categories.

We have defined the functor ρ∗ from the category of simplicial presheaves to the

category of topological spaces in 4.3, and proved that the pair of functors (ρ∗, ρ
∗)

form an adjoint pair in 4.3.3. Then we have defined the left derived functor Lρ∗ of

ρ∗ in 4.3.7 using the topological space of real points of a smooth R-scheme, this is

one of the realization functors. The other realization functor can be defined using

the topological space of complex points, but we have not considered this realization
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functor. The detailed computation of the image of hermitian K-theory under this

realization functor has not been presented, although can be worked out with the

results discussed in this chapter and the representability theorem.
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Chapter 2
Basic Notions from A1-Homotopy Theory

In this chapter we recall the basic definitions and some of the results from A1-

homotopy theory which we will need. The first section is a quick introduction

of A1-homotopy theory with the purpose of setting up notations. In the second

section we present a technical result from the general homotopy theory which helps

us in understanding behavior of weak equivalences under taking colimits in some

situations. A particular case which has been used many times from this section is

the corollary 2.2.4.

2.1 Grothendieck Topologies on Sm/S

Definition 2.1.1. For a smooth S-scheme X, let (fα : Uα → X)α be a finite

family of étale morhpisms in Sm/S.

1. (fα : Uα → X)α is called an étale cover of X, if X is union of the open sets

fα(Uα).

2. (fα : Uα → X)α is called a Nisnevich cover of X, if for every x ∈ X, there is

an α and a y ∈ Uα which maps to x and κ(x) ' κ(y).

3. (fα : Uα → X)α is called a Zariski cover of X, if each fα is open immersion

and Uα cover X.

The collection of all the étale covers for schemes over S gives us a Grothendieck

topology on the category Sm/S, see [Artin] and [M80]. Similarily we have the

Nisnevich [N89], and the Zariski topologies on Sm/S. The category Sm/S together

with these topologies is called an étale, a Nisnevich and a Zariski site according
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to the topology considered. All these topologies will be referred to as τ -topologies

when a general situation valid for all the three topologies can to be considered

simultaneously.

Definition 2.1.2. A category I is a left filtering category if the followig are true.

1. Given two objects α, β ∈ I , there is an object γ ∈ I and morphisms γ → α

and γ → β, and

2. Given two morphisms i1, i2 : α → β in I , there is an object γ and a mor-

phism j : γ → α for which i1j = i2j.

Definition 2.1.3. A left filtering system in a category C is a functor x : I → C

where I is a left filtering category.

Definition 2.1.4. Let x : I → C be a left filtering system in a category C and

X ∈ ∆opPShv(C ) a simplicial presheaf of sets. We define a simplicial set Xx as

the direct limit

Xx = lim−→U∈I
X(x(U)) = lim−→I op

Xx.

This simplicial set is called the stalk of X at x and this construction gives us a

functor ∆opPShv(C )→ ∆opSets. In particular, for a map f : X → Y of simplicial

presheaves on a category C we have the induced map of simplicial sets fx : Xx →

Yx. This map is called the fiber of the map f at x.

Recall that a τ -point of a Grothenideck site T is a functor Shv(T )→ Sets which

commutes with finite limits and all colimits, [MV99, 2.1.2].

Definition 2.1.5. A family ζ of τ -points in C is called a conservative family of

points if the following is true for all maps of simplicial presheaves f : X → Y : The

fiber of f at x is an isomorphism of simplicial sets for all x ∈ ζ if and only if the
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map of associated simplicial sheaves aX
'−→ aY is an isomorphism. A site C is said

to have enough τ -points if there exists a conservative family of points in C .

Theorem 2.1.6. The site Sm/S has enough τ -points with respect to all the three

topologies mentioned in the definition 2.1.1.

Proof. We construct a conservative family ζ of τ -points for each of these sites.

Let’s first define τ̄ -points which could be thought of as precursors of an actual

τ -point for the étale, Nisnevich and the Zariski topologies on Sm/S.

1. For τ = ét, a ét-point in a scheme X ∈ Sm/S is a morphism of schemes

x : Spec K → X, where K is a seperably closed field.

2. For τ = Nis, aNis-point in a schemeX ∈ Sm/S is a morphism x : SpecK →

X such that the residue field of the image is K, K being any field.

Then it can be proved that all the categories defined below are left filtering cate-

gories:

1. For a point x of a smooth S-scheme X, let I zar
x be the set of all open neigh-

borhoods of the point x in the scheme X. I zar
x becomes a category by taking

a unique morphism between two objects U and V whenever U ⊂ V .

2. In both the cases of a τ̄ -point x defined above, take I τ
x to be the set of pairs

of the form (f : U → X, y : Spec K → U) where f is an étale morphism of

schemes, U ∈ Sm and y is a τ̄ -point of U with K being the residue field of

theimage of y, and fy = x.

It can be seen that the construction of taking stalks relative to the three categories

defined above give us τ -points in the three topologies τ = ét, Nis and Zar. It is

a matter of tedious verification using the construction of the sheafification functor
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to prove that the collection of all the τ -points obtained this way is a conservative

family of points for the site Sm/S for τ = ét, Nis and Zar.

A comment on notations is in order: the τ -point determined by the τ̄ -point x

will also denoted by x.

Remark 2.1.7.

1. In view of the construction outlined in the proof of above theorem, we see

that for a simplicial presheaf X ∈ ∆opPShv(ν) and for a τ -point x in the

above conservative family, the stalk Xx is the simplicial set colimx∈UX(U),

where U is an open neighborhood of the point x in case of Zariski topology

and U runs over all the S-schemes described above in the other two cases.

2. In the construction outlined above, in each case the category I τ
x has a cofinal

subcategory I τ
af,x obtained by considering only the affine neighborhoods of x

in case of Zariski topology, and only the affine schemes U in case of the other

two topologies. This remark enables us to compute stalks of a presheaf using

it’s values on the affine schemes in Sm/S.

Definition 2.1.8. A map of simplicial presheaves in ∆opPShv(ν) is called a τ -

simplicial weak equivalence (or just a simplicial weak equivalence when τ is un-

derstood from context) if all the fibers at τ -points in a conservative family of

τ -points are weak equivalences of simplicial sets. With the choice of the simplicial

weak equivalences as weak equivalences, the monomorphisms as cofibrations, and

the appropriate class of fibrations defined by the right lifting property, the cate-

gory ∆opPShv(ν) becomes a model category [J87]. We will denote the homotopy

category of this model category by Hoτ∆
opPShv(ν).
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Remark 2.1.9. The category ∆opShv(ντ ) is also a model category with the choices

of the class of τ -simplicial weak equivalences of sheaves as weak equivalences,

the monomorphisms as cofibrations and fibrations determined by the right lifting

property as proved in [MV99]. The homotopy category of this model category

would be denoted by Hoτ∆
opShv(ντ ).

The following lemma gives us a way to compute the Zariski stalks of some

particular types of simplicial presheaves on Sm/k. This computation will be useful

later in proving Zariski weak equivalences of certain maps.

Lemma 2.1.10. Let X be a simplicial presheaf of Sm/k which can be extended to

a simplicial presheaf X̃ on the category of k-schemes Sch/k. Further, assume that

lim−→
α

X(Rα)
'−→ X̃(Spec(lim−→

α

Rα)).

Then for a Zariski point x ∈ X in Sm/k, Xx ' X̃(OX,x). In this situation, we will

denote X̃ simply by X.

Proof. This is just a restatement of the fact a Zariski point can be defined by the

filtered system of affine open neighborhoods of x ∈ X.

This lemma gives us a way of checking Zariski weak equivalences in some cases.

Lemma 2.1.11. Let f : X → Y be a map of simplicial presheaves on Sm/k.

Assume further that X and Y both extend to the category Sch/k of all k-schemes.

Then f is a Zariski weak equivalence if and only if for every regular local k-algebra

R which is a local ring of a smooth k-scheme, the induced map fR : X(R)→ Y(R)

(see 2.1.10) is a weak equivalence of simplicial sets .

Definition 2.1.12. A map f : X → Y in the category ∆opPShv(ν) is a global

weak equivalence if for every X ∈ Sm/S the map of simplicial sets X(X) →

11



Y(X) is a weak equivalence of simplicial sets. Taking the global weak equiva-

lences for weak equivalences, monomorphisms for cofibrations, and fibrations de-

termined by the right lifting property we get a model structure on ∆opPShv(ν):

See [J87, Thm 2.3]. We will denote the homotopy category of this model category

by Hoglobal∆
opPShv(ν).

Recall that the representable presheaf determined by a smooth S-scheme X in

Sm/S, namely the presheaf HomSm/S( , X) is a sheaf with respect to all the three

topologies ét, Nis and Zar [M80]. We will denote this sheaf by the same letter X.

For example, the smooth k-scheme A1 = Speck[T ] gives us the (pre-)sheaf of sets

A1 on Sm/S. As mentioned in the beginning we can think of it as being simplicial

(of dimension 0).

Definition 2.1.13. A simplicial presheaf Z in the category ∆opPShv(νnis) is called

A1−local if for every simplicial presheaf X the canonical projection X × A1 → X

induces a bijection of Hom sets in the homotopy category

HomHoNis(∆opPShv(ν))(X,Z)→ HomHoNis(∆opPShv(ν))(X× A1,Z).

Definition 2.1.14. A morphism of simplicial presheaves X→ Y is called an A1-

weak equivalence if for every A1-local object Z in ∆opPShv(ν) the induced map

HomHoNis(∆opPShv(ν))(Y,Z)→ HomHoNis(∆opPShv(ν))(X,Z)

is a bijection.

Definition 2.1.15. The category ∆opPShv(ν) is a model catgeory with the choice

of the class of A1-weak equivalences as weak equivalences, the class of monomor-

phisms as cofibrations and fibrations defined by the right lifting property, see [J87]

and [MV99]. Homotopy category of this model category will be denoted by H (k),

and it is called the homotopy category of smooth k-schemes. If X and Z are simpli-
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cial presheaves on Sm/k, the set HomH (k)(X, Z) of morphisms in the A1-homotopy

category will be denoted by [X, Z]A1(k).

Observe that a global weak equivalence of simplicial presheaf is also a simpli-

cial weak equivalence in all the three topologies, and a Nisnevich simplicial weak

equivalence is also an A1-weak equivalence.

Remark 2.1.16. In their foundational work on the homotopy theory of schemes

[MV99], Morel and Voevodsky have made the above three definitions for the cat-

egory ∆opShvNis(ν) of simplicial sheaves with respect to Nisnevich topology and

proved the model structure. They use the notation H (k) for the resulting homo-

topy category in their situation and call that the homotopy category of smooth

k-schemes. Since we would be working with presheaves, we have used this notation

for presheaves. But homotopy theoretically there is no difference in working with

either of the two model categories, since the resulting homotopy categories are

naturally equivalent as described in the next paragraph.

Denoting the forgetful functor ∆opShv(νNis) → ∆opPShv(ν) by U , and the

sheafification functor ∆opPShv(ν) → ∆opShv(νNis) by aNis, we observe that the

pair of functors aNis : ∆opPShv(ν) � ∆opShv(νNis) : U form an adjoint pair of

functors (sheafification functor is left adjoint to the forgetful functor). We next

observe two things: the first is that the unit of adjunction 1∆opPShv(ν) → U aNis

is the map induced from a presheaf to the associated sheaf forgetting the sheaf

structure, which becomes an isomporphism on passing to the associated homotopy

categories (since we have enough Nis-points); and the second thing is that the

counit of adjunction aNis U → 1∆opShv(νNis) is itself an isomprphism and hence it

also produces an isomprphism on passing to the associated homotopy categories.
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Therefore, the pair of functors induced by U and aNis provide an equivalence of

the associated homotopy categories

aNis : HoNis∆
opPShv(ν)� HoNis∆

opShv(νNis) : U .

verifying our assertion in the previous paragraph on using one of the two (slightly)

different homotopy categories for dealing with schemes.

Now we are going to recall the definition of the naive homotopy of maps of

simplicial presheaves.

Definition 2.1.17. If X ∈ Sm/k. There are two maps of k-algebras k[T ] →

Γ(X,OX) given by T 7→ 0 and T 7→ 1. These two maps give us elements i0, , i1 ∈

HomSch(X, A1) respectively. Let pt denote the unique final object in the category

∆opPShv(ν), the constant simplicial presheaf of singletons. The maps i0 and i1

give us two maps of presheaves (denoted by the same symbols) i0, i1 : pt → A1.

Let f, g : X→ Z be two maps of simplicial presheaves on Sm/k. We say that the

maps f and g are naively A1-homotopic, if there is a map of simplicial presheaves

h : X× A1 → Z such that in the the diagram

X× pt ' X

1×i01×i1
��

// Z

X× A1

h

99ttttttttttt

we have h ◦ 1 × i0 = f and h ◦ 1 × i1 = g. The set of naive homotopy classes of

maps from X to Z will be denoted by [X, Z]A1
nv(k).

Example 2.1.18. We describe a naive homotopy of maps from SpecA to SpecR

of representable (pre)sheaves on Sm/k. Any map of sheaves SpecA
α−→ SpecR is

given by a unique map of schemes, which in turn is determined by a unique map of

k-alegbras R
fα−→ A. Two maps α, β : SpecA→ SpecR are naively A1-homotopic,
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if there is a map h : R→ A[T ] of k-algebras such that in the diagram

R
fα, fβ //

h
��

A

A[T ]

ev0,ev1

=={{{{{{{{

ev0 ◦ h = fα and ev1 ◦ h = fβ, where ev0 and ev1 are maps corresponding to

evaluations at 0 and 1 respectively.

Lemma 2.1.19. Two naively A1-homotopic maps induce equal maps in the homo-

topy category H (k) of smooth k-schemes.

Proof. If p : X × A1 → X denotes the canonical projection, then for the maps i0

and i1 discussed in 2.1.17, the two compositions pi0 and pi1 are both equal to the

identity 1X. Since p is isomorphism in the homotopy category H (k), the two maps

i0 and i1 are equal in the H (k). Let f, g : X→ Z be two naively homotopic maps

of simplicial presheaves with a naive homotopy h. Then, in the homotopy catgeory

H (k), we have f = hi0 = hi1 = g.

Definition 2.1.20. Consider the affine scheme Spec k[Ti,j] (i, j = 1, ..., n). The

k-scheme Gln(k), is the affine open subscheme of Spec k[Ti,j] (i, j = 1, ..., n),

corresponding to localization of the polynomial algebra k[Ti,j] at the element

det[Ti,j] = Σσ∈Σnsgnσ T1,σ(1)...Tn,σ(n),

where Σn is the symmetric group on the set {1, ..., n}. Thus,

Gln(k) = Spec(k[Ti,j]det[Ti,j ]).

We will denote the representable presheaf HomSch( ,Gln(k)) also by Gln(k). We

know that if X is a smooth k-scheme, the set Gln(k)(X) = HomSch(X ,Gln(k)),

is the group GLn(Γ(X,OX)) of units of the ring of global sections of OX . That
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is, the presheaf Gln(k) is in fact a presheaf of groups. An n-square invertible ma-

trix M with entries in k determines a map Gln(k)
M−→ Gln(k) of presheaves by

multiplication. It will be called the multiplication by the matrix M .

Remark 2.1.21. We have the notion of action of a presheaf of groups G on a

preshead of sets X. It is a map of presheaves m : X × G → X satisfying the

usual properties of a group action on a set, see [MV99]. In particular, we can

consider the action of Gln(k) on a presheaf X.

2.2 Colimits of Homotopy Equivalences

This section is very technical and discusses some situations in which a system

of homotopy equivalences induce weak-equivalence on colimits. Results discussed

in this section have been used in later sections, particularily the corollary 2.2.4

has been used to prove the H-space structure on Fh[0,∞] in section 3.2.1, and in

proving the A1-contractibility of the Steifel presheaf in 3.1.23. Both these results

have been used in the proof of Theorem 3.3.18. Although it must be made very clear

in the beginning that the results of this section are not needed anymore because of

the way the main theorem of this work, namely the A1-representability theorem in

3.3.18 has been proved in the last chapter of the thesis. The main objective of this

section was to establish the necessary technical results needed in the following:

1. the A1-contractibility of Stiefel presheaves which has now been proved directly

without any use of colimits, and

2. the H-space structures in section 3.2.1. Now this result has been replaced by

a slightly different result using the machinery of E∞-operads in section 5.6.

In a model category a homotopy between two maps is defined using cylinder

objects. In the rest of this section, I will denote a functorially chosen cylinder
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object. We will discuss behaviour under taking colimits of a system of I-homotopic

morphisms. The following observation is very useful.

Lemma 2.2.1. In a model category given an I-homotopy commutative diagram

X1��

i
��

f // Y

X2

g

>>~~~~~~~~

where i is a cofibration and Y is fibrant, there exists a map g̃ : X2 → Y which is

I-homotopic to g such that the diagram

X1��

i
��

f // Y

X2

∃ g̃

>>~~~~~~~~

commutes.

Proof. In the pushout diagram

{1} ×X1��

i

��

// ∼ // I ×X1

I×i

��

��

��
X2

// ∼ //

∂0

∼

--

X2

∐
[1] I ×X1

''
ĩ

∼
''OOOOOOOOOOO

I ×X2

ĩ is an acyclic cofibration. Since Y is fibrant, there is a map H in the following

diagram, where h = (f, gi) is the map defined by a simplicial homotopy between

f and the composition gi and the map ∂0 through a diagram similar to the one

defining the map ĩ:

X2

∐
[1] I ×X1

ĩ
��

h=(f, gi) // Y

I ×X2

∃ H

66lllllllllllllllll

Taking g̃ = H0, we get the map with the properties claimed in this lemma.
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Lemma 2.2.2. In a model category suppose there are morphisms

A1
i1,j1 // A2

i2,j2 // A3
i3,j3 // ... An

in,jn // An+1
in+1,jn+1// ...

with the property that for every positive integer k the morphisms ik and jk are

I-homotopic. Then there exists a ‘natural’ zigzag

colimn(An, in)
'←− C

'−→ B
'←− colimn(An, jn)

of weak equivalence.

Proof. We first consider the special case under the assumptions that all the ik’s are

cofibrations and each of the Ak’s are fibrant: In view of above lemma the following

homotopy commutative diagram

A1

Id
��

// i1 // A2

Id
��

// i2 // A3

Id
��

// i3 // ... // in−1 // Anin

Id
��

// // An+1

Id
��

//in+1 // ...

A1
j1 // A2

j2 // A3
j3 // ... jn−1 // An

jn // An+1
jn+1 // ...

can be replaced by a commutative diagram:

A1

Id
��

// i1 // A2

g2

��

// i2 // A3

g3

��

// i3 // ... //in−1 // An

gn

��

// in // An+1

gn+1

��

//in+1 // ...

A1
j1 // A2

j2 // A3
j3 // ... jn−1 // An

jn // An+1
jn+1 // ...

in which each gk is I-homotopic to the identity map and hence is a weak equiva-

lence. Therefore, (gk) induce a weak equivalence colimn(An, in)
'−→ colimn(An, jn)

(not just a zigzag!).

In the general case, in the model category of N-diagrams over the given model

category, we can make a functorial acyclic cofibrant and acyclic fibrant replacement
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of the given homotopy commutative diagram to get the diagram

X1

c1 '
��

// s1 // X2

c1 '
��

// s2 // X3

c1 '
��

// s3 // ... // sn−1 // Xnsn

c1 '
��

// // Xn+1

c1 '
��

//sn+1 // ...

A1

Id
��

i1 // A2

Id
��

i2 // A3

Id
��

i3 // ... in−1 // An

Id
��

in // An+1

Id
��

in+1 // ...

A1

'f1
��

j1 // A2

'f2
��

j2 // A3

'f3
��

j3 // ... jn−1 // An

'fn

��

jn // An+1

'fn+1

��

jn+1 // ...

Y1
t1 // Y2

t2 // Y3
t3 // ... tn−1 // Yn

tn // Yn+1
tn+1 // ...

with the properties that:

1. each si is a cofibration and ci a weak equivalence,

2. each Yi is fibrant and fi weak equivalence,

3. the upper and the lower horizontal squares of the diagram commute,

4. the outer diagram with respect to vertical compositions is, and homotopy

commutative.

Then we have a weak equivalence colimn(Xn, sn)
'−→ colimn(Yn, tn) (from the

special case of this lemma proved in the beginning); and, also the weak equiv-

alences (since filtered colimits of weak equivalences are so) colimn(Xn, sn)
'−→

colimn(An, in) and colimn(An, jn)
'−→ colimn(Yn, tn). These equivalences give us

the zigzag mentioned in this lemma.

Lemma 2.2.3. Given a commutative diagram of the form

X1

g1

��

ix1 // X2

g2

��

ix2 // X3

g3

��

ix3 // ...
ixn−1 // Xn

gn

��

ixn // Xn+1

gn+1

��

ixn+1 // ...

Y1

iy1 // Y2

iy2 // Y3

iy3 // ...
iyn−1 // Xn

iyn // Xn+1

iyn+1 // ...
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such that there is another commutative diagram

Y1

g1

��

iy1 // Y2

g2

��

iy2 // Y3

g3

��

iy3 // ...
iyn−1 // Yn

gn

��

iyn // Yn+1

gn+1

��

iyn+1 // ...

X2

ix2 // X3

ix3 // X4

ix4 // ... ixn // Xn+1

ixn+1 // Xn+2

ixn+2 // ...

with the property that in the category of morhpisms the two maps
Xk

↓ fk

Yk

 ik, jk−−−→


Xk+1

↓ fk+1

Yk+1


are I-homotopic for every k, where ik is given by the pair of maps (ixk, i

y
k) and

jk is given by the pair (gkfk, fk+1gk). Then there is a zigzag of weak equivalences

colim (Xk, i
x
k)← ...→ colim (Yk, i

y
k) is a weak equivalence.

Recall that an I-homotopy between the two maps
Xk

↓ fk

Yk

 ik, jk−−−→


Xk+1

↓ fk+1

Yk+1


is a given by two homotopies, hxk : Xk × I → Xk+1 between ixk and gkfk, and

hyk : Yk × I → Yk+1 between iyk and fk+1gk, such that the diagram

Xk × I
hx

k //

fk×1

��

Xk+1

fk+1

��
Yk × I

hy
k // Yk+1

commutes.

Proof. Applying above lemma we get a commutative diagram of zigzags of the

form

colim (Xk, ik)

f

��

∃ zigzag

of w. eq.
___ colim (Xk, gkfk)

f isom
��

colim (Yk, jk)
∃ zigzag

of w. eq.
___ colim (Yk, fk+1gk)
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in which the right vertical map induced by fk is an isomorphism, it’s inverse is

given by the map induced from gk. All the zigzags in horizontal rows together with

this isomorphism give us the claimed weak equivalence.

Since in the category ∆opPShv(Sm/k) the sheaf A1 is a cylinder object and

A-homotopy is naive A1-homotopy, above lemma can be rewritten in the following

form which has been used later.

Corollary 2.2.4. Given a system of simplicial presheaves and morphisms Xk, Yk,

ik, jk, fk, gk (k ≥ 1) in ∆opPSh(Sm/k) similar to the one in the above lemma such

that gkfk is naively A1-homotopic to ik and fk+1 gk is naively A1-homotopic to

jk for every k, we have a zigzag of A1-weak equivalence colim (Xk, ik) ← ... →

colim (Yk, jk).

21



Chapter 3
A1-Representability of Hermitian
K-Theory

In this chapter we prove our main result, the A1-representability theorem in 3.3.18.

In the first section of this chapter, we recall the definition of Grassmannian scheme

in 3.1.1 and, also consider it’s functor of points in 3.1.4. Then we construct a smooth

k-scheme Grk(n, H
∞) in 3.1.9 in a manner analogous to the construction of the

Grassmannian scheme, and discuss it’s functor of points in 3.1.10. We have referred

to this scheme and some of it’s derivatives considered later, for example in 3.2.1

and 3.1.19, collectively as the orthogonal Grassmannian. Next, we have defined,

what we call the Stiefel presheaves in 3.1.1: These are analogues of the same kinds

of objects considered in topology, and in fact we have shown in corollary 3.1.25

that at least in one aspect they behave exactly as in topology. We have proved

that the Steifel presheaf St(Hn, H∞) (3.1.21) is A1-contractible in 3.1.23. Using

this result we relate the classifying space BO(Hn) of orthogonal group presheaf

O(Hn) (3.1.12) with the presheaf Gr(Hn, H∞) (3.1.16 and 3.1.19) via a zigzag of

A1-weak equivalences in corollary 3.1.25.

In section 3.2 we have considered H-space structure on the presheaf Fh[0,∞]

in 3.2.6. As mentioned in the remark 3.2.7 we believe that this H-space structure

extends to an H-space structure on the presheaf FhO (see 3.2.1) as well. Also,

we have recalled a technical definition of the Hermitian K-theory presheaf Kh in

3.2.13 (and later the definition of the connected component Kh0 of 0 in 3.3.2). As

we have cautioned the reader, this definition of hermitian K-theory is applicable

only to the affine k-schemes. We have also defined the map } in 3.2.19 from the

presheaf FhO to the hermitian K-theory presheaf Kh.
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A part of our objective in this work has been to prove that orthogonal Grass-

mannian represents hermitian K-theory in the A1-homotopy theory: This has been

done in the last section of this chapter, namely in the theorem 3.3.18. The third

section collects results needed for this purpose. First, we identify the classifying

space BO of orthogonal group (3.3.1) with the connected component of hermitian

K-theory Kh0 (3.3.2) via the A1-weak equivalence γ in 3.3.1. Next we have recalled

the definition of the presheaf of Grothendieck-Witt groups 3.3.5, and identified

the Nisnevich sheafification of πA1

0 FhO with the Nisnevich sheafification of the

presheaf of Grothendieck-Witt groups in 3.3.15. The remaining subsections patch

all these informations together to prove A1-weak equivalence of the map } in 3.3.18.

3.1 Grassmannians and Orthogonal

Grassmannians

On the category Sm/k we define some presheaves and consider their Zariski weak

equivalence. One of these presheaves, which is actually a sheaf and is very impor-

tant for algebraic K-theory, is the representable sheaf determined by a Grassman-

nian over k. There are two other closely related presheaves on Sm/k which appear

to be more understandable. We verify that there are Zariski weak equivalences

between these. Then we consider the analogous situation in the case of hermitian

K-theory, and define closely related presheaves and consider their Zariski weak

equivalence. These constructions in the case of hermitian K-theory are founda-

tional to our representability considerations. First we consider Grassmannians and

their Zariski-relatives since many of the arguments involved in this case are needed

in the case of hermitianK-theory. In this chapter we take two non-negative integers

m and n, where n ≤ m.
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Definition 3.1.1. Let I = {i1, ..., in} ⊂ {1, ...,m} be a subset of cardinality n,

and A = k[XI
i,j], i = 1, ...,m; j = 1, ..., n be the polynomial ring in mn variables.

Let εI be the ideal of A generated by {XI
iα,j− δ

j
α} (α, j = 1, ..., n), where δ denotes

the Kronecker symbol. Let

AI = k[XI
i,j]/〈{XI

iα,j − δ
j
α}〉

and UI = SpecAI . For another subset J of cardinality n in {1, ...,m}, let M I
J be the

submatrix of [XI
i,j] corresponding to the columns in J . Let UI,J be the open sub-

scheme of UI obtained by localizing the ring AI at the element detM I
J ∈ AI . Note

that UI,I = UI . The following map of rings written in the form of multiplication of

matrices

k[XJ
i,j]→ (k[XI

i,j]/εI)detMI
J
, [XJ

i,j] 7→ [XI
i,j](M

I
J )

−1.

induces a map of rings (AJ)gI

detMI
J−−−→ (AI)gJ

. Let φI,J : UI,J → UJ,I be the cor-

responding map of schemes. The map φI,I is the identity map. In view of lemma

3.1.2, the schemes UI as I ranges over all the cardinality n subsets of {1, ...,m},

can be glued using the isomorphisms φI,J to give us a scheme over k. By the

construction this scheme is smooth over k. We denote this scheme by Grk(n,m).

This is one description of the Grassmannian scheme over the field k in [EH]. The

representable sheaf HomSm/k( , Grk(n,m)) on Sm/k will be denoted by the same

symbol Grk(n,m). The term Grassmannian will be used for both of these objects,

the meaning should be clear from the context.
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Lemma 3.1.2. For any three subsets I, J, K ⊂ {1, ...,m}, the diagram of rings

(AJ)gI

detMI
J //

can

��

(AI)gJ

can

��
((AJ)gI

)gK

detMI
J // ((AI)gJ

)gK

(AJ)gIgK

'

OO

detMI
J // (AI)gJgK

'

OO

is commutative. Hence the map φI,J when restricted to the affine open subscheme

UI,J
∩
UI,K ↪→ UI induces a map φKI,J : UI,J

∩
UI,K → UJ,I

∩
UJ,K. These induced

maps satisfy the relation φIJ,K ◦φ
K
I,J = φJI,K. We also have φII,J = φI,J and φJI,I =

1UI,J
. In particular, φIJ,I ◦φ

J
I,J = φJI,I = 1UI,J

. Therefore, all the maps φI,J are

isomorphisms, and we can glue the schemes {UI} with respect to the maps {φI,J}.

Proof. The proof of this lemma is a diagram chase in commutative rings.

Now we define the other two presheaves as mentioned earlier.

Definition 3.1.3. For a ring R, and a subset I ⊂ {1, ...,m} of cardinality n, let

MI(R) be the set of those m × n matrices with entries in R whose submatrix of

rows corresponding to I is the identity matrix of size n. Consider the set qI MI(R),

where I runs over all the cardinality n subsets of {1, ...,m}. Define an equivalence

relation on qI MI(R) by declaring two elements (M, I) and (N, J) to be equivalent

if the submatrix MJ of M formed by rows corresponding the set J is invertible

and N = M(MJ)
−1. Let us denote the set of the equivalence classes with respect

to this equivalence relation by Mm
n (R). For a smooth k-scheme X considering the

set Mm
n (Γ(X,OX)), we get a presheaf on Sm/k. We denote this presheaf by Mm

n .

For sake of completeness, we recall that a direct factor of the free R-module Rm

is a subdmodule P ⊂ Rm such that there is a map Rm → P whose restriction on
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P is the identity map. Note that a submodule P ⊂ Rm is a direct factor if and

only if there is an R-submodule Q ⊂ Rm such that P ⊕Q = Rm.

Definition 3.1.4. For a ring R, let Fm
n (R) be the set of rank n free direct factors

of Rm. A map R→ S of rings gives us a map Fm
n (R)→ Fm

n (S) by sending P to

the image of the composite map P ⊗R S
i ⊗RS−−−→ Rm ⊗R S

'−→ Sm, where i denotes

the inclusion P ⊂ Rm. The assignment X 7→ Fm
n (Γ(X,OX)), where X is a smooth

k-scheme, defines a presheaf on Sm/k which we denote by Fm
n .

Now we will define two maps of presheaves Grk(n,m)
λ←− Mm

n

ρ−→ Fm
n , which

will be important in most computations. The notations set in the first part of

the section 3.1 will be used throughout. First, the map λ. In case of an affine

scheme SpecR ∈ Sm/k, let λI(R) : MI(R) → HomSm/k(SpecR, UI) be the map

defined by sending a matrix (ai,j) ∈ MI(R) to variables in the matrix (XI
i,j) in

k-algebra (k[XI
i,j]/εI) in that order. The proof of lemma 3.1.5 is a diagram chase

in commutative algebra and will be omitted.

Lemma 3.1.5. Let M ∈ MI(R) and N ∈ MJ(R) be two matrices such that

N = M(MJ)
−1, that is, they determine the same element in Mm

n (R). Then the

map λI(R)(M) has image in UI,J , and the map λI(R)(N) has image in UJ,I . Fur-

thermore, the diagram UI

��5
55

55
55

55
55

55
55

5

UI,J

OO

$$H
HH

HH
HH

HH

φI,J '

��

SpecR

DD																

::vvvvvvvvv

$$H
HH

HH
HH

HH

��5
55

55
55

55
55

55
55

5
SpecA

UJ,I

��

::vvvvvvvvv

UJ

DD																
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commutes. In particular, the maps λI(R) define a map Mm
n (R)→ HomSm/k(SpecR,

Grk(n,m)).

As a consequence of above lemma, we have defined the map λ for affine schemes

in Sm/k. For a general scheme X, recall that we have defined Mm
n (X) to be

Mm
n (Γ(X,OX)). To define λ(X), we use the canonical bijection HomSch(X, SpecR)

'−→ HomRings(R, Γ(X,OX)). Taking R = Γ(X,OX) to get a canonical map in

HomSch(X, SpecΓ(X,OX)) corresponding to the identity map of the ring Γ(X,OX).

This map then gives us the map Grk(n,m)(Γ(X,OX))→ Grk(n,m)(X). We define

λ(X) to be the composite map Mm
n (X) = Mm

n (Γ(X,OX))→ Grk(n,m)(Γ(X,O))

→ Grk(n,m)(X). This completes definition of the map λ.

Now we define the map ρ : Mm
n → Fm

n . Let M be a matrix in MI(R) corre-

sponding to the set I = {i1, ..., in} ⊂ {1, ...,m} where i1 < ... < in. The n × m

matrix N = (c1, ...., cm), where ci1 = e1, ..., cin = en and all other columns are 0

has the property that NM = In. Thus the map Rn M−→ Rm has a section, so the

map M is injective and Im(M) is a free rank n submodule of Rm. Thus we get

a direct factor Im(M) ⊂ Rm. If (M, I) ∈MI(R) and (N, J) ∈MJ(R) determine

the same element in Mm
n (R), then N = M(MJ)

−1. The following commutative

triangle shows that the two submodules Im(M) and Im(N) of Rm are equal.

Rn M //M // Rm

Rn

'M−1
J

OO

N

<<zzzzzzzz

This gives us a well defined map ρ : Mm
n → Fm

n sending the class of a matrix

M ∈MI(R) to the rank n free submodule Im(M) of the map Rn M−→ Rm.

Definition 3.1.6. The above discussion defines maps Grk(n,m)
λ←− Mm

n

ρ−→ Fm
n

of presheaves on Sm/k.

27



Lemma 3.1.7. The maps λ and ρ induce isomorphisms of the associated Zariski

sheaves. In particular, they are Zariski, and hence, A1-weak equivalences.

Proof. This will follow using lemma 2.1.10, if we show that for a local ring R the

maps λ(R) and ρ(R) are isomorphisms. In rest of this proof R is assumed to be a

local ring. We will construct the inverses of the maps λ(R) and ρ(R).

We construct the inverse map λ(R)−1 : Grk(n, m)(R) = HomSm/k(SpecR,

Grk(n, m)) → Mm
n (R). Since R is a local ring, any map f : SpecR → X of

schemes factors as in the diagram below, where U is any open neighborhood of the

image of the maximal ideal of R.

SpecR
f //

g

��

X

U

i

;;wwwwwwwwww

In particular, a map f : SpecR → Grk(n, m) is actually a map of affine schemes

fI : SpecR → UI , where UI = SpecAI is an open affine subscheme of Grk(n, m)

defined in 3.1.1. This map corresponds to a map of rings

AI = k[XI
i,j]/〈{XI

iα,j − δ
j
α}〉 → R

which gives us a matrix inMI ∈MI(R), and defines a map ζ(R) : Grk(n, m)(R)→

M (R). We claim that ζ : Grk(n, m)→M is an inverse of the map λ. We first prove

that the composition ζ(R) ◦ λ(R) is the identity of the set M (R). Let us consider

the class M of (M, I) ∈ M (R). By defintion of the map λ, the map λ(R)(M)

actually maps SpecR into UI , and is the map λI(R). For another choice of index

J to represent M , the maps λI and λJ are related as described in the lemma 3.1.5.

The argument in lemma 3.1.5 can be interpreted to conclude that the map ζ(R)

takes the map λ(R)(M) to M in M (R), proving that ζ(R) ◦ λ(R) = IM (R). The
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proof for the other composition also follows from an argument similar to the one

used in lemma 3.1.5.

To prove that the map ρ(R) is bijective when R is a local ring, we define its

inverse. Let P ⊂ Rm be a free direct factor of rank n. Choose an isomorphism

Rn '
α

// P . Let Mα be the matrix of the composition Rn ⊂◦α // Rm . Since R

is local, we can apply an argument similar to the row-reduction procedure for

vector-spaces to prove that the matrix Mα has an invertible n × n submatrix.

Let Mα,I be an ivertible submatrix formed by the rows corresponding to a subset

I = {i1, ..., in} ⊂ {1, ...,m}. Consider Mα(Mα,I)
−1 ∈ MI(R). We claim that the

class of (Mα(Mα,I)
−1, I) in Mm

n (R) does not depend on the choice of isomorphism

α and the subset I. To see that choice of the isomorphism α does not matter,

observe that for any other choice β : Rn → P , we have a commutative diagram

Rn α //

β−1α
��

P ⊂ Rm

=

��
=

��
Rn

β // P ⊂ Rm

Using this diagram we see that the Mβ = MαT , where T is the invertible matrix

corresponding to the map β−1α. Thus, we have shown that two matrices for dif-

ferent choices of isomorphism of Rn and P are related by right mulitplication by

an n-square invertible matrix. And, this also shows that if Mα and Mβ are two

matrices for different isomorphisms of Rn with P , then an n-square submatrix of

Mβ corresponding to a subset I ⊂ {1, ...,m} is invertible if and only if the n-square

submatrix of Mα corresponding to I is invertible. The computation

MβM
−1
β,I = MαT (Mα,I .T )−1 = MαTT

−1(Mα,I)
−1 = MαM

−1
α,I (3.1.1)

shows that the choice of isomorphism does not matter. Thus we are left only

to verify that for a given Mα, the two pairs (Mα(Mα,I)
−1, I) ∈ MI(R) and
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(Mα(Mα,J)
−1, J) ∈MJ(R) corresponding to different invertible submatrices Mα,I

and Mα,J of Mα determine the same element in Mm
n (R). This follows from a com-

putation similar to the one in (3.1) above. This defines a map ξ(R) : Fm
n (R) →

Mm
n (R).The arguments that verify that definitions of ρ and ξ(R) are independent

of choices made can be repeated to see that ξ(R) is inverse of the map ρ(R). This

completes proof of lemma 3.1.7.

Remark 3.1.8. We can describe a Zariski sheafification of the presheaf Fm
n as

follows. If X ∈ Sm/k, let Dfmn (X) be the set {F ⊂ OmX |F is locally free subsheaf

of rank n and the quotient OmX/F is locally free}. It can be seen that Dfmn is a

Zariski sheaf on Sm/k and there is a natural map Fm
n → Dfmn which induces an

isomorphism of Dfmn with the canonical Zariski sheafification of Fm
n .

Now we consider the orthogonal counterparts of these presheaves. First, we are

going to define an open subscheme of Grassmannian Grk(n, 2m). For notations

used in the next definition see 3.1.1 in case of Grk(n, 2m) : I and proving the

following two results:J denote subsets of {1, ..., 2m} of cardinality n. Let h1 be

the 2-square matrix

0 1

1 0

. Also, for any two matrices a and b, let a⊥b be the

matrix

a
b

, where a vacant place has entry 0. The notation Hm stands for

the 2m-dimensional hyperbolic space, that is, the free R-module R2m together

with the standard hyperbolic form. This form can be represented by the matrix

hm = h1⊥...⊥h1 (m copies).

We refer to [K90, Ch. I] for more details. The transpose of a matrix M will be

denoted by M t.

30



Definition 3.1.9 (Orthogonal Grassmannian). LetBI = (AI)gI
be the localization

of AI = k[XI
i,j]/εI at the element gI = det([XI

i,j]
thm [XI

i,j]) ∈ AI . This defines an

open subscheme VI = SpecBI ↪→ UI = SpecAI . Let

VI,J = Spec(BI)detMI
J
↪→ VI

be the open subscheme obtained by localizing BI at the element detM I
J ∈ BI . The

map

k[XJ
i,j]→ (k[XI

i,j]/εI)detMI
J
, [XJ

i,j] 7→ [XI
i,j](M

I
J )

−1

induces a map of schemes φI,J : VI,J → VJ,I . The result analogous to the one in

lemma 3.1.2 is true in this case with exactly the same kind of proof. Therefore, we

can glue the subschemes VI of UI to get a smooth k-scheme. We will denote this

scheme by Grk(n,H
m). It is an open subscheme of Grk(n, 2m). The representable

sheaf on Sm/k, HomSm/k( , Grk(n,H
m)) will also be denoted by Grk(n,H

m). We

will call the scheme as well as the sheaf, Grk(n,H
m), the Orthogonal Grassman-

nian.

Definition 3.1.10. (The presheaves H m
n and Fhmn ).

1. For a ring R, consider the set qI HI(R), where I runs over all the cardinality

n subsets of {1, ..., 2m} and, HI(R) is the set of 2m × n matrices M with

entries in R whose submatrix of rows corresponding to the set I is the identity

matrix of size n and which satisfy the property that M t hm M is an invertible

n-square matrix. Define an equivalence relation on qI HI(R) by declaring

two matrices M ∈HI(R) and N ∈HJ(R) to be equivalent if the submatrix

MJ of M formed by rows corresponding the set J is invertible and N =

M(MJ)
−1. Let us denote the set of the equivalence classes with respect to

this equivalence relation by H m
n (R). For a smooth k-scheme X considering
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the set H m
n (Γ(X,OX)), we get a presheaf on Sm/k. We denote this presheaf

by H m
n .

2. For a ring R, let Fhmn (R) be the set of free rank n direct factors of R2m

on which standard hyperbolic form on R2m given by the matrix hm is non-

degenerate. A map R → S of rings gives us a map Fm
n (R) → Fm

n (S) by

sending P to P ⊗R S. The assignment X 7→ Fhmn (Γ(X,OX)) where X is a

smooth k-scheme, defines a presheaf on Sm/k, which we denote this presheaf

by Fhmn .

We see that Grk(n,H
m) ⊂ Grk(n, 2m), H m

n ⊂ M 2m
n and Fhmn ⊂ F 2m

n are

subpresheaves.

Lemma 3.1.11. The maps λ and ρ defined in 3.1.6 induce maps Grk(n,H
m)

λ̄←−

H m
n

ρ̄−→ Fhmn of presheaves such that the following diagram is commutative

Grk(n, 2m) M 2m
n

λoo ρ // F 2m
n

Grk(n,H
m)

OO

H m
n

λ̄oo ρ̄ //

OO

Fhmn

OO

and, λ̄ and ρ̄ are Zariski and hence A1-weak equivalences. (We will drop the bar

signs on λ and ρ once we have sketched a proof of weak equivalence.)

Proof. Let us first verify that the map λ : M 2m
n → Grk(n, 2m) induces a map

H m
n → Grk(n, H

m). In case of an affine scheme SpecR ∈ Sm/k, we defined a

map λI(R) : MI(R)→ HomSm/k(SpecR, UI) by sending a matrix (ai,j) ∈MI(R)

to variables in the matrix (XI
i,j) in k-algebra (k[XI

i,j]/εI). Observe that if we restrict

λI(R) to the subset HI(R) of MI(R), then we get a map into HomSm/k(SpecR, VI).

The analogue of lemma 3.1.5 is also true. Thus, we get the induced map λ̄ : H m
n →

Grk(n, H
m), which makes the left half of above diagram commute.
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To see that the map ρ : M 2m
n → F 2m

n induces a map ρ̄ : H m
n → Fhmn , we

need to check the following. Given a matrix M ∈HI(R), on the rank n free direct

factor Im(M) ⊂ R2m (as discussed in 3.1.5), the hyperbolic form on R2m restricts

to a non-degenerate form. In view of the commutative diagram

Im(M)

hm|Im(M)

��

' Rn M //

Mt hm M

��

R2m

hm

��
Im(M) ' Rn R2m

Mt
oo

this follows from the assumption that the matrix M thmM is invertible. Thus we

have verified the claim that we get the induced map ρ̄.

The proof that the induced map λ̄ and ρ̄ are Zariski weak-equivalences follows

by noting that the inverse maps ζ and ξ constructed in 3.1.7 induce inverses in

this case as well.

3.1.1 Orthogonal Grassmannian and Stiefel Presheaf

Now we are going to define some more presheaves which will be helpful in relating

Grk(n,H
m) to hermitian K-theory.

Definition 3.1.12. For a commutative ring R, let O(Hn)(R) be the set of square

matricesM of size 2n with entries inR which have the property thatM thnM = hn.

It can be seen that O(Hn)(R) is a group under multiplication of matrices. The

assignment sending a smooth k-scheme X to O(Hn)(Γ(X, OX)) defines a presheaf

of sets (actually a representable sheaf of groups) on Sm/k. We will denote this

presheaf by O(Hn).

Definition 3.1.13. We define a presheaf Grk(H
n, Hm) ⊂ Fhm2n on Sm/k by

taking only those free direct factors P ⊂ Hm(R) of rank 2n on which the hyperbolic

form on Hm(R) restricts to a form isometric to the hyperbolic form on R2n. This

means that there exists an isomorphism α : R2n '−→ P such that the composite
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map R2n α−→ P
⊂−→ R2m is given by a 2m × 2n-matrix M with the property that

M thmM = hn.

Definition 3.1.14. (The Stiefel Presheaf St(Hn, Hm)). For a commutative ring R,

let St(Hn, Hm)(R) be the set of 2m×2n matrices M with entries in R and having

the property that M thmM = hn. For a smooth scheme X in Sm/k, the assignment

X 7→ St(Hn, Hm)(Γ(X, OX)), defines a presheaf denoted by St(Hn, Hm). We will

refer to the presheaf St(Hn, Hm) as a Steifel presheaf.

The Stiefel presheaves are analogous to Stiefel varieties in topology, for the

topological side of matter see [H66, Ch 8]. There is a right action of O(Hn) on

St(Hn, Hm) by multiplication

St(Hn, Hm)×O(Hn)→ St(Hn, Hm), (M, G) 7→MG.

This action is free, that is, for a matrix M ∈ St(Hn, Hm)(R) and G ∈ O(Hn)(R),

if MG = M , then G = I2n: Multiplying both sides on the left by the matrix M thm,

we get M thmMG = M thmM , or hnG = hn, and hence G = I2n since hn is invert-

ible. We will denote the quotient presheaf of this action by St(Hn, Hm)/O(Hn).

If M ∈ St(Hn, Hm)(R), then the map R2n M−→ R2m has a retraction given by left

multiplication with h−1
n M thm. Thus, Im(M) ⊂ R2m is a free direct factor of rank

2n of R2m. Denoting the hyperbolic form on R2m by φm, consider the commutative

diagram

R2n '
α

//

hn

	
{{wwwwwwwww

��

Im(M)

φm|Im(M)

��

⊂ // R2m

φm

��

hm

	
##H

HH
HH

HH
HH

H

R2n
'

// (R2n)∗ Im(M)∗
α∗
'oo (R2m)∗

⊂∗
oo R2m'oo

in which α is an isomorphism of R2n with Im(M) such that the matrix of the

upper horinzontal composition is M and, M t is the matrix of the lower horizontal

composition after the identification (R2n)∗ ' R2n: From the property M thmM =
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hn, we see that the form induced on Im(M) by the hyperbolic form on Hm(R)

is isometric to the hyperbolic form on Rn. Therefore, we get a map of presheaves

St(Hn, Hm) → Gr(Hn, Hm) by sending a matrix M ∈ St(Hn, Hm)(R) to the

image Im(M) ⊂ R2m. Also, for a matrix G ∈ O(Hn(R)) andM ∈ St(Hn, Hm)(R),

the image of the map MG : R2n → R2m is the same as the image of the map

M : R2n → R2m, since G is an automorphism of the hyperbolic form on Rn. Thus,

we get an induced map

γ : St(Hn, Hm)/O(Hn)→ Gr(Hn, Hm).

Proposition 3.1.15. The map γ : St(Hn, Hm)/O(Hn) → Gr(Hn, Hm) is an

isomorphism and hence, an A1-weak equivalence.

Proof. We prove that for every ring R, the map St(Hn, Hm)/O(Hn)(R)→ Gr(Hn,

Hm)(R), is a bijection. First we prove surjectivity of the map γR. Let P ⊂ R2m

be a free direct factor of rank 2n on which the hyperbolic form restricts to a form

isometric to the standard hyperbolic form on R2n. This means, there exists an

isomorphism α : R2n '−→ P such that the diagram used in defining the map γ

commutes. But then the matrix Mα of the composite map R2n i◦α−−→ R2m is of rank

2n and represents embedding of the hyperbolic spaces Hn(R) ↪→ Hm(R) since

M t
αhmMα = hn, and γR(Mα) = P .

Next, we prove the injectivity of γR. Let M and N be two elements of St(Hn,

Hm)(R) such that Im(M) = Im(N). Let α : R2n '−→ Im(M) and β : R2n '−→

Im(N) be isometries. Then G = β−1 ◦ α is an isometry of hyperbolic space on Rn

and M = NG. This proves injectivity of the map γR.
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Definition 3.1.16. (Canonical Map Gr(Hn, Hm) ↪→ Grk(2n, H
m)). We have a

commutative diagram obtained by the canonical maps from Zariski sheafification

Gr(Hn, Hm)
⊂ // Fhm2n

can // aZarFhm2n

H m
2n

ρ

OO

λ
��

can // aZarFhm2n

∃!α

OO

∃!βvvnnnnnnnnnnnn

Grk(2n, H
m)

.

The maps α and β are both isomorphisms in view of lemma 3.1.11. Taking the com-

position βα−1 can ⊂, we get a canonical inclusionGr(Hn, Hm) ↪→ Grk(2n, H
m) of

presheaves. We will always identify Gr(Hn, Hm) as a subpresheaf of Grk(2n, H
m)

by means of this map.

3.1.2 Gr(n, H∞) and Relatives

For every non-negative integer m, we have an orthogonal sum decomposition of

the hyperbolic space Hm+1 given by the matrix

hm 0

0 h1

 as Hm⊥H. This gives

us the isometric embeddings Hm ↪→ Hm+1, (m ≥ 0). These inclusions can also

be expressed via the maps R2m → R2m+2 given by the (2m + 2) × 2m matrix

(hm 0)t. This gives us the inclusions H m
n ↪→ H m+1

n , Fhmn ↪→ Fhm+1
n and

Grk(H
n, Hm) ↪→ Grk(H

n, Hm+1) of presheaves. We have the O(Hn)-equivariant

inclusion St(Hn, Hm) ↪→ St(Hn, Hm+1) as well given by the map M 7→ (M 0)t. In

view of the following lemma 3.1.17, we also have a map of k-schemes Grk(2n, H
m)

→ Grk(2n, H
m+1) which induces an inclusion of functor of points of these schemes.

Lemma 3.1.17. There is a map of k-schemes m : Grk(n, H
m) ↪→ Grk(n, H

m+1)

which corresponds to the inclusion of the functor of points 3.1.4.
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Proof. In 3.1.16, the composition

comp = β ◦ α−1 ◦ can : F 2m
n → Grk(n, H

m)

is an A1-weak equivalence. That is, the orthogonal Grassmannian sheafGrk(n, H
m)

represents the presheaf F 2m
n . There is the obvious natural inclusion F 2m

n ↪→

F 2m+2
n . Therefore, by Yoneda there exists a unique morphism

m : Grk(n, H
m)→ Grk(n, H

m+1)

such that the following diagram commutes

F 2m
n

comp//

��

Grk(n, H
m)

m

��
F 2m+2
n

comp// Grk(n, H
m+1)

Remark 3.1.18. We hope that the maps  are all closed immersions.

Taking colimits of the systems F 2m
n ↪→ F 2m

n+1, Grk(n, H
m)

m−→ Grk(n, H
m+1)

and other presheaves defined before with respect to the natural inclusions (or

inclusion-like) maps, we get the following presheaves.

Definition 3.1.19 (Orthogonal Grassmannians). The colimits of these presheaves

with respect to the above inclusions, are denoted by Gr(n, H∞), H ∞
n , Fh∞n ,

Gr(Hn, H∞) and St(Hn, H∞). The presheaves
∐

n≥0Gr(n, H
∞),

∐
n≥0 H ∞

n ,
∐

n≥0

Fh∞n ,
∐

n≥0Gr(H
n, H∞) and

∐
n≥0 St(H

n, H∞) will be denoted by Gr(N, H∞),

H , Fh, Gr(HN, H∞) and St(HN, H∞). The sheavesGrk(n, H
∞) andGr(N, H∞)

are representable. The presheaves St(Hn, H∞) and St(HN, H∞) will collectively

be referred to as Stiefel presheaves, and all others and their later derivatives as

orthogonal grassmannians.
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Lemma 3.1.20. The diagram (see 3.1.11)

Grk(n, H
m)

m
��

H m
n

λoo ρ //

��

Fhmn

��
Grk(n, H

m+1) H m+1
n

λoo ρ // Fhm+1
n

is commutative. In particular, there are maps Grk(n, H
∞)

λ←− H ∞
n

ρ−→ Fh∞n and

Grk(N, H∞)
λ←−H

ρ−→ Fh.

Proof. Follows from chasing the definitions.

Lemma 3.1.21. The induced maps Grk(n, H
∞)

λ←− H ∞
n

ρ−→ Fh∞n , Grk(N, H∞)

λ←− H
ρ−→ Fh, and St(Hn, H∞)/O(Hn) → Gr(Hn, H∞) are Zariski, and hence,

A1-weak equivalences

Proof. The Zariski weak equivalence follows by noting that filtered colimits of weak

equivalences of simplicial sets are weak equivalences.

3.1.3 BO(Hn) and A1-Contractibility of St(Hn, H∞)

We prove that the Stiefel presheaves St(Hn, H∞) are A1-contractible, that is, the

unique map St(Hn, H∞)→ pt into the final object of the category PShv(Sm/k)

is an A1-weak equivalence. We have already discussed in 3.1.1 and 3.1.19 the action

of O(Hn) on St(Hn, Hm) and St(Hn, H∞), and proved the A1-weak equivalences

St(Hn, Hm)/O(Hn)
γ−→ Gr(Hn, Hm) and St(Hn, H∞)/O(Hn)→ Gr(Hn, H∞) in

3.1.14 and 3.1.21. Once we prove A1-contractibility of St(Hn, H∞), we would be

able to identify the classifying space of O(Hn) with the presheaf Gr(Hn, H∞) as

in 3.1.25 below. We begin with a technical result.

Lemma 3.1.22. Let G be a sheaf of groups and, X and Y be simplicial presheaves

of sets on Sm/k. Further suppose that G acts freely on X and Y, and there is a
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G equivariant A1-weak equivalence X → Y. Then the induced map X/G → Y/G is

an A1-weak equivalence.

Proof. In the commutative diagram

hocolimGX A1
//

can

��

hocolimGY
can

��
X/G = colimGX // colimGY = Y/G

the upper horizonatal map is an A1-weak equivalence by property of homotopy

colimits. The proof will be complete if we show that the vertical map is a global

weak equivalence: This follows from the fact that homotopy colimit is constructed

pointwise, and for simplicial sets this is weak equivalence.

A part of what follows has been discussed in [MV99, p. 128]. The classifying

space of the presheafO(Hn) is the simplicial presheaf of sets defined in the following

manner. For a ring R, the group O(Hn)(R) can be thought of as a category with

just one element and all the group elements as morphisms (and group law as the

composition of morphisms). Denoting this category by Õ(Hn)(R), we get a presheaf

Õ(Hn) of categories on Sm/k by defining

Õ(Hn)(X) = Õ(Hn)(Γ(X, OX)), X ∈ Sm/k.

The classifying space of the presheaf O(Hn) is defined to be the simplicial presheaf

of sets

X 7→ N Õ(Hn)(Γ(X, OX)), X ∈ Sm/k,

and will be denoted by BO(Hn), here N denotes the nerve of a category.

For a presheaf X of sets on Sm/k, let EX be the simplicial presheaf whose

nth-degree presheaf is X n+1, and face and degeneracies are defined by projections
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and diagonal maps. It has the characterstic property that for any any simplicial

presheaf Y , the natural map

Hom∆opPShv(Sm/k)(Y , EX )→ HomPShv(Sm/k)(Y0, X )

is a bijection. We have natural isomorphism E(X × Y) ' EX × EY

If G is a presheaf of groups, then EG is a simplicial presheaf of groups, whose

group of 0th-simplicies is G. Hence, G acts freely on EG on left and also on right.

EG is A1-contractible. The morphism

EG→ BG

(g0, g1, ..., gn) 7→ (g0g
−1
1 , g1g

−1
2 , ..., gn−1g

−1
n , gn)

induces an isomorphism EG/G ' BG. The map EG → BG is an universal G-

torsor, [MV99, lemma 1.12, p. 128]. In particular, we have the universal O(Hn)-

torsor EO(Hn)→ BO(Hn).

A different version of the following proposition that has been helpful in the

A1-representability theorem 5.7.1 has been completely proved in theorem 5.5.7 in

the last chapter. The reason for survival of this proposition in this form and the

attempted proof lies in the fact that some of the details used in the proof of theorem

5.5.7 have been more fully explained here.

Proposition 3.1.23. The presheaf St(Hn, H∞) is A1-contractible.

To prove this proposition we will use a presheaf O(HN )

O(H[n+1, N ])
defined as follows.

For a ring R, if T ∈ O(HN−n)(R), the 2N × 2N -matrix

T̃ =

I2n 0

0 T


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is an isometry of O(HN). Let M, N ∈ O(HN)(R). Write M ∼ N , if there is an

isometry T of O(HN−n)(R) such that MT̃ = N . This defines an equivalence rela-

tion on the set O(HN)(R), let us denote the equivalence classes of this equivalence

relation by O(HN )

O(H[n+1, N ])
(R). We have the presheaf O(HN )

O(H[n+1, N ])
of groups on Sm/k

defined by

X 7→ O(HN)

O(H [n+1, N ])
(Γ(X, OX)).

The map of presheaves i : O(HN)→ O(HN+1) defined by sending a matrix M toM 0

0 I2

 induces a map i : O(HN )

O(H[n+1, N ])
→ O(HN+1)

O(H[n+1, N+1])
. Let us denote the colimit

of these presheaves by O(H∞)

O(H[n+1, ∞])
. For M ∈ O(HN)(R), the map

M 7→M.

I2n
0


where 0 is the zero matrix of size (2N − 2n) × 2n, induces a well defined map of

presheaves

ϕN :
O(HN)

O(H [n+1, N ])
→ St(Hn, HN).

In fact this map sends the class of the matrix M ∈ O(HN)(R) to the 2N × 2n

submatrix of the first 2n columns of M . The diagram of presheaves

O(HN )

O(H[n+1, N ])

ϕN //

i
��

St(Hn, HN)

i

��
O(HN+1)

O(H[n+1, N+1])

ϕN+1// St(Hn, HN+1)

commutes, where the right vertical map i is the canonical inclusion map. Therefore,

we get a map

ϕ :
O(H∞)

O(H [n+1,∞])
→ St(Hn, H∞)

which is an A1-weak equivalence in view of the following lemma.
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Lemma 3.1.24. For a local ring R, the map ϕN,R is an isomorphism, and hence

the map ϕN is a Zariski and an A1-weak equivalence.

Proof. We prove that for a local ring R, the group O(HN)(R) acts transitively on

St(Hn, HN)(R) via left multiplication, the stabilizer at

I2n
0

 is O(Hn+1, N ])(R)

and, the canonical identification of orbit space with the quotient of the group

with respect to stabilzer in this case corresponds to the map ϕN,R. Let M, N ∈

St(Hn, HN)(R) be two elements. Then these determine two free direct factors of

hyperbolic space HN(R) which would be isometric since on both these factors the

form is induced from HN(R). Choosing an isometry α as in the diagram

Im(M) ' R2n

α

��

M // R2N

Im(N) ' R2n N // R2N

we get an isometry of Im(M)
ᾱ−→ Im(N). By Witt’s cancellation, the compliments

of Im(M) and Im(N) in HN(R) are isometric via an isometry τ . Then T =

ᾱ⊥τ is an isometry of O(HN)(R) and TM = N . This proves the transitivity of

the action. A matrix calculation shows that stabilizer of

I2n
0

 is the subgroup

O(Hn+1, N ])(R). Also, the claim on the identification of orbit space via the map

ϕN,R can also be checked. This completes the proof of this lemma.

Proof of Proposition 3.1.23: See the proof of theorem 5.5.7.

Corollary 3.1.25. There is a zig-zag

Gr(Hn, H∞)
A1−eq.←−−−− • A1−eq.−−−−→ BO(Hn)

of A1-weak equivalences, and hence there is an isomorphism in A1-homotopy cat-

egory BO(Hn) ' Gr(Hn, H∞).
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Proof. Let us consider the diagonal O(Hn)-action on St(Hn, H∞) × EO(Hn). In

the sequence

St(Hn, H∞)
proj←−− St(Hn, H∞)× EO(Hn)

proj−−→ EO(Hn)

of O(Hn)-equivariant maps of simplicial presheaves, both the projection maps are

A1-weak equivalences, since St(Hn, H∞) and EO(Hn) are both A1-contractible.

Therefore, in view of lemmas 3.1.22 and 3.1.21 , we have the induced A1-weak

equivalences

St(Hn, H∞)/O(Hn)

γ 	

��

St(Hn, H∞)× EO(Hn))/O(Hn)
proj

A1
oo

projA1

��

A1

vvm m m m m m m m m m m m m m

Gr(Hn, H∞) EO(Hn)/O(Hn)

which give us the zig-zag of A1-equivalences

Gr(Hn, H∞)
A1−eq.←−−−− St(Hn, H∞)× EO(Hn))

O(Hn)

A1−eq.−−−−→ BO(Hn)

and the isomorphism BO(Hn) ' Gr(Hn, H∞) in the A1-homotopy category.

3.2 The Presheaves Fh[0,∞] and FhO

In this section we recall the definition of the hermitian K-theory presheaf Kh.

We also define presheaves that help us understand the equivalence generated by

the addition of a hyperbolic space to the presheaf Grk(n,H
∞) and its relatives

considered in the subsection 3.1.2. The hermitian K-theory presheaf receives a

map from the orthogonal grassmannian presheaves in the A1-homotopy category.

In subsection 3.1.2, we considered isometric embeddings Hm ↪→ Hm+1, and de-

fined the presheaves H , Fh etc. Without explicitly defining we considered the infi-

nite hyperbolic space H∞ as the colimit of these embeddings Hm ↪→ Hm+1, m ≥ 0.
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We should think of this colimit more formally as ⊕NH, where H is the standard

hyperbolic plane R2 with the form given by

0 1

1 0

. Let us write ⊕NH as H [0,∞]

or simply H∞ as used earlier. For a non-negative integer r, define

H [−r,∞] = ⊕{−1,...,−r}
S

NH.

We should reinterpret the presheaves keeping this technical formality in mind. For

instance, the presheaf Fhmn is actually given by rank n direct factors of ⊕{0,...,m}H.

Let us write this as Fh
[0,m]
n . Similar remarks for other presheaves considered in

subsection 3.1.2. For example, the presheaf Fh∞n is the colimit of

...→ Fh[0,m]
n → Fh[0,m+1]

n → ...

and we should write this as Fh
[0,∞]
n . This kind of notational modification should

be kept in mind for other presheaves as well if needed. The presheaves Fh
[−r,∞]
n

and Fh
[0,∞]
n are isomorphic for every non-negative integer r: there is an isom-

etry H [−r,∞] → H [0,∞] (we can define one by shifting the bases indexed over

{−1, ...,−r}
∪

N and N respectively,) inducing an isomorphism. Now the presheaf

Fh defined earlier in 3.1.19 becomes Fh[0,∞].

Definition 3.2.1 (The presheaf FhO). In 3.1.19, we have defined the presheaf

Fh[0,∞] as the disjoint union
∐

n≥0 Fh
[0,∞]
n . Let R be a ring, and P

i−→ R2m a direct

factor giving an element in the set H [0,m]
n (R). Then H⊥P , where summand H

corresponds to the extra basis element of H [−1,m], determines a direct factor of rank

n + 2 in Fh
[−1,m]
n+2 (R). This association defines a map H⊥ : Fh[0,∞] → Fh[−1,∞]

of presheaves. Similarily we have maps of presheaves Fh[−r,∞] H⊥−−→ Fh[−r−1,∞],

for every non-negative integer r. The presheaf FhO is the colimit

lim−→
r≥0

(Fh[0,∞] H⊥−−→ Fh[−1,∞] H⊥−−→ ...
H⊥−−→ Fh[−r,∞] H⊥−−→ Fh[−r−1,∞] H⊥−−→ ...).
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Definition 3.2.2. Keeping the notational adjustment described in this subsec-

tion in mind, we now have smooth k-schemes Grk(n, H
[−r,m]) (r, m ≥ 0) and the

sheaves represented by these. We can also consider the colimit as m → ∞ to get

Grk(n, H
[−r,∞]) and then the colimit as r → ∞ to get a representable sheaf. We

will denote this representable sheaf by GrO. We have the A1-weak equivalences

Fh
[−r,m]
n (R) → Grk(n, H

[−r,m]) (r, m ≥ 0) as defined in 3.1.16. These induce a

Zariski weak equivalence

χ : FhO → GrO

which is Zariski sheafification of FhO.

3.2.1 H-Space Structures on Fh[0,∞] and FhO

The only purpose of this subsection was to prove the H-space structures on FhO

which has been used in an essential way in the proof of the thoerem 3.3.18. Since

the complete argument using Γ-spaces was becoming more and more complicated,

we resolved the issue of H-space structure using operads in section 5.6. This section

survives only because of the discussion it offers on Γ-spaces. Now that we know

with the H-space structure through the work in section 5.6, the Γ-space point of

view can be used in studying the ring structure on hermitian K-theory.

We make some preliminary observations regarding Γ-objects in a category [S74].

Recall that the category Γ has as its objects all the finite sets; and, for any two

given finite sets S and T , a morphism S → T is a map θ : S →P(T ) from the set

S to the set P(T ) of all the subsets of T with the property that for any elements

i, j(6= i) in S, the subsets θ(i) and θ(j) are disjoint (composition defined in the

cited reference). A Γ-object in a category C is defined to be a functor Γop → C

satisfying the properties listed in [S74].
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The opposite category Γop is equivalent to the category of finite pointed sets

Setsf
+: given a finite set S, write S+ for set S

∪
{+} (which is the set S equipped

with a base point). For a morphism α : S → T , define a map α : T+ → S+

by sending j ∈ T+ to i if j ∈ α(i), otherwise to the base point of S+. This

assignement provides us a functor from Γop to Setsf
+. To define the inverse functor,

for a pointed set S
∪
{+} consider the set S, and for a given map of pointed sets

β : T
∪
{+} → S

∪
{+}, consider the map β : S → P(T ) defined by sending

s ∈ S to the set β−1(s) ⊂ T . Further the category Setsf
+ is equivalent to its full

subcategory N f
+ consisting of sets of the form [n]+ = {+, 1, ..., n}, n ≥ 0: To see

this equivalence one can choose an isomorphism (and it’s inverse) of a finite set

pointed set with some pointed [n]+ to define a functor. Therefore, the categry Γop

is equivalent to the category N f
+ . As a result of this equivalence, to define a Γ-

object in a category C , we need to define the objects in C corresponding only to

the the finite sets [n] in Γ.

We also have a functor ∆ → Γ from the category of finite ordered ordinals ∆

into Γ defined by sending the naturally ordered set < n >= {0, 1, ..., n} to the set

[n] = {1, ..., n}, and a nondecreasing map α :< m >→< n > to the map (denoted

by the same letter) α : [m] → P([n]) defined by j 7→ {i ∈ [n] : α(j − 1) < i ≤

α(i)} ⊂ [n]. We use this functor to recognize a Γ-object in a category as a simplicial

object in that category.

Now we will define an A1-special Γ-presheaf of sets X on the category Sm/k

of smooth k-schemes, for which X1 would be the presheaf Fh[0,∞]. Using the

equivalence of the categories Γop and N f
+ we define X as a functor X : N f

+ →

PShv(Sm/k).
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Definition 3.2.3 (The Γ-presheaf X on Sm/k). For any two non-negative integers

N and n, let us first define a presheaf of sets XN
n on Sm/k. For an affine smooth

k-scheme Z = Spec R, we define XN
n (Z) (which we also write as XN

n (R)) as the set

of n-tuples (P1, ..., Pn) where each Pi is a free direct summand of the hyperbolic

space H(R)[0,N ] such that the hyperbolic form restricted to Pi is non-degenerate

and for all i, j(6= i), Pi, Pj are mutually orthogonal. For a k-scheme V , we define

XN
n (V ) = XN

n (Γ(V,OV )). And for a map of schemes the corresponding map for

XN
n is defined by the maps induced between hyperbolic spaces by the map of the

rings of global sections. For integers N and a commutative ring R, we have the

isometric embeddings of the hyperbolic spaces H(R)[0,N ] ↪→ H(R)[0,N+1] which

induce compatible maps of presheaves XN
n → XN+1

n .

For each non-negative integer N , using the presheaves XN
n we define a Γ-presheaf

XN on Sm/k as a functor XN : N f
+ → PShv(Sm/k). We take XN([n]+) to be

XN
n and, for a map γ : [n]+ → [m]+ in the category N f

+ , we take the map of

presheaves XN
n → XN

m induced by taking the orthogonal direct sum of the appro-

priate factors: An n-tuple (P1, ..., Pn) is mapped to the m-tuple (Q1, ..., Qm) where

Qi = ⊕j∈γ−1(i)Pj = Σj∈γ−1(i)Pj. These maps are compatible with the maps XN
n →

XN+1
n described above. We have a directed system of Γ-presheaves XN , N ≥ 0.

The Γ-presheaf X is defined by taking

Xn = X([n]+) = lim−→N≥0
XN
n

and the induced maps. We will consider X as a Γ-simplicial presheaf (simplicially

constant) as well, if needed.

Remark 3.2.4. Going back to notations used earlier in 3.1.10 and 3.1.19, we see

that XN
1 is the presheaf Fh[0,N ] and X1 is the presheaf Fh[0,∞]. Thus, in view of

3.1.11 that the presheaves XN
1 and X1 are representable.
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We want to prove that the Γ-simplicial presheaf X is A1-special (precisley stated

later).

Proposition 3.2.5. The Γ-presheaf X is A1-special: that is, the map pn =
∏
X(pi) :

Xn → X1 × ...×X1 induced by the maps pi : [n]+ → [1]+ (i = 1, ..., n) which send

i ∈ [n]+ to 1 ∈ [1]+ and other elements of [n]+ to the base point of [1]+ is an

A1-weak equivalence.

Proof. We prove the A1-weak equivalence only in the case n = 2, since the ar-

guments involved can be extended to other values of n: So we prove that the

map p2 : X2 → X1 ×X1 is an A1-weak equivalence. Let’s first consider the maps

pN2 : XN
2 → XN

1 × XN
1 , and λN2 : XN

1 × XN
1 → X2N

2 : Here pN2 is the map used

in defining the Γ-presheaf; and on an S-scheme V , λN2 is defined by sending a

pair (P1, P2) in XN
1 (Γ(V,OV )) × XN

1 (Γ(V,OV )) the pair (BN
1 A

N
0 P1, B

N
2 A

N
0 P2) in

X2N
1 (Γ(V,OV )), where BN

1 = (e1, e3, ...e2N−1, e2, e4, ..., e2N) and BN
2 = (e2, e4, ...,

e2N , e1, e3, ..., e2N−1) are 4N -square matrices (written using the standard hyper-

bolic basis vectors) and AN0 =

IHN

O

 is a 4N × 2N matrix. Recall that the

simplicial presheaves X1 and X2 are defined as the respective colimits of the sys-

tems XN
1 → XN+1

1 and XN
2 → XN+1

2 where maps are the ones mentioned in the

defintion of the Γ-simplicial presheaf X. Fixing an N ≥ 2, for every k ≥ 0 let us

consider the following objects and morphisms in the category ∆opPShv(Sm/k):

Xk = X2k−1N
2 , Yk = X2k−1N

1 × X2k−1N
1 , fk = p2k−1N

2 , gk = λ2k−1N
2 and, take the

morphisms i2k : Xk → Xk+1 and i1k : Yk → Yk+1 to be the ones used in the definition

of the Γ-simplicial presheaf X. Then colim (Xk, i
2
k) = X2, colim (Yk, i

1
k) = X1×X1

and the maps induced on these colimits by fk and gk are the maps p2 and λ2.

Using the criterion given in corollary 2.2.4, proof would be complete once we

show that for all values of k the pairs of maps (gk ◦ fk, i2k) and (fk+1 ◦ gk, i1k) are
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naively A1-homotopic in the category of morphisms. Both the maps i1k and i2k send a

pair (P1, P2) to the pair (A2k−1N
0 P1, A

2k−1N
0 P2), and both the compositions gk ◦ fk

and fk+1 ◦ gk send (P1, P2) to (B2k−1N
1 A2k−1N

0 P1, B
2k−1N
2 A2k−1N

0 P2). Therefore to

get a naive A1-homotopy, it suffices to prove that the maps given by the matrices

B2k−1N
1 and B2k−1N

2 are naively A1-homotopic to the identity map. It should be

kept in mind that homotopies to be considered should respect orthogonality of the

pairs of spaces. We provide this homotopy in two stages: A map of the form

(BN
1 A

N
0 , B

N
2 A

N
0 ) (TBN

2 A
N
0 + (1− T )BN

1 A
N
0 , B

N
2 A

N
0 ) (BN

2 A
N
0 , B

N
2 A

N
0 )

defines a homotopy of (BN
1 A

N
0 , B

N
2 A

N
0 ) with (BN

2 A
N
0 , B

N
2 A

N
0 ); and then, to get the

homotopy of (BN
2 A

N
0 , B

N
2 A

N
0 ) with identity, we observe that B2k−1N

1 and B2k−1N
2

are both even permutation matrices, and even permutation matrices are naively

A1-homotopic to the identity. It should be remarked as an aid to the reader willing

to produce these homotopies in cases n ≥ 3, we can use homotopies of above

form in three stages: first, change (BN
1 , B

N
2 , B

N
3 ) to (BN

1 , B
N
3 , B

N
3 ), and then to

(BN
3 , B

N
3 , B

N
3 ).

Corollary 3.2.6. The presheaf FhO[0,∞] is an H-space in the A1-homotopy cat-

egory.

Proof. We have already noticed that the presheaf FhO[0,∞] is just the presheaf

X1 in the Γ-presheaf X. Since X is A1-special, it follows from [S74] that X1 is an

H-space.

Remark 3.2.7. We are very sure that the presheaf FhO is also an H-space in

the A1-homotopy category. A strong indication for this fact lies in our observation

that all the known constructions of taking colimits of an H-space with respect to
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‘addition’ of an element result in an H-spaces. See the construction of TA in [S74],

for example.

3.2.2 The Presheaf Kh and the Map FhO
}−→ Kh

We will recall informally some of the general notions from category theory relevant

to us in the definition of the hermitian K-theory presheaf Kh. A comprehensive

reference for the symmetric monoidal categories is the book [Mc71]. A large part

of material relevant to us in this subsection can be found in more details in the

lecture notes [G76].

Definition 3.2.8. Let C be a monoidal category acting on a category D, and

+ : C × D → D be the action. A category < C, D > has been defined in [G76]. It

has the same objects as the category D, and a morphism X → Y in < C, D > is

an equivalence class of tuples (X, Y, A, A + X → Y ), where A is an object in C,

X and Y are objects in D, and A +X → Y is a morphism in D; and, the tuples

(X, Y, A, A + X → Y ) and (X, Y, A′, A′ + X → Y ) are equivalent if there is an

isomorphism A
α−→ A′ such that diagram

A+X

��

α+1X

'
// A′ +X

yyrrrrrrrrrrr

Y

commutes.

Definition 3.2.9. If a symmetric monoidal category C acts on category D, then C

acts on the product C ×D via the diagonal action: A+ (B, X) = (A+B, A+X),

where A, B are objects of C and X is an object of D. The category C−1D is the

category < C, C × D >. We have an invertible action of C on C−1D given by

A+ (B, X) = (B, A+X).
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Remark 3.2.10. In particular, if C is a symmetric monoidal category, we have the

category C−1C on which C acts invertibly. Let every morphism in C be a isomor-

phism. The functor + : C−1C × C−1C → C−1C defined by

(M, N) + (M ′, N ′) = (M +M ′, N +N ′)

makes C−1C a symmetric monoidal category. In fact, with respect to this functor

C−1C is an H-group. The assignment A 7→ (0, A), defines a functor

can : C → C−1C.

The functor C can−−→ C−1C is a group completion of C: that is, the induced map

(π0C)−1Hp(C)→ Hp(C−1C)

is an isomorphism for every p ≥ 0 ( [G76], p. 221); and, C−1C is group complete

(i.e., it is an H-space whose π0 is a group).

Remark 3.2.11. Let P(R) denote the category of finitely generated projective R-

modules over a commutative ring R. We know that given a map R1 → R2 of

commutative rings, M 7→ M ⊗R1 R2 defines an exact functor P(R1) → P(R2).

For this functor there is a canonical isomorphism HomR1−Mod(M, R1) ⊗R1 R2 '

HomR2−Mod(M ⊗R1 R2, R2), since M is finitely generated and projective (check

this part..).

Definition 3.2.12. For a commutative ring R and a nonnegative integer r, let

us define a category SR,r. In what follows for a given R-module M , the R-module

HomR−Mod(M, R) will be denoted by M∗. The objects in SR,r are the pairs (M,φ),

where M is a finitely generated projective R-submodule considered as a direct

factor M ⊂ H [−r,∞](R) (see 3.2 for notations), φ = h|M (h being the standard

hyperbolic form on H [−r,∞](R)) and φ : M
'−→M∗ is an isomorphism. A morphism

(M,φ)→ (N,ψ) is given by an isomorphism α : M → N such that the diagram
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M

α '
��

'
φ

//M∗

N
'
ψ

// N∗

' α∗

OO

commutes. The category SR,r is a small category.

We also have a category S̃R whose objects are the pairs (M,φ) where M is a

finitely generated projective R-module and M
φ−→M∗ is an isomorphism; and, the

morphisms are given by isomorphisms of R-modules as in the category SR,r. The

canonical forgetful embedding of SR,r into the category S̃R is an equivalence of

categories via a choice of an isomorphism of an object in S̃R with an object in

SR. Let (M,φ) and (N,ψ) be two objects of S̃R. Let φ⊕ ψ be the map M ⊕N →

M∗⊕N∗ given by the matrix

φ
ψ

, where direct sum is formed in the category

S̃R. The sum (M,φ) + (N,ψ) = (M ⊕ N,φ⊥ψ), where φ⊥ψ is the composition

M ⊕N φ⊕ψ−−→M∗⊕N∗ can '−−−→ (M ⊕N)∗, makes S̃R a symmetric monoidal category.

This defines a symmetric monoidal structure on SR,r as well via the aforementioned

equivalence, though it involves a choice of direct sum. If X ∈ Sm/k is an smooth

k-scheme, we will denote the category S̃Γ(X,OX) simply by S̃X and SΓ(X,OX),r by

SX,r.

Given a map R1
f−→ R2 of commutative rings and an object (M,φ) in SR1,r, the

finitely generated projective R2-module M ⊗R1 R2 can be thought of as a direct

factor of H [−r,∞](R2) via the composition M ⊗R1 R2 ⊂ H [−r,∞](R1)⊗R1 R2
can '−−−→

H [−r,∞](R2). We have the induced isomorphism M⊗R1R2
φ⊗1−−→M∗⊗R1R2. In view

of the canonical isomorphism M∗ ⊗R1 R2 ' (M ⊗R1 R2)
∗ mentioned in 3.2.11, the

composition M ⊗R1 R2
φ⊗1−−→M∗ ⊗R1 R2 ' (M ⊗R1 R2)

∗ is an isomorphism. Let us

denote this composition by φ⊗R2. By defining (M,φ) 7→ (M ⊗R1 R2, φ⊗R2), we

get a functor SR1,r → SR2,r. The assignment R 7→ SR,r gives us a functor from the
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category of commutative rings to the category of all small categories. As mentioned

above images of this functor actually are symmetric monoidal categories, though

functors are not monoidal. Though it should be noted that using the universal

property of direct sums, these functors can be made into symmetric monoidal

functors. We also have the induced functor S−1
R1,r
SR1,r → S−1

R2,r
SR2,r between the

categories defined in 3.2.10. Note that the category S−1
R1,r
SR1,r does not depend on

the choice of direct sums. We will denote the category S−1
R,rSR,r by P},r(R). If X is

a scheme, we will denote the category P},r(Γ(X, OX)) simply by P},r(X). When

r = 0, we will in general omit the subscript standing for r in all the three categories

defined above: Thus, for example, the category SR,0 will be denoted simply by SR.

Definition 3.2.13 (The presheaf Kh and the hermitian K-groups). For a smooth

k-scheme X, we have the category P},0(X) defined in 3.2.12. The functor X 7→

P},0(X) is a presheaf of small categories on Sm/k. Let N C denote the nerve of a

small category C. The assignment X 7→ N P},0(X) defines a presheaf of simplicial

sets on Sm/k. We will denote this presheaf by Kh and call it the hermitian K-

theory presheaf. The hermitianK-groups of a smooth affine k-schemeX are defined

as the homotopy groups of the simplicial set N P},0(X) at 0. These are denoted

by Kh
n(X), n ≥ 0. Thus

Kh
n(X) = πn(N P},0(X), 0), n ≥ 0, X affine.

Remark 3.2.14. It can be seen that the hermitian K-theory presheaf Kh defined

here is the same as the one defined in [H05] in 1.3(1), 1.5 and 1.7 for affine

k-schemes in Sm/k since the corresponding categories are equivalent when inter-

preted reasonably: The smallness of the category P (A) and the related issues in

the definition of the hermitian K-theory space have not been addressed in [H05],

cf. the functoriality remark in [H05]. Another remark is also in order that we have
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not used the most general definition which is applicable to other additive categories

with duality, since we will not need those. It should be noted for later use that

for affine schemes in Sm/k, the presheaf Kh is homotopy invariant and it has the

Nisnevich-Mayer-Vietoris property: See [H05] Corollaries 1.12 and 1.14.

Definition 3.2.15. If X is a smooth k-scheme, X 7→ N SX,r and X 7→ N P},r(X)

define simplicial presheaves of sets on Sm/k. Let us denote these presheaves by

N S−,r and N P},r respectively. The canonical group completion functor SX,r
can−−→

P},r(X) recalled in 3.2.10 defines a map (again denoted by ‘can’)

can : N S−,r → N P},r

of the simplicial presheaves. In particular, when r = 0 we get the map

can : N S−,0 → Kh

of N S−,0 into the hermitian K-theory presheaf Kh.

Definition 3.2.16. We have already mentioned the group completion functor

SR,r
can−−→ S−1

R,rSR,r = P},r(R), see 3.2.10, 3.2.13 and 3.2.15. The addition of a hy-

perbolic plane SR,r
H⊥−−→ SR,r+1 induces a functor H⊥ : P},r(R)→ P},r+1(R): Just

to avoid ambiguity, this induced functor H⊥ sends an element ((M, φ), (N,ψ))

in H⊥ : P},r(R) to the pair ((M, φ), (N⊥H,ψ⊥h)) in P},r+1(R) (and morphisms

are defined in the obvious way). The diagram of presheaves of simplicial sets

N S−,r can //

H⊥
��

N P},r

H⊥
��

N S−,r+1
can // N P},r+1

is commutative, (the functor ‘can’ has been defined in 3.2.16). It should be noted

that the map on the right is a homotopy equivalence for every integer r, since the

functor H⊥ : P},r(R) → P},r+1(R) induces a homotopy equivalence of categories,
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see [Q73]. Also, the presheaves of categories P},r and P},0 are isomorphic, giving

us an isomorphism of simplicial presheaves αr : N P},r → Kh. Therefore, we get

the commutative diagram

N S−,0 can //

H⊥
��

N P},0

H⊥
��

= // Kh

' α1◦H⊥
��

N S−,1 can //

H⊥
��

N P},1

H⊥
��

α1 // Kh

' α2◦H⊥◦α−1
1

��
N S−,2 can //

H⊥
��

N P},2

H⊥
��

α2 // Kh

' α3◦H⊥◦α−1
2

��
· · ·

in which the right vertical maps are homotopy equivalences. We will denote all

the homotopy equivalences αr+1 ◦ H⊥ ◦ α−1
r by H⊥ and all the compositions

N Sr
can−−→ N P}r

αr−→ Kh by ‘can’.

In 3.2.1 we have defined the presheaf FhO. Now we are going to define a map

FhO
}−→ Kh. The goal of this work is to prove that } is an A1-weak equivalence.

Definition 3.2.17. For a commutative ring R and a nonnegative integer r, we

denote by F}[−r,∞](R), the full subcategory of SR,r defined as follows. The set of

objects of F}[−r,∞](R) is the set Fh[−r,∞](R) (see 3.1.19 and 3.2.1). As morphisms

we take isometries: if M, N are two objects in F}[−r,∞](R) determined by non-

degenerate direct factors M ⊂ H [−r,m](R) and N ⊂ H [−r, n](R), then a morphism

M → N is given by an isometryM
'−→ N . IfX ∈ Sm/k, we will denote the category

F}[−r,∞](Γ(X, OX)) simply by F}[−r,∞](X). We have the presheaves F}[−r,∞] of

categories on Sm/k defined by sending X to the category F}[−r,∞](X). There is

a natural map of presheaves H⊥ : F}[−r,∞] → F}[−r−1,∞] induced by adding a

hyperbolic plane for the extra basis element.

55



Definition 3.2.18. Let M be a non-degenerate symmetric bilinear form which is

a direct factor of some hyperbolic space H [−r,∞](R). If hM : M → M∗ denote the

restriction of the adjoint isomorphism of the hyperbolic space H [−r,m](R), then hM

is an isomorphism (see 3.2 and the paragraph just before the definition 3.1.9 for

explanation of H [−r,m](R)). Thus, an object M in F}[−r,∞](R) gives us an object

(M, hM) in the category SR,r (see 3.2.12). For a commutative ring R, this defines

a functor hr : F}[−r,∞](R)→ SR,r, and a map (again denoted by hr)

hr : N F}[−r,∞] → N S−,r

of simplicial presheaves of sets on Sm/k. The diagram

N F}[−r,∞] hr
//

H⊥
��

N SR,r
H⊥
��

N F}[−r−1,∞] hr+1
// N SR,r+1

commutes.

Definition 3.2.19. The diagram of simplicial presheaves of sets on Sm/k, in

which the vertical maps on the right are homotopy equivalences as discussed in

3.2.16, r ≥ 0

N F}[−r,∞] hr
//

H⊥
��

N S−,r
H⊥
��

can // Kh

' H⊥
��

N F}[−r−1,∞]h
r+1

//

H⊥
��

N S−,r+1

H⊥
��

can // Kh

' H⊥
��

· · ·
is commutative. We also have

lim−→
H⊥

N F}[−r,∞] = N (lim−→
H⊥

F}[−r,∞]).

Thus, taking the vertical colimits in the above diagram, we get a map of simplicial

presheaves of sets on Sm/k

N (lim−→
H⊥

F}[−r,∞])
can ◦h−−−→ Kh.
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Since the presheaf of vertices of N (lim−→H⊥ F}) is the presheaf FhO, we have

defined a map

} : FhO → Kh

of the orthogonal Grassmannian (see 3.2.1) into the hermitian K-theory. Since Kh

is a sheaf on affine smooth schemes and the natural map χ : FhO → GrO defined

in 3.2.2 is a Zariski sheafification, there is a unique map from GrO to Kh as well

induced from }. We will denote this map also by }.

3.3 A1-Weak Equivalence of the Map }
In this section we prove the A1-weak equivalence of the map } defined in 3.2.19 as-

suming a seemingly technical claim not yet verified, namely, the H-space structure

on FhO. In 3.3.1 we prove that the simplicial subpresheaf Kh0 (3.3.2) of connected

component of 0 in Kh, is A1-homotopic to the presheaf BO of classifying spaces of

the presheaf O of isometries of the infinite hyperbolic space defined in 3.3.1.

3.3.1 A1-Weak Equivalence of BO and Kh
0

Let us recall the definitions of simplicial presheaves BO and Kh0 .

Definition 3.3.1. [The presheaf BO.] In 3.1.12, we have defined the presheaf

O(H [0, n]) of groups of isometries of the hyperbolic spaces H [0,n]. For a commutative

ring R, the standard embeddings AutH [0, n](R) ↪→ AutH [0, n+1](R) (n ≥ 0) of

groups of automorphisms of hyperbolic spaces defined by M 7→

M 0

0 1H(R)

, give

us maps of presheaves of groups O(H [0, n]) ⊂ O(H [0, n+1]). The presheaf O(H [0,∞])

of groups on Sm/k is defined as the colimit of these presheaves. In this section we

will denote the presheaf O(H [0,∞]) simply by O. Thus, for a smooth k-scheme X,
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the group O(X) is the colimit of the system

· · · → O(H [0, n](R))→ O(H [0, n+1](R)) · · · , M 7→

M 0

0 1H(R)

 ,

where R = Γ(XOX). The groups O(H [0, n])(X) and O(X) when thought of as

categories with just one object and all the group elements as morphisms, would

be written as Õ(H [0, n])(X) and Õ(X) respectively. The simplicial presheaf BO is

defined by taking nerve of this category, thus

BO(X) = N Õ(X)

for a smooth k-scheme X.

Definition 3.3.2. [The presheaf Kh0 of connected component of 0.] In 3.2.13, we

have defined the hermitian K-theory presheaf Kh as X 7→ N P},0(X) where cat-

egory P},0(X) has been defined in 3.2.12. Let P+
} (X) denote the full subcategory

of P},0(X) of the connected component of (0, 0): An object ((M, φ), (N, ψ)) of

P},0(X) belongs to the category P+
} (X) if and only if (M, φ) and (N, ψ) are stably

isometric in the sense that they become isometric after addition of some hyperbolic

planes. We have a presheaf X 7→ P+
} (X) of categories on Sm/k. The simplicial

presheaf Kh0 is defined by taking nerve of this presheaf, thus

Kh0(X) = N P+
} (X).

This is called the connected component of 0 of the hermitian K-theory.

For every commutative ring R, there is a functor γn : Õ(H [0, n])(R) → P+
} (R)

defined by sending the unique object to (H [0,n](R), H [0,n](R)) and, to an automor-

phism u of H [0,n](R) to the morphism

((0, 0) + (H [0,n](R), H [0,n](R)))
{u1, u2}−−−−→ (H [0,n](R), H [0,n](R))
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in P+
} (R), where u1 is the canonical isometry 0 + H [0, n](R)

'−→ H [0,n](R), and u2

is the composite u ◦ u1. The functors γn, n ≥ 0 give us a map of presheaves of

categories Õ → P+
} , and hence a map of simplicial presheaves (denoted by γ)

γ : BO = N Õ → N P+
} = Kh0 .

Lemma 3.3.3. The map γ is an A1-weak equivalence of the simplicial presheaves.

Proof. We have a commutative diagram of the form

BO

A1

��

γ // Kh0
A1

��
|BO∆•| γ• // |Kh0∆•|

in which the vertical maps are A1-weak equivalences from [MV99, cor 2.3.8, p.

53], where the bisimplicial presheaf BO∆• is defined in [MV99, sect 2.3.2] and | |

denotes it’s realization and γ• the induced map. We prove that the lower horizontal

map in this diagram is a Zariski and hence an A1-weak equivalence, which will

complete the proof of this lemma. For this we prove that for every local ring R the

simplicial ring ∆•
R gives us a weak equivalence |BO∆•

R| → |Kh0∆•
R| of simplicial

sets.

Since the map γ(X) : BO(X) → Kh0(X) is a homology isomorphism for every

smooth k-scheme X, see arguments in the proof of theorem 7.4 in [S96], page 152,

the map γ• : |BO∆•
R| → |Kh0∆•

R| is a homology isomorphism.

The homology weak equivalence γ• would be a global weak equivalence, if we

prove that |BO∆•
R| is nilpotent, since |Kh0∆•

R| is an H-space with respect to the

H-space structure induced from Kh. This is proved in the following lemma.

Lemma 3.3.4. The simplicial group |BO∆•
R| is nilpotent.
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Proof. We have a universal principal fibration of the form O∆•
R → |EO∆•

R| →

|BO∆•
R|. Since |EO∆•

R| is contractible, the fibre O∆•
R is the loop space of |BO∆•

R|

and therefore the action of fundamental group of |BO∆•
R| on its higher homotopy

groups is given by the action of π0 by conjugation on higher homotopy groups in

case of the simplicial group O∆•
R. Hence to prove nilpotency of |BO∆•

R|, it suffices

to show triviality of π0-action by conjugation on higher homotopy groups for O∆•
R.

To prove the triviality of π0-action on itself by conjugation, we prove that π0 is

commutative. For terminology and notations used in rest of this proof, see [Bak,

Chapters 3 and 4]. This follows by writing down the Moore sequence of the sim-

plicial group O∆•
R: In fact, we get that π0(O∆•

R) = KQ1(R, 0)/ ∼, a quotient of

the abelian group KQ1(R, 0) = GQ(R, 0)/EQ(R, 0), where EQ(R, 0) is the group

of infinite symmetric elementary matrices: After identifying the first two terms of

the Moore sequence with the groups of infinite orthogonal matrices GQ(R, o) and

GQ(R[x], 0), for a given elementary symmetric matrix ei,j(λ) in EQ(R, 0), consider

the elementary matrix ei,j(x−λx) in EQ(R[x], 0). Finally to see that the π0-action

on other homotopy groups is trivial, we remark that the group πn(O∆•
R), (n ≥ 1) is

a subquotient of the group GQ(R[x1, ..., xn], 0), and π0-action is via a conjugation

through certain elements of GQ(R, 0)/EQ(R, 0). Since all the matrices involved

can be written using only finitely many non-identity blocks, such a conjugation

can be arranged in the form
Ir O O

O (αi,j)s O

O O I

 .


Br O O

O Is O

O O I

 .


Ir O O

O (αi,j)
−1
s O

O O I


through multiplication with elementary symmetric matrices, where (αi,j)s is an

s × s matrix in GQ(R, 0) and Br is an r × r matrix in GQ(R[x1, ..., xn], 0), the

proof of the lemma is complete.
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3.3.2 Grothendieck-Witt Groups and FhO in
A1-Homotopy Category

Now we move on to relate the presheaf FhO with Grothendieck-Witt groups in the

A1-homotopy category of smooth k-schemes. This will be one important component

of the A1-representability result. First, we recall definition of the presheaf GW0

(3.3.5) of Grothendieck-Witt groups, and it’s relation with the hermitian K-theory

presheaf Kh in 3.3.6. We establish the important fact in corollary 3.3.15 that the

Nisnevich sheafifications of πA1

0 (FhO) and GW0 are isomorphic via the map } .

Definition 3.3.5 (Grothendieck-Witt group of a ring). Let R be a commutative

ring. Let Ŵ (R) be the set of isometry classes of finitely generated non-degenerate

symmetric bilinear spaces over R. With respect to orthogonal sum (see [S85,

Chap 2, sec 1]) Ŵ (R) is an abelian monoid. The Grothendieck-Witt group of R is

the group completion of the abelian monoid Ŵ (R), it is denoted by GW0(R). In

particular, for a field K we have defined the Grothendieck-Witt group GW0(K) of

K.

Remark 3.3.6. The set of isomorphism classes of objects of the monoidal category

SR,0 is the set Ŵ (R), see 3.2.12. Also, the monoidal functor on SR,0 induces the

monoid structure on Ŵ (R). Since SR,0
can−−→ P},0(R) is a group completion, from

the definition of Kh in 3.2.13, we see that

GW0(R) = π0(P},0(R)) = Kh
0 (R).

Thus, the 0th-hermitian K-group of a ring is it’s Grothendieck-Witt group.

We have the presheaf Ŵ on Sm/k defined by X 7→ Ŵ (Γ(X, OX)), where Ŵ (R)

for a commutative ring R has been introduced earlier in 3.3.6 and discussed in

[K90] in details. There is a surjective map of presheaves ObS // //
Ŵ .
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We have the maps of preseaves of sets on Sm/k

ObS = //

����

[ , ObS]

����

Ŵ [ , ObS]A1
nv(k)

in which we claim that there is a map of presheaves Ŵ
∃−→ [ , ObS]A1

nv(k)
making

the above diagram commute. We start with some technical results. We have chosen

the 2n-square matrix

hn = h1⊥...⊥h1 =



0 1

1 0

· · ·

0 1

1 0


to represent the hyperbolic space Hn(R) = H [0, n−1](R), see the paragraph preced-

ing the definition 3.1.9. We are going to use some results on matrix computations

for hyperbolic spaces and their isometries from the book [K90]. In that book they

have used the matrix  0 In

In 0


to represent the n-dimensional hyperbolic space. The two representations are re-

lated by a change of base. All the computations in rest of this subsection are based

on the basis  0 In

In 0

 .

Lemma 3.3.7. For every commutative ring R, the mapsI 0

0 I

 ,

 I 0

−I I

 : SpecR→ Gl2n
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of presheaves are naively A1-homotopic.

Proof. The element

 I 0

−TI I

 is an element of the group of Gl2n(R[T ]). This

element defines a naive A1-homotopy

h : SpecR× A1 → Gl2n

between the two maps

I 0

0 I

 and

 I 0

−I I

 .

Remark 3.3.8.

1. Similar to the naive homotopy defined in the above lemma, we have naive

homotopies of the maps determined by the elements

I I

0 I

 and

 I 0

−I I


with the map determined by the matrix

I 0

0 I

.

2. For an endomorphism Rn → Rn ' HomR−Mod(R
n, R) written as a matrix γ

with the property that γ = tγ when we consider X− (defined below), and the

property γ = −tγ when we consider X+, the matrices

X−(γ) =

I 0

γ I

 and X+(γ) =

I γ

0 I


define isometries of the hyperbolic space H [0, n](R) by the lemma 4.2.1 in

[K90]. The matrices

 I 0

Tγ I

 and

I Tγ

0 I

 define naive homotopies be-

tween

I 0

γ I

 and the matrices X−(γ) and X+(γ) respectively considered as

maps of presheaves SpecR→ O(H [0,n−1]).
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We have defined the representable sheaf Gln in 2.1.20. For a matrix α defining an

automorphism of the Rn, the matrix

H(α) =

α 0

0 (tα)−1


defines an isometry of the hyperbolic space H [0, n−1](R). This isometry factors as

in the following diagram

SpecR
H(α) //

α

##G
GG

GG
GG

GG
O(H [0, n−1])

Gln

H
99ssssssssss

as a map of presheaves. If two maps α, β : SpecR→ Gln of presheaves are naively

A1-homotopic, then the maps H(α) and H(β) would also be naively A1-homotopic.

Lemma 3.3.9. The map 0 −I

I 0

 : SpecR→ Gl2n

is naively A1-homotopic to the identity map I2n : SpecR → Gl2n. Consequently,

the map

H

0 −I

I 0

 : SpecR→ O(H [0,n−1])

is A1-homotopic to the identity map I4n : SpecR→ O(H [0,n−1])

Proof. This follows from the discussion above, the lemma 3.3.7 and part (1) of the

remark 3.3.8 and the following matrix identity0 −I

I 0

 =

 I 0

−I I

 .

I I

0 I

 .

 I 0

−I I

 .
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The map

µ : O(H [0,∞])×ObS → ObS

defined by (σ, (M,φ)) 7→ (σM, φ′), where φ′ denotes the new induced form on σM ,

is an action of O(H [0,∞]) on ObS. For every non-negative integer n, the natural

injection of presheaves O(H [0, n])
can−−→ O(H [0,∞]) induces an action of O(H [0, n]) on

ObS via the composition

O(H [0, n])×ObS can×I−−−→ O(H [0,∞])×ObS µ−→ ×ObS.

We will denote this composition also by µ.

Proposition 3.3.10. Let (M, φ) and (N, ψ) be two isometric direct factors of

a hyperbolic space H [0,∞](R). Then the two maps SpecR → ObS determined by

(M, φ) and (N, ψ) are naively A1-homotopic. Consequently, the assignment send-

ing the isometry class of (M, φ) in Ŵ (R) to the naive A1-homotopy class of the

map determined by (M, φ) in [SpecR,ObS]A1
nv(k)

is well-defined and yields a map

of presheaves ζ : Ŵ → [ , ObS]A1
nv(k)

such that the diagram of presheaves

ObS = //

����

[ , ObS]

����

Ŵ
ζ // [ , ObS]A1

nv(k)

commutes.

Proof. For a large enough positive number n, we have the isometries M⊥M̄ '−→

H [0,n′] '←− N⊥N̄ , where ¯ denotes the orthogonal complement. We also have the

isometries

N̄⊥H [0, n′] = N̄⊥M⊥M̄ ' N̄⊥N⊥M̄ ' H [0, n′]⊥M̄ = M̄⊥H [0, n′].

Thus, the given isometry M ' N together with this, provides us an isometry σ

of H [0, 2n′+1] which takes M to N . Therefore, we can assume that there exists an
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isometry, say σ : H [0,n] → H [0, n], such that σ(M) = N . But then the isometry

σ⊥σ−1 =

σ
σ−1

 of H [0, 2n+1] under the natural inclusion H [0, n] ↪→ H [0, 2n+1]

maps the direct factor (M, φ) of H [0, 2n+1] to the direct factor (N, ψ) of H [0, 2n+1].

Thus, the two maps SpecR → [ , ObS] determined by (M, φ) and (N, ψ) factor

as the following maps

O(H [0,2n+1])× [ , ObS]

µ
))TTTTTTTTTTTTTTT

SpecR

(1,M)

55llllllllllllll

(σ⊥σ−1,M)

))RRRRRRRRRRRRRR [ , ObS].

O(H [0,2n+1])× [ , ObS]

µ
55jjjjjjjjjjjjjjj

The proof of this proposition is complete in view of the following lemma.

Lemma 3.3.11. The map of presheaves SpecR
σ⊥σ−1

−−−−→ O(H [0,2n+1]) is naively A1-

homotopic to identity.

Proof. Let σ =

α β

γ δ

 be the matrix representation of the isometry σ ofH [0, n](R).

Consider the matrices

A =

 0 γ

−tγ tγα

 , B =

 0 β

−tβ tδβ

 ,

e12(α) =

I α

0 I

 , and e21(− tδ) =

 I 0

− tδ I

 .

The maps e12(α) and e21(− tδ) : SpecR → Gl2n are naively A1-homotopic to the

identity map (an explicit homotopy similar to the one in 3.3.9 can be defined).

The isometry σ⊥σ−1 of H [0, 2n+1] has the following formula as described in [K90],
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Chap IV, sect 4, lemma 4.4.6, p 347:

σ⊥σ−1 = X−(A).H(e12(α)).H(e21(− tδ).X+(B).X−(A).H(e12(α)).H

0 −I

I 0

 .

In view of lemmas 3.3.7 and 3.3.9 and the remark 3.3.8, we see that the map σ⊥σ−1

is naively A1-homotopic to identity.

We have defined a full inclusion of presheaves of categories F}[0,∞] ⊂ S in 3.2.17

(when r = 0). Taking objects, we get presheaves of sets Fh[0,∞] and ObS on Sm/k,

and a map of presheaves Fh[0,∞] → ObS. As proved in the following lemma the

presheaf ObS is a sheaf on affine smooth k-schemes. It can be seen that the inclu-

sion Fh[0,∞] → ObS induces an isomorphism on Zariski-stalks. Therefore, ObS

is a Zariski-sheafification of the presheaf Fh[0,∞] when restricted to the affine k-

schemes. We have already discussed in 3.1.16 that the map Fh[0,∞] → Grk(H
[0,∞])

is a Zariski sheafification. Therefore, we get a unique map ObS → Grk(H
[0,∞]) of

presheaves on Sm/k, which is a Zariski weak equivalence, and so an A1-weak

equivalence.

In the commutative diagram

Fh[0,∞]

can

''NNNNNNNNNNN
// ObS

∃!κxxq
q

q
q

q

Grk(H
[0,∞])
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every map is an A1-weak equivalence. Therefore, in the A1-homotopy category, we

get the following maps of presheaves of sets on Sm/k

ObS = [ , ObS]

vvvvnnnnnnnnnnnnnnn

����

// [ , Grk(H
[0,∞])]

����

Ŵ

can

��

δ 	
,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

ζ // // [ , ObS]A1
nv(k)

κ // [ , Grk(H
[0,∞])]A1

nv(k)

pr

��
[ , Grk(H

[0,∞])]A1(k)

'
��

[ , Kh]A1(k) [ ,Fh[0,∞])]A1(k)}
oo

where [ , ] denotes the presheaf of set of maps in PShv(Sm/k) with every k-scheme

thought of as a representable presheaf, and [ , ]A1
nv(k) the presheaf of set of naive

A1-homotopy classes of maps in PShv(Sm/k), pr the natural projection map, and

δ the composite map pr ◦ κ ◦ ζ making that trinagle commute.

Lemma 3.3.12. The presheaf ObS is a sheaf on the Zariski site of affine smooth

k-schemes. In particular, the map κ is an isomorphism of sheaves on the Zariski

site of affine smooth k-schemes.

Proof. It suffices to prove the Zariski sheaf condition for an open cover consisting

of the distinguished open sets of an affine k-scheme. That is, in a finite type k-

algebra R given elements f1, ..., fn which generate the ideal R, we have to prove

that

ObS(R) //
∏n

i=1ObS(Rfi
) +3

∏n
i,j=1ObS(Rfifj

)

is an equalizer diagram. This follows from interpreting this as a formalism for

patching projective modules with forms.

Proposition 3.3.13. The map δ induces an isomorphism of the Nisnevich stalks.

68



Proof. We need to prove that the map Ŵ (R)
δR−→ [ , Grk(H

[0,∞])]A1(k)(R) is an

isomorphism for a henselian local ring R. In the diagram of sets

Ŵ (R)

can

��

δR 	
,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

ζR // // [SpecR, ObS]A1
nv(k)

κR// [SpecR, Grk(H
[0,∞])]A1

nv(k)

prR
��

[SpecR, Grk(H
[0,∞])]A1(k)

'
��

[SpecR, Kh]A1(k) [SpecR, Fh[0,∞])]A1(k)}R

oo

the map κR is an isomorphism for all rings (not just local), whereas the map

prR is surjective for henselian local rings in view of the following lemma 3.3.14.

Also, [SpecR, Kh]A1(k) coincides with the Grothendieck-Witt group of R, and is

the group completion of the monoid Ŵ (R) via the map ‘can’. Since for a local ring

Ŵ (R) is a cancellative monoid in view of Witt’s cancellation theorem [S85, thm

6.5, p.21], therefore, for local rings the map ‘can’ is injective. This map factors as

Ŵ (R)
��
can

��

δR // // [SpecR, Grk(H
[0,∞])]A1(k)

'
��	sshhhhhhhhhhhhhhhhhhh

GW0(R) = [SpecR, Kh]A1(k) [SpecR, Fh[0,∞])]A1(k)}R

oo

.

And hence, δR is injective as well for henselian local rings. Therefore, δR is an

isomorphism for henselian local rings. Taking the colimit ...
H⊥−−→ Ŵ (R)

H⊥−−→

Ŵ (R)
H⊥−−→ ... with respect to adding the hyperbolic plane, we get GW0(R). Also,

taking colimit of the presheaves of sets [ , Grk(H
[0,∞])]A1(k) and [ , Fh[0,∞])]A1(k)

with respect to adding hyperbolic planes we get the presheaves [ , GrO]A1(k) and

[ , FhO]A1(k) respectively: This can be checked using an explicit A1-fibrant model.

Similar remarks for the presheaf [ , Kh]A1(k). These colimits give us the commuta-
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tive diagram

GW0(R) ' //

'
��

[SpecR, GrO]A1(k)

'
��	tthhhhhhhhhhhhhhhhhh

GW0(R) = [SpecR, Kh]A1(k) [SpecR, FhO]A1(k)
}Roo

.

which proves that the map }R : FhO(R) → Kh(R) is an isomoprhism of the

Nisnevich stalks.

Lemma 3.3.14. For a presheaf X , and an henselian local ring R, the canonical

map of presheaves

[SpecR, X ]A1
nv(k) → [SpecR, X ]A1(k)

is surjective. In particular, the map prR in the above proposition is surjective.

Proof. Let X → Xf be an A1-fibrant resolution of the presheaf X . Then in view

of [MV99, cor. 2.3.22, p 57] in the commutative diagram

[SpecR, X ]nv
// //

prR
��

[SpecR, Xf ]nv

'
��

[SpecR, X ]A1(k)
' // [SpecR, Xf ]A1(k)

the upper horizontal map is surjective (other maps are natural ones). Therefore,

the map prR is surjective as well.

A consequence of this proposition is the following important result.

Corollary 3.3.15. The Nisnevich sheafification of the presheaf πA1

0 FhO is iso-

morphic to the Nisnenich sheafification of the presheaf GW0 via the map }. Thus,

we have the induced isomorphism

} : aNis(π
A1

0 FhO)→ aNis(GW0).
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3.3.3 Some Properties of A1-Fibrations

In this subsection we discuss a set of properties that help us to recognize A1-

fibrations in some situations.

Lemma 3.3.16. For a map f : X → Y of A1-fibrant presheaves, the following are

equivalent:

1. f is an A1-fibration.

2. f is a Nisnevich fibration.

3. f is a global fibration.

Proof. The implications (1) =⇒ (2) =⇒ (3) follow from definitions. We prove

implication (3) =⇒ (1). Let

A //
��

' α (o)
��

X

g
����

B // Y

be a commutative diagram in which α is an A1-acyclic cofibration, and g has right

lifting property with respect to the global weak equivalences. We prove a lifting

B → X in this diagram. In the pushout of the pair of maps A� B, A→ X

A //
��

' α push

��

X

g

����

α′
~~~~

~~
~~

~

P
∃!

  @
@@

@@
@@

B //

??~~~~~~~
Y

the induced map α′ is an A1-acyclic cofibration (being push-out of such a map), and

the existence of a lift in the diagram (o) reduces to existence of a map f : P → X.

Thus, in diagram (o) we can assume that A is an A1-fibrant (since X is assumed

to be A1-fibrant). We factor the map B → Y as an A1-acyclic cofibration followed
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by an A1-fibration and consider the diagram

A //
��

' α push

��

  
p◦α

'   A
AA

AA
AA

A X

g

����

B′

q

    A
AA

AA
AA

A

B //
>>

'
p

>>}}}}}}}}
Y

In this diagram B′ is A1-fibrant, since B is A1-fibrant and q is A1-fibration. Hence

the map p ◦α : A→ B′ is an A1-weak equivalence between two A1-fibrant objects,

and therefore a global weak equivalence. Thus a lift B′ → X can be constructed.

Lemma 3.3.17. Let X be a simplicial presheaf and A, B be two homotopy invari-

ant Nisnevich sheaves on Sm/S. Taking Xf as the canonical fibrant replacement

of X , if B → A and Xf → A are any two maps, then the canonical map

X ×A B → Xf ×A B

is an A1-weak equivalence.

Proof. In the commutative diagram

X ×A B

��

// Xf ×A B

��

// B

��
X

A1−w. eq. // Xf
// A

the two squares are pullback squares. Lemma will follow if we show that the map

B → A is an A1-fibration. For, the middle vertical map would be an A1-fibration

since it is a pullback of an A1-fibration; and therefore, the upper-left horizontal

map would be an A1-weak equivalence being a pullback of an A1-weak equivalence

along an A1-fibration since the model category structure on ∆opPShv(Sm/k) is

right proper, see [MV99, Thm 2.2.7].
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Thus to prove this lemma we need to prove that any map of homotopy invariant

Nisnevich sheaves is an A1-fibration. First we recall that a homotopy invariant

Nisnevich sheaf is A1-fibrant, see lemmas 2.2.8 (page 34) and 2.2.28 (page 43) in

[MV99]. Therefore, in view of the lemma 3.3.16 above, it suffices to prove that

any map of presheaves of sets is a global fibration: To prove this, consider the

commutative diagram

X //
��

g

��

S

��
Y // T

in which the left vertical map is a global weak equivalence of simplicial presheaves,

and S and T are two presheaves (i.e., simplicial of dimension 0). We need to prove

that there is a lift Y → S for this diagram. To construct a lift, we only need to

consider the fact that above diagram factors as a diagram of the form

X //
��

g

��

!!C
CC

CC
CC

C S

��

π0S

77ppppppppppppp

'g̃

��
π0T

&&NNNNNNNNNNNNN

Y

=={{{{{{{{
// T

in which g̃ is an isomorphism, and hence a lift π0T → S can be defined.

3.3.4 A1-Weak Equivalence of }

In this final subsection of the chapter we prove that the map } defined in 3.2.19 is

an A1-weak equivalence.

Theorem 3.3.18 (A1-Representability Theorem). The map } : FhO → Kh is an

A1-weak equivalence.
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Proof. The commutative diagram of presheaves

∐
n≥0Gr(H

n, H [0,∞]) //

(1)

��

∐
n≥0 Fh

[0,∞]
n

��∐
n≥0 pt

H // ∐
n≥0 aNis(π

A1

0 Fh
[0,∞]
n )

is a pullback diagram, where aNis(π
A1

0 Fh
[0,∞]
n ) denotes the Nisnevich sheafifica-

tion of the presheaf πA1

0 Fh
[0,∞]
n , and

∐
n≥0 pt is the constant Nisnevich sheaf. The

constant sheaf
∐

n≥0 pt is homotopy invariant; also, the sheaf aNis(π
A1

0 Fh
[0,∞]
n )

which we have identified with the Nisnevich sheafification of the presheaf GW0 of

Grothendieck-Witt groups in 3.3.15, is homotopy invariant. Therefore, this pull-

back diagram is homotopy cartesian diagram in view of lemma 3.3.17.

We have proved in corollary 3.1.25 that there is a zigzag of A1-weak equiv-

alences of presheaves
∐

n≥0BO(Hn, [0,∞]) − − −
∐

n≥0Gr(H
n, H [0,∞]) (here the

new notation instead of BO(Hn) refers to our consideration of automorphisms

of the hyperbolic spaces indexed on non-negative integers). Similar remarks for∐
n≥0BO(Hn, [−r,∞]), where r is a positive integer. We have maps of presheaves

BO(Hn, [−r,∞])→ BO(Hn+1, [−r−1,∞]) induced by addition of hyperbolic space for

the extra generator. For every integer r the colimit of the system

...
H⊥−−→ BO(Hn, [−r,∞])

H⊥−−→ BO(Hn+1, [−r−1,∞])
H⊥−−→ ...

is isomorphic to BO, cf. 3.3.1. There is an A1-weak equivalence BO → Kh0 in view

of 3.3.1. Taking homotopy colimit of the diagram (1) with respect to addition of

hyperbolic space ⊥H (as in the definition 3.2.1), we get the homotopy cartesian

square

Z×BO //

��

GrO

��

Z H // aNis(π
A1

0 GrO)
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This square maps to the homotopy cartesian square

Z×Kh0 //

��

Kh

��
Z // aNisGW0

via the maps described in 3.2.19, 3.3.1 and 3.3.15. We have proved in 3.3.1 and

3.3.15 that all but possibly } in this map of squares are A1-weak equivalences. We

claim that } is also an A1-weak equivalence. We have a map of fibrations

BO

��

γ // Kh0

��
GrO

��

} // Kh

��
aNis(π

A1

0 GrO)
ζ // aNisGW0

where the maps γ, } and ζ have been defined in 3.3.1, 3.2.19 and 3.3.15, and we

have proved that the maps γ and ζ are A1-weak equivalences. Since GrO and Kh

are H-spaces, comparing the homotopy groups at Nisnevich stalks proves that the

map } is also an A1-weak equivalence.
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Chapter 4
A Realization Functor in A1-Homotopy
Theory

In this chapter we will restrict our attention to the category of smooth schemes over

the fields of real numbers. For an easy reference, we have recalled the definition

of the set of real (and complex) points in 4.1.1 and proved that this can be given

structure of a smooth manifold in 4.1.3. We have defined a functor ρ∗ : Top →

∆opPShv(Sm/R) in 4.2.1 which sends a weak equivalence of topological spaces to

a global and hence an A1-weak equivalence of presheaves, and hence, induces a

functor from the ordinary homotopy category HoTop of topological spaces to the

A1-homotopy category of smooth R-schemes, H (R). Thus, we can take the right

derived functor Rρ∗ to be ρ∗. We have proved that for a topological space S, the

simplicial presheaf ρ∗(S) is homotopy invariant (4.2.3), it has BG-property (4.2.5

and 4.2.7), and it is A1-local (4.2.11). Then we have defined the functor ρ∗ in 4.3.2

and proved that this is left adjoint of ρ∗ in 4.3.3. In 4.3.7 we have defined it’s left

derived functor Lρ∗.

The results in this chapter are basic for understanding the realizations of the

hermitian K-theory. In the next chapter we have commented on these realizations.

4.1 The Set of Real Points of a Smooth

R-Scheme

Definition 4.1.1 (Real and Complex points of a R-scheme). Let X ∈ Sm/R be

a smooth scheme over R. A point x ∈ X is called a real point of X, if the function

field κ(x) of x is isomorphic to the field R of real numbers. The set of all real points

of X is denoted by XR. Similarily we have the complex points, the set of complex

points of X is denoted by XC.
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We will now invesitgate the set of real points of a smooth scheme over R, and

describe a topology for it. First assume that X = Spec(R[T1, ..., Tn]/ 〈f1, ..., fm〉)

is affine R-scheme (we are not assuming smoothness of X right now). Then we can

identify the set of real points of X with the set of common zeros of the polynomials

f1, ..., fm in Rn: Since a real point of X corresponds to a commutative triangle

Spec R

Id
��

// Spec (R[T1, ..., Tn]/〈f1, ..., fm〉)

ttiiiiiiiiiiiiiiiii

Spec R

whence all real points of X are in one to one correspondence with the set of all R-

algebra homomorphisms R[T1, ..., Tn]/〈f1, ..., fm〉 → R, which precisely is the zero

set of polynomials f1, ..., fm in Rn. Therefore,

Lemma 4.1.2. In case X is an affine R-scheme, the set XR of its real points is a

closed subset of an Euclidean space Rn for some positive integer n.

With this defintion of the space of real points of an affine R-scheme X, we next

claim that the topology of XR does not depend on the ring used to represent the

affine scheme: To see this, suppose an affine scheme X is considered as spectrum of

two rings R[T1, ..., Tn]/〈f1, ..., fm〉 and R[S1, ..., Sr]/〈g1, ..., gs〉. Then these two rings

would be isomorphic, and using the ring R[T1, ..., Tn, S1, ..., Sr]/I, where I is an

ideal of R[T1, ..., Tn, S1, ..., Sr] and isomorphisms of the rings R[T1, ..., Tn]/〈f1, ..., fm〉

and R[S1, ..., Sr]/〈g1, ..., gs〉 into this new ring R[T1, ..., Tn, S1, ..., Sr]/I obtained

from the two rings by adding some more variables, we can assume that the two rings

in different representations of an affine scheme vary only in number of vairables

in the sense that one of starting with a ring, the other one is obtained by adding

some more variables (and some relations).
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So let us assume thatX = specA = spec R[T1, ..., Tn]/I = spec R[T1, ..., Tn, S1, ...,

Sm]/J . Then we have the following commutative diagram of rings:

A R[T1, ..., Tn]
surjoo

R[T1, ..., Tn, S1, ..., Sm]

α

surj

hhPPPPPPPPPPPPPPP
p

OO

where the vertical homomorphism p is defined by Ti 7→ Ti, and Si 7→ pj(T1, ..., Tn),

pj’s being polynomials determined by the image of Sj under α. Note that we have

many choices for the polynomials pj’s, but the point is that there is at least one such

choice available, making above diagram commute. This diagram of commutative

rings gives rise to the following diagram of real points of the corresponding affine

schemes

(Spec A)R

α

��

// Rn

yytttttttttt

Rn+m

in which all the three maps are closed immersions: the vertical map is (x1, ..., xn) 7→

(x1, ..., xn, p1(x1, ..., xn), ..., pm(x1, ..., xn)) (which can be checked to be a closed map

by the limit point criterion for closed sets using the fact that polynomials are

continuous maps). This means that the topology of (Spec A)R as a closed subset

of an Euclidean space is well defined.

Next, we claim that the construction of sending an affine real scheme to its

space of real points is a functor from the category of affine real schemes to the

the category of topological spaces, for which we need to prove the continuity of

the induced map on the space of real points for a map of affine schemes. Let

α : Spec B → Spec A be a map of affine schemes. We can represent this situation
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in the diagram

A // B

R[X1, ..., Xn]

OO

// R[X1, ..., Xn, Y1, ..., Ym]

OO

in which the lower horizontal map sends Xi to Xi. After taking the real points this

diagram gives us the following maps:

(Spec A)R

��

(Spec B)R
αoo

��wwooooooooooooo

Rn Rn+moo

in which the diagonal map is continuous being composition of the right vertical

closed immersion and the lower horizontal projection. This will prove continuity of

the map α, since the diagonal map factors throught α and the left vertical closed

immersion.

For a general R-scheme X such a topology coming from Euclidean spaces on its

set of real points can be given by using an open affine cover (Xα) of X, and using

the topologies of XαR ’s as described above to get a basis for the topology of XR:

To be more explicit, a real point x ∈ X lies in some open affine set Xα of X, and

hence a basic open neighborhood of the point x in this topology would be an open

neighborhood of the point x in the Euclidean topology of XαR .

We will use this topology on the set of real points of R-schemes in rest of the

work. For smooth R-scheme X the topological space XR is in fact a C∞-manifold:

Lemma 4.1.3. For a smooth scheme X ∈ Sm/R, the topological space XR of real

points of X is a C∞-manifold.

Proof. For smooth R-schemes, the space of real points is locally a zero set of a

finite set of polynomials in some polynomial ring R[T1, ..., Tn] whose jacobian has

maximal rank. Therefore, it’s C∞-manifold by implicit function theorem.
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4.2 The Functor ρ∗ and Some Properties

Definition 4.2.1 (The functor ρ∗). The functor ρ∗ : Top → ∆opPShv(Sm/R)

sends a topological space S to the presheaf of simplicial sets Map (Sing −R,Sing

S), and sends a continuos map to the one induced on presheaves defined above;

where Sing : Top→ ∆opSet is the singular simplicial set functor, and for a given

simplicial set T , Map (Sing −R, T ) is the functor that sends a smooth scheme

X to the internal mapping simplicial set Map (Sing XR, T ) (usually we will drop

‘internal’ and call it just the mapping simplicial set, see reference in the note

below).

Remark 4.2.2. For the sake of completeness let’s recall the definition of the internal

mapping simplicial set (this has been called the function complex in reference

cited here) [GJ, sec. I.5]: For two given simplicial sets X and Y , its a simplicial

set denoted by Map (X,Y ) (written as Hom (X,Y ) in [GJ]) and having the

set Hom∆opSet(X × ∆n, Y ) as its set of n-simplices, and the boundary and face

maps induced by those of the standard cosimplical simplical set defined using the

simplicial sets ∆n = HomCat(−, n) (∆n is called the simplicial n-simplex, n ≥ 0).

Lemma 4.2.3. For a smooth scheme X and a topological space S, the map

ρ∗(S)(X)→ ρ∗(S)(X × A1)

induced by natural projection is a weak equivalence of simplicial sets.

Proof. Lemma follows by noting that for any R-scheme X, (X ×A1)R = XR ×R;

and, the map induced by the projection X×A1 → X is the natural projection.
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Definition 4.2.4. A cartesian square of R-schemes (that is, pullback square in

the category of schemes)

W //

(∗)
��

V

p

��
U

i // X

is called a Nisnevich square or a distinguished square, if i is an open immersion and

p is a étale morphism of schemes such that the induced map (V − p−1(U))red →

(X − U)red of reduced schemes is an isomorphism.

Definition 4.2.5. A simplicial presheaf X ∈ ∆opPShv(ν) is said to have Brown-

Gersten (BG) propery, if for every Nisnevich square (∗) in the definition 4.2.4, the

square X(∗) below is homotopy cartesian

X(X) −−−→ X(V )y y
X(U) −−−→ X(W )

X(∗)

and, X(φ) = pt.

Lemma 4.2.6. Assume that a simplicial presheaf X has BG-property and, for

every X ∈ Sm/k the natural projection X × A1 → X induces a weak equivalence

of simplicial sets X(X)→̃X(X × A1). Then X is A1-local. Also, for every T ∈

∆opPShv(ν),

[T,X]H (k) = [T,X]H (Nis) = [T,X]H (global).

Proof. Let ∼ denote the equivalence relation of Nisnevich simplicial homotopy.

Then

[X, X]H (Nis) = Hom∆opPShv(Sm/k)(X, XNis,fib)/ ∼

where XNis,fib is a Nisnevich fibrant replacement of X. But

Hom∆opPShv(Sm/k)(X,XNis,fib)/ ∼ = π0(Xnis,fib(X)),
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which by definition equals π0(X(X)). From the assumption on weak equivalence of

simplicial sets X(X)→̃X(X × A1), we also have that

π0(X(X)) = π0(X(X × A1)),

which by a similar computation equals = [X × A1,X]H (k). This proves that X is

A1-local. (It should be noted that we have not used the assumption that X has

BG-property).

The later half of the lemma follows from results in [MV99] once we know that

it’s true for representable ones.

Lemma 4.2.7. For any topological space S, ρ∗(S) has BG-property.

Proof. We need to prove that given any distinguished square (∗) as in the definition

4.2.4, the square ρ∗(S)(∗) below

Map (Sing XR,Sing S) −−−→ Map (Sing VR,Sing S)y y
Map (Sing UR,Sing S) −−−→ Map (Sing WR,Sing S)

is homopty cartesian. This will follow from the fact that the square (∗R):

WR
i∗R−−−→ VRyp∗R

ypR

UR
iR−−−→ XR

(∗R)

is homotopy cocartesian, which we prove in lemma 4.2.10, and from the facts listed

below with some justifications and references for the same

1. The functor Sing takes homotopy cocartesian squares of topological spaces

to homotopy cartesian squares of simplicial sets, since its part of a Quillen

equivalence, and
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2. The functor Map (−, T ) treated as an endofunctor of the category of simplicial

sets, takes a homotopy cocartesian squares to a homotopy cartesian squares

when T is a Kan simplicial set: In our case the simlpicial set Sing S is a Kan

simplicial set.

Let’s recall a result on weak equivalences of topological spaces from [DI04,

corollary 2.3].

Lemma 4.2.8. Let f : X → Y be a map of topological spaces, and let U = {Uα}

be an open cover of Y such that for all finite set of indices σ, f−1Uσ → Uσ is a

weak equivalence. Then f : X → Y is also a weak equivalence.

Lemma 4.2.9. For a Nisnevich square (∗), the square (∗R) is bicartesian, that is,

it is a

1. pushout (i.e., cocartesian) square, and hence there is a homeomorphism from

the quotient space UR
∐

WR
VR to the the topological space XR.

2. pullback (i.e., cartesian) square, and hence there is a homeomorphism of topo-

logical spaces (U ×X V )R ' UR ×XR VR

Proof. (1) First observe that the map UR
∐

VR → XR is a local isomorphism and

surjective, since it is the map of real points of an étale map. Hence, it is a topological

quotient map. Also, the map UR
∐

WR
VR → XR is bijective and continuous. This

gives us a sequence of compositions UR
∐

VR → UR
∐

WR
VR → XR in which the

first map is a quotient map and so is the composition. Informations in the last two

sentences prove that in fact the map UR
∐

WR
VR → XR is also open, and hence a

homeomorphism.

(2) It suffices to prove the lemma in case all the schemes U, V andX are affine, with
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closed immersions XR ↪→ Rn, and VR ↪→ Rm, for some non-negative integers n, m,

UR being an open set of XR. There is a natural map (U ×X V )R
α, say // UR ×XR VR ;

this map is also a bijection (follows simply by recalling that the domain of this map

is in bijection with all the possible factorizations of the identity map of Spec R

as Spec R → U ×X V → Spec R. Appropriately modifying rings representing the

schemes under consideration, we can fit the map α into a commutative triangle

(U ×X V )R
α //

��

UR ×XR VR

jwwnnnnnnnnnnnn

Rn+m

where the vertical map is a closed immersion defining the topology of the space of

real points of the scheme U ×X V , and the map j is the obvious inclusion map.

With these notations, note that j is also a closed immersion, since it is pullback

of the closed immersion the diagonal map ∆ : XR → XR × XR in the following

pullback square

(U ×X V )R
α //

��

UR ×XR VR

��
XR

∆ // XR ×XR

proving the required homeomorphisms.

Lemma 4.2.10. For a distinguished square (∗), the square (∗R) mentioned in the

lemma 4.2.7 is homotopy cocartesian.
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Proof. This is proved by showing that the map α in the diagram below induced

from the inner homotopy pushout square is a weak equivalence.

WR

��

// VR

��

��
UR

--

// htpy colim
α

%%KKKKKKKKKK

XR

which in turn will follow from the assertions below, lemma 4.2.8 cited above and

induction

1. In the square (∗R), if either pR or iR has a section, then α is a weak equivalence;

2. α is a weak equivalence if p (for any open immersion i) is an open immersion;

and

3. there exists a finite open cover {Xλ} of X such that in the following two

squares, the squares (∗λ) are Nisnevich squares; and for the the squares (∗λR),

at least one of the pevious two assertions holds good. Where p|Xλ
and i|Xλ

are

written simply as pλ and iλ in the diagram on the right:

W |Xλ

i∗λ−−−→ V |Xλyp∗λ (∗λ)

ypλ

U ∩Xλ
iλ−−−→ Xλ

WR|Uλ

i∗λR−−−→ VR|Uλyp∗λR
(∗λR )

ypλR

UR ∩ UλR

iλR−−−→ UλR

To complete the proof of this lemma we need to verify these three facts stated

above. For the first fact, since the bicartesian square (∗R) is homotopy cartesian

when V → X has a section: Because, this section induces a section of W → U

such that the diagram on left

UR //

��

WR

��
XR // VR

WR //

��

VR

��
WR // VR
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commutes, and this diagram is retract of the diagram on the right. But right

diagram is homotopy cocartesian, and so would be the retract diagram on the left.

Then in the diagram

UR //

��

WR //

��

UR

��
XR // VR // XR

the outer square and the one on the left are both homotopy cartesian. Therefore the

square on the right would also be homotopy cartesian. This proves part (1) of list of

claims. For the second assertion when p is an open immersion (just a reminder that i

is always an open immersion), we note that in this case the space XR is the quotient

of two of its open subsets VR and UR, obtained by gluing them along the common

open set UR∩VR = WR. Also, recall that a homotopy colimit object of the diagram

(∗R) can be taken to be the topological space UR
∐

p∗R
(I ×WR)

∐
i∗R
VR, where I

is the unit interval [0, 1], and
∐

denotes the the mapping space topological space

along the indicated map, and here we have used the two ends of the topological

space I×WR to get and glue the two mapping spaces. To prove that the square (∗R)

is homotopy cocartesian, we prove that the map denoted by α and induced by the

diagram (∗R) , namely, α : UR
∐

p∗R
(I ×WR)

∐
i∗R
VR → XR is a weak equivalence.

Since the space UR
∐

p∗R
(I×WR)

∐
i∗R
VR = [(UR∪(WR×I))

∐
(VR∪(WR×I))]/ ∼,

where in the space (UR ∪ (I ×WR)), WR ⊂ UR is identified with {0} ×WR; and

in the space (VR ∪ (I × WR)), WR ⊂ VR is identified with {1} × WR; and, the

quotient relation ∼ identifies the two copies of I ×WR collapsing the unit interval

I. Then α is the map which collapses the I×WR to WR, and therefore, it is a weak

equivalence. The final (namely, the third) assertion follows from the fact that étale

maps are local isomorphisms, so we get such an open cover of X. This completes

proof of the lemma.
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Lemma 4.2.11. For every topological space S, the presheaf ρ∗(S) is A1-local, and

for every presheaf F in ∆opPShv(Sm/R)

[F, ρ∗(S)]Ho[A1](∆
opPShv(ν)) = [F, ρ∗(S)]Ho[global](∆

opPShv(ν)).

Proof. Follows from lemmas 4.2.3, 4.2.6 and 4.2.7.

Lemma 4.2.12. For every weak equivalence f : S → T of topological spaces, the

natural map of presheaves

f∗ : Map (Sing −R, Sing S)→Map (Sing −R, Sing T )

is a global weak equivalence, and hence a simplicial and an A1-weak equivalence.

Proof. we need to prove that

f∗ : Map (Sing XR, Sing S)→Map (Sing XR, Sing T )

is a weak equivalence of simplicial sets for every smooth real schemeX. This follows

by noting that

1. every weak equivalence f : S → T of topological spaces induces a simplicial

weak equivalence of simplicial sets Sing f : Sing S → Sing T ; and

2. the internal mapping simplicial set functor, Map(K, −), where K is a simplicial

set, sends a simplicial weak equivalence of simplicial sets to a simplicial weak

equialence of simplicial sets.

Rephrasing the contents of above lemma by saying that the functor ρ∗ : Top→

∆opPShv(ν) sends weak equivalences of topological spaces to global weak equiv-

alences of simplicial presheaves, and since, the global weak quivalences of sim-

plicial presheaves are also simplicial as well as A1-weak equivalences, we find
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that this functor ρ∗ defines well defined functors on the associated homotopy

categories (again denoted by ρ∗) in the string of compositions of functors in-

duced by localizations as described below: ρ∗ : HoTop→ Ho[global]∆
opPShv(ν)→

Ho[Nis]∆
opPShv(ν)→ Ho[A1]∆

opPShv(ν).

Though we will define the left adjoint of the functor ρ∗ in 4.3.2, let us prove

the following corollary assuming that such a left adjoint has been defining. In this

corollary the functor Lρ∗ denotes the left derived functor of ρ∗ (which has been

explicitly defined in the next section in 4.3.7).

Corollary 4.2.13. The left adjoint Lρ∗ of the functor:

ρ∗ : HoTop→ Ho[global]∆
opPShv(ν)

sends the Nis-, and A1-weak equivalences to weak equivalences of topological spaces.

In particular, it induces the left adjoint of ρ∗ for all the three functors ρ∗ : HoTop→

Ho[global]∆
opPShv(ν), ρ∗ : HoTop → Ho[Nis]∆

opPShv(ν) and ρ∗ : HoTop →

Ho[A1]∆
opPShv(ν).

Proof. This corollary will follow if we show that the left adjoint Lρ∗ : Ho[global]∆
opP

Shv(ν) → HoTop sends A1-weak equivalences of simplicial presheaves to weak

equivalences of topological spaces. Let a morphism α : X → Y of simplicial

presheaves be an A1-weak equivalence. We want to prove that the map Lρ∗(α) :

Lρ∗(α)(X )→ Lρ∗(α)(Y) is a weak equivalence of topological spaces. Since we are

defining Lρ∗ as the left adjoint of the functor ρ∗, we have the following commutative

diagram for every topological space T :

HomHoTop(Lρ
∗(X ), T )

nat isom−−−−−→ HomHo[global]∆opPShv(ν)
(X , ρ∗(T ))yLρ∗(α)

yα

HomHoTop(Lρ
∗(Y), T )

nat isom−−−−−→ HomHo[global]∆
opPShv(ν)(Y , ρ∗(T ))
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We have proved in 4.2.7 that ρ∗(T ) is A1-local and hence αnis : HomHo[nis−simpl]

∆opPShv(ν)(X , ρ∗(T )) → HomHo[nis−simpl]∆
opPShv(ν)(Y , ρ∗(T )) is bijection by our as-

sumption that α is an A1-weak equivalence. Therefore, using lemma 4.2.6 we see

that α = αnis is isomorphism, we see that Lρ∗(α) : HomHoTop(Lρ
∗(X ), T ) →

HomHoTop(Lρ
∗(Y), T ) is also an isomorphism. This would mean that the induced

map Lρ∗(α) : Lρ∗(X )→ Lρ∗(Y) would be a simplicial weak equivalence and hence

a weak equivalence of topological spaces as desired.

4.3 The Functor ∆opPShv(Sm/k)
ρ∗−→ Top

Having discussed the functor ρ∗ in some details now we turn our attention to

defining its left adjoint ρ∗ and then it’s left derived functor Lρ∗. Since any presheaf

on ν is a colimit of representable presheaves, writing a presheaf F ∈ PShv(ν) as

a colimit F = colimXi→FXi, where Xi is a smooth real scheme in ν, we observe

that since ρ∗ is a left adjoint when defined, it should preserve colimits, and hence

it suffices to define ρ∗ : ∆opPShv(ν)→ Top for the representable presheaves, that

is, we need to define ρ∗X only, for a smooth scheme X ∈ ν. For a smooth scheme

X ∈ ν and a topological space S ∈ Top, consider the following computations:

Hom∆opPShv(ν)(X, ρ∗S) = Hom∆opPShv(ν)(X, Map (Sing−R,Sing S))

= (Map (Sing−R, Sing S)(X))0 = set of 0− simplices

( [MV99], page 47, a property of S(−, −))

= Hom∆opSet(Sing XR, Sing S)

= HomTop(|Sing XR|, S)

From this computation, we see how to define ρ∗ for representable presheaves: If

X is a smooth scheme in ν, we define ρ∗X = |SingXR|. Since the topological

realization functor | | is a left adjoint (to the Sing functor), it commutes with

colimits, and we define
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Definition 4.3.1. For a general presheaf F with F = colimXi→FXi

ρ∗F = colimXi→F |Sing XiR| = |colimXi→FSing XiR |

To define the map induced by a map of presheaves, observe that given a map

of presheaves φ : F → G with F = colimXi→FXi and G = colimYj→GYj, we get

compatible maps Xi → Yj for each i and each j, by composidering the action of

the composition Xi
// F // G on the scheme Yj, giving us the continuous

map induced by φ in Top.

Given a simplicial presheaf F = (Fn) ∈ ∆opPShv(ν), note that the simplicial

topological space (ρ∗Fn)n≥0 is ‘good’ [S74, Appendix]. In view of this note, we

make the following defintion of the functor ρ∗ for a general simplicial presheaf:

Definition 4.3.2. The functor ρ∗ : ∆opPShv(ν) → Top is defined by sending

a simplicial presheaf F = (Fn) ∈ ∆opPShv(ν) to the topological space |n 7→

ρ∗Fn|, where for the simplicial topological space (ρ∗Fn)n≥0 we take its realization

as defined in [S74, Appendix].

The functor ρ∗ defined just now is in fact the left adjoint of the functor ρ∗, as

proved below:

Lemma 4.3.3. The pair of functors (ρ∗, ρ∗), ρ
∗ : ∆opPShv(ν) � Top : ρ∗, form

an adjoint pair, ρ∗ being the left adjoint and ρ∗ the right adjoint.

Proof. Consider the sequence of natural isomorphisms below for a simplicial presheaf

F = (Fn) ∈ ∆opPShv(ν) and a topological space S ∈ Top:

HomTop(ρ
∗F , S) = HomTop(|n 7→ ρ̃∗Fn|, S) = Hom∆opSet(n 7→ ρ̃∗Fn, Sing S)

Having defined ρ∗, we now discuss its left derived functor Lρ∗ : Ho[global]∆
opPShv

(ν) → HoTop. First we define Lρ∗X for a smooth real scheme X ∈ Sm/R, con-
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sidered as the constant simplicial presheaf. We must have HomHoTop(Lρ
∗X, S) =

HomHo[global]∆
opPShv(ν)(X, Rρ∗S). By means of following canonical isomorphisms

HomHo[global]∆
opPShv(ν)(X, Rρ∗S)

= HomHo[global]∆
opPShv(ν)(X, Map (Sing−R, Sing S))

= π0(Map (SingXR, SingS) (see remark 4.3.4)

= Hom∆opSet(SingXR, SingS)/ ∼ (where ∼ refers to simplicial homotopy

relation between two simplicial sets)

= HomTop(XR, S)/ ∼ (where ∼ refers to simplicial homotopy relation

between two topological spaces)

= HomTop(|SingXR|, S)/ ∼

= HomHoTop(|SingXR|, S)

Remark 4.3.4. There exists a model category structure on the category ∆opPShv(ν),

in which every Kan fibrant simplicial set determines a fibrant object, the repre-

sentable objects are cofibrant, and weak equivalences are the global weak equiva-

lences.

Remark 4.3.5. Before we formally make any definition based on above computa-

tions with hom-sets, we first extend this computation: For that purpose, let us

remind ourselves of a way of viewing the representable simplicial presheaves: A

representable simplicial presheaf is given by a simplicial ‘scheme’ X = (Xn), where

each Xn is an union of smooth real schemes in Sm/R: As a caution we should keep

in mind that such an union might sacrifice some finiteness properties of smooth R-

schemes. Thinking of a representable presheaf Xn as a constant simplicial presheaf,

we have X = colim∆opXn→̃hocolim∆opXn. Since Lρ∗ is intended to be a left adjoint,
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it must satisfy the relations of the kind

Lρ∗X = Lρ∗(hocolim∆opXn) = hocolim∆opLρ∗Xn = hocolim∆op |SingXnR |.

Now the above computation extends as follows:

HomHo[global]∆
opPShv(ν)(X, Rρ∗S)

= HomHo[global]∆
opPShv(ν)(X, ρ∗S)

= HomHo[global]∆
opPShv(ν)(colim∆opXn, ρ∗S)

= HomHoTop(Lρ
∗(colim∆opXn), S)

= HomHoTop(colim∆opLρ∗Xn, S)

= HomHoTop(hocolim∆opLρ∗Xn, S) since Lρ∗Xn is ‘good’ (see remark

4.3.6 below)

= HomHoTop(Lρ
∗X, S).

Remark 4.3.6. For a representable simplicial presheaf X = (Xn), the simplicial

topological space (Lρ∗Xn) is good [ [S74]AppendixA].

Above remark proves the canonical bijection of hom-sets through Lρ∗ and ρ∗ =

Rρ∗ as an adjoint pair for representable simplicial presheaves on ν. Therefore,

Definition 4.3.7. For a smooth real scheme X ∈ Sm/R, considered as a constant

simplicial presheaf, we define Lρ∗X = |SingXR|. And, for a representable simplicial

presheaf X = (Xn) using lemma 4.3.6 we define

Lρ∗X = hocolim∆op |SingXnR|→̃colim∆opLρ∗Xn

For a general simplicial presheaf F ∈ ∆opPShv(ν), consider the weak equivalence

ΦR(F)→̃F discussed in [MV99, remark 1.17 p. 53], here we have denoted by R the

class of all representable simplicial presheaves: This weak equivalence can be used

to define Lρ∗(F) for a general simplicial presheaf F.
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Theorem 4.3.8. The pair of functors Lρ∗ : Ho[global]∆
opPShv(ν)� HoTop : Rρ∗

defined in this section form an adjoint pair of functors.

Proof. Follows from [MV99, remark 1.17 page 53] and the computations in remark

4.3.5.
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Chapter 5
A Revised Proof of the
A1-Representability Theorem

5.1 Introduction

This chapter contains a complete proof of the representability theorem without any

reference to the contents of the first four chapters as mentioned in the introduction.

In section 5.2, we have defined the orthogonal Grassmannian GrO as an open

subscheme of the Grassmannian scheme. In section 5.3, we have recalled the defin-

tion of hermitian K-theory presheaf KO and defined a map } : GrO → KO from

the orthogonal Grassmannian into the hermitian K-theory. In section 5.4, we have

identified the π0 presheaf of the singular simplicial presheaf GrO∆• of GrO with

the singular simplicial presheaf of Grothendieck-Witt groups in theorem 5.4.15.

In section 5.5, we have studied the classifying space of the orthogonal group

O(Hn). In proposition 5.5.2, we have idetinfied it with the connected component

of 0 of the hermitian K-theory. We have defined the Stiefel presheaf in 5.5.4 and

proved that it is contractibility in theorem 5.5.7. The Stiefel presheaves are analogs

of the Stiefel manifolds in topology. Using this theorem, we have been able to

identify the classifying BO(Hn) of orthogonal group with the subpresheaf of GrO

consisting of the hyperbolic spaces in proposition 5.5.10.

In section 5.6, we have provided the global sections of GrO∆• with an operad

structure which makes them H-spaces. As pointed out in remark 5.6.4, this op-

erad structure gives us a choice of orthogonal sum of symmetric bilinear spaces in

GrO∆• and the map } : GrO → KO becomes a H-space map with respect to the

H-space structure of hermitian K-theory given by orthogonal sum.
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In section 5.7, we have proved that the map } : GrO → KO from GrO to the

hermitian K-theory is an A1-weak equivalence. We have proved in theorem 5.7.1

that the map } induces a map of global fibrations GrH∆• → GrO∆• → π0GrO∆•

and |KO[0] | → |KO∆• | → π0GW∆•. In theorem 5.4.15, we have identified the

π0 presheaf of GrO∆• with the π0 presheaf of hermitian K-theory which is the

presheaf of Grothendieck-Witt groups. And in proposition 5.5.10, we have identified

the fibers of these two fibrations via the map induced from the map }. The fact that

} is a map of group completeH-spaces now finishes the proof of the representability

theorem.

In the last section we have made some observations regarding some extensions

and applications of this result.

5.2 Orthogonal Grassmannian GrO

First we will recall the definition of the Grassmannian scheme1 Gr over a field F

which represents the algebraic K-theory in the A1-homotopy category of smooth

schemes [MV99, thm 4.3.13 p. 140, prop 4.3.7 p.138]. Then we will define an open

subscheme of Gr denoted by GrO: We have called GrO the orthogonal Grassman-

nian.

Definition 5.2.1 (Grassmannian Scheme). Let V be a F -vector space of dimen-

sion n, denote the corresponding rank n trivial bundle over SpecF also by V . The

contravariant functor XV from F -schemes to sets sending a F -scheme T
t−→ SpecF

to the set XV (T ) of rank d subbundles of the pullback bundle VT = t∗V is rep-

resented by a scheme Gr(d, V ). We will denote the pullback of V to Gr(d, V ) by

VGr unless it is necessary to specify d and V . There is a universal rank d subbundle

UGr ⊂ VGr over Gr(d, V ) with the property that for any F -scheme T there is a

1We may sometimes call scheme what is actually just an inductive colimit of schemes.
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bijection between the of F -morphisms from T to Gr(d, V ) and the set of rank d

subbundles of VT given by

f 7→ f ∗UGr ⊂ f∗VGr

[DG80, chap 1, sect 1.3, 2.4] and [K69, sect 1]. Let Gr(V ) be the F -scheme∐
d≥0Gr(d, V ). An inclusion of vector spaces V ⊂ W defines a natural trans-

formation of functors XV → XW and closed immersions Gr(d, V ) ⊂ Gr(d, W )

and Gr(V ) ⊂ Gr(W ); if V is infinite dimensional we define Gr(V ) as the colimit

over over all its finite dimensional subspaces. In particular, we have the scheme

Gr(F∞) for the infinite dimensional F -vector space F∞; and, for r ≥ 0, the scheme

Gr(F r ⊕ F∞) for the vector space F r ⊕ F∞. There are maps Gr(F r ⊕ F∞) →

Gr(F r+1⊕F∞)→ · · · corresponding to the direct sum of a copy of F for the new

standard basis element F r ⊕ F∞ → F r+1 ⊕ F∞. The colimit Gr of this system is

the Grassmannian over F .

Definition 5.2.2. Let R be a F -algebra. Recall that the hyperbolic form on Rm

can be described as follows: Let h1 be the 2-square matrix ( 0 1
1 0 ). For two matrices

a and b let a⊥b denote the matrix ( a b ), where a vacant spot has the entry 0.

The hyperbolic space Hm(R) (which we will usually write as just Hm) is the free

R-module R2m together with the standard hyperbolic form given by the matrix

hm = h1⊥ · · ·⊥h1 (m copies) [K90, Ch. I]. A map of rings R→ S induces a map

hyperbolic spaces Hn(R)→ Hn(R)⊗S ' Hn(S). We have the presheaf Hn of sets

on Sm/F given by X 7→ Hn(Γ(X, OX)) and inclusions of presheaves Hn ↪→ Hn+1

induced by the isometric embedding Hn(R) ⊂ Hn+1(R) = Hn(R)⊥H(R). The

presheaf H∞ is the colimit of Hn over n.

Definition 5.2.3 (Orthogonal Grassmannian). Let (V, φ) be a non-degenerate

symmetric bilinear form space of dimension n over F (we will generally omit φ from
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the notation). On the bundle VGr(d, V ) we have the induced form φ : VGr(d, V ) →

V ∗
Gr(d, V ) and the map φ|UGr

: UGr → U∗
Gr. The scheme GrO(d, V ) is the non-

vanishing section of the rank 1 sheaf H omGr(d, V )(∧dUGr, ∧dU∗
Gr) of the global

section ∧d(φ|UGr
); it is an open subscheme of Gr(d, V ). Denote the pullback of V

to GrO(d, V ) by VGrO(d, V ) and similarly the pullback of UGr by UGrO(d, V ) (usually

we will omit (d, V ) from notation for simplicity). Analogous to the case of the

scheme Gr(d, V ) for every F -scheme T there is a bijection between the set of F -

morphisms T
f−→ GrO(d, V ) and the set of those rank d subbundles of VT on which

the form φ restricts to a non-degenerate form given by

f 7→ f ∗(UGrO) ⊂ f∗VGrO

Let GrO(V ) =
∐

d≥0GrO(d, V ). An isometric embedding (V, φ) ↪→ (W, ψ) de-

fines a natural transformation of the functor of points of the schemes Gr(d, V )

and Gr(d, W ) and hence a map of schemes Gr(d, V ) → Gr(d, W ). We have an

isomorphism (WGr(d,W ))Gr(d, V ) ' WGr(d, V ) of the pullback bundles and under this

isomorphism the pullback of the canonical restriction ψ|UGrO(d, W )
: UGrO(d,W ) →

U∗
GrO(d,W ) is φ|UGrO(d, V )

: UGrO(d, V ) → U∗
GrO(D,V ). Thus, we have the induced

maps GrO(d, V ) → GrO(d, W ) and GrO(V ) → GrO(W ). If (Vα, φα) is an in-

creasing system of non-degenerate symmetric spaces with colimit V , we define

GrO(V ) as the colimit over GrO(Vα). In particular, denote by GrO(H∞) the

colimit of GrO(Hn) → GrO(Hn+1) (n ≥ 0) induced by the standard isometric

embedding Hn ↪→ Hn+1; and, for every r ≥ 0, by GrO(Hr⊥H∞) the colimit

of GrO(Hr⊥Hn) → GrO(Hr⊥Hn+1) induced by Hr⊥Hn ↪→ Hr⊥Hn+1. As

in the case of Grassmannian, for all r ≥ 0 there are maps GrO(Hr⊥H∞)
H⊥−−→

GrO(Hr+1⊥H∞) corresponding to the orthogonal sum of a hyperbolic plane for

the extra basis element: More precisely, on functor of points this map sends a
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direct factor V ⊂ (Hr⊥H∞)(X) to H⊥V ⊂ (Hr+1⊥H∞)(X). The orthogonal

Grassmannian GrO is the colimit over r of the system

GrO(Hr⊥H∞)
H⊥−−→ GrO(Hr+1⊥H∞)

H⊥−−→ · · ·

5.3 Hermitian K-Theory Ppresheaf KO and the

Map GrO
}−→ KO

In this section we precisely define the hermitian K-theory presheaf KO and then

define a map } : GrO → KO. We will prove in theorem 5.7.1 that this map is an

A1-weak equivalence.

Recall from [G76] that given a symmetric monoidal category C there is a category

C−1C, called group the completion of C, whose objects are pairs of objects of C and

whose morphisms are defined in [G76]. There is a functor C → C−1C called the

group completion sending an object X ∈ C to the pair (0, X).

Definition 5.3.1. Let V = (V, φ) be a non-degenerate symmetric bilinear form on

an F -scheme X, that is, a vector bundle V on X together with a non-degenerate

symmetric bilinear form φ on V . Let SV be the category whose objects are finite

rank subbundles of V on which the form φ restricts to a nondegenerate form. These

subbundles will be direct factors of V . The morphisms in SV are given by isometries.

An isometric embedding V ↪→ W gives a full embedding SV → SW of categories

where a subbundle of V is considered as a subbundle of W via the embedding

V ↪→ W . If V is a colimit of a direct system of non-degenerate symmetric bilinear

forms (Vα, φα), we define SV as the colimit of the categories SVα . For the standard

hyperbolic space H∞(X) on X [S10] we thus have the category SH∞(X) which we

will also denote by SX . The category SX is equivalent to the category of inner

product spaces over X that can be embedded in H∞(X) and thus has a symmetric

monoidal structure given by orthogonal sum, and S is a presheaf of categories on
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Sm/F . In particular, for a ring R the category SSpecR, which for simplicity will be

written as SR, is equivalent to the category of inner product spaces over R (that is,

finitely generated projective R-modules with a non-degenerate symmetric bilinear

form) since every inner product space on R admits an isometric embedding into

some hyperbolic space Hn(R).

Remark 5.3.2. It follows from definition 5.2.3 that

GrO(V ) = ObSV = N0SV ⊂ N SV

where N denotes the nerve simplicial set of a category and N0 the set of ver-

tices of nerve. Usually the hermitian K-theory is defined as the nerve simplicial

presheaf N S−1S of the group completion of S, and } is just the map given by the

composition

GrO(H∞) = ObS = N0S ⊂ N S → N S−1S.

See 5.3.5 for a precise definition of }.

To define the map GrO → KO we introduce the presheaves of categories Sr for

every positive integer r as follows. The hyperbolic space Hr(X)⊥H∞(X) defines a

symmetric monoidal category SHr(X)⊥H∞(X) which we will denote simply by Sr,X ;

and, there is a functor Sr,X
H⊥−−→ Sr+1,X mapping a direct factor E ⊂ Hr⊥H∞

to H⊥E ⊂ H⊥Hr⊥H∞ = Hr+1⊥H∞ (it is not a monoidal functor). We have

the presheaves of categories Sr which map X 7→ Sr,X , and the maps of presheaves

Sr
H⊥−−→ Sr+1. The presheaf S0 is what we have denoted by S in the above definition.

Definition 5.3.3 (Hermitian K-theory KO and hermitian K-groups KOi). The

group completion functor defines a map of presheaves of categories Sr → S−1
r Sr
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such that the diagram

Sr
H⊥
��

// S−1
r Sr

(0, H)⊥'
��

Sr+1
// S−1
r+1Sr+1

(5.3.1)

commutes, and the right vertical map, which will also be denoted by H⊥, is a

homotopy equivalence since all the categories S−1
r Sr are group complete and H⊥

is given by addition of an element. Denote the nerve simplicial presheaf X 7→

N S−1
r Sr(X) by (KO)r. The hermitian K-theory simplicial presheaf KO is the

colimit

KO = colimr≥0(N S−1
r Sr

H⊥−−→ N S−1
r+1Sr+1

H⊥−−→ · · · )

As noted above in this colimit all the maps (KO)r → (KO)r+1 → KO are homo-

topy equivalences. In particular, (KO)r as well asKO are both models of hermitian

K-theory. The hermitian K groups, which are also called the higher Grothendieck-

Witt groups, of an affine scheme X are the homotopy groups of KO(X) at the

base point 0 and are denoted by KOi(X).

Remark 5.3.4. The hermitian K-theory presheaf KO defined here is homotopy

equivalent to the one defined in [H05] in 1.3(1), 1.5 and 1.7 for affine F -schemes

in Sm/F . The corollaries 1.12 and 1.14 in [H05] prove that for affine schemes in

Sm/F , the presheaf KO is homotopy invariant and it has the Nisnevich-Mayer-

Vietoris property.

Definition 5.3.5 (The Map } from GrO to KO). The nerve simplicial presheaves

in diagram 5.3.1 and the inclusion GrO(Hr⊥H∞) = N0Sr ⊂ N Sr as 0-simplicies
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give us the commutative diagram

GrO(Hr⊥H∞)

H⊥
��

⊂ // N Sr
H⊥

��

// N S−1
r Sr = (KO)r

H⊥'
��

GrO(Hr+1⊥H∞)

H⊥
��

⊂ // N Sr+1

H⊥
��

// N S−1
r+1Sr+1 = (KO)r+1

H⊥'
��

...
...

...

of simplicial presheaves. Taking colimit over r (and composing horizontally) we get

the map

} : GrO → KO

from orthogonal Grassmannian to the hermitian K-theory presheaf.

In theorem 5.7.1 we will prove that the map } is an A1-weak equivalence, and

therefore, GrO represents the hermitian K-theory in the A1-homotopy category of

smooth F -schemes.

5.4 Grothendieck-Witt Group and π0GrO∆•

In this section we will recall the definition of the singular simplicial presheaf X∆•

of a presheaf X . For the presheaf GrO, we will prove in theorem 5.4.15 that the

π0-presheaf of GrO∆• gives an isomorphism via the map } to the presheaf GW∆•

of Grothendieck-Witt groups on affine sections SpecR for regular local rings R

with 1
2
∈ R.

Definition 5.4.1 (Grothendieck-Witt group of a ring). Let Ŵ (R) be the monoid

of isometry classes of non-degenerate symmetric bilinear form spaces over R with

respect to orthogonal sum [S85, Chap 2, sec 1]. The Grothendieck-Witt group

GW (R) of R is the group completion of the abelian monoid Ŵ (R). The presheaf

Ŵ of Witt groups is defined by X 7→ Ŵ (Γ(X, OX)), and the presheaf GW of

Grothendieck-Witt groups is defined by X 7→ GW (Γ(X, OX)).
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Let us recall the definition of the singular simplicial presheaf F∆• of a presheaf

F , see [MV99, sect 2.3.2]. The construction of singular simplicial presheaf is useful

because two naively A1-homotopic maps of presheaves define simplicially homo-

topic maps on the global sections, see the definition 5.4.3 and lemma 5.4.4.

Definition 5.4.2 (Singular simplicial presheaf F∆•). Let ∆• be the standarad

cosimplicial scheme n 7→ ∆n = Spec F [T0,T1,··· ,Tn]
<T0+T1+···+Tn=1>

. Let F be a simplicial presheaf

F . The singular simplicial presheaf |F∆• | of F is the diagonal of the bisimplicial

presheaf n 7→ F∆n : X 7→ F (∆n × X). If F is simplicially constant then this

diagonal is the simplicial presheaf F∆•. The assignment F 7→ |F∆• | is a functor

of simplicial presheaves such that the map F → |F∆• | is an A1-weak equivalence,

see [MV99, cor 2.3.8, p. 53]. For a map f : F → G of simplicial presheaves, we

will denote the corresponding map |F∆• | → |G∆• | by f .

Definition 5.4.3. Let X ∈ Sm/F be a smooth F -scheme. The two maps of F -

algebras F [T ] → Γ(X,OX) given by T 7→ 0 and T 7→ 1 give us two maps of

presheaves i0, i1 : pt = SpecF → A1 from the initial object pt of the category

PShv(Sm/F ). Let f, g : X → Z be two maps of presheaves on Sm/F . We say

that the maps f and g are naively A1-homotopic, if there is a map h : X ×A1 → Z

such that in the diagram

X × pt ' X
1×i01×i1
��

f, g // Z

X × A1

h

99sssssssssss

we have h ◦ 1 × i0 = f and h ◦ 1 × i1 = g. The set of naive-homotopy classes of

maps from X to Y is denoted by [X , Y ]A1
nv

The following lemma has been used at a couple of ocassions in this article.
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Lemma 5.4.4. Let X × A1 h−→ Y be a naive A1-homotopy between two maps

h0, h1 : X → Y of presheaves. Then for every F -algebra R, the induced maps

h0, h1 : X∆•
R → Y∆•

R

of the singular simplicial sets are simplicially homotopic.

Proof. This follows from [MV99, prop 2.3.4, p 53].

There is a surjective map of presheaves GrO(H∞) // //
Ŵ defined by sending

a non-degenerate subbundle E ⊂ H∞ to the class of E in Ŵ . Below we will define

a surjective map Ŵ
∃ ζ−→ πGrO(H∞)∆• making the diagram

GrO(H∞)

(( ((QQQQQQQQQQQQQ

zzzztttttttttt

Ŵ
ζ // //___________ π0GrO(H∞)∆•

commute. The following discussion leads us to a definition of ζ in proposition 5.4.11.

In what follows Gln will denote the usual group scheme of the invertible n-square

matrices of the ring of global sections. Let us define the presheaf of isometries of

the hyperbolic space Hn. We will study this presheaf in detail later in next section.

Definition 5.4.5 (Orthogonal Group). Let V = (V, φ) be a non-degenerate sm-

metric bilinear space over F . The presheaf O(V ) of isometries of V is defined by

X 7→ O(VX), where VX = (OX ⊗F V, φ) and O(VX) is the group of isometries of

VX . If V ⊂ W is a non-degenerate subspace of W , there is a canonical inclusion

of presheaves O(V ) ↪→ O(W ) defined by extending an isometry of V to W via the

identity on the orthogonal complement of V in W . If V = (V, φ) is a symmetric bi-

linear space (possibly degenerate) over an F -vector space V (not necessarily finite

dimensional), then we set

O(V ) = colimW⊂VO(W )
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where the indexing set runs over all the non-degenerate finite dimensional sub-

spaces W of V .

Remark 5.4.6. If V
i−→ W is an inclusion of non-degenerate subspaces then we

can describe the map O(V ) → O(W ) is given by a conjugation: Let V̄ be the

orthogonal complement of V in W . Denote the orthogonal sum decomposition of

W by V⊥ V̄ (i, ī)−−→, by g the inverse of (i, ī). Then the map O(V ) → O(W ) is

defined by f 7→ g(f⊥ idV̄ )g−1. In particular, if g : V
'−→W is an isometry, the map

O(V )→ O(W ) is given by conjugation with the isomtry g.

Remark 5.4.7. In particular, we have the presheaves O(Hn) and O(H∞) of groups

of isometries of hyperbolic spaces. For an F -algebra R, the group O(Hn)(R) can

be described as the group of square matrices M of size 2n with entries in R which

have the property that tMhnM = hn. It is called the orthogonal group presheaf. In

fact, O(Hn) is a representable sheaf. The standard isometric embeddingsHn(R) ↪→

Hn+1(R) ↪→ · · · induce inclusion of presheaves O(Hn) ↪→ O(Hn+1)

M 7→

M 0

0 IH

 .

The presheaf O(H∞) =colimnO(Hn) is the colimit.

For a matrix α defining an automorphism of Rn, the matrix

H(α) =

α 0

0 (tα)−1


defines an isometry of the hyperbolic space Hn(R). Varying α this gives a map of

schemes Gln → O(Hn). By definition the diagram

SpecR
H(α) //

α

##G
GG

GG
GG

GG
O(Hn)

Gln

H
;;wwwwwwwww
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commutes. If two maps α, β : SpecR→ Gln of presheaves are naively A1-homotopic,

then the maps H(α) and H(β) will also be naively A1-homotopic.

For every positive integer n the map

µ : O(Hn)×GrO(Hn)→ GrO(Hn)

defined by (σ, (M,h|M)) 7→ (σM, h|σM), where h| denotes the restriction of the

form on hyperbolic spaces, is an action of O(Hn) on GrO(Hn).

Proposition 5.4.8. Let M,N ⊂ H∞(R) be two non-degenerate submodules of

H∞(R). Assume that M = (M,h|M) and N = (N, h|N) are isometric. Then the

two maps SpecR→ GrO(H∞) determined by M and N are naively A1-homotopic.

Proof. There is an m such that M,N ⊂ Hm(R) ⊂ H∞(R). Let M̄ , N̄ be the

orthogonal complements of M , N in Hm, and denote by i, ī, j, j̄ the inclusions

M, M̄,N, N̄ ⊂ Hm(R). So, we have isometries M⊥M̄ (i, ī)−−→ Hm (j, j̄)←−− N⊥N̄ . By

hypothesis, there is an isometry α : M → N . Consider the isometry σ of Hm⊥Hm

defined by the right vertical matrix in the commutative diagram

M

α

��

( i0 )
// Hm⊥Hm

σ

��

M⊥M̄⊥N⊥ N̄

„

i ī
j j̄

«

oo

 α
1

α−1

1

!

��
N

“

j
0

”

// Hm⊥Hm N⊥ N̄⊥M⊥M̄.

„

j j̄
i ī

«

oo

In this diagram both horizontal compositions are the embeddings into the respec-

tive first factor. Therefore, the isometry σ : H2m → H2m satisfies σ(M) = N . Then

the isometry σ⊥σ−1 = ( σ σ−1 ) of H4m under the natural inclusion H2m ↪→ H4m
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maps M ⊂ H4m to N ⊂ H4m. Thus, in the diagram

O(H4m)×GrO(H4m)

µ
))TTTTTTTTTTTTTTT

SpecR

(1,M)

66llllllllllllll

(σ⊥σ−1,M)

((RRRRRRRRRRRRRR GrO(H4m)

O(H4m)×GrO(H4m)

µ
55jjjjjjjjjjjjjjj

,

the upper composition is given by M and the lower composition is given by N .

The proof of the proposition is complete in view of the following lemma.

Lemma 5.4.9. Given an isometry σ of H(Rn) = (Rn ⊕ Rn, h = ( 0 1
1 0 )) the map

of presheaves SpecR
σ⊥σ−1

−−−−→ O(Hn⊥Hn) is naively A1-homotopic to identity.

Proof. Let σ =
(
α β
γ δ

)
be the matrix representation of the isometry σ. Thus, σ is

invertible and tσhσ = h. From which we get that σ−1 =
(

tδ tβ
tγ tα

)
. Writing explicitly,

we get the following relations among the blocks of σ

α tδ + β tγ = I, γ tδ + δ tγ = α tβ + β tα = 0 and

tαδ +t γ β = I, tαγ +t γ α =t β δ +t δβ = 0.

Consider the matrices

A =

 0 γ

−tγ tγα

 , B =

 0 β

−tβ tδβ

 ,

e12(α) =

I α

0 I

 , and e21(− tδ) =

 I 0

− tδ I

 .

Let τ =

(
1

1
1

1

)
be the base-change isometry of hyperbolic spaces given by

H(Rn)⊥H(Rn) with the form

(
1

1
1

1

)
and H(Rn⊕Rn) with the form

(
1

1
1

1

)
.

Note that τ = τ−1. We have the identity [K90, lemma 4.4.6, p 347]

τ (σ⊥σ−1)τ = X−(A)·H(e12(α))·H(e21(− tδ)·X+(B)·X−(A)·H(e12(α))·H
(

0 −I
I 0

)
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where for an endomorphism A of Rn having the property A = − tA, the matrices

X−(A) =

I 0

A I

 and X+(A) =

I A

0 I


define isometries of H(Rn)⊥H(Rn). This is straightforward to check. The map

SpecR → O(Hn⊥Hn) defined by the matrix X−(A) is naively A1-homotopic to

identity via the map ( I 0
TA I ), similarly for X+(B). The maps defined by H(e12(α))

and H(e21(− tδ)) are also naively A1-homotopic to identity via H(e12(Tα)) and

H(e21(−T tδ)) respectively. In the matrix identity0 −I

I 0

 =

 I 0

−I I

 .

I I

0 I

 .

 I 0

−I I


the three maps on the right defined by the given matrices are naively A1-homotopic

to identity, and hence, so is the invertible matrix
(

0 −I
I 0

)
and the isometryH

(
0 −I
I 0

)
.

Thus, all the isometries involved in the product for the isometry τ (σ⊥σ−1)τ are

naively A1-homotopic to identity, and hence so is this isometry and the isometry

σ⊥σ−1.

Let Isod be the presheaf X 7→ Isod(X), where Isod(X) denotes the set of isom-

etry classes of rank d non-degenerate symmetric bilinear spaces over OX . It is a

subpresheaf of Ŵ . The following two corollaries are direct consequences of propo-

sition 5.4.8 in view of lemma 5.4.4.

Corollary 5.4.10. Given a non-degenerate symmetric bilinear form (M, φ) of

rank d over R, a choice of an isometric embedding M ⊂ H∞(R) determines an

element in the naive A1-homotopy class [SpecR,GrO(d, H∞)]A1
nv

. This element is

independent of the choice of embedding and depends only on the isometry class of
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M , and hence ∃! map ζd : Isod → π0GrO(d, H∞)∆• such that the diagram

GrO(d, H∞)

)) ))SSSSSSSSSSSSSS

xxxxqqqqqqqqqqq

Isod
ζd // π0GrO(d, H∞)∆•

commutes.

Since Ŵ =
∐

d≥0 Isod above corollary gives the following map as well.

Corollary 5.4.11. There is a unique surjective map ζ : Ŵ → π0GrO(H∞)∆•

whose restriction to Isod is the map ζd defined in the previous corollary such that

the diagram

GrO(H∞)

(( ((QQQQQQQQQQQQQ

zzzztttttttttt

Ŵ
ζ // // π0GrO(H∞)∆•

commutes.

Remark 5.4.12. For a presheaf X , it’s A1-π0 presheaf πA1

0 X is defined by X 7→

[X, X ], where [ , ] denotes the set of maps in the homotopy category of F -smooth

schemes. Let us recall how we identify the Grothendieck-Witt group of a ring R

with πA1

0 KO(R). Since KO has BG-property and is homotopy invariant for affines,

a fibrant replacement KO → KOf in the model category of Morel and Voevodsky

is a global weak equivalence on affines, [H05]. Thus, in the following commutative

diagram all the maps except possibly the left vertical one are isomorphisms

πA1

0 KO(R)
' // πA1

0 KOf (R)

π0KO(R)

OO

' // π0KOf (R).

'
OO

And hence the left vertical map π0KO(R)→ πA1

0 KO(R) is also an isomorphism.

For every positive integer r, the set of isomorphism classes of objects of the

monoidal category Sr,R = Sr,SpecR defined in 5.3.1 is isomorphic to the set Ŵ (R)
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via the map that sends E ⊂ Hr⊥H∞ to the class of E in Ŵ (R). Thus, the group

completion Sr,R → S−1
r,RSr,R used in defining KO in 5.3.3 gives us

KO0(R) = π0(S−1
r,RSr,R)

'−→ GW (R) (V, W ) 7→ V −W.

Thus, the 0th-hermitian K-group of a ring is it’s Grothendieck-Witt group.

We have a commutative diagram of presheaves of sets on Sm/F

GrO(H∞)

(( ((QQQQQQQQQQQQQ

wwwwppppppppppppp

Ŵ

can

��

ζ // // π0GrO(H∞)∆•

}
��

π0 (KO)0
// π0 | (KO)0 ∆•

R |

where can is given by the group completion functor that was used in the definition

of KO in 5.3.3, and the map π0 (KO)0 → π0 | (KO)0 ∆• | is induced by the map

(KO)0 → | (KO)0 ∆• | in 5.4.2.

Proposition 5.4.13. The map ζ induces an isomorphism on affine regular sections

SpecR such that R is local and 1
2
∈ R, and therefore it is a Zariski weak equivalence.

Proof. We need to prove that the map Ŵ (R)
ζR−→ π0GrO(H∞)∆•

R is an isomor-

phism for a regular ring R with 1
2
∈ R. In the diagram of sets

Ŵ (R)

can

��

ζR // // π0GrO(H∞)∆•
R

}
��

π0(KO)0(R) ' // π0 | (KO)0 ∆•
R |

(5.4.1)

the lower horizontal map π0(KO)0(R)→ π0 | (KO)0 ∆•
R | is an isomorphism because

of homotopy invariance of hermitian K-theory [H05]. From remark 5.4.12, we see

that the set π0 (KO)0(R) coincides with the Grothendieck-Witt group of R, and

is the group completion of the monoid Ŵ (R) via the group completion map can.
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Since for a local ring Ŵ (R) is a cancellative monoid in view of Witt’s cancellation

theorem [S85, thm 6.5, p.21], therefore, for local rings the map can is injective. And

hence from commutativity of above diagram we see that the map ζR is injective as

well for regular local ring R with 1
2
∈ R. Therefore, ζ induces an isomorphism for

such regular local rings.

Remark 5.4.14. The proposition 5.4.13 is true for the restriction map ζd from the

presheaf Isod also, and hence, we have the isomorphism of the associated Zariski

sheaves

aZar Isod
ζd−→ aZar π0GrO(d, H∞)∆•.

The example of Parimala in [P76] shows that in general the map ζd is not an

isomorphism before sheafification.

As a direct cosequence of this proposition we have the following important result.

Theorem 5.4.15. For a regular local ring R such that 1
2
∈ R, the set π0GrO∆•

R is

isomorphic to the group π0 |KO∆•
R | = π0GW∆•

R = GW (R) via the map }. Thus,

the induced map

π0GrO∆• }−→ π0 |KO∆•
R | = π0GW∆•

gives isomorphism on affine regular local sections SpecR with 1
2
∈ R.

Proof. The colimit · · · H⊥−−→ Ŵ (R)
H⊥−−→ Ŵ (R)

H⊥−−→ · · · with respect to adding the

hyperbolic plane is the Grothendieck-Witt group GW (R). Thus, taking the colimit

of the diagram 5.4.1 with respect to orthogonal sum of hyperbolic plane over (KO)r

and GrO(Hr⊥H∞) (see 5.2.3 and 5.3.3) we get the commutative diagram

GW (R)
ζR

'
//

Id
��

π0GrO∆•
R

}Ruukkkkkkkkkkkkkkk

GW (R) = π0|KO∆•
R |
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in which the vertical map is identity (see remark 5.4.12) and ζR is an isomorphism

by the previous proposition. Thus, the map }R : π0GrO∆•
R → π0 |KO∆•

R | is also

an isomorphism for a regular local ring R with 1
2
∈ R.

5.5 The Classifying Spaces BO and BO(Hn) of

Orthogonal Group

We have defined the infinite orthogonal group O = O(H∞) in 5.4.7 as the colimit

O(Hr)
H⊥−−→ O(Hr+1) · · · given by addition of hyperbolic plane. In proposition 5.5.2

we will identify its classifying space BO with the connected component KO[0] of 0

of hermitian K-theory (to be defined in 5.5.1). In the second half of this section in

the A1-homotopy category we will identify the classifying space BO(Hn) of O(Hn)

(see 5.4.7) with the supresheaf Gr(Hn, H∞) of GrO(H∞) of those non-degenerate

symmetric bilinear spaces which are isometric to the hyperbolic spaces Hn defined

in 5.5.3. For this purpose we have defined the Stiefel presheaves St(Hn, H∞) and

proved in theorem 5.5.7 that they are contractible; this part of argument works

just like the one in topology.

Definition 5.5.1 (PresheafKO[0] of connected component of 0). Let us denote the

presheaf S−1
n Sn of categories defined in 5.3.1 by hPn. Let hP0

n be the subpresheaf

of connected component of (0, Hn) in hPn: An object ((M, φ), (N, ψ)) of hPn(X)

belongs to the category hP0
n(X) if and only if (M, φ) and (N⊥Hn, ψ⊥hn) are

stably isometric in the sense that they become isometric after addition of an hy-

perbolic space. The maps hPn
(0, H)⊥−−−−→ hPn+1 given by addition of hyperbolic space

induce homotopy equivalences of subpresheaves hP0
n

(0, H)⊥−−−−→ hP0
n+1. The simplicial

presheaf KO[0] is the colimit of nerve simplicial presheaves

KO[0](X) = colimn≥0(· · ·
(0, H)⊥−−−−→ N (hP0

n)
(0, H)⊥−−−−→ N (hP0

n+1)
(0, H)⊥−−−−→ · · · )

in which all the maps N (hP0
n)

(0, H)⊥−−−−→ N (hP0
n+1) are homotopy equivalences.
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Let Õ(Hn) be the presheaf of categories having a unique object and all the

automorphisms in O(Hn) as the set of morphisms. For every n ≥ 0, there is a

functor γn : Õ(Hn)(R)→ hPn0 sending the unique object of the category Õ(Hn)(R)

to (0, Hn(R)) and an automorphism u of Hn(R) to the morphism

((0, 0) + (0, Hn(R)))
{0, u}−−−→ (0, Hn(R))

in hP0
n(R). The diagram

Õ(Hn)
γn //

H⊥
��

hPon
(0, H)⊥
��

Õ(Hn+1)
γn+1 // hPn+1

0

commutes, and hence, taking the nerve simplicial presheaves and colimit we get a

map

γ : BO = N Õ → KO[0].

In the next proposition we will prove that the map γ is an A1-weak equivalence.

For notations see the definition 5.4.2.

Proposition 5.5.2. The map

γ : |BO∆•| → |KO[0]∆
•|

induced by γ is a global weak equivalence, and hence the map γ is an A1-weak

equivalence.

Proof. In the commutative diagram

BO

A1

��

γ // KO[0]

A1

��
|BO∆•| γ // |KO[0]∆

•|
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the map γ is a global homology isomorphsim, that is, the map of simplicial sets γ :

|BO∆•| → |KO[0]∆
•| is an homology isomorphism for every smooth F -schemeX as

proved in [G76]. For a more accessible reference one can look at the proof of theorem

7.4 in [S96, p. 152]. Since |BO∆•
R| and |KO[0]∆

•
R| are both connected H-spaces

with respect to theH-space structure induced from the operad structures discussed

in section 5.6, the homology weak equivalence γ is a global weak equivalence.

Therefore, the map γ is a global weak equivalence.

Definition 5.5.3 (Presheaves GrO(V, V⊥Hm) and GrO(V, V⊥H∞)). Let V =

(V, φ) be an inner product space and W = (W, ψ) be symmetric bilinear space

(possibly degenerate and infinite dimensional) over F such that V is a subspace of

W . For an F -algebra R, let GrO(V, W )(R) ⊂ GrO(W )(R) be the set subbundles

of WR = W ⊗F R isometric to VR = V ⊗F R. The presheaf GrO(V, W ) is defined

by X 7→ GrO(V, W )(Γ(X, OX). It is a subpresheaf of GrO(W ). In particular, we

have the presheaves GrO(V, V⊥Hm) and GrO(V, V⊥H∞).

Definition 5.5.4 (The Stiefel presheaf St(V, V⊥H∞)). Let V = (V, φ) be an

inner product space and W = (W, ψ) be symmetric bilinear space (possibly de-

generate and infinite dimensional) over F such that V is a subspace of W . Let

St(V, W )(R) be the set of isometric embeddings of VR ↪→ WR, where VR = V ⊗F R

and W = W ⊗F R. We have the presheaf St(V, W ) on Sm/F defined by X 7→

St(V, W )(Γ(X, OX)). In particular, we have the presheaves St(V, V⊥Hm) and

St(V, V⊥H∞) which will be referred to as Stiefel presheaves.

Note that the set St(Hn, Hn⊥Hm)(R) can also be described as the set of (2m+

2n)×2nmatricesM with entries in R such thatM thm+nM = hn. The natural map

St(Hn, Hn⊥Hm) ↪→ St(Hn, Hn⊥Hm+1) corresponding to the standard isometric
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embedding Hn⊥Hm(R) ↪→ Hn⊥Hm+1(R) is then given by M 7→ (M0 ), where 0 is

2× 2n size zero matrix. We have the colimit presheaf St(Hn, Hn⊥H∞).

Remark 5.5.5. We have a free right action of O(V ) on St(V, W ) by composition:

St(V, W )×O(V )→ St(V, W ), (i, σ) 7→ i ◦ σ.

The map η : St(V, W )→ GrO(V, W ) defined by i : V ↪→ W 7→ Im(i), which is a

non-degenerate subbundle of W isometric to V , induces an isomorphism

η : St(V, W )/O(V )→ GrO(V, W ).

In theorem 5.5.7 we will prove that the Stiefel presheaf St(V, V⊥H∞) is A1-

contractible. Using this result we will identify the classifying space of O(V ) with

the presheaf GrO(V, V⊥H∞) in proposition 5.5.10. First, let us recall a general

result.

Lemma 5.5.6. Suppose that a group G acts freely on simplicial sets X and Y

and there is a G-equivariant weak equivalence X → Y . Then the induced map

X/G→ Y/G is a weak equivalence.

Proof. We can assume that X → Y is a surjective trivial Kan fibration. We will

prove that X/G → Y/G is a trivial Kan fibration, that is, a lift exists in the

following diagram

∂∆n

��

// X/G

��
∆n // Y/G.

In fact we only need to prove that there is lift in the following diagram

∂∆n

��

// X/G

����
∆n id // ∆n.
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Since for a free G-space Y the principal G-bundle Y → Y/G = ∆n is trivial, we

need to construct a lift in the left block of the diagram

∂∆n

��

// X/G

����

Xoo

����
∆n id // ∆n ∆n ×G.projoo

This lift can be constructed by choosing the section of proj given by σ 7→ (σ, 1)

and constructing a lift for the outer diagram.

The map

O(V⊥H∞)→ St(V, V⊥H∞), g 7→ V ' Im(gV ) ↪→ V⊥H∞

induces an isomorphism

O(V⊥H∞)

O(H∞)
→ St(V, V⊥H∞)

of the quotient presheaf with the Stiefel presheaf. In the following proposition we

will prove that the Stiefel presheaf St(V, V⊥H∞) is contractible by proving that

the inclusion O(H∞) → O(V⊥H∞) is an A1-weak equivalence, and hence, the

quotient presheaf O(V⊥H∞)
O(H∞)

is A1-contractible.

Theorem 5.5.7. The inclusion O(H∞) ↪→ O(V⊥H∞) defined in 5.4.7 is an A1-

weak equivalence, and hence, the Stiefel presheaf St(V, V⊥H∞) is A1-contractible.

More precisely, for every F -algebra R, the simplicial set St(V, V⊥H∞)∆•
R is con-

tractible.

Proof. See the definition 5.4.2 and the comment following it. We prove that the

inclusion O(H∞)∆•
R

ı−→ O(V⊥H∞)∆•
R is a weak equivalence of simplicial sets.

Since the simplicial groups O(H∞)∆• and O(V⊥H∞)∆• are H-groups, it suffices
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to prove that ı is a homology isomorphism for affine F -schemes. This is done in

the following two lemmas.

Lemma 5.5.8. The map H∗(ıR) : H∗(O(H∞)∆•
R)→ H∗(O(V⊥H∞)∆•

R) is injec-

tive.

Proof. Let ξ ∈ Hp(O(H∞)∆•
R) such that H∗(ı)(ξ) = 0 in Hp(O(V⊥H∞)∆•

R).

We can assume that there is a positive integer n such that ξ is given by the

class of ζ ∈ Hp(O(Hn)∆•
R) and Hp(ıR)(ζ) = 0 in Hp(O(V⊥Hn)∆•

R). Let V̄ be

the orthogonal complement of V in Hm(R) for some positive integer m, that is,

V̄⊥V = Hm(R). Let V⊥Hn g−→ V̄⊥V⊥Hn be the inclusion, and hence we have a

commutative diagram of isometric embeddings

Hn(R) ı //

can

��

V⊥Hn(R)

g
vvmmmmmmmmmmmm

(Hm⊥Hn)(R)

which induces the following commutative diagram

O(Hn)∆•
R

ıR //

can=Hm⊥ ((QQQQQQQQQQQQQ
O(V⊥Hn)∆•

R

g

uukkkkkkkkkkkkkk

O(Hm⊥Hn)∆•
R.

Thus, we see that the image of ζ in Hp(O(Hm+n)∆•
R) is 0. Hence, ξ = 0 ∈

Hp(O(H∞)∆•
R).

Lemma 5.5.9. The map H∗(ıR) : H∗(O(H∞)∆•
R) → H∗(O(V⊥H∞)∆•

R) is sur-

jective.

Proof. Let ξ ∈ Hp(O(V⊥H∞)∆•
R). We can choose a positive integer n such that

ξ is the image of an element ξ ∈ Hp(O(V⊥Hn)∆•
R).
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We claim that there is an isometric embedding (V⊥Hn)(R)
k−→ Hm(R) and

an isometry τ : (V⊥Hm)(R) → (V⊥Hm)(R) such that the following diagram

commutes and conjugation with τ is naively A1-homotopic to the identity

O(V⊥Hn)(R) k //

can

��

O(Hm(R))

ıR
��

O(V⊥Hm)(R)
conj τ // O(V⊥Hm)(R)

(5.5.1)

where the map can is the canonical inclusion and conj τ is the conjugation with τ

defined by g 7→ τ · g · τ−1.

To verify this, choose an isometric embedding V ↪→ Hr(R) and let V̄ be the

orthogonal complement of V in Hr(R). Denote the orthogonal sum decomposition

by (j, j̄) : V⊥V̄ '−→ Hr(R) and let ( pp̄ ) : Hr(R) → V⊥V̄ be its inverse. The

following diagram commutes

(V⊥Hn)(R)

“

j 0
0 1

”

//

can

„

1 0
0 0
0 1

«

��

(Hr⊥Hn)(R)

ıR

„

0 0
1 0
0 1

«

��
(V⊥Hr⊥Hn)(R)

σ0=

 

o p 0
j j̄p̄ 0
0 0 1

!

// (V⊥Hr⊥Hn)(R)

where σ0 is the isometry given by the matrix
( o p 0
j j̄p̄ 0
0 0 1

)
.

Let σ = σ0⊥ idV̄ be the isometry of the hyperbolic space (V⊥Hr⊥Hn⊥ V̄ )(R) '

H2r+n(R). In view of lemma 5.4.9, the isometry τ0 = σ⊥σ−1 of H4r+2n(R) is

naively homotopic to the identity. Hence, the isometry τ = idV⊥τ0 of V⊥H4r+2n =

V⊥Hm, where m = 4r + 2n, is also naively homotopic to identity. The diagram

below commutes

(V⊥Hn)(R) k //

can

��

Hm(R)

ı

��
(V⊥Hm)(R) τ // (V⊥Hm)(R)
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and induces the commutative diagram as claimed in 5.5.1 in view of remark 5.4.6.

Therefore, we have a commutative diagram of simplicial groups

O(V⊥Hn)∆•
R

k //

can

��

O(Hm)∆•
R

ıR
��

O(V⊥Hm)∆•
R

τ // O(V⊥Hm)∆•
R

in which the map τ is simplicially homotopic to the identity, see lemma 5.4.4.

Let ζ = Hp(k)(ξ) ∈ Hp(O(Hm)∆•
R). Then Hp(ıR)(Hp(k)(ξ)) = Hp(ıR)(ζ)) =

Hp(τ)(Hp(can)(ξ)) = Hp(τ)(ξ) = ξ ∈ Hp(O(V⊥Hm)∆•
R), since Hp(τ) is the iden-

tity. Thus, the map ıR is surjective on homology.

Proposition 5.5.10. For the O(V )-equivariant projection maps with diagonal ac-

tion on St(V, V⊥H∞)× EO(V )

St(V, V⊥H∞)
proj←−− St(V, V⊥H∞)× EO(V )

proj−−→ EO(V )

in the induced zig-zag of simplicial presheaves

GrO(V, V⊥H∞)∆• global←−−− • global−−−→ |BO(V )∆• |

both the maps are global weak equivalences. Hence, in the A1-homotopy category

we have an isomorphism BO(V ) ' GrO(V, V⊥H∞).

Proof. The O(V )-action on St(V, V⊥H∞), St(V, V⊥H∞)× EO(V ) and EO(V )

is free. Also, both the projection maps are global weak equivalences because of

the global contractibility of St(V, V⊥H∞)∆• (proved in 5.5.7) and |EO(V )∆• |.

Therefore, in view of lemma 5.5.6 and remark 5.5.5, taking quotients we get the

required zig-zag

GrO(V, V⊥H∞)∆• ' St(V, V⊥H∞)∆•

O(V )∆•
global←−−− • global−−−→ |EO(V )∆• |

O(V )
= |BO(V )∆• |

of global weak equivalences. Hence, this yields an isomorphismBO(V ) ' GrO(V, V⊥

H∞) in the A1-homotopy category.
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5.6 An E∞-Space Structure on Simplicial

Presheaf GrO∆•

In this section we will define an E∞-operad E∆• in the category of simplicial

presheaves on Sm/F , and show that the sections of GrO∆• are H-spaces by giving

them E∞-space structures. We will also prove that the map } : GrO∆• → |KO∆• |

induced from the map defined in 5.3.5 is a H-space map.

Definition 5.6.1 (E∞-operad E∆•). For a positive integer j and an F -algebra R,

let E(j)(R) be the set of isometric embeddings of (H∞⊥ · · ·⊥H∞)(R) in H∞(R).

This set can be described as the following limit. Let V = (V1, · · · , Vj) (j ≥ 1) be a

j-tuple of non-degenerate subspaces of H∞. Let EV (j)(R) be the set of isometric

embeddings of (V1⊥ · · ·⊥Vj)(R) ↪→ H∞(R). Note that an isometry in EV (j)(R)

factors as (V1⊥ · · ·⊥Vj)(R) ↪→ Hn(R)→ H∞(R) for some positive integer m. We

have the presheaf EV (j) of sets on Sm/F defined by X 7→ EV (j)(Γ(X, OX)). For

j-tuples V and V ′, define V ⊂ V ′ if Vi ⊂ V ′
1 ⊂ H∞, i = 1, · · · , j. If V ⊂ V ′,

we have a map of presheaves EV ′
(j) → EV (j) given by restricting an isometric

embedding (V ′
1⊥ · · ·⊥V ′

j )(R)→ (H∞)(R) to (V1⊥ · · ·⊥Vj)(R). The presheaf E(j)

is the limit presheaf

E(j) = lim←−
V=(V1,··· ,Vj):Vi⊂H∞

EV (j).

In fact, we can restrict ourselves to j-tuples of the form Hr = (Hr(R), · · · , Hr(R))

only. Define E(0) = pt. Denote the presheaf EHr
(j) by Er(j). The symmetric group

Σj acts on the presheaves Er(j) on the right through permutation of blocks as fol-

lows: Let λ : (Hr⊥ · · ·⊥Hr)(R)→ H∞(R) be an isometric embedding in Er(j)(R)

and σ ∈ Σj a permutation. Let iσ be the isometry

(Hr⊥ · · ·⊥Hr)(R)
(eσ(1),··· ,eσ(j))−−−−−−−−→ (Hr⊥ · · ·⊥Hr)(R)
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determined by σ. Define λσ to be the composition λ ◦ iσ. This induces a Σj-action

on E(j). This action is free: For, if α ◦ σ = α ◦ id = α, then σ = id since α is an

isometry.

For positive integers k; j1 · · · , jk, let (δ; λ1, · · · , λk) ∈ (E(k) × E(j1) × · · · ×

E(jk)(R)). Given a positive integer r, there exists a positive integer m such that

each λi factors through an isometric embedding (Hr⊥ · · ·⊥Hr)(R)
λi−→ Hm(R). The

composite isometry δ ◦ (λ1⊥ · · ·⊥λk) is an element of the set E(j1 + · · · + jk)(R).

This defines a map

E(k)× E(j1)× · · · × E(jk)→ E(j1 + · · ·+ jk)

(δ; λ1, · · · , λk) 7→ δ ◦ (λ1⊥ · · ·⊥λk)

giving a Σj-free operad E in the category of presheaves on Sm/F . See [M72, def

1.1 p. 2] for the definition of an operad.

Proposition 5.6.2. For every F -algebra R, E∆•
R = (E(j)∆•

R) is an E∞-operad.

Proof. To prove this, we need to show that for all j ≥ 0 the simplicial sets E(j)∆•
R

are contractible. Note that each E(j) is isomorphic to E(1) (although not functo-

rially). Thus, we need to prove the contractibility of E(1)∆•
R only. By definition of

the Stiefel presheaves in 5.5.4, we see that Er(1) is the presheaf St(Hr, H∞) and

E(1)∆•
R = lim←−

r≥0

St(Hr, H∞)∆•
R. (5.6.1)

Let O(H∞) → O(H∞) be the map of presheaves of groups defined by σ 7→

( I2r
σ ). Denote the image of this morphism by O(Hr⊥) ⊂ O(H∞). We have in-

clusions of simplicial groups O(Hr+1⊥)∆•
R ⊂ O(Hr⊥)∆•

R ⊂ O(H∞)∆•
R. Since for

an inclusion H0 ⊂ H1 ⊂ G of simplicial groups the induced map of simplicial

sets G
H0
→ G

H1
is a Kan fibration of Kan complexes, hence, the map of quotient
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presheaves

O(H∞)∆•
R

O(Hr+1⊥)∆•
R

→ O(H∞)∆•
R

O(Hr⊥)∆•
R

(5.6.2)

is a Kan fibration of Kan sets.

The map O(H∞) → St(Hr, H∞) given by σ 7→ (σ(Hr) ↪→ H∞) induces an

isomorphism O(H∞)

O(Hr⊥ )

'−→ St(Hr, H∞) such that the map St(Hr+1, H∞) ∆•
R →

St(Hr, H∞)∆•
R in the limit in 5.6.1 is the induced map in 5.6.2. In proposition

5.5.7 we have proved that the simplicial sets St(Hr, H∞)∆•
R are contractible. Thus,

in the limit 5.6.1 each map is a Kan fibration of contractible Kan complexes, and

hence, the limit presheaf is contractible.

Now we will define an action of the E∞ operad E∆• on GrO∆•, see the definition

5.2.3 and [M72, def. 1.2, p 3]. Note that the presheaf GrO can also be described

as the colimit

GrO = lim−→
U⊂H∞

GrO(U−⊥U)

where U− denotes the canonical subspace of H−∞ isometric to U , and, the colimit

is taken over all the finite dimensional non-degenerate subspaces of H∞ as in the

definition of orthogonal Grassmannian in 5.2.3 with respect to maps

GrO(U−⊥U)→ GrO(V −⊥V ), W 7→ U−
V ⊥W

corresponding to subspaces U ⊂ V of H∞, where U−
V denotes the orthogonal

complement of U− in V −.

We need to define compatible maps E(j) × GrO × · · · × GrO → GrO. Let

δ ∈ E(j)(R) and (V1, · · · , Vj) ∈ (GrO × · · · × GrO)(R). Choose non-degenerate

subspaces Wi ⊂ H∞, i = 1, · · · , j such that Vi ∈ GrO(W−
i ⊥Wi) (R). Let W =

(Wi, · · · ,Wj), then δ determines an isometric embedding W1⊥ · · ·⊥Wj
δ−→ H∞.

There is a subspace U ⊂ H∞ such that δ factors as W1⊥ · · ·⊥Wj
δ−→ U ⊂ H∞. Let
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δ− : W−
1 ⊥ · · ·⊥W−

j → U− be the isometric embedding induced by δ by symme-

try. We have the isometric embedding
(
δ−

δ

)
: W−

1 ⊥ · · ·⊥W−
j ⊥W1⊥ · · ·⊥Wj →

U−⊥U . Denote the orthogonal complement of W−
1 ⊥ · · ·⊥W−

j in U− by W−
U . The

element

(
δ−

δ

)
(V1⊥ · · ·⊥Vj)⊥W−

U

of GrO(U−⊥U) determines a well-defined element δ · (V1, · · · , Vj) ∈ GrO(R) and

an action of the E∞-operad E∆• on GrO∆•.

From this action of the operad E∆• on GrO∆• and the general theory of E∞-

operads in the category of simplicial sets gives us the following.

Proposition 5.6.3. For every F -algebra R, the simplicial set GrO∆•
R is an H-

space, and hence, in the A1-homotopy category the simplicial presheaf GrO∆• is

an H-space.

Remark 5.6.4. Th H-space structure on GrO corresponds to a choice of a di-

rect sum of two non-degenerate subspaces of H∞⊥H∞. The simplicial presheaf

|KO∆• | is also an H-space with respect to an orthogonal sum of forms and the

map } is an H-space map.

5.7 A1-Weak Equivalence of the Map }
In this section we will prove the main result of the paper:

Theorem 5.7.1 (A1-Representability Theorem). For every regular ring R with

1
2
∈ R, the map }R : GrO∆•

R → |KO∆•
R | induced by the map } : GrO → KO

defined in 5.3.5 is a weak equivalence of simplicial sets. Therefore, the map } is

an A1-weak equivalence.
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Proof. In proposition 5.5.10, we have obtained a zig-zag of A1-weak equivalences

for every n ≥ 0

GrO(Hn, Hn⊥H∞) ' St(Hn, Hn⊥H∞)

O(Hn)

proj←−− Xn
proj−−→ EO(Hn)

O(Hn)
= BO(Hn)

where Xn = St(Hn, Hn⊥H∞)×EO(Hn)
O(Hn)

and the maps proj are the natural projec-

tions. As seen in 5.5.10, this zig-zag induces global weak equivalences of simplicial

presheaves

GrO(Hn, Hn⊥H∞)∆• proj←−− |Xn∆
• | proj−−→ |BO(Hn)∆• |. (5.7.1)

Consider the pullback diagram of simplicial sets

GrO(Hn, Hn⊥H∞)∆• //

��

GrO(Hn⊥H∞)∆•

��
pt H // π0(GrO(Hn⊥H∞)∆•)

(5.7.2)

where pt is the constant presheaf and π0(GrO(Hn⊥H∞)∆•) is the π0 presheaf of

the simplicial presheaf GrO(Hn⊥H∞)∆•.

The map GrO(Hn⊥H∞) → (KO)n used to define the map } in 5.3.5 restricts

to a map

GrO(Hn, Hn⊥H∞)→ N (hP0
n) (5.7.3)

See definitions 5.5.3 and 5.5.1. Let GrH be the colimit of GrO(Hn, Hn⊥H∞)
H⊥−−→

GrO(Hn+1, Hn+1⊥H∞)
H⊥−−→ · · · corresponding to the addition of hyperbolic planes.

The colimit of 5.7.3 with respect to H⊥ gives us a map GrH → KO[0] such that

the diagram

GrH

��

// KO[0]

��
GrO

} // KO

(5.7.4)

commutes. Denote the map GrH → KO[0] by }0.
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Taking the colimit of diagram 5.7.2 with respect to H⊥, we get a pullback

diagram

GrH∆• //

��

GrO∆•

��
pt H // π0(GrO∆•).

The colimit of 5.7.1 with respect to H⊥ gives us a zig-zag of global weak equiva-

lences GrH∆• ← X→ |BO∆• |, where X denotes the colimit of the middle term.

In view of the next lemma 5.7.2, this pullback diagram maps into the pullback

diagram

|KO[0]∆
• | //

��

|KO∆• |

��
pt // π0GW∆•

via the maps } (5.3.5), }0 (5.7.2) and ζ (5.4.15). Thus, the maps of simplicial

presheaves

GrH∆•

��

}0 // |KO[0]∆
• |

����
GrO∆•

��

} // |KO∆• |

��
π0(GrO∆•)

ζ // π0GW∆•

induces a map fibrations of simplicial sets at regular affine sections. In the next

lemma 5.7.2 we have proved that }0 is a global weak equivalence. We have also

proved in theoren 5.4.15 that the induced map ζR is a weak equivalence of simplicial

sets when R is regular and 1
2
∈ R. Thus, the induced map

}R : GrO∆•
R → KO∆•

R

is a weak equivalence of simplicial sets at the base point 0 for a regular ring R in

which 2 is invertible. Since }R is a map of group complete H-spaces as remarked in
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5.6.4, it is a simplicial weak equivalence for such R. Thus, the map } is an A1-weak

equivalence.

Lemma 5.7.2. The following diagram of simplicial presheaves commutes upto a

simplicial homotopy

St(Hn, Hn⊥H∞)×EO(Hn)
O(Hn)

proj

��

proj// BO(Hn)

γn

��
St(Hn, Hn⊥H∞)

O(Hn)
// N hPn0

(5.7.5)

where the maps proj are natural projection maps and the lower horizontal map

is the composition St(Hn, Hn⊥H∞)
α 7→Imα−−−−→ GrO(Hn, Hn⊥H∞)

(5.7.3)−−−→ N hPn0 .

Furthermore, this induces the diagram

X

proj

��

proj // |BO∆• |
γ

��
GrH∆• }0 // |KO[0]∆

• |

(5.7.6)

which is commutative upto a simplicial homotopy, and hence the map }0 : GrH∆• →

|KO∆• | is a global weak equivalence.

Proof. The presheaf St(Hn, Hn⊥H∞)
O(Hn)

is nerve of the discrete category having the

sections in St(Hn, Hn⊥H∞)
O(Hn)

as its object.

Also, the simplicial presheaf St(Hn, Hn⊥H∞)×EO(Hn)
O(Hn)

is nerve of the category C

whose objects are the objects of the discrete category St(Hn, Hn⊥H∞)
O(Hn)

, and a mor-

phism from Hn i−→ Hn⊥H∞ to Hn j−→ Hn⊥H∞ is give by an isometry σ : Hn →

Hn such that j ◦ σ = i. Let us denote such a morphism by (i, σ, j). In diagram

5.7.5, the composition

St(Hn, Hn⊥H∞)× EO(Hn)

O(Hn)

proj−−−→ BO(Hn)→ N hPn0
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is induced by the functor F : C → hPn0 which sends the object (Hn i−→ Hn⊥H∞) ∈

C to (0, Hn) ∈ hPn0 , and sends the morphism (i, σ, j) to the morphism given by the

isometry σ in the category hPn0 . The other composition in this diagram is induced

by the functor G : C → hPn0 defined by (Hn i−→ Hn⊥H∞) 7→ (0, Imi) ∈ hPn0 .

Any choice of an isometry of Imi→ Hn defines a natural transformation G→ F

upto an element of the group O(Hn), thus the diagram 5.7.5 commutes upto a

simplicial homotopy.

The remaining part of this lemma is a formal consequence of the first half of the

proof.

5.8 Concluding Remarks

In this final section we will comment on a few aspects of the representability

theorem that we did not address in this paper.

This representability theorem should give us a better way to study the multi-

plicative structure on hermitianK-theory. It should also allow us to understand the

analog of Atiyah’s real KR-theory. This unstable A1-representability result can be

extended to a stable geometric representability result for the hermitian K-theory

as given by the spectrum KO defined in [H05].

With the A1-representability theorem, it can be proved that the realization of

hermitian K-theory by taking the complex points is the topological K-theory of

real vector bundles, whereas the realization by taking the real points is a product

of two copies of topological K-theory of real vector bundles.
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