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Abstract

In this thesis, we give a presentation for Milnor K-theory of a field F whose gener-

ators are tuples of commuting automorphisms. This is similar to a presentation for

Milnor K-theory given by the cohomology groups of Grayson. The main di↵erence

is that, in our presentation, we do not use a homotopy invariance relation, which we

should not expect to hold for non-regular rings R.

We go on to study this presentation for R a local ring. We conjecture that it

agrees with the usual definition of Milnor K-theory for any local ring. We give some

evidence towards this, including showing that the natural map K
n

(R) ! eK
n

(R) is

injective when n = 0, 1, 2 or when R is a regular, local ring containing an infinite

field. We also show a reciprocity result for eKM

n

(R) any ring R, which, when R is a

field, allows us to deduce surjectivity of the map.

We prove a version of the additivity, resolution, devissage and cofinality theorems

for the groups eKM

n

(R). We also construct a comparison homomorphsim from eKM

n

(R)

to the presentation of Quillen K-theory given by Grayson.
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Chapter 1

Introduction

Milnor K-theory KM

n

(F ) of a field F is a sequence of abelian groups with a certain

presentation. It was originally defined, by Milnor, in [14] based on the presentation

ofK
2

(F ) of a field given by Matsumoto [12]. In this paper, Milnor conjectures results

connecting Milnor K-theory mod 2 to quadratic forms and Galois cohomology. More

precisely, he constructs homomorphisms

h
F

: KM

n

(F )/2KM

n

(F )! Hn(G;Z/2Z)

s
n

: KM

n

(F )/2KM

n

(F )! In(F )/In+1(F ),

whereG is the Galois group of the separable closure of F and I(F ) is the fundamental

ideal of the Witt ring, and conjectures that these maps are isomorphisms. These

conjectures became known as the Milnor conjectures and were proven by Voevodsky,

Orlov and Vishik in [16], by using methods in motivic cohomology.

Milnor K-theory of a local ring was first studied in [15] and [7]. In [15], it is

shown that the maps

H
n

(GL
n

(R))! H
n

(GL
n+1

(R))! H
n

(GL
n+2

(R))! · · ·! H
n

(GL(R)),
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induced by the natural inclusion

GL
i

(R)! GL
i+1

(R)

A 7!
0@A 0

0 1

1A
are all isomorphisms when R is a local ring with infinite residue field. It is also

shown that Milnor K-theory occurs as the obstruction to further stability i.e. that

the map

KM

n

(A)
⇠
=�! H

n

(GL
n

(A))/H
n

(GL
n�1

(A))

is an isomorphism.

Nowadays, Milnor K-theory is part of motivic cohomology and there are several

theorems relating Milnor K-theory of a field to various cohomology theories. In [15]

and [21], it is also shown that there is an isomorphism

KM

n

(F )
⇠
=�! CHn(F, n)

where CHn(F, n) are Bloch’s higher Chow groups. Another connection with motivic

cohomology is with Voevodsky’s motivic cohomology groups; there is an isomor-

phism

KM

n

(F )
⇠
=�! Hn,n(Spec(F ),Z)

Many of the proofs of the theorems above rely on some of the nice properties of

Milnor K-theory. Of particular importance, is the existence of transfer maps

NM

L/F

: KM

n

(L)! KM

n

(F )

where L/F is a finite field extension. These maps are defined using Milnor’s exact

sequence from [14], which computes the Milnor K-theory of KM

n

(F (t)) in terms of

the groups KM

n�1

(F [t]/p(t)) and KM

n

(F ) where p(t) is monic, irreducible.
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In [10], Kerz constructs an analogue of this exact sequence for semi-local rings

with infinite residue fields and uses this to construct transfer maps

N
B/A

: KM

n

(B)! KM

n

(A),

where A is a semi-local ring with infinite residue fields and B/A is an etale extension

of semi-local rings with infinite residue field. The existence of transfer maps are used

to prove the Gersten conjecture for Milnor K-theory in the equi-charactistic case and

this is used to show the Bloch formula

Hn

zar

(X,KM) = CHn(X)

for X a regular, excellent scheme over an infinite field.

Therefore, if one wishes to generalise some of these results to the realm of local

rings with finite residue fields it would seem that the existence transfer maps are

important. Unfortunately, the naive generalisation of Milnor K-theory to local rings

with finite residue field does not have transfers in general. However, in [11] Kerz gives

a definition, based on ideas of Gabber, of improved Milnor K-theory of a local ring

with finite residue field and shows that this definition has transfers. Furthermore,

Kerz shows that improved Milnor K-theory agrees with Milnor K-theory when the

residue field is su�ciently large and that this extension. However, this definition is

not given by a presentation as Milnor K-theory usually is.

The purpose of this thesis is to give a possible presentation of Milnor K-theory of

any local ring, motivated by the motivic cohomology groups of Grayson. The idea is

to replace the generators in Milnor K-theory, which are n-tuples of units in R⇤, with

n-tuples of commuting automorphisms of finitely generated, projective modules.

This allows transfers to be naturally defined for any finite, flat extensions of local

rings. This is in contrast to Milnor K-theory where the existence of transfers is not

obvious, with the construction of these maps dependent on the existence of a certain

exact sequence. In fact, replacing tuples of units with tuples of automorphisms

8



allows transfers to be defined for finite, flat extensions of any ring. This presentation

is similar to the one given by the motivic cohomology of Grayson [4]. The main

di↵erence is that we do not use a homotopy invarience relation which we do not

expect to hold when R is not regular.

In chapter 1, we review some of the results in Milnor K-theory and related areas

of mathematics that we will need. In the first section of the chapter, we review

the construction of transfer maps for Milnor K-theory. We do this both for fields

and semi-local rings with infinite residue fields. Along the way, we present the

residue homomorphisms and the exact sequence necessary to define these transfers.

We end the section by stating some of the properties of these transfer maps. In

the next section we give the definition of improved Milnor K-theory studied in [11]

and state, without proof, some of its properties. In the third section we give the

definition of the motivic cohomology groups of Grayson. These groups motivate

our goal to give a presentation of Milnor K-theory which has generators n-tuples of

commuting automorphisms. In the fourth section, we present the construction of

higher algebraic K-theory of Grayson [5] which gives a presentation of the Quillen

K-theory of an exact category in terms of binary complexes.

In chapter 2, we give our definiton of eKM

n

. The purpose of this chapter is to show

that KM

n

(F ) ⇠= eKM

n

(F ) when F is a field. We begin by showing that the groups

agree when n = 0, 1 when F is a local ring. We go on to define transfers for eKM

n

,

and to prove some of the analogous identites that hold in Milnor K-theory. We then

show that the natural map KM

n

(F ) ! eKM

m

(F ) is surjective, by showing eKM

m

(F ) is

generated by images of transfers and that the transfers for KM

n

(F ) and eKM

m

(F ) are

compatible. In the last section, we prove that the map is injective. To do this we

construct an inverse by first mapping into the cohomlogy groups of Grayson and

then constructing an inverse map from these groups to Milnor K-theory.

In chapter 3, we study some properties of the groups eKM

n

. We begin by proving a
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reciprocity law for eKM

n

(R). Two immediate corollaries are that the transfer maps for

KM

n

(R) and eKM

n

(R) are compatible and the transfers for eKM

n

(R) satisfy naturality

when R is a semi-local ring with infinite residue fields. The naturality property is

enough to show that ifKM(R) agrees with eKM

n

(R) whenR is a local ring with infinite

residue field then eKM

n

(R) will agree with the improved Milnor K-groups K̂M

n

(R) of

Gabber-Kerz when R is a local ring with finite reisdue field. The remainder of this

chapter is dedicated to proving some analogues of fundamental theorems, for Quillen

K-theory, in our setting. In particular we prove versions of the additivity, resolution

and devissage theorems.

In chapter 4 we construct a comparison homomorphism eKM

n

(R)! KQ

n

(R), such

that the standard comparison homomorphism from KM

n

(R) factors through this

map. This provides further evidence that our defintion for eKM

n

is the correct one.

To do this we use the presentation of KQ

n

, due to Grayson [5], which we reviewed in

chapter 1. In the first section we review the proof of the bilinearity relation which we

take from the thesis of Harris [20]. In the next section we prove the Steinberg relation

holds inKQ

n

(R) for any ring R. Before we do this, we prove a version of the cofinality

theorem which will allow us to reduce to proving the Steinberg relation for free

modules. We then go on to prove the Steinberg relation using homotopy invariance

and functorality of KQ

n

. Because the comparison homomorphism is an isomorphism

when n = 2 this allows us to show that the map KM

2

(R) ! eKM

2

(R) is injective.

More generally, we can conclude that the kernel of the map KM

n

(R)! eKM

n

(R) is a

torsion group annihilated by (n� 1)!.

In Chapter 5, we look at some further questions that we were not able to answer.

We show, using the resolution theorem, that the groups eKM

n

(R) are generated by

images of transfers when R is regular, local. We use this to show that KM

n

(R) ⇠=eKM

n

(R), for R a DVR, if the transfers for KM

n

are compatible with those for eKM

n

.

10



In the last section we construct a map

eKM

n

(R)! H
n

(GL(R))

which we conjecture to be the composition eKM

n

(R)! KQ

n

(R)! H
n

(GL(R)).
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Chapter 2

K-theory, Motivic cohomology and

Homology

2.1 Milnor K-theory

In this section, we review some facts about Milnor K-theory including the construc-

tion of the transfer maps and its properties. We begin by reviewing the definition

of Milnor K-theory.

Definition 2.1.1. Let A be a commutative ring. We define Milnor K-theory, de-

noted KM

⇤ (A), of A to be the graded ring

KM

⇤ (A) := TensZ(A
⇤)/I

where I is the two-sided ideal generated by elements of the form a ⌦ 1 � a, for

a, 1�a 2 A⇤. We define the n’th Milnor K-group KM

n

(A) to be the abelian subgroup

generated by elements of degree n.

We denote an element a
1

⌦ . . .⌦ a
n

2 KM

n

(A) by {a
1

, . . . , a
n

}. As noted earlier,

this definition is not the correct one in general when A is a local ring with finite

residue field.
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2.1. MILNOR K-THEORY

A fundamental result in Milnor K-theory is the short exact sequence which cal-

culates the Milnor K-theory of a rational function field. This short exact sequence is

used to construct the transfer maps for Milnor K-theory. We now give the definition

of the residue maps in 2.1.2 and use these to give a presentation of the short exact

sequence of Milnor in 2.1.3.

Proposition 2.1.2. Let F be a field, v be a discrete valuation on F and F (v) be

the residue field of F. There exists a unique homomorphism

@
v

: KM

n

(F )! K
n�1

(F (v)),

such that

@
v

{⇡, u
2

, . . . , u
n

} = {u
2

, . . . , u
n

}

where ⇡ is any uniformizing element and u
i

satisfy v(u
i

) = 0.

Of particular importance, is the case when F is a field of rational functions. In

this case we get a valuation for each monic, irreducible polynomial p(t). We denote

the associated residue map by @
p(t)

. We also have a valuation with uniformizer 1

t

.

We denote the residue map for this valuation as @1.

Theorem 2.1.3. Let F be field. The sequence

0! KM

n

(F )! KM

n

(F (t))
�@⇡��!

M
⇡ irreducible,

monic

KM

n�1

(F [t]/⇡)! 0

is split exact.

One can use this sequence to define transfer maps for Milnor K-theory of fields.

These were originally defined in [1].

Definition 2.1.4. Let F be a field and L := F [t]/p(t) be a simple field extension.

We define a map

NM

L/F

: KM

n

(L)! KM

n

(F )

13



2.1. MILNOR K-THEORY

to be the composition

KM

n

(L)!
M

⇡ irreducible,

monic

KM

n

(F [t]/⇡)
 �! K

n+1

(F (t))
�@1���! K

n

(F )

where the first map is inclusion into the appriopriate direct summand and  is the

splitting map for the exact sequence in 2.1.3.

We can also define transfer maps for an arbitrary finite field extension L/F by

writing L as a tower of finite simple extensions. It was shown in [9] that this is

independent of the tower of extensions chosen.

2.1.1 Transfer maps for Milnor K-theory of semi-local rings

with infinite residue fields

In this section, we give the definition of transfer maps defined by Kerz in [10] for

finite, etale extensions of semi-local rings with infinite residue fields. To do this we

first give the analogue of the exact sequence 2.1.3. To give this sequence we only

need to define the middle term and the residue maps. We do this in the following

definitions:

Definition 2.1.5. Let A be a semi-local ring. An n-tuple of rational functions⇣
p1

q1
, . . . , pn

qn

⌘
with p

i

, q
i

2 A[t] together with a factorization

p
i

= a
i

pi
1

. . . pi
ni

q
i

= b
i

qi
1

. . . qi
mi

such that a
i

, b
i

2 A⇤ and each p
i

, q
i

is monic irreducible, is called feasible if the

fraction pi

qi
is reduced, if every irreducible factor is either equal or coprime and

Disc(p
i

),Disc(q
i

) 2 A⇤.

14



2.1. MILNOR K-THEORY

Definition 2.1.6. Let A be a semi-local ring. We define

T et(A) := Z{(p
1

, . . . ,p
n

)|(p
1

, . . . , p
n

) feasible,

p
i

2 A[t] irreducible or unit}/Linear.

Where Linear denotes the subgroup generated by elements

(p
1

, . . . , a
i

p
i

, . . . , p
n

)� (p
1

, . . . , p
i

, . . . , p
n

)� (p
1

, . . . , a
i

, . . . , p
n

)

where a
i

2 A⇤.

If we have an n-tuple of rational functions together with a choice of factorization

as in 2.1.5 then we can define an element in T et

n

(A) by using multilinear factor-

ization. We will now define the group Ket

n

(A) which will replace KM

n

(F (t)) in the

semi-local ring version of the sequence in 2.1.3.

Definition 2.1.7. Let A be a semi-local ring. We define

Ket

n

(A) = T et

n

(A)/Stet,

where Stet is the group generated by the elements in T et

n

(A) which are associated to

feasible n-tuples ⇣
p
1

, . . . , p
q

, p�q

q

, . . . , p
n

⌘
⇣
p
1

, . . . , p
q

,�p

q

, . . . , p
n

⌘
with (p, q) = 1 and (q � p, q) = 1.

We can now define the residue maps in the cases we need them.

Proposition 2.1.8. Let A be a semi-local ring with infinite residue fields. For every

monic, irreducible polynomial ⇡ 2 A[t] there exists a homomorphism

@
⇡

: Ket

n

(A)! KM

n�1

(A[t]/⇡)

15



2.1. MILNOR K-THEORY

such that

@
⇡

(⇡, u
2

, . . . , u
n

) = {u
2

, . . . , u
n

}.

where u
i

are rational functions as in 2.1.5 such that each irreducible factor is in-

vertible in KM

n�1

(A[t]/⇡). There also exists a homomorphism

@1 : Ket

n

(A)! KM

n�1

(A)

such that

@1(
1

t
, p

2

(t�1), . . . , p
n

(t�1)) = (p
2

(0), . . . , p
n

(0))

where p
i

2 A[t] are such that p
i

(0) 2 A⇤.

We can now state the version of the exact sequence 2.1.3 that we need.

Theorem 2.1.9. Let A be a semi-local ring with infinite residue fields. The sequence

0! KM

n

(A)! Ket

n

(A)! �
⇡

KM

n�1

(A[t]/⇡)! 0

is split exact, where the sum is taken over all monic, irreducible ⇡ 2 A[t] such that

Disc(⇡) 2 A⇤.

We are now ready to define the transfer maps for finite etale extensions of semi-

local rings with infinite residue fields. To do this we use the following proposition

taken from [6] Proposition 18.4.5.

Proposition 2.1.10. Let A be a local ring, k its residue field and B be a finite

A-algebra. Suppose, moreover, that k is infinite, B is infinite, or that B is a local

ring. Let n be the rank of L := B ⌦
A

k over k. Then B is etale if and only if there

exists a monic polynomial f 2 A[t] with Disc(f) 2 A⇤ such that

B ⇠= A[t]/f.

Moreover, we have that deg(f) = n.

16



2.1. MILNOR K-THEORY

Definition 2.1.11. Let A be a semi-local ring with infinite residue fields. Let B =

A[t]/⇡(t) where ⇡ is an irreducible monic polynomial with Disc(⇡) 2 A⇤. We define

the transfer maps to be the composition

KM

n

(B)!
M

KM

n

(A[t]/⇡)
 �! Ket

n+1

(A)
�@1���! K

n

(A)

where  is the splitting map in 2.1.9 and the sum is taken over all ⇡ which are

irreducible, monic and Disc(⇡) 2 A⇤. To define the splitting we take the retraction

s1 : Ket

n

(A)! KM

n

(A)

which maps a tuple of polynomials to their leading coe�cients.

Kerz also proves the following compatibility result which we will need.

Proposition 2.1.12. Let i : A! A0 be a homomorphism of semi-local rings. Let B

be as in the previous definition and let i(⇡) =
Q

j

⇡
j

be a factorization into irreducible

polynomials. Let B0
j

= A0[t]/⇡
j

. Then the following diagram commutes

KM

n

(B) ���! L
j

KM

n

(B0
j

)??yNB/A

??y�jNB0
j/A

0

KM

n

(A) ���! KM

n

(A0)

The transfer maps for Milnor K-theory satisfy the following properties

1. The map NM

B|A : KM

0

(B)! KM

0

(A) is just multiplication by [B : A].

2. The map NM

K|k : K
M

1

(B)! KM

1

(A) is gievn by

{b} 7! {detT
b

},

where T
b

is the A-linear map

T
b

: B ! B

x 7! bx

17



2.2. IMPROVED MILNOR K-THEORY

3. (projection formula) Let B|A be a finite, etale extension ↵ 2 KM

n

(A) and

� 2 KM

m

(B) we have that

NM

B|A({↵B

, �}) = {↵, NM

B|A(�)}

4. (Composition) Given a tower of etale extensions C|B|A, we have that

N
C|A = N

B|A �NC|B

5. Let B|A be a finite, etale extension and i⇤ : KM

n

(A) ! KM

n

(B) be the map

induced by the inclusion A! B. Then

NM

B|A � i⇤(↵) = [B : A]↵

.

2.2 Improved Milnor K-theory

In this section we present the generalisation of Milnor K-theory to local rings with

finite residue field due to Gabber [2] and studied in [11]. We will present this

generalisation, more generally, for certain types of abelian sheaves. Let C be the

category of abelian sheaves on the big Zariski site of all schemes. We define N C

to be the full subcategory of abelian sheaves in C such that for every finite etale

extension of local rings i : A ⇢ B there are a system of transfers

[N
B

0
/A

0 : F (B0)! F (A0)]
A

0

for any A0 which is local A-algebra such that B0 := B ⌦
A

A0 is also local. We re-

quire these transfers to be compatible in the sense that if A0 ! A00 are both local

A-algebras with B0 = B ⌦
A

A0 and B00 = B ⌦
A

A00 also local then the diagram

18



2.2. IMPROVED MILNOR K-THEORY

F (B0) F (B00)

F (A0) F (A00)

NB0|A0 NB00|A00

commutes. We also assume that

N
B

0|A0 � i0⇤ = [B : A]id
F (A)

,

where i0⇤ : F (A0)! F (B0) is the map induced by i0 : A0 ! B0.

We denote by N C 1 the full subcategory of sheaves which have a system of

compatible transfers for all finite, etale extensions A ⇢ B of local rings such that A

has infinite residue field. Clearly every sheaf in N C gives a sheaf in N C 1. The

following theorem, proved in [11], proves that every continuous sheaf in N C 1 can

be extended uniquely to a sheaf in N C .

Theorem 2.2.1. For every continuous F 2 N C 1 there exists a continuous F̂ 2
N C together natural transformation F ! F̂ , such that for any continuous G 2
N C and natural transformation F ! G there exists a unique natural transforma-

tion F̂ ! G such that the following diagram

F F̂

G

commutes. Moreover for a local ring A with infinite residue field we have F (A) =

F̂ (A)

We therefore define the improved Milnor K-theory of a local ring A to be K̂M

n

(A).

Below we give a more explicit, but equivalent, definition and then we summarize

some of the results proved in [11].

Definition 2.2.2. Let A be a commutative ring. We define the subset S 2 A[t
1

, . . . , t
n

]
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2.2. IMPROVED MILNOR K-THEORY

to be

S := {
X
i2Nn

a
i

ti 2 A[t
1

, . . . , t
n

]|ha
i

|i 2 Nni = A}

The set is multiplicatively closed so we can define the ring of rational functions to

be

A(t
1

, . . . , t
n

) = S�1A[t
1

, . . . , t
n

].

We have maps f
1

, f
2

: A(t) ! A(t
1

, t
2

), where the map f
i

maps t to t
i

. Then we

define the improved Milnor K-theory K̂M

n

(A) to be

K̂M

n

(A) = ker(KM

n

(A(t))
K

M
n (f1)�K

M
n (f2)����������! KM

n

(A(t
1

, t
2

)))

Proposition 2.2.3. Let (A,m) be a local ring. Then:

1. K̂M

1

(A) = A⇤.

2. K̂M

⇤ (A) has a natural graded commutative ring structure.

3. For every n � 0 there exists a universal natural number M
n

such that if

|A/m| > M
n

the natural homomorphism

KM

n

(A)! K̂M

n

(A)

is an isomorphism.

4. There exists a homomorphism

KQ

n

(A)! K̂M

n

(A)

such that the composition

K̂M

n

(A)! KQ

n

(A)! K̂M

n

(A)
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2.3. GRAYSON’S MOTIVIC COHOMOLOGY

is multiplication by (n� 1)! and the composition

KQ

n

(A)! K̂M

n

(A)! KQ

n

(A)

is the chern class c
n,n

.

5. Let A be regular and equicharacteristic, F = Q(A) and X = Spec(A). The

Gersten conjecture holds for Milnor K-theory, i.e. the Gersten complex

0! K̂M

n

(A)! KM

n

(F )! �
x2X(1)KM

n�1

(k(x))! . . .

is exact.

2.3 Grayson’s motivic cohomology

In this section we present certain non standard cohomology groups studied in [4].

These groups serve as the motivation for our new definition of Milnor K-theory. One

of the motivations for the development of motivic cohomology is that these groups

should appear as terms in a spectral sequence

Epq

2

= Hp�q(X,Z(�q)) =) K�p�q

(R)

Grayson’s approach to this is to study a filtration of the space K(R)

K(R) = W 0  W 1  . . .

due to Goodwillie and Lichtenbaum. We can then define the groups

Hm

G

(X,Z(t)) := ⇡
2t�m

(W t/W t+1).

We will first review the construction of W t.

Given two rings R and S we let P(R, S) denoted the exact category of R-S-

bimodules which as R-modules are finitely generated and projective. We define the
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2.3. GRAYSON’S MOTIVIC COHOMOLOGY

K-theory space

K(R, S) := K(P(R, S)).

Let G
m

:= SpecZ[U,U�1]. Note that the category

P(R,G
m

) := P(R,Z[U,U�1])

is isomorphic to the category whose objects are of the form [P, ✓] where P is a

finitely generated, projective module and ✓ is an automorphism of P . Similarly we

can define, for t � 0,

P(R,Gt

m

) = P(R,Z[U
1

, U�1

1

, . . . , U
t

, U�1

t

]).

We define

K
0

(R,G^t
m

) := K
0

(R,Gt

m

)/h[P,A
1

, . . . , I
P

, . . . , A
t

]i.

We define the R-algebra RAd as the algebraic analogue of an n-simplex

RAd = R[T
0

, . . . , T
d

]/(T
0

+ · · ·+ T d � 1)

We can now define the filtration of Goodwillie and Lichtenbaum. We define

V t := K(RA,G^t
m

) = |d 7! K(RAd,G^t
m

)|
W t := ⌦�tV t

Grayson shows that this filtration satisfies the required properties whenR is a regular

noetherian ring and

W t/W t+1 = ⌦�t|d 7! K�
0

(RAd,G^t
m

)|

One can show that

⇡
n

(W t/W t+1) ⇠= H�n+t(K�
0

(RA,G^t
m

)).
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2.4. GRAYSON’S PRESENTATION FOR QUILLEN K-THEORY

In [18] it is shown that these groups are isomorphic to Voevodsky’s groups when

X is a smooth variety over a field. We also have that Milnor K-theory is isomorphic

to certain motivic cohomology groups. So we should have that

KM

n

(F ) = Hn

G

(Spec(F ),Z(n)) = H0(K�
0

(RA,G^n
m

)).

In chapter 2, we shall prove directly that

KM

n

(F ) = H0(K�
0

(RA,G^n
m

)).

in order to prove the main result that KM

n

(F ) ⇠= eKM

n

(F ).

2.4 Grayson’s presentation for Quillen K-theory

In this section we present Grayson’s presentation for Quillen K-theory given in [5],

and studied in [8] and [20]. We use this presentation in chapter 4 to construct our

version of the comparison homomorphism. We will first give the definition of the

category of chain complexes and of binary chain complexes.

Let N be an exact category. We first look at chain complexes in this category.

Definition 2.4.1. Let N be an exact category. A chain complex is a sequence

. . . �! C
i+1

di+1��! C
i

di�! C
i�1

�! . . .

where i 2 Z, C
i

2 Ob(N ) and d
i

d
i+1

= 0 for all i 2 Z. We denote a chain

complex by C·. A map of chain complexes f· : C· ! D· is a collection of morphisms

f
i

: C
i

! D
i

such that the diagram

. . . C
i+1

C
i

C
i�1

. . .

. . . D
i+1

D
i

D
i�1

. . .

di+1

fi+1

di

fi

di�1

fi�1

d

0
i+1 d

0
i

d

0
i�1
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2.4. GRAYSON’S PRESENTATION FOR QUILLEN K-THEORY

commutes. We say that a chain complex C· is bounded if 9N 2 Z such that C
i

= 0

for all i � N and i  �N . We define the category CN , to be the category whose

objects are bounded chain complexes of N and whose morphisms are maps of chain

complexes. We say that a sequence of morphisms of chain complexes

C· D· E
.

f. g·

is exact, if

C
i

D
i

E
i

fi gi

is exact for all i. This gives CN the structure of an exact category.

Because CN is exact we can inductively define

CnN := C(Cn�1N ).

We now define what it means for a chain complex to be acyclic.

Definition 2.4.2. Let N be an exact category and C· be an acyclic chain complex.

We say that C· is acyclic if the sequence factors as

Z
i

Z
i�2

. . . C
i+1

C
i

C
i�1

. . .

Z
i+1

Z
i�1

where

Z
i

C
i

Z
i�1

are exact for each i. We define Cq(N ) to be the category of bounded, acyclic com-

plexes.
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2.4. GRAYSON’S PRESENTATION FOR QUILLEN K-THEORY

We now define binary complexes of an exact category. They will be the generators

of the presentation of KQ

n

.

Definition 2.4.3. A binary chain complex, of objects in some exact category N ,

is a triple (C·, d, d0) where both (C·, d) and (C·, d0) are chain complexes. We call d

the top di↵erential and d0 the bottom di↵erential. A morphism between two binary

complexes (C·, d, d0) and (D·, @, @0) is a morphism of the chain complexes

f : (C·, d)! (D·, @)

f : (C·, d
0)! (D·, @

0).

i.e. f must commute with both the top and bottom derivative.

We define BN to be the category of bounded, binary chain complexes. A se-

quence of morphisms is exact if it is exact on the underlying Z-graded objects.

As with chain complexes, because BN is an exact category we can inductively

define BnN := B(Bn�1N ).

Given a chain complex, there is a natural way to get a binary chain complex by

taking both the top and bottom di↵erentials to be the di↵erential of the chain com-

plex. Conversely, given a binary chain complex we can define two chain complexes,

one by using the top di↵erential, the other by using the bottom di↵erential. This

gives us three functors

� : CN ! BN (C·, d) 7! (C·, d, d)

> : BN ! CN (C·, d, d
0) 7! (C·, d)

? : BN ! CN (C·, d, d
0) 7! (C·, d

0)

We call � the diagonal functor, > the top functor and ? the bottom functor. We

say that a binary complex is acyclic if its image under both > and ? is acyclic. We

define BqN to be the category of bounded, acyclic binary complexes. One can show

that BqN is an exact category, so we can define (Bq)n(N ) := Bq((Bq)n�1N ).
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2.4. GRAYSON’S PRESENTATION FOR QUILLEN K-THEORY

We can describe objects of (Bq)n(N ) as Zn-graded collections of objects, to-

gether with acyclic di↵erentials d
1

, d0
1

, . . . , d
n

, d0
n

d
i

, d0
i

: C
(x1,...,xi,...,xn) ! C

(x1,...,xi�1...,xn)

such that di↵erentials in opposite direction commute. We call an object of (Bq)nN

an n-dimensional bounded acyclic binary multicomplex.

We can extend the functors above to the setting of multicomplexes. If I have an

n-dimensional bounded acyclic binary multicomplex I can get a complex of (n� 1)-

dimensional bounded acyclic binary multicomplexes by forgetting one of the di↵er-

entials. There are 2n ways to do this which gives us functors

>i : (Bq)nN ! Cq(Bq)n�1N

?i : (Bq)nN ! Cq(Bq)n�1N .

We also have a version of the diagonal functor. Given any chain complex of (n� 1)-

dimensional bounded acyclic binary multicomplexes we can get a n-dimensional

bounded acyclic binary multicomplex by duplicating the di↵erential in the i’th di-

rection. This gives us functors

�i : Cq(Bq)n�1N ! (Bq)nN

If a binary multicomplex is in the image of �
i

, for some i, then it is called diagonal.

We are now ready to state the main result of [5].

Theorem 2.4.4. Let N be an exact category. We have an isomorphism

KQ

n

(N ) ⇠= K
0

((Bq)nN )/Diag

where Diag is the subgroup of K
0

((Bq)n generated by the diagonal binary multicom-

plexes.
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Chapter 3

A new presentation for Milnor

K-theory of a field

In this chapter, we give a presentation for Milnor K-theory of fields in terms of

commuting automorphisms. We begin by giving some motivation and proving some

of the basic identities for Milnor K-theory in this new setting. We then go on to

show that the groups are isomorphic for a field F .

In section 2.3 we said that Milnor K-theory is isomorphic to Grayon’s motivic

cohomology groups. This suggests that a presentation of Milnor K-theory for local

rings could be

eKM

n

(R) = Z{[P,A
1

, . . . , A
n

]}/(some relations).

However, the presentation of Grayson’s cohomology groups includes a homotopy

invariance relation which we should not expect to hold when R is not regular. In 3.5

we prove explicitely that these cohomology groups are isomorphic to Milnor K-theory

for F a field. In the proof, we need the natural homomorphism to be well-defined

and we need an exact sequence relation to hold. For the map to be well-defined

we need the multilinearity and Steinberg relations to hold for rank one elements.
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We also need transfers to exist, so we need the relations to hold for any commuting

automorphisms of projective modules. This motivates the following definition:

Definition 3.0.1. Let R be a commutative ring, we define the groups eKM

n

(R) to be

eKM

n

(R) := Z{[P,A
1

, . . . , A
n

]}/(1)� (3)

where P is a finitely generated, projective R-module, A
i

are automorphisms of P

that commute pairwise and relations are (1)-(3) are as follows:

1. [P
1

, A
1

, . . . , A
n

] + [P
3

, C
1

, . . . , C
n

] = [P
2

, B
1

, . . . , B
n

], if there exists an exact

sequence

0 �! P
1

f�! P
2

g�! P
3

�! 0

such that

f � A
i

= B
i

� f and g �B
i

= C
i

� g

for every i.

2. [P,A
1

, . . . , A
i

A0
i

, . . . , A
n

] = [P,A
1

, . . . , A
i

, . . . , A
n

] + [P,A
1

, . . . , A0
i

, . . . , A
n

].

3. [P,A
1

, . . . , A
n

] = 0, if A
i

+ A
i+1

= Id
P

for some i.

More generally we define eKM

n

E for an exact category E :

Definition 3.0.2. Let E be an exact category. We define Autn(E ) to be the category

whose objects are elements of the form [M,⇥
1

, . . . ,⇥
n

] such that M 2 ob(E ) and

⇥
i

are automorphisms of M such that ⇥
i

⇥
j

= ⇥
j

⇥
i

for all i,j. The morphisms

between two objects [M
1

,⇥
1

, . . . ,⇥
n

] and [M
2

,�
1

, . . . ,�
n

] are the set of morphisms

f : M
1

!M
2

in E such that f �⇥
i

= �
i

� f for every i. We say that a sequence

[M
1

,⇥
1

, . . . ,⇥
n

]
f�! [M

2

,�
1

, . . . ,�
n

]
g�! [M

3

, 
1

, . . . , 
n

]
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is exact in Autn(E ) if

M
1

f�!M
2

g�!M
3

is exact in E .

This makes Autn(E ) into an exact category. We can now define the Milnor

K-groups of an exact category.

Definition 3.0.3. We define eKM

0

(E ) to be the usual Grothendieck group of an exact

category i.e.

eKM

0

(E ) := Z{ob(E )}/short exact sequences.

We then define eKM

i

(E ) for i � 1 as follows:

eKM

1

(E ) := eKM

0

(Aut1(E ))/h[M,⇥
1

⇥
2

] = [M,⇥
1

] + [M,⇥
2

]ieKM

i

(E ) := eKM

0

(Auti(E ))/H

where H is the subgroup generated by any element of the two following forms:

[M,⇥
0

, . . . ,⇥
i

⇥
i+1

, . . . ,⇥
n

]� [M,⇥
0

, . . . ,⇥
i

, . . . ,⇥
n

]� [M,⇥
0

, . . . ,⇥
i+1

, . . . ,⇥
n

]

[M,⇥
1

, . . . ,⇥
n

] whenever ⇥
i

+⇥
i+1

= Id
M

for some i

To simplify notation we define

eKM

n

(R) := eKM

n

(Proj
R

)eGM

n

(R) := eKM

n

(Mod
R

)

where Proj
R

is the category of finitely generated left projective R-modules and Mod
R

is the category of finitely generated left R-modules. The purpose of this chapter is

to show that the natural map

KM

n

(F )! eKM

n

(F ) (3.1)

{a
1

, . . . , a
n

} 7! [F, a
1

, . . . , a
n

] (3.2)

is an isomorphism when F is a field.
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3.1. THE ISOMORPHISM FOR KM

0

AND KM

1

3.1 The isomorphism for KM
0 and KM

1

In this section, we show that these groups agree with Milnor K-theory when n = 0, 1.

In fact, we show this for any local ring For n = 0, this map is defined as

KM

0

(R)! eKM

0

(R)

m 7! [Rm].

It is simple to show that this map is both injective and surjective. We now deal

with the case n = 1.

Proposition 3.1.1. Let R be any commutative ring such that every matrix over R

can be reduced to a diagonal matrix by elementary row and column operations. Then

the map

g
1

: R⇤ ! eKM

1

(R)

a 7! [R, a]

is an isomorphism.

Proof. To show the map is injective we construct an inverse map. Define

��1 : eKM

1

(R)! R⇤

[Rm, A] 7! det(A).

To show the map is well-defined we only need to show that the relations in eKM

1

(R)

are satified. The multilinearity relation follows from the identity

det(AB) = det(A) det(B).

The exact sequence relation follows from the identity

det

0@A B

0 C

1A = det(A) det(C)
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3.1. THE ISOMORPHISM FOR KM

0

AND KM

1

To show the map is surjective, we first define e
(i,j)

(�) to be the matrix0BBBBBBBBBBBBBBB@

1 . . . 0 . . . 0 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 1 . . . � . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 . . . 1 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 . . . 0 . . . 1

1CCCCCCCCCCCCCCCA
where the � is in the i’th row and j’th column. We claim this element is trivial ineKM

1

(F ). We prove this by induction on the size of the matrix. For a 1 ⇥ 1 matrix

the result is trivial. Assume it is true for an n ⇥ n matrix. Take a matrix e
(i,j)

(�)

and any standard basis vector e
k

with k 6= j. Then we have an exact sequence

0! [F.e
k

, 1]! [F n, e
(i,j)

(�)]! [F n�1, A]! 0

where A is a matrix of the form e
(m,l)

(�0). By linearity [F.e
k

, 1] = 0 and by induction

[F n�1, A] = 0.

Therefore, using the linearity relation we have that

[Rm, A] = [Rm, Ae
(i,j)

(�)]

for any A 2 GL
m

(R) and � 2 R. So given an element [Rm, A] 2 eKM

1

(R) we can use

the above relation to row reduce A to a diagonal matrix. From there we can use the

exact sequence relation to write

[Rm, A] =
mX
i=1

[R, a
i

]

for some a
i

2 R⇤.
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3.2. TRANSFER MAPS FOR eKM

N

3.2 Transfer maps for eKM
n

In this section, we define the transfer maps for eKM

n

. First, we define multiplication

on the graded abelian group

eKM

⇤ (R) :=
1M
i=0

eKM

i

(R).

by the formula

[P
1

, A
1

, . . . , A
n

]⌦ [P
2

, B
1

, . . . , B
m

] :=

[P
1

⌦ P
2

, A
1

⌦ Id
P2 , . . . , An

⌦ Id
P2 , IdP1 ⌦B1

, . . . , Id
P2 ⌦Bm

]

Definition/Proposition 3.2.1. Let R ! S be a finite map of commutative rings

such that S is projective as an R-module. The map

eNM

S/R

: eKM

n

(S)! eKM

n

(R)

[M, ✓
1

, . . . , ✓
n

] 7! [M, ✓
1

, . . . , ✓
n

]

is well-defined and satisfies the following:

1. If R and S are local rings, then the map eNM

S/R

: eKM

0

(S) ! eKM

0

(R) is just

multiplication by [S : R].

2. If R and S are local rings, the map eNM

S/R

: eKM

1

(S)! eKM

1

(R), is given by

[V, ✓] 7! [R, det
R

(✓)]

where det
R

(✓) is the determinant of ✓ as an R-linear map.

3. (Composition) Let R! S ! T be a composition of finite maps such that S is

a projectve R-module and T is a projective S-module, then

eNM

T/R

= eNM

S/R

� eNM

T/S
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3.2. TRANSFER MAPS FOR eKM

N

4. (Projection formula) Let i⇤ : eKM

n

(R) ! eKM

n

(S) be the map induced by inclu-

sion, [V,⇥
1

, . . . ,⇥
n

] 2 eKM

n

(R) and [W,⇥
n+1

, . . . ,⇥
n+m

] 2 eKjhM

m

(S). Then

eNM

S/R

(i⇤([V,⇥1

, . . . ,⇥
n

])⌦
S

[W,⇥
n+1

, . . . ,⇥
n+m

]) =

[V,⇥
1

, . . . ,⇥
n

]⌦
R

eNM

S/R

([W,⇥
n+1

, . . . ,⇥
n+m

])

5. Let R! S be a finite, etale extension of semi-local rings with infinite residue

fields. Let i⇤ : eKM

n

(R) ! eKM

n

(S), be the map induced by inclusion i : R ! S.

Then

eNM

S/R

� i⇤ = [S : R]⇥ Id

Proof. We only prove (4) and leave the other identites to the reader. Note that (5)

is a special case of the projection formula.

eNM

S/R

(i⇤([V,⇥1

, . . . ,⇥
n

])⌦
S

[W,⇥
n+1

, . . . ,⇥
n+m

]) =eNM

S/R

([V ⌦
R

S,⇥
1

⌦ Id
S

, . . . ,⇥
n

⌦ Id
S

]⌦
S

[W,⇥
n+1

, . . . ,⇥
n+m

]) =eNM

S/R

([V ⌦
R

W,⇥
1

⌦ Id
W

, . . . ,⇥
n

⌦ Id
W

, Id
V

⌦⇥
n+1

, . . . , Id
V

⌦⇥
n+m

]) =

[V,⇥
1

, . . . ,⇥
n

]⌦
R

eNM

S/R

([W,⇥
n+1

, . . . ,⇥
n+m

])

We also have transfers of the form

eNM

S/R

: eGM

n

(S)! eGM

n

(R)

for finite, flat maps R! S.
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3.3. RELATIONS IN eKM

N

(R)

3.3 Relations in eKM
n (R)

In this section, we prove some of the standard identities for Milnor K-theory foreKM

n

. Usually the proofs of these theorems only hold for rings with many units,

however in these new groups we can get around this by using matrices. This is

one of the benefits of having more general transfers for eKM

n

(R). We now prove the

following useful identity which is used to prove graded commutativity as well as the

reciprocity law.

Proposition 3.3.1. Let E be an exact category. Then

[M,⇥
1

, . . . ,⇥
n

] = 0 2 eKM

n

(E )

if ⇥
i

+⇥
i+1

= 0 for some i.

Proof. We begin by proving the theorem in the case when 1� ⇥
i

is invertible. For

this we use the identity

�⇥
i

=
1�⇥

i

1�⇥�1

i

.

Using this we can see that

[⇥
1

, . . . ,⇥
i

,�⇥
i

, . . . ,⇥
n

] = [⇥
1

, . . . ,⇥
i

,
1�⇥

i

1�⇥�1

i

, . . . ,⇥
n

]

= [⇥
1

, . . . ,⇥
i

, 1�⇥
i

, . . . ,⇥
n

]

� [⇥
1

, . . . ,⇥
i

, 1�⇥�1

i

, . . . ,⇥
n

]

= 0

We now prove the identity when 1 � ⇥
i

is not invertible. To do this we prove

that 3[M,⇥
1

, . . . ,⇥
n

] = 0 and 4[M,⇥
1

, . . . ,⇥
n

] = 0.

Let � : M3 !M3 be the morphism given by the matrix0BBB@
0 0 Id

M

Id
M

0 � Id
M

�⇥
i

0 Id
M

⇥
i

1CCCA .
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Consider the element

[M3,⇥
1

⇥ Id
M

3 , . . . ,⇥
i

⇥ �,�⇥
i

⇥ �, . . . ,⇥
n

⇥ Id
M

3 ].

We claim that this element is 0 in eKM

n

(E ). To show this we only need to show that

Id
M

3 �⇥
i

⇥ � is invertible which is easy to show. So the element above is trivial

and using multilinearity we obtain

0 = [M3,⇥
1

⇥ Id
M

3 , . . . ,⇥
i

⇥ Id
M

3 ,�⇥
i

⇥ Id
M

3 , . . . ,⇥
n

⇥ Id
M

3 ]

+ [M3,⇥
1

⇥ Id
M

3 , . . . ,⇥
i

⇥ Id
M

3 ,�, . . . ,⇥
n

⇥ Id
M

3 ]

+ [M3,⇥
1

⇥ Id
M

3 , . . . ,�,⇥
i

⇥ Id
M

3 , . . . ,⇥
n

⇥ Id
M

3 ]

+ [M3,⇥
1

⇥ Id
M

3 , . . . ,�,��, . . . ,⇥
n

⇥ Id
M

3 ].

We claim that the final 3 elements in this sum are 0. The last element is 0 because

1 � � is invertible. The other two are 0 because we can use elementary row and

column operations to reduce � to the identity matrix. So we have proved that

0 = [M3,⇥
1

⇥ Id
M

3 , . . . ,⇥
i

⇥ Id
M

3 ,�⇥
i

⇥ Id
M

3 , . . . ,⇥
n

⇥ Id
M

3 ],

and using the exact sequence relation we get

3[M,⇥
1

, . . . ,⇥
i

,�⇥
i

, . . . ,⇥
n

] = 0

as required.

The proof that 4[M,⇥
1

, . . . ,⇥
i

,�⇥
i

, . . . ,⇥
n

] = 0 is similar taking

� : M4 !M4

to be the morphism given by the matrix0BBBBBB@
0 0 0 � Id

M

Id
M

0 0 Id
M

+⇥
i

0 Id
M

0 �⇥
i

0 0 Id
M

0

1CCCCCCA .
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We have a few corollaries of this result. It gives us graded-commutativity of the

multiplication defined on eKM

⇤ (R).

Corollary 3.3.2. Let E be an exact category. Then the identity

[M,⇥
1

, . . . ,⇥
i

,⇥
i+1

, . . . ,⇥
n

] = �[M,⇥
1

, . . . ,⇥
i+1

,⇥
i

, . . . ,⇥
n

]

holds in eKM

n

(E ), for any [M,⇥
1

, . . . ,⇥
i

,⇥
i+1

, . . . ,⇥
n

] 2 eKM

n

(E ). In particular if R

is a commutative ring we have that

[P
1

, A
1

, . . . , A
n

]⌦ [P
2

, B
1

, . . . , B
m

] = (�1)mn[P
2

, B
1

, . . . , B
m

]⌦ [P
1

, A
1

, . . . , A
n

]

in eKM

⇤ (R).

Proof. The proof is the same as the proof that is given usually for Milnor K-theory.

0 = [M,⇥
1

, . . . ,⇥
i

⇥
i+1

,�⇥
i

⇥
i+1

, . . . ,⇥
n

]

= [M,⇥
1

, . . . ,⇥
i

,�⇥
i

, . . . ,⇥
n

] + [M,⇥
1

, . . . ,⇥
i

,⇥
i+1

, . . . ,⇥
n

]

+ [M,⇥
1

, . . . ,⇥
i+1

,�⇥
i+1

, . . . ,⇥
n

] + [M,⇥
1

, . . . ,⇥
i+1

,⇥
i

, . . . ,⇥
n

]

= [M,⇥
1

, . . . ,⇥
i

,⇥
i+1

, . . . ,⇥
n

] + [M,⇥
1

, . . . ,⇥
i+1

,�⇥
i+1

, . . . ,⇥
n

]

as required.

A corollary of 3.3.2 is that [M,⇥
1

, . . . ,⇥
n

] = 0 2 eKM

n

(E ) if ⇥
i

+ ⇥
j

= 1 or

⇥
i

= �⇥
j

for any i 6= j. Before moving on we need one final identity:

Corollary 3.3.3. Let E be an exact category, then the identity

[M,⇥
1

, . . . ,⇥
i

,⇥
i+1

, . . . ,⇥
n

] = [M,⇥
1

, . . . ,� ⇥
i

⇥
i+1

,⇥
i

+⇥
i+1

, . . . ,⇥
n

]

holds in eKM

n

(E ), whenever ⇥
i

+⇥
i+1

is invertible.

36



3.4. SURJECTIVITY OF THE MAP

Proof. Using multilinearity we have that

[M,⇥
1

, . . . ,� ⇥
i

⇥
i+1

,⇥
i

+⇥
i+1

, . . . ,⇥
n

]

= [M,⇥
1

, . . . ,� ⇥
i

⇥
i+1

,
⇥

i

⇥
i+1

+ 1 . . . ,⇥
n

] + [M,⇥
1

, . . . ,� ⇥
i

⇥
i+1

,⇥
i+1

, . . . ,⇥
n

]

The first element in the sum is trivial by the Steinberg relation. Then using multi-

linearity on the second term we see that the sum is equal to

�[M,⇥
1

, . . . ,�⇥
i+1

,⇥
i+1

, . . . ,⇥
n

] + [M,⇥
1

, . . . ,⇥
i

,⇥
i+1

, . . . ,⇥
n

]

The first term is trivial by 3.3.1 and so the sum is equal to

[M,⇥
1

, . . . ,⇥
i

,⇥
i+1

, . . . ,⇥
n

]

as required.

3.4 Surjectivity of the map

In this section, we will show that the map (3.1)

KM

n

(F )! eKM

n

(F )

is surjective. To do this we will first show that the groups eKM

n

(F ) are generated by

images of transfer maps. To finish the proof we then show that the transfer maps

for KM

n

(F ) are compatible with the maps for eKM

n

(F ). We do the first part, more

generally, for the groups K
0

(F,Gn

m

) defined in chapter 2.3 because it will be more

useful later to have this result.

For any element [Fm, A
1

, . . . , A
n

] 2 K
0

(F,Gn

m

) we define a F [t±
1

, . . . , t±
n

]-module

Fm where multiplication by t
i

is just multiplication by A
i

. Note that this is well-

defined because the matrices commute and are invertible. We call an element

[Fm, A
1

, . . . , A
n

] simple if its associated F [t±
1

, . . . , t±
n

]-module is simple. We claim

that the simple elements generate the group K
0

(F,Gn

m

).
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Lemma 3.4.1. Every element [Fm, A
1

, . . . , A
n

] can be written as a sum of simple

elements in K
0

(F,Gn

m

).

Proof. Assume not, then there exists an element [Fm, A
1

, . . . , A
n

], with m minimal,

which cannot be written as a sum of simple elements. [Fm, A
1

, . . . , A
n

] cannot be

simple itself so there must be a subspace V ⇢ Fm such that A
i

restricts to an

isomorphism on V . Therefore we have an exact sequence

0! [V,A
1

, . . . , A
n

]! [Fm, A
1

, . . . , A
n

]! [Fm/V,A
1

, . . . , A
n

]! 0.

Using the exact sequence relation we can write [Fm, A
1

, . . . , A
n

] as a sum of two

elements each of which have rank less than m. So then each of these elements must

be a sum of simple elements, hence so is [Fm, A
1

, . . . , A
n

].

We will now show that the simple elements are images of some rank 1 ele-

ment under some transfer map. Take any simple element [Fm, A
1

, . . . , A
n

]. Then,

as explained above, Fm is naturally a simple F [t±
1

, . . . , t±
n

]-module. The simple

F [t±
1

, . . . , t±
n

]-modules are those of the form F [t±
1

, . . . , t±
n

]/m where m is a maximal

ideal. So there is an F [t±
1

, . . . , t±
n

]-module isomorphism where multiplication on Fm

by A
i

corresponds to multiplication on F [t±
1

, . . . , t±
n

]/m by t
i

. We therefore have the

following:

Proposition 3.4.2. Let [Fm, A
1

, . . . , A
n

] 2 K
0

(F,Gn

m

) be simple and let

F [t±
1

, . . . , t±
n

]/m

be a finite extension of F such that

F [t±
1

, . . . , t±
n

]/m = Fm

as a F [t±
1

, . . . , t±
n

]-module. Then

N
F [t1,...,tn]/m|F ([F [t±

1

, . . . , t±
n

]/m, t
1

, . . . , t
n

]]) = [Fm, A
1

, . . . , A
n

]

Hence K
0

(F,Gn

m

) is generated by images of rank 1 elements under transfer maps.
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We now give another proof of the fact that K
0

(F,Gn

m

) is generated by the images

of transfer maps in the hope that one of these methods may generalise to the case

of local rings considered later.

Take an element [V,A
1

, . . . , A
n

] 2 K
0

(F,Gn

m

). Take a polynomial, of minimal

degree, p(t) 2 F [t] such that the nullity of p(A
1

) is greater than 0. That is, there

exists a non-zero vector v such that p(A
1

)v = 0. We claim that such a polynomial

p(t) is irreducible. Assume not then let

p(t) = p
1

(t)p
2

(t).

Then we must have that both p
1

(A
1

) and p
2

(A
1

) have nullity 0. But then p
1

(A
1

)

must annihilate p
2

(A
1

)v which gives a contradiction. So p(t) must be irreducible.

We define an F -subspace V
p(t)

to be the set annihilated by p(A
1

) i.e.

V
p(t)

= {v 2 V | p(A
1

)v = 0}.

We claim that A
i

restrict to automorphisms on V
p(t)

. To show this, we only need to

show that the map

A
i

: V
p(t)

! V
p(t)

is well-defined, i.e. that the image of the map is is contained in V
p(t)

. This follows

from the commutativity of A
1

and A
i

. Hence we have an exact sequence

0! [V
p(t)

, A
1

|
Vp(t)

, . . . , A
n

|
Vp(t)

]! [V,A
1

, . . . , A
n

]! [W,B
1

, . . . , B
n

]! 0.

Using the exact sequence relation and continuing inductively on W gives that

K
0

(F,G
m

) is generated by elements of the form [V
p(t)

, A
1

, . . . , A
n

] where every vec-

tor v 2 V
p(t)

is annihilated by p(A
1

). We now use a change of basis to put A
1

into

rational canonical form which converts A
1

into a block diagonal matrix of the form0BBB@
C

1

. . . 0
...

. . .
...

0 . . . C
l

1CCCA (3.3)
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where C
i

is of the form 0BBBBBB@
0 . . . 0 ai

0

1 . . . 0 ai
1

...
. . .

...
...

0 . . . 1 ai
mi�1

1CCCCCCA . (3.4)

If any of these square matrices are of size less than deg(p) ⇥ deg(p) then there

would exist a vector annihilated by a polynomial of smaller degree than p. This is

impossible by the construction. Alternatively, if any of these blocks are larger than

deg(p)⇥deg(p), then p(C
i

)e
1

6= 0 where e
1

is the first standard basis vector. So each

matrix is sqaure of size deg(p)⇥deg(p). We know that the characteristic polynomial

of each matrix must be p(t), otherwise C
Ci(A1

)� p(A
1

) would annihilate a non-zero

vector. It is known that the characteristic polynomial of matrices of the form 3.4 is

C
Ci(t) = tmi � ai

m

i�1

tmi�1 � · · ·� ai
0

.

This shows that C
i

= C
j

for every i and j. Furthermore if

p(t) = tm � b
m�1

tm�1 � . . .� b
0

then

C
i

=

0BBBBBB@
0 . . . 0 b

0

1 . . . 0 b
1

...
. . .

...
...

0 . . . 1 b
m�1

1CCCCCCA .

We have changed A
1

into an element which is an image of a transfer. We now look

at what this change of basis does to A
i

. One useful property of matrices of the form

3.4 is the following:

Lemma 3.4.3. Let R be a commutative ring. Let A 2 GL
n

(R) be a companion

matrix of the form 3.4 above. If a matrix B commutes with A then B = b
n

An+. . .+b
0

for some b
i

2 R.

40



3.4. SURJECTIVITY OF THE MAP

To prove this we use the following:

Lemma 3.4.4. Let R be a commutative ring and A 2 GL
n

(R) be a matrix of the

form 3.4 above. If A commutes with a matrix of the form

B =

0BBBBBB@
0 x

(1,2)

. . . x
(1,n�1)

x
(1,n)

0 x
(2,2)

. . . x
(2,n�1)

x
(2,n)

...
...

. . .
...

...

0 x
(n,2)

. . . x
(n,n�1)

x
(n,n)

1CCCCCCA , (3.5)

then x
(i,j)

= 0, for every i, j

Proof. Denote the i’th column of the matrix B above by c
i

. If we multiply B by A

on both sides, then using commutativity we obtain⇣
0 Ac

2

. . . Ac
n

⌘
=

⇣
c
2

. . . c
n

a
1

c
2

+ · · ·+ a
n�1

c
n

⌘
.

In particular, we obtain

c
2

= 0 and Ac
i

= c
i+1

.

So by induction, we obtain that c
i

= 0, for all i.

We can now prove lemma 3.4.3.

Proof. Take an arbitrary matrix

B =

0BBBBBB@
x
(1,1)

x
(1,2)

. . . x
(1,n�1)

x
(1,n)

x
(2,1)

x
(2,2)

. . . x
(2,n�1)

x
(2,n)

...
...

. . .
...

...

x
(n,1)

x
(n,2)

. . . x
(n,n�1)

x
(n,n)

1CCCCCCA
which commutes with A. Consider the matrix

B � x
(1,1)

I
n

� · · ·� x
(i,1)

Ai�1 � · · ·� x
(n,1)

An�1.
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We claim this matrix satisfies the conditions of 3.4.4, this is easy to see based on

the fact that the first column of Ai is e
i+1

, where e
j

is the j’th standard unit basis

vector. Therefore, the sum above must be equal to 0 and so

B = x
(1,1)

I
n

+ · · ·+ x
(i,1)

Ai�1 + · · ·+ x
(n,1)

An�1

Using lemma 3.4.3 and the discussion above we have the following:

Lemma 3.4.5. K
0

(F,Gn

m

) is generated by elements of the form26664
0BBB@
A . . . 0
...

. . .
...

0 . . . A

1CCCA , B
2

(A) . . . , B
n

(A)

37775
where A is a companion matrix with irreducible characteristic polynomial and B

i

(t)

are matrices of the form 0BBB@
pi
1,1

(t) . . . pi
m,1

(t)
...

. . .
...

pi
m,1

(t) . . . pi
m,m

(t)

1CCCA
where pk

i,j

2 F [x].

The symbol in the above lemma is the image under some transfer map. It is

equal to

N
F [t]/cA(t)

26664
0BBB@
t . . . 0
...

. . .
...

0 . . . t

1CCCA , B
2

(t), . . . , B
n

(t)

37775
where c

A

(t) is the characteristic polynomial of A. Repeating this process with B
2

(t)

in place of A
1

and continuing similarly gives that K
0

(F,Gn

m

) is generated by images

of rank one elements of some transfer.
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3.4.1 Compatibility of the transfers

The aim of this section is to show that the transfer maps commute. The proof we

give here is based on the methods in [1] which allows us to reduce to proving the

proposition for field extensions K/k with [K : k] = p for some prime p, where k is

a field which has no field extensions with degree coprime to p. It is simple to prove

the proposition in this case however reducing to this case is di�cult. We give a

di↵erent proof later which works for semi-local rings and is more elementary.

Proposition 3.4.6. For any finite extension K|k, the diagram

KM

n

(K) ���! eKM

n

(K)??yN

M
K|k

??y e
N

M
K|k

KM

n

(k) ���! eKM

n

(k)

commutes.

We first prove this proposition for the field extensions we mentioned above. We

need the following lemma to do this:

Lemma 3.4.7. Let K = k(a) be a field extension obtained by adjoining an element

a of degree d to k. Then KM

⇤ (K) is generated as a left KM

⇤ (k)-module by elements

of the form

{⇡
1

(a), . . . , ⇡
m

(a)}

where ⇡
i

are monic irreducible polynomials in k[t] satisfying deg(⇡
1

) < · · · < deg(⇡
m

) 
d� 1

This allows us to prove proposition 3.4.6 for these certain field extensions.

Lemma 3.4.8. Proposition 3.4.6 is true if k is a field such that every finite extension

of k is of order pn, for some prime p, and [K : k] = p.

43



3.4. SURJECTIVITY OF THE MAP

Proof. To prove this, we use the properties of the tranfer map and lemma 3.4.7. Take

an arbitrary generator given in Lemma 3.4.7. There are no irreducible polynomials

of degree less than p which have degree greater than 1. So we know that KM

n

(K) is

generated by elements of the form

{t+ a
1

, a
2

, . . . , a
n

}.

Then using the projection formula and the fact that the transfer maps commute

when n = 1 we are done.

The following proposition allows us, by induction, to remove the assumption that

[K : k] = p in lemma 3.4.8. A proof can be found in [3].

Proposition 3.4.9. Let k be a field such that every finite extension of k has degree

pn for some prime p and let K/k be a proper finite extension. Then there exists a

subfield k ⇢ K
1

⇢ K such that K
1

/k is a normal extension of degree p.

Using the composition of transfer maps we can deduce that proposition 3.4.6

holds whenever k is a field such that every finite field extension of k has order pn

for some prime p.

We now begin by trying to reduce the general case to this case. We first need

the following nice property of the transfer map for eKM

n

.

Proposition 3.4.10. Let F [t]/p(t)|F be a simple field extension and L/F a field

extension. Let

p(t) = p
1

(t) . . . p
l

(t)

be the irreducible factorization of p(t) in L[t]. Then diagram

eKM

n

(F [t]/p(t))
iF [t]/p(t)|L[t]/pi(t)����������! L eKM

n

(L[t]/p
i

(t))??y e
N

M
F [t]/p(t)|F

??yP e
N

M
L[t]/pi(t)|LeKM

n

(F )
iF |L���! eKM

n

(L)

commutes.
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Proof. We first compute i
F |L � eNM

F [t]/p(t)|F .

i
F |L � eNM

F [t]/p(t)

([F [t]/p(t), f
1

(t), . . . , f
n

(t)]) = [Lm, f
1

(A), . . . , f
n

(A)]

where A is the companion matrix whose characteristic polynomial is p(t). We claim

that we can choose an invertible matrix P such that PAP�1 is a block upper trian-

gular matrix, which has companion matrices on the diagonal. Furthermore, we can

choose P such that the characteristic polynomials of the matrices on the diagonal

are precisely the irreducible factors of p(t) in L[t]. The proof of this was essentially

done in the second proof of the fact that K
0

(F,Gn

m

) is generated by images of trans-

fers. Now, using the exact sequence relation to get rid of the elements above the

diagonal, we can see that the image of the first composition isX
i

[Ldeg pi , f
1

(A
i

), . . . , f
n

(A
i

)],

where A
i

is the companion matrix whose characteristic polynomial is p
i

.

Next we compute the other composition. This is a similar calculation and so we

get that the image under the other composition isX
i

[Ldeg(pi), f
1

(A
i

), . . . , f
n

(A
i

)]

as required.

An analogous result to the above holds for Milnor K-theory a proof of which can

be found in [3].

Remark 3.4.11. We only proved 3.4.10 for rank 1 elements. This is enough to

prove that the map g⇤ is surjective, which will give that the diagram commutes for

all elements in eKM

n

(F ).

We now begin to show Prop 3.4.6 for the general case. We define � to be the
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subgroup

� := h(g
F

�NM

F [t]/p(t)|F � eNM

F [t]/p(t)|F � gF [t]/p(t)

)({a
1

, . . . , a
n

}) :
{a

1

, . . . , a
n

} 2 KM

n

(F [t]/p(t))i

where g
F

is the map

KM

n

(F )! eKM

n

(F )

Our aim is to show this group is trivial. We first show that it is a torsion group.

Proposition 3.4.12. Let F be a field and L be an algebraic extension of F. The

kernel of the natural map

eKM

n

(F )! eKM

n

(L)

is a torsion group.

Proof. Take an arbitrary element [Fm, A
1

, . . . , A
n

] in the kernel. If L is finite, the

result follows from the projection formula for the transfer map. If L is not finite, it

is true that there exists a finite field extension F 0|F such that

[Fm, A
1

, . . . , A
n

] = 0 2 eKM

n

(F 0).

This is true because only finitely many relations are needed to reduce [Fm, A
1

, . . . , A
n

]

to 0 in eKM

n

(L).

So to show � is a torsion group it su�ces to show that � is in the kernel of the

map eKM

n

(F )! eKM

n

(F ).

Proposition 3.4.13. For any field F with algebraic closure F we have that i
F |F (�) =

0.
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3.4. SURJECTIVITY OF THE MAP

Proof. Take an arbitrary element

(g
F

�NM

F [t]/p(t)|F � eNM

F [t]/p(t)|F � gF [t]/p(t)

)({f
1

(t), . . . , f
n

(t)})

in �. It is simple to see that

i
F |F � gF �NM

F [t]/p(t)|F{f1(t), . . . , fn(t)} = g
F

� i
F |F �NM

F [t]/p(t)|F{f1(t), . . . , fn(t)}.

By 3.4.10, we have a commutative diagram

KM

n

(F [t]/p(t))
�iF [t]/p(t)|F [t]/t�ai�����������! L

k

i=1

KM

n

(F [t]/(t� a
i

))??yN

M
F [t]/p(t)|F

??yP
N

M
F [t]/t�ai|F

KM

n

(F )
iF |F���! KM

n

(F )

where a
i

are the roots of p.The transfer NM

F [t]/t�ai|F
, is just evaluation at a

i

so we

have that

g
F

� iM
F |F �NM

F [t]/p(t)|F{f1(t), . . . , fn(t)} = g
F

�
X

NM

F [t]/p(t)|F [t]/t�ai
{f

1

(t), . . . , f
n

(t)}
=

X
i

[F , f
1

(a
i

), . . . , f
n

(a
i

)].

Where the sum ranges over the roots of p in F . A similar calculation shows that

i
F |F � eNM

F [t]/p(t)|F � gF [t]/p(t)

=
P

i

[F , f
1

(a
i

), . . . , f
n

(a
i

)].

So we have shown that � is a torsion group. To continue we need the following

proposition:

Proposition 3.4.14. Let F be a field, p be a prime and let G
n

be eKM

n

or KM

n

.

Then there exists an algebraic extension L of F such that every finite extension of

L has order a power of p and such that the map G
n

(F )
(p)

! G
n

(L) is injective.

Proof. First we set some notation. We define an ordinal to be an equivalence class

of totally ordered set. For any ordinal ↵ and any x 2 ↵ we define x + 1 to be the

smallest element in the set

{y 2 ↵ : y > x}.
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Let ⌦ be the set of fields contained in F which contain F . The cardinality of ⌦ is

less than the cardinality of F so it is a set. We put a partial order on ⌦ by saying

L  K if L is a subfield of K. We define a tower of field extensions to be a function

from an ordinal to ⌦ which strictly preserves the ordering and preserves all limits

when they exist. We define a p-tower to be a tower f : ↵! ⌦, such that, for every

x 2 ↵, f(x+ 1)/f(x) is a finite extension with degree prime to p. We define the set

T
p

to be the set of all p-towers. We put a partial order on p-towers by saying that

f  g, where

f : ↵! ⌦ g : � ! ⌦,

if there is an injective map of sets

i : ↵! �,

such that i(0) = 0, i(x+1) = i(x)+1 and i preserves limits, such that f(x) = g(i(x)).

We now use Zorn’s lemma. Take any non-empty chain

C = {C
j

: ↵
j

! ⌦ : j 2 J} ⇢ T
p

.

We can take an upper bound by taking the disjoint union of ↵
j

and identifying two

points if one is the image of the other under the inclusion map.

So by Zorn’s Lemma there exists a maximal element f : ↵! ⌦. We define L to

be

L :=
[
x2↵

f(x).

because f is maximal it must be true that L = f(y) for some y 2 ↵. We also have

that L must have no non-trivial, finite field extensions of degree prime to p, else f

would not be maximal.

To complete the proof we only need to show that the map

G
n

(F )
(p)

! G
n

(L)
(p)
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is injective. Assume not, then let z be the minimal element such that the map

G
n

(F )
(p)

! G
n

(f(z))
(p)

is not injective. We consider two cases.

Assume first that there exists z0 2 ↵ such that z0 + 1 = z. By minimality of z

the map

G
n

(F )
(p)

! G
n

(f(z))
(p)

is injective. Using the projection formula we know that the composition

G
n

(f(z))
(p)

! G
n

(f(z0))
(p)

! G
n

(f(z))
(p)

is multiplication by |f(z0) : f(z)|. Because |f(z0) : f(z)| is coprime to p we deduce

that the composition is an isomorphism and hence the first map is injective. By

commutativity of the diagram

G
n

(F )
(p)

G
n

(f(z0))
(p)

G
n

(f(z))
(p)

we can see that the map G
n

(F )
(p)

! G
n

(f(z))
(p)

is injective, giving a contradiction.

Lastly assume that z0 does not exist. In this case we have that

z = lim{x 2 ↵ : x < z},

and because f preserves limits we have that

f(z) =
[
x2↵

f(x).

Because the map G
n

(F )
(p)

! G
n

(f(z)) is not injective, there exists a non-zero

element s 2 G
n

(F )
(p)

that maps to 0. Hence, there exists a
1

, . . . , a
m

2 f(z) such
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that s = 0 2 G
n

(F (a
1

, . . . , a
m

)). Hence, because f(z) is a union of all the elements

less than it, there exists z00 < z such that F (a
1

, . . . , a
n

) ⇢ f(z00). Hence, s = 0 2
G

n

(F (z00) contradicting the minimality of z.

The following Lemma finally completes the proof of proposition 3.4.6.

Lemma 3.4.15. The p-primary component �
p

is trivial for every prime p. Hence

� = 0.

Proof. We want to first show that the following diagram commutes

KM

n

(F [t]/p(t)) ���! eKM

n

(F [t]/p(t))??yiL|F � e
N

M
F [t]/p(t)|F

??yiL|F �NG
F [t]/p(t)|F

KM

n

(L) ���! eKM

n

(L)

By 3.4.10 this is equivalent to showing that

KM

n

(F [t]/p(t)) ���! eKM

n

(F [t]/p(t))??y ??yL
KM

n

(L[t]/p
i

(t)) ���! L eKM

n

(L[t]/p
i

(t))??y ??y
KM

n

(L) ���! eKM

n

(L)

commutes. The top square obviously commutes because the vertical maps are just

the maps induced by inclusion. The bottom square commutes because we have

already shown 3.4.6 for field extensions of this form. This gives that i
L|F (�) = 0

and i
L|F is injective on �

p

so �
p

= 0.

Finally, we can prove the map g is surjective:

Proposition 3.4.16. The map

KM

n

(F )! eKM

n

(F )

is surjective.
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Proof. We have shown that eKM

n

(F ) is generated by elements of the form

[F [t±
1

, . . . , t±
n

]/m, t
1

, . . . , t
n

].

Hence it su�ces to show that elements of this form are in the image. We have also

shown that the diagram

KM

n

(F [t±
1

, . . . , t±
n

]/m) ���! eKM

n

(F [t±
1

, . . . , t±
n

]/m)??yN

M

F [t±1 ,...,t±n ]/m|F

??y e
N

M

F [t±1 ,...,t±n ]/m|F

KM

n

(F ) ���! eKM

n

(F )

is commutative. Hence we have that

[F [t±
1

, . . . , t±
n

]/m, t
1

, . . . , t
n

] = eNM

F [t

±
1 ,...,t

±
n ]/m|F � g({t1, . . . , tn})

= g �NM

F [t

±
1 ,...,t

±
n ]/m|F ({t1, . . . , tn}),

as required.

3.5 Injectivity and homotopy invariance

In this section we will complete the proof that the map

KM

n

(F )! eKM

n

(F )

is an isomorphism. To do this, we will construct an inverse map by first mapping

into Hn

G

(Spec(F ),Z(n)) and then mapping to KM

n

(F ).

3.5.1 Relations in motivic cohomology

In this section we construct a map

eKM

n

(F )! Hn

G

(Spec(F ),Z(n)).

We denote the groupHn

G

(Spec(F ),Z(n)) byKG

n

(F ). One can show that these groups

are given by the following presentation, which we take as our definition of KG

n

(F )

throughout this chapter.
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Definition 3.5.1. Let F be a field. We define the groups KG

n

(F ), for each n 2 N,

to be

KG

n

(F ) := Z[{[Fm, A
1

, . . ., A
n

] : m 2 N, A
i

2 GL
m

(F )

and A
i

A
j

= A
j

A
i

for every 1  i, j  n}]/(1)� (4)

1. [Fm1+m2 , A
1

� B
1

, . . ., A
n

� B
n

] = [Fm1 , A
1

, . . ., A
n

] + [Fm2 , B
1

, . . ., B
n

]

2. [Fm, A
1

, . . ., A
n

] = [Fm, PA
1

P�1, . . ., PA
n

P�1] for any P 2 GL
m

(F ).

3. [Fm, A
1

, . . ., A
n

] = 0 if A
i

= I
m

for some i.

4. [Fm, A
1

(1),
...

, A
n

(1)] = [Fm, A
1

(0),
...

, A
n

(0)] where A
i

(t) 2 GL
m

(F [t]) and

A
i

(t)A
j

(t) = A
j

(t)A
i

(t) for every 1  i, j  n.

We refer to relation 4 as polynomial homotopy. A simple consequence of this is

the following relation:240@A
1

B
1

0 C
1

1A , . . . ,

0@A
n

B
n

0 C
n

1A35 =

240@A
1

0

0 C
1

1A , . . . ,

0@A
n

0

0 C
n

1A35
which is derived from relation 4 by using the homotopy.240@A

1

B
1

t

0 C
1

1A , . . . ,

0@A
n

B
n

t

0 C
n

1A35
This relation is just the exact sequence relation. The above groups fit together to

form a graded ring where multiplication is given by

[Fm1 , A
1

, . . ., A
n1 ]⇥ [Fm2 , B

1

, . . ., B
n2 ]

= [Fm1 ⌦ Fm2 , A
1

⌦ I
m2 , . . ., An1 ⌦ I

m2 , Im1 ⌦ B
1

, . . ., I
m1 ⌦ B

n2 ]

We denote this ring by KG

⇤ (F ). Note that when m
1

= m
2

= 1 the above multiplica-

tion is just concatenation of the symbols as it is for Milnor K-theory. We will now

prove some useful relations.
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Proposition 3.5.2. Let F be a field. The relation

[Fm, AB,C
2

, . . . , C
n

] = [Fm, A, C
2

, . . . , C
n

] + [Fm, B, C
2

, . . . , C
n

]

holds in KG

n

(F ).

Proof. We first show

[Fm, A
1

, A
2

, . . . , A
n

] + [Fm, A�1

1

, A
2

, . . . , A
n

] = 0

Using the direct sum relation this is equivalent to showing24F 2m,

0@A
1

0

0 A�1

1

1A ,

0@A
2

0

0 A
2

1A , . . . ,

0@A
n

0

0 A
n

1A35 (3.6)

We use Whitehead’s lemma to give a homotopy

A
1

(t) :=

0@ 1 0

A�1

1

t 1

1A0@1 (1� A
1

)t

0 1

1A0@ 1 0

�t 1

1A0@1 (1� A�1

1

)t

0 1

1A
Then using the homotopy24F [t]2m, A

1

(t),

0@A
2

0

0 A
2

1A , . . . ,

0@A
n

0

0 A
n

1A35
gives a homotopy between (3.6) and24F 2m, Id

F

2m ,

0@A
2

0

0 A
2

1A , . . . ,

0@A
n

0

0 A
n

1A35
So to show the identityh

Fm, AB,C
2

, . . . , C
n

i
�

h
Fm, A, C

2

, . . . , C
n

i
�
h
Fm, B, C

2

, . . . , C
n

i
= 0

it su�ces to showh
Fm, AB,C

2

, . . . , C
n

i
+
h
Fm, A�1, C

2

, . . . , C
n

i
+
h
Fm, B�1, C

2

, . . . , C
n

i
= 0.
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Using additivity this is equivalent to the relation26664F 3m,

0BBB@
AB 0 0

0 A�1 0

0 0 B�1

1CCCA ,

0BBB@
C

2

0 0

0 C
2

0

0 0 C
2

1CCCA , . . . ,

0BBB@
C

n

0 0

0 C
n

0

0 0 C
n

1CCCA
37775 = 0

Note that the first matrix can be factored as0BBB@
AB 0 0

0 A�1 0

0 0 B�1

1CCCA =

0BBB@
A 0 0

0 A�1 0

0 0 1

1CCCA
0BBB@
B 0 0

0 1 0

0 0 B�1

1CCCA
Using Whitehead’s lemma, as in the first part of the proof, we can see that each of

these factors are homotopic to the identity, hence so is there product.

Next we show anti-commutativity still holds as in Milnor K-theory.

Proposition 3.5.3. The relation

[Fm, A,B,C
3

, . . ., C
n

] = �[Fm, B,A,C
3

, . . ., C
n

]

holds in KG

n

(F ).

Proof. We first show that

[Fm, AB,AB,C
3

, . . ., C
n

] = [Fm, A,A, C
3

, . . ., C
n

] + [Fm, B,B, C
3

, . . ., C
n

].

To do this we show that26664F 3m,

0BBB@
AB 0 0

0 A�1 0

0 0 B�1

1CCCA ,

0BBB@
AB 0 0

0 A 0

0 0 B

1CCCA , . . . ,

0BBB@
C

n

0 0

0 C
n

0

0 0 C
n

1CCCA
37775

We use the homotopy defined in the previous proof on the first matrix in this tuple.

The homotopy commutes with the second matrix in the tuple because A and B

commute.
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Using the 3.5.2 we can also show that

[Fm, AB,AB,C
3

, . . ., C
n

] = [Fm, A,A, C
3

, . . ., C
n

] + [Fm, A,B,C
3

, . . ., C
n

]

+ [Fm, B,A,C
3

, . . ., C
n

] + [Fm, B,B, C
3

, . . ., C
n

],

which gives the result.

The Steinberg relation

It follows from Proposition 3.5.2 that the map eKM

n

(F ) ! KG

n

(F ) is well-defined

when n = 1, 0. In this section, we prove that the map is well-defined for n � 2 by

proving the Steinberg relation.

Lemma 3.5.4. Let F be a field.

1. If ! 2 F , is such that !3 = 1 and ! 6= 1, then 2[F, a3, 1 � a3] = 0 2 KG

2

(F )

for every a 2 F ⇤, such that 1� a3 2 F ⇤.

2. If F has no such element !, then 4[F, a3, 1�a3] = 0 2 KG

2

(F ) for every a 2 F ⇤,

such that 1� a3 2 F ⇤.

Proof. Assume first ! 2 F . Consider the homotopy given byh
F 3, A(t), 1� A(t)

i
where

A(t) =

0BBB@
0 0 a3

1 0 �t(a3 + 1)

0 1 t(a3 + 1)

1CCCA
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Using this we have that26664F 3,

0BBB@
0 0 a3

1 0 0

0 1 0

1CCCA ,

0BBB@
1 0 �a3

�1 1 0

0 �1 1

1CCCA
37775 =

26664F 3,

0BBB@
0 0 a3

1 0 �(a3 + 1)

0 1 a3 + 1

1CCCA ,

0BBB@
1 0 �a3

�1 1 a3 + 1

0 �1 1� (a3 + 1)

1CCCA
37775

Assuming that a3 6= ! and a3 6= !2 we can diagonalize these matrices to give26664F 3,

0BBB@
a 0 0

0 a! 0

0 0 a!2

1CCCA ,

0BBB@
1� a 0 0

0 1� a! 0

0 0 1� a!2

1CCCA
37775 =

26664F 3,

0BBB@
a3 0 0

0 �! 0

0 0 �!2

1CCCA ,

0BBB@
1� a3 0 0

0 1 + ! 0

0 0 1 + !2

1CCCA
37775

If a = ! or a = !2 we instead but these matrices in Jordan canonical form, in either

case the same argument works. Using the exact sequence relation we have that

h
F, a, 1� a

i
+
h
F, a!, 1� a!

i
+
h
F, a!2, 1� a!2

i
=h

F, a3, 1� a3
i
+
h
F, �!, 1 + !

i
+
h
F, �!2, 1 + !2

i
expanding the second and third term in the sum gives

h
F, a, 1� a

i
+
h
F, a, 1� a!

i
+
h
F, !, 1� a!

i
+h

F, a, 1� a!2

i
+
h
F, !2, 1� a!2

i
=h

F, a3, 1� a3
i
+
h
F, �!, 1 + !

i
+
h
F, �!2, 1 + !2

i

56



3.5. INJECTIVITY AND HOMOTOPY INVARIANCE

Then recombing terms using the multilinear relation gives

[F, a, 1� a3] + [F, !, (1� !a)(1� !2a)2] =

[F, a3, 1� a3] + [F, �!, 1 + !] + [F, �!2, 1 + !2].

Multiplying both sides by 3 eliminates all terms involving ! because

3[F,!, b] = 0 and [F, �1, 1 + !] + [F, �1, 1 + !2] = 0

as (1 + !)(1 + !2) = 1 So we have shown that 2[F, a3, 1� a3] = 0 when ! 2 F ⇤.

For the case ! /2 F , we consider the field E := F (!). Let i⇤ : KG

2

(F )! KG

2

(E)

be the map induced by the inclusion i : F ! E. Then the element

i⇤[F, a, 1� a] = [E, a, 1� a], satisfies

2i⇤[F, a, 1� a] = 0.

If we apply the transfer to both sides of this equation and use the projection formula

then we obtain

4[F, a, 1� a] = 0,

as required.

Corollary 3.5.5. For any field F, we have that 12[F, a, 1 � a] = 0 2 KG

2

(F ) for

every a 2 F\{0, 1}.

Proof. Using lemma 3.5.4 we know that 4[a3, 1 � a3] = 0 for any field. If 3
p
a 2 F

then we clearly have 4[a, 1 � a] = 0. Otherwise, we have that 4i⇤[F, a, 1 � a] = 0

over KG

2

F ( 3
p
a), where i⇤ is the map induced by the inclusion i : F ! F ( 3

p
a).

Applying the transfer map and using the projection formula gives 12[a, 1 � a] = 0

as required.
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Lemma 3.5.6. Let F be a field and n 2 N. If n[K, a, 1� a] = 0 2 KG

2

(K) for every

finite field extension K/F and every a 2 K, then [F, a, 1�a] = 0 2 KG

2

(F ) for every

a 2 F\{0, 1}.

Proof. Take any a 2 F\{0, 1}. Let p be a prime such that n = pm. Let

c
i

(t) := bi
0

+ . . .+ bi
li�1

tli�1 + tli

be the irreducible factors of the polynomial tp � a over F [t]. By assumption, we

have that mp[F [t]/c
i

(t), t, 1� t] = 0, so using proposition 3.5.2 we have that

m[F [t]/c
i

(t), a, 1� t] = 0.

Applying the transfer and using the projection formula gives

m[F li , a Id
F

li , 1� A
i

] = 0,

where A
i

is the matrix 0BBBBBB@
0 . . . 0 �b

0

1 . . . 0 �b
1

...
. . .

...
...

0 . . . 1 �b
li�1

1CCCCCCA .

The determinant of 1� A
i

is c
i

(1) and so

m[F, a, c
i

(1)] = 0.

Because tp�a = c
1

(t) . . . c
n

(t) we have thatm[F, a, 1�a] = 0. Continuing inductively

on m gives the result.

We can now show that the Steinberg realtion holds for matrices.

Corollary 3.5.7. Let F be a field and [Fm, A
1

, . . . , A
n

] 2 KG

n

(F ). If A
i

+ A
j

= 1

for some i, j then we have that

[Fm, A
1

, . . . , A
n

] = 0 2 KG

n

(F )
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Proof. Multiplication of rank 1 elements in KG

⇤ (F ) is concatenation of symbols so

we have that [Fm, A
1

, . . . , A
n

] = 0 when m = 1. We have also shown, in section 3.4

that K
0

(F,Gn

m

) is generated by images of rank 1 elements under some transfer map.

Hence, we can write [Fm, A
1

, . . . , A
n

] as a sum of images of transfers each of which

will be 0.

As a result of proposition 3.5.7 we have that the map from eKM to KG is well-

defined.

Corollary 3.5.8. For any field F the map

g⇤ : eKM

⇤ (F )! KG

⇤ (F )

[F, a
1

, . . . , a
n

] 7! [F, a
1

, . . . , a
n

]

is a well-defined homomorphism of graded rings.

3.5.2 The map KG
n (F )! KM

n (F )

In this section, we prove that the map KM

n

! eKM

n

is injective by constructing an

inverse map ⇥. Our strategy is to define an inverse map

KG

n

(F )! KM

n

(F )

and then compose with the map eKM

n

(F )! KG

n

(F ).

Take an element [Fm, A
1

, . . . , A
n

] 2 KG

n

(F ). As noted in the previous section we

can associate to this element a S = F [t±
1

, . . . , t±
n

]-module M . We then define

⇥([Fm, A
1

, . . . , A
n

]) :=
X
m⇢S,

m maximal

l
Sm(Mm

)NM

S/m|F (t1,··· , tn) 2 KM

n

(F ) (3.7)

We actually show this homomorphism is well-defined on a slightly di↵erent group

which we define in the following.
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Definition 3.5.9. Let R be a commutative ring. We define the group

K
0

(M (R,G^n
m

)) := K
0

(M (R,Gn

m

))/I

where M (R,Gn

m

) is the category whose objects are of the form

[M,�
1

, . . . ,�
n

]

where M is a finitely generated R-module, �
i

are commuting automorphisms and I

is the subgroup generated by elements of the form [M,�
1

, . . . ,�
n

], with �
i

= Id
M

for

some i.

We now wish to define a map

e
s

: K
0

(M (R,G^n
m

))! K
0

(M (R/s,G^n
m

))

for any s 2 R. This will give us our homotopy relation. One might guess that the

map e
s

might take the form

[M,⇥
1

, . . . ,⇥
n

] 7! [M ⌦
R

R/s,⇥
1

⌦ Id
R/s

, . . . ,⇥
n

⌦ Id
R/s

].

However, R/s is not necessarily a flat R-module so this map will not be well-defined

because it will not preserve the exact sequence relation. However, given a short

exact sequence

0!M
1

!M
2

!M
3

! 0,

the corresponding exact sequence

M
1

⌦
R

R/s!M
2

⌦
R

R/s!M
3

⌦
R

R/s! 0,

can be extended to a long exact sequence involving the Tor functor. More precisely

we have an long exact sequence
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. . . TorR
2

(M
2

, R/s) TorR
2

(M
3

, R/s)

TorR
1

(M
1

, R/s) TorR
1

(M
2

, R/s) TorR
1

(M
3

, R/s)

M
1

⌦
R

R/s M
2

⌦
R

R/s M
3

⌦
R

R/s 0

If s is a non-zero divisor then R/s has a free resolution of length 1 and so we also

have that TorR
i

(M,R/s) = 0 for i � 2. In this case we have that TorR
1

(M,R/s) =

ann
M

(S) and TorR
0

(M,R/s) = M ⌦
R

R/s. This motivates the following proposition

which holds even when s s a zero-divisor.

Proposition 3.5.10. Let R be a commutative ring and s 2 R. The map

e
s

: K
0

(M (R,G^n
m

))! K
0

(M (R/s,G^n
m

))

[M,⇥
1

, . . . ,⇥
n

] 7![M ⌦
R

R/s,⇥
1

⌦ Id
R/s

, . . . ,⇥
n

⌦ Id
R/s

]

� [ann
M

(s),⇥
1

, . . . ,⇥
n

],

where

ann
M

(s) = {x 2M : sx = 0},

is well-defined.

Proof. We show first that ⇥
i

restrict to well-defined automorphisms on ann
M

(s).

We clearly have that ⇥
i

(ann
M

(s)) ⇢ ann
M

(s) because if x 2 ann
M

(s) then

s⇥
i

(x) = ⇥
i

(sx) = ⇥
i

(0) = 0.

The map ⇥
i

will obviously still be injective so we only need to show that it is

surjective. Take any y 2 ann
M

(s). ⇥
i

is surjective as a map from M to M , so there

exists x 2M such that ⇥
i

(x) = y. Then

⇥
i

(sx) = s⇥
i

(x) = sy = 0,
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and so sx = 0 because ⇥
i

is injective. To complete the proof we only need to show

the necessary relations hold. If any of the ⇥
i

are the identity then [M,⇥
1

, . . . ,⇥
n

]

will clearly map to 0 because the image of ⇥
i

will still be the identity.

To prove the exact sequence relation holds take any exact sequence

0 [M
1

,⇥
1

, . . . ,⇥
n

] [M
2

,�
1

, . . . ,�
n

] [M
3

, 
1

, . . . , 
n

] 0
g

h

Now consider the commutative diagram

0 [M
1

,⇥
1

, . . . ,⇥
n

] [M
2

,�
1

, . . . ,�
n

] [M
3

, 
1

, . . . , 
n

] 0

0 [M
1

,⇥
1

, . . . ,⇥
n

] [M
2

,�
1

, . . . ,�
n

] [M
3

, 
1

, . . . , 
n

] 0

g

⇥s

h

⇥s ⇥s

g

h

The kernel of the vertical maps are precisely ann
Mi(s) and the cokernel of these

maps are M
i

⌦
R

R/s. Then, by the snake lemma, we have a long exact sequence

0 ann
M1(s) ann

M2(s) ann
M3(s)

M
1

⌦
R

R/s M
2

⌦
R

R/s M
3

⌦
R

R/s 0

These maps are also morphisms in M (R,G^n
m

) so we have that the alternating sum

of elements in the sequence are equal to 0. But this sum is exactly the image of the

exact sequence relation and so we are done.

We are now ready to define groups H
n

(F ), which will be the domain of our

inverse map. We define H
n

(F ) to be K
0

(M (F,G^n
m

)) with the extra relation that

an element is 0 if it is in the image of e
t

� e
t�1

. That is

H
n

(F ) := coker(K
0

(M (F [t],G^n
m

))
et�1�et����! K

0

(M (F,G^n
m

))).

We will now begin to show that the inverse map, given above, is well-defined on

H
n

(F ). We first show it is well-defined on K
0

(M (F,G^n
m

))).

To check that this gives a homomorphism we must check that the sum on the

right hand side is finite and all the relations are satisfied. To check that the sum
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is finite, observe that the maximal ideals for which l
Rm(Mm

) 6= 0 are the maximal

ideals which contain Ann(M). To see this simply note that M
m

has length 0, if and

only if M
m

= 0, if and only if there exists r /2 m such that rm = 0. Because M is a

finitely generated R-module this is true if and only if there exists an r /2 m such that

rM = 0. We claim that there are only finitely many maximal ideals which contain

Ann(M). To show this we only need to show that F [t±
1

, . . . , t±
n

]/Ann(M) is a finitely

generated F -module. This is true because for each i, there exists a monic polyno-

mial p
i

(t
i

) 2 ann(M), which has invertible constant term. One such polynomial is

the characteristic polynomial C
Ai(ti). This polynomial is clearly monic and has in-

vertible constant term equal to the determinant of A
i

. Then F [t±
1

, . . . , t±
n

]/Ann(M)

has only finitely many maximal ideals because it is artinian.

We now begin to show the necessary relations hold for the map to be well-defined

on K
0

(M (F,G^n
m

)). We first show the exact sequence relation holds. Take any exact

sequence

[M1,�
1

, . . . ,�
n

] [M2, 
1

, . . . , 
n

] [M3, ✓
1

, . . . , ✓
n

].

This gives us an exact sequence of F [t±
1

, . . . , t±
n

]-modules

M1 M2 M3.

Then given any maximal ideal m, we get an exact sequence of F [t±
1

, . . . , t±
n

]
m

-

modules

M1

m

M2

m

M3

m

.

because localisation is an exact functor. Then using the exact sequence and the

properties of length we get that

l
F [t

±
1 ,...,t

±
n ]m

(M2

m

) = l
F [t

±
1 ,...,t

±
n ]m

(M1

m

) + l
F [t

±
1 ,...,t

±
n ]m

(M3

m

)

which gives the exact sequence relation.
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We now need to show that an element [M,�
1

, . . . ,�
n

], maps to 0 if �
i

is the

identity for some i. If m is a maximal ideal such that t
i

� 1 2 m, then t
i

= 1 2
F [t±

1

, . . . , t±
n

]/m and so NM

F [t

±
1 ,...,t

±
n ]/m|F{t1, . . . , tn} = 0. If t

i

� 1 /2 m we claim that

l
F [t

±
1 ,...,t

±
n ]m

(M
m

) = 0. This happens if and only if M
m

= 0. As mentioned above, this

can only happen if Ann(M) * m which holds in this case because t
i

� 1 2 Ann(M)

and t
i

� 1 /2 m. Therefore we have a well-defined map

K
0

(M (F,G^n
m

))! KM

n

(F ).

To complete the proof that the inverse is well-defined, we only need to show that

the composition

K
0

(M (F [t],G^n
m

))! K
0

(M (F,G^n
m

))! KM

n

(F ). (3.8)

is 0. To do this, we first describe a certain set of generators for K
0

(M (F [t],G^n
m

)).

Given any element

[M,�
1

, . . . ,�
n

] 2 K
0

(M (F [t],G^n
m

)),

consider the induced F [t, t±
1

, . . . , t±
n

]-module M . Now M is finitely generated as an

F [t, t±
1

, . . . , t±
n

]-module, so is noetherian. So there exists a series of F [t, t±
1

, . . . , t±
n

]-

modules

0 = M
0

( M
1

( · · · ( M
t

= M,

such that each quotient M
i+1

/M
i

is isomorphic as a F [t, t±
1

, . . . , t±
n

]-module to

F [t, t±
1

, . . . , t±
n

]/p

for some prime ideal p. Then using the exact sequence relation we can deduce that

every element in K
0

(M (F [t],G^n
m

)) can be written as a sum of elements of the form

[F [t, t±
1

, . . . , t±
n

]/p , t
1

, . . . , t
n

]
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for some prime ideal p. So we only need to show that these elements map to 0 under

the composition above. To do this we use a corollary to Weil reciprocity for Milnor

K-theory, which we state and use without proof. For a proof of the Weil reciprocity

see [3] or [19], for a proof of the following corollary see [13].

Theorem 3.5.11. Suppose L is an algebraic function field over k. For each discrete

valuation w on L there is a map

�
w

: KM

n+1

(L)! KM

n

(k(w))

and for every x 2 KM

n+1

(L): X
w

N
k(w)/k

�
w

(x) = 0

Corollary 3.5.12. Let p : Z ! A1

F

be a finite surjective morphism and suppose

that Z is integral. Let f
1

, . . . , f
n

2 O⇤(Z) and:

p�1({0}) = qn0

i

z0
i

p�1({1}) = qn1

i

z1
i

where n✏

i

are the multiplicities of the points z✏
i

= Spec(E✏

i

) (✏ = 0, 1). Define

�
0

=
X

n0

i

NM

E

0
i /F

({f
1

, . . . , f
n

}
E

0
i
), �

1

=
X

n1

i

NM

E

1
i /F

({f
1

, . . . , f
n

}
E

1
i
)

Then we have

�
0

= �
1

2 KM

n

(F )

We need to show that [F [t, t±
1

, . . . , t±
n

]/p, t
1

, . . . , t
n

] maps to 0 under the composi-

tion for any prime p such that F [t, t±
1

, . . . , t±
n

]/p is a finitely generated F [t]-module.

To do this we consider cases.

For the first case assume that p \ F [t] 6= 0. So p \ F [t] = (f(t)) for some

irreducible polynomial f(t). We claim in this case that

(e
t

� e
t�1

)[F [t, t±
1

, . . . , t±
n

]/p, t
1

, . . . , t
n

] = 0
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so clearly the composition is 0.

To prove this, first assume that f(t) 6= t and f(t) 6= t � 1. In this case both t

and t� 1 are invertible in F [t, t±
1

, . . . , t±
n

]/p. So

F [t, t±
1

, . . . , t±
n

]/p⌦
F [t]

F [t]/t = 0 = F [t, t±
1

, . . . , t±
n

]/p⌦
F [t]

F [t]/t� 1

ann
F [t,t

±
1 ,...,t

±
n ]/p

(t) = 0 = ann
F [t,t

±
1 ,...,t

±
n ]/p

(t� 1)

hence e
t

� e
t�1

= 0. If f(t) = t the same logic as above gives us that e
t�1

= 0. To

see that e
t

= 0 note that

F [t, t±
1

, . . . , t±
n

]/p⌦
F [t]

F [t]/t = F [t, t±
1

, . . . , t±
n

]/p = ann
F [t,t

±
1 ,...,t

±
n ]/p

(t)

so e
t

= 0. Similar logic allows us to conclude that e
t

� e
t�1

= 0 when f(t) = t� 1.

Hence we can assume that p is such that p \ F [t] = 0. In this case the map

F [t] ! F [t, t±
1

, . . . , t±
n

]/p is injective. By the going-up theorem, we can conclude

that the map

Spec(F [t, t±
1

, . . . , t±
n

]/p)! Spec(F [t])

is surjective. Therefore we can apply corollary 3.5.12 with

Z = Spec(F [t, t±
1

, . . . , t±
n

]/p)

to get the following identity in Milnor K-theory:X
p⇢F [t

±
1 ,...,t

±
n ],

p minimal

p(1)⇢p

l
R/p(1)p(F [t±

1

, . . . , t±
n

]/p(1)
p

)NM

F [t

±
1 ,...,t

±
n ]/p|F (t1, . . . , tn) = �

1

= �
0

=
X

p⇢F [t

±
1 ,...,t

±
n ],

p minimal

p(0)⇢p

l
R/p(0)p(F [t±

1

, . . . , t±
n

]/p(0)
p

)NM

F [t

±
1 ,...,t

±
n ]/p|F (t1, . . . , tn)

where p(0), p(1) are the ideals p evaluated at 0, 1 respectively.
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Next we calculate the image of one of these generators under the composition.

The image under the map (3.8) is

[F [t±
1

, . . . , t±
n

]/p(0), t
1

, . . . , t
n

]� [F [t±
1

, . . . , t±
n

]/p(1), t
1

, . . . , t
n

]

Then the image of this element under the inverse map (3.7) isX
m⇢F [t

±
1 ,...,t

±
n ],

m maximal

p(0)⇢m

l
Rm(F [t±

1

, . . . , t±
n

]/p(0)
m

)NM

F [t

±
1 ,...,t

±
n ]/m|F (t1,··· , tn)

�
X

m⇢F [t

±
1 ,...,t

±
n ],

m maximal

p(1)⇢m

l
Rm(F [t±

1

, . . . , t±
n

]/p(1)
m

)NM

F [t

±
1 ,...,t

±
n ]/m|F (t1,··· , tn)

because if a maximal ideal does not contain p
i

the localisation will be 0. The minimal

primes containing p(1), p(0) will be maximal because F [t±
1

, . . . , t±
n

]/p(i) is a finitely

generated F -module. So to complete the proof we need only to show that

l
F [t

±
1 ,...,t

±
n ]/p(0)p

(F [t±
1

, . . . , t±
n

]/p(0)
p

) = l
F [t

±
1 ,...,t

±
n ]p

(F [t±
1

, . . . , t±
n

]/p(0)
p

)

which is easy to see. So we have constructed the inverse map on the groups H
n

(F ).

Lemma 3.5.13. The map

H
n

(F )! KM

n

(F )

defined in (3.7) is well-defined.

We have a natural homomorphism KG

n

(F ) ! H
n

(F ) so we define the inverse

map to be the composition of this map with the map (3.7). Hence we have shown

the following

Theorem 3.5.14. Let F be a field. The map

KM

n

(F )! KG

n

(F )

is an isomorphism.
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Proof. We showed in section 3.4 that the map is surjective. It only remains to show

that the map

⇥([F, a
1

, . . . , a
n

]) =
X
m⇢S,

m maximal

l
Sm(Mm

)NM

S/m|F (t1,··· , tn) = {a
1

, . . . , a
n

} 2 KM

n

(F ).

If m ⇢ S is such that t
i

� a
i

/2 m then M
m

= 0 because (t
i

� a
i

)M = 0. So we must

have t
i

� a
i

2 m for all i. Hence m = (t
1

� a
1

, . . . , t
n

� a
n

) and we are done.

In 3.3 we showed that the natural map

eKM

n

(F )! KG

n

(F )

is well-defined. We have shown that the composition

KM

n

(F )! eKM

n

(F )! KG

n

(F ) (3.9)

is an ismorphism, hence the first map is injective. We have also shown that the first

map is surjective. Hence we have shown

Theorem 3.5.15. Let F be a field. The map

KM

n

(F )! eKM

n

(F )

is an isomorphism.

As a result, we have that the second map in 3.9 is an isomorphism. Hence we

have the following homotopy invariance relation:

Theorem 3.5.16 (Weak homotopy invariance). Let F be a field. The map

eKM

n

(F [t])
evt=1�evt=0�������! eKM

n

(F )

is the zero map.
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Chapter 4

Fundamental theorems for Milnor

K-theory

In this chapter, we prove analogues of the additivity, resolution and devisage the-

orems from [17] for the groups eKM

n

. We also prove a reciprocity result for eKM

n

(R)

which we use to show compatability of the transfers for semi-local rings.

4.1 Compatibility of the transfers for local rings

In this section we prove that the transfer maps for KM

n

and eKM

n

commute. That is

we aim to prove the following:

Theorem 4.1.1. Let A be a semi-local ring with infinite residue fields and ⇡ 2 A[t]

be a monic irreducible polynomial such that Disc(⇡) 2 A⇤. Then the diagram

KM

n

(A[t]/⇡) ���! eKM

n

(A[t]/⇡)??yN

M
A[t]/⇡|A

??y e
N

M
A[t]/⇡|A

KM

n

(A) ���! eKM

n

(A)

commutes.
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To prove that the diagram commutes it is enough to show that they com-

mute on generators. We will use the following results which gives us generators

for KM

n

(A[t]/⇡) a proof can be found in [10].

Proposition 4.1.2. The group KM

n

(A[t]/⇡) is generated by elements of the form

{p
1

(t), . . . , p
n

(t)}, where p
i

(t) are all irreducible in A[t], each p
i

(t) is monic or con-

stant and

(p
i

(t), p
j

(t)) = A[t]

for i 6= j.

If any of these p
i

(t) are in A⇤ then we can show that the diagram above commutes

for this element using the projection formula and induction. We therefore only need

to show that the diagram commutes for elements with p
i

(t) non-constant. Recall

from chapter 1 that we have a split exact sequence

0! KM

n

(A)! Ket

n

(A)! �KM

n�1

(A[t]/⇡)! 0

Consider the splitting map

�
⇡

: KM

n�1

(A[t]/⇡)! Ket

n

(A). (4.1)

We claim that

�
⇡

{p
1

, . . . , p
n

} = (⇡, p
1

, . . . , p
n

) (4.2)

+
nX

i=1

(�1)i+1�
pi{⇡, p1, . . . , pi�1

, p̂
i

, p
i+1

, . . . , p
n

} 2 Ket

n

(A) (4.3)

To see this, observe that �
f

({p
1

, . . . , p
n

}) is the unique element such that

@
g

(�
f

({p
1

, . . . , p
n

})) =
8<:0 if g 6= f

{p
1

, . . . , p
n

} if g = f.
.

70



4.1. COMPATIBILITY OF THE TRANSFERS FOR LOCAL RINGS

and

s1(�
f

({p
1

, . . . , p
n

})) = 0

where s1 is the retraction map which sends an element to its leading coe�cient.

Then we only need to show that the RHS of (4.2) satisfies these which is a simple

calculation.

Now composing 4.2 with �@1 we can see that

NM

A[t]/⇡

{p
1

, . . . , p
n

} = �@1(⇡, p
1

, . . . , p
n

) (4.4)

+
nX

i=1

(�1)i+1NM

A[t]/pi
{⇡, p

1

, . . . , p
i�1

, p̂
i

, p
i+1

, . . . , p
n

} (4.5)

We use this identity to prove that the transfer maps commute. We assume,

inductively, that the transfer maps commute for A[t]/f where deg(f) < deg(⇡).

Then to complete the proof we only need to show the analogous version of (4.4) foreKM

n

. To prove this we begin with the following lemma:

Lemma 4.1.3. Let A be a semi-local ring and ⇡ 2 A[t] be an irreducible, monic

polynomial. Then

eNM

A[t]/⇡|A({p1(t), . . . , pn(t)}) = eNM

A[t,x1,...,xn]/(⇡,p1(x1),...,pn(xn)|A({t� x
1

, . . . , t� x
n

})

where p
i

are all monic polynomials.

Proof. We show that

eNM

A[t]/⇡|A({p1(t), . . . , pn(t)}) = eNM

A[t,x1]/(⇡,p1)|A({t� x
1

, p
2

(t), . . . , p
n

(t)})

and continue the process inductively to obtain the result. To show this, it su�ces

to show that

eNM

A[t,x1]/(⇡(t),p1(x1))|A[t]/⇡

({x
1

� t, p
2

(t), . . . , p
n

(t)}) = {p
1

(t), . . . , p
n

(t)} (4.6)

71



4.1. COMPATIBILITY OF THE TRANSFERS FOR LOCAL RINGS

in eKM

n

(A[t]/⇡(t)) because

eNM

A[t]/⇡|A � eNM

A[t,x1]/(⇡,p1)|A[t]/⇡

= eNM

A[t,x1]/(⇡,p1)|A.

To compute (4.6) we can use the projection formula to get that

eNM

A[t,x1]/(⇡,p1)|A[t]/⇡

({t� x
1

, p
2

(t), . . . , p
n

(t)}) = {d, p
2

(t) . . . , p
n

(t)}

where d is the determinant of the A[t]/⇡(t)-linear map

⇥(t� x
1

) : A[t, x
1

]/(⇡, p
1

)! A[t, x
1

]/(⇡, p
1

)

We claim that the determinant of this map is p
1

(t). Let

p
1

(t) = a
0

+ a
1

t+ · · ·+ a
n�1

tn�1 + tn

The matrix corresponding to the map above is0BBBBBBBBB@

t 0 . . . 0 a
0

�1 t . . . 0 a
1

...
...

. . .
...

...

0 0 . . . t a
n�2

0 0 . . . �1 t+ a
n�1

1CCCCCCCCCA
(4.7)

To calculate the determinant of this matrix we use induction. For a 1⇥ 1 matrix of

the form above, the result is trivial. To calculate the determinant of the n⇥ n case

we expand the top row. Doing this we get that the determinant is equal to

t⇥ det

0BBBBBBBBB@

t 0 . . . 0 a
1

�1 t . . . 0 a
2

...
...

. . .
...

...

0 0 . . . t a
n�2

0 0 . . . �1 t+ a
n�1

1CCCCCCCCCA
+�(�1)n+1a

0

det

0BBBBBB@
�1 t . . . 0

0 �1 . . .
...

...
...

. . . t

0 0 . . . �1

1CCCCCCA
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We can calculate the determinant of the first matrix using induction. So we get the

determinant of (4.7) is

t⇥ (a
1

+ · · ·+ a
n�1

tn�2 + tn�1) + (�1)n+1 ⇥ (�1)n�1 ⇥ a
0

= p(t)

as required.

So if we want to prove the identity (4.4), by (4.1.3), it is enough to show that

eNM

A[t,x1,...,xn]/(⇡(t),p1(x1),...,pn(xn)|A({t� x
1

, . . . , t� x
n

})
= deg(⇡) deg(p

1

) . . . deg(p
n

){�1, . . . ,�1}

+
nX

i=1

(�1)i+1 eNM

A[t,x1,...,xn]/(⇡(t),p1(x1),...,pn(xn))|A({xi

�t, x
i

�x
1

. . . , \x
i

� x
i

, . . . , x
i

�x
n

})

(4.8)

To prove this we use the following identity:

Lemma 4.1.4. Let R be a commutative ring and x
0

, . . . , x
n

2 R be such that x
i

�
x
j

2 R⇤, for all i, j. Then

nX
i=0

(�1)i[x
i

� x
0

, . . . , x
i

� x
i�1

, x
i

� x
i+1

, . . . , x
i

� x
n

] = [�1, . . . ,�1]

in eKM

n

(R).

Proof. We prove the result by induction on n. Let n = 1, then

[x
0

� x
1

]� [x
1

� x
0

] = [
x
0

� x
1

x
1

� x
0

] = [�1]

Now assume the identity holds when n = k. Then we have the identity

kX
i=0

(�1)i[x
i

� x
0

, . . . , x
i

� x
i�1

, x
i

� x
i+1

, . . . , x
i

� x
k

] = [�1, . . . ,�1].
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In an attempt to introduce x
k+1

into the equation we multiply both sides by [x
0

�
x
k+1

] to give

kX
i=0

(�1)i[x
i

� x
0

, . . . , x
i

� x
i�1

, x
i

� x
i+1

, . . . , x
i

� x
k

, x
0

� x
k+1

]

= [�1, . . . ,�1, x
0

� x
k+1

].

Applying the identity [c, d] = [� c

d

, c + d] to the first and last coordinates of the

elements in sum gives

kX
i=1

(�1)i[� x
i

� x
0

x
0

� x
k+1

, . . . , x
i

� x
i�1

, x
i

� x
i+1

, . . . , x
i

� x
k

, x
i

� x
k+1

]

+ [x
0

� x
1

, . . . , x
0

� x
k+1

] = [�1, . . . ,�1, x
0

� x
k+1

].

Expanding the first term in the sum gives

kX
i=1

(�1)i+1[�x
0

+ x
k+1

, x
i

� x
1

, . . . , x
i

� x
i�1

, x
i

� x
i+1

, . . . , x
i

� x
k

, x
i

� x
k+1

]

+
kX

i=0

(�1)i[x
i

� x
0

, . . . , x
i

� x
i�1

, x
i

� x
i+1

, . . . , x
i

� x
k

, x
i

� x
k+1

]

= [�1, . . . ,�1, x
0

� x
k+1

].

The second term is almost the sum we require, so by adding

(�1)k+1[x
k+1

� x
0

, . . . , x
k+1

� x
k

]

to both sides of the equation we reduce the proof to proving that

kX
i=1

(�1)i+1[�x
0

+ x
k+1

, x
i

� x
1

, . . . , x
i

� x
i�1

, x
i

� x
i+1

, . . . , x
i

� x
k

, x
i

� x
k+1

]

= [�1, . . . ,�1, x
0

� x
k+1

] + (�1)k+1[x
k+1

� x
0

, . . . , x
k+1

� x
k

] + [�1, . . . ,�1].
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By rearranging this equation we reduce to showing

k+1X
i=1

(�1)i[x
k+1

� x
0

, x
i

� x
1

, . . . , x
i

� x
i�1

, x
i

� x
i+1

, . . . , x
i

� x
k

, x
i

� x
k+1

]

= [�1, . . . ,�1, x
k+1

� x
0

] (4.9)

The term on the right hand side has order 2 and so by graded commutativity is

equal to [x
k+1

�x
0

,�1, . . . ,�1]. So we can see that the identity 4.9 holds by taking

the reciprocity formula for x
1

, . . . x
k+1

and multiplying on the left by x
k+1

�x
0

, and

so by induction we are done.

So we can use this identity, in the ring A[t, x
1

, . . . , x
n

]/(⇡(t), p
1

(x
1

), . . . , p
n

(x
n

)),

to prove 4.8 using the fact that

eNM

A[t,x1,...,xn]/(⇡(t),p1(x1),...,pn(xn))|A([�1, . . . ,�1])
= deg(⇡) deg(p

1

) . . . deg(p
n

)[�1, . . . ,�1]

4.2 Consequences of reciprocity

In this section we look at some consequences of reciprocity. In particular, we will

show that if KM

n

is isomorphic to eKM

n

(R) when R is a local ring with infinite

residue field then eKM

n

(R) agrees with the improved Milnor K-groups when R has

finite reisude field.

To do this we only need to show that our system of transfers satisfies the prop-

erties stated in 2.2. This is shown in the following proposition.

Proposition 4.2.1. Let A be a local ring with infinite residue field and let A ⇢ B

be a finite, etale extension of local rings. Let A0 ! A00 be a morphism of local

A-algebras. Assume further that both

B0 := B ⌦
A

A0 B00 := B ⌦
A

A00
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are local. Then we have that

1. The composition

eKM

n

(A0)
i�! eKM

n

(B0)
e
NB0/A0����! eKM

n

(A0)

is just multiplication by [B : A].

2. The diagram

eKM

n

(B0) eKM

n

(B00)

eKM

n

(A0) eKM

n

(A00)

commutes on rank one elements in eKM

n

(B0).

Proof. Etale morphisms are preserved under base change so we have that the map

A0 ! B0 is an etale morphism. By 2.1.10 we can choose a monic ⇡ 2 A[t] with

Disc(⇡) 2 A⇤ such that

B = A[t]/⇡(t).

Furthermore, denoting the image of ⇡ in A0[t] by ⇡0, we have

B0 = A0[t]/⇡0(t).

To prove the first result, note that the projection formula gives that the composition

is equal to multiplication by [B0 : A0]. The result follows from the fact that

[B : A] = deg(⇡) = deg(⇡0) = [B0 : A0]

To prove the second result we need to show that the diagram
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eKM

n

(A0[t]/⇡0(t)) eKM

n

(A00[t]/⇡00(t))

eKM

n

(A0) eKM

n

(A00)

commutes on rank 1 elements. Take a generator for eKM

n

(A0[t]/⇡0(t)) of the form

[A0[t]/⇡0, p0
1

(t), . . . , p0
n

(t)] with the p
i

(t) monic, irreducible and pairwise coprime with

Disc p0
i

2 A0⇤. Using reciprocity we can write the composition i
A

0|A00 � eN
A

0
[t]/⇡

0|A0 as

i
A

0|A00 � eN
A

0
[t]/⇡

0|A0 [p0
1

, . . . , p0
n

] =
nX

i=1

i
A

00|A0 � eN
A

0
[t]/p

0
i|A0(�1)i+1[⇡0, p0

1

, . . . , p̂0
i

, . . . , p0
n

]

+ deg(⇡0) deg(p0
1

) . . . deg(p0
n

)[A00,�1, . . . ,�1].

Using induction we can swap the order of composition in the summation to obtain

i
A

0|A00 � eN
A

0
[t]/⇡

0|A0 [p0
1

, . . . , p0
n

]

=
nX

i=1

eN
A

00
[t]/p

00
i |A00(�1)i+1[⇡00, p00

1

, . . . , p̂00
i

, . . . , p00
n

]

+ deg(⇡0) deg(p0
1

) . . . deg(p0
n

)[A00 � 1, . . . ,�1].

The right hand side of which is eN
A

00
[t]/⇡

00 |A00 � i
A

00
[t]/⇡

00|A0
[t]/⇡

0

We have shown the following:

Corollary 4.2.2. If the map

KM

n

(R)! eKM

n

(R)

is an isomorphism when R is a local ring with infinite residue field then there is a

unique isomorphism

K̂M

n

(R)! eKM

n

(R)

for R any local ring, such that the diagram
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K̂M

n

(R)

KM

n

(R) eKM

n

(R)

commutes.

Proof. We only need that the transfers are compatible for elements in eKM

n

of rank

greater than 1. This follows from the rank one case because we have that the map

KM

n

(R)! eKM

n

(R) is surjective

Remark 4.2.3. Using the explicit description of K̂M

n

(R) as

K̂M

n

(R) = ker(KM

n

(R(t))
K

M
n (f1)�K

M
n (f2)����������! KM

n

(R(t
1

, t
2

))),

we can see that there is always a map, regardless of whether the map

KM

n

(R)! eKM

n

(R)

is an isomorphism for R with infinite residue field. To show this we simply need to

show that

eKM

n

(R) = ker( eKM

n

(R(t))
e
K

M
n (f1)� e

K

M
n (f2)����������! eKM

n

(R(t
1

, t
2

))),

The proof of this is identical to the proof of the analogous identity for Milnor K-

theory [11].

4.3 The additivity theorem

The aim of this section is to prove a version of the additivity theorem for eKM

n

. The

proof is similar to the proof for K
0

we only need to check that the relations are

satisfied.
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Definition 4.3.1. Let A ,C be exact subcategories of an exact category B. We

define a category E (A ,B,C ), which we call the extension category, whose objects

are short exact sequences

0! A! B ! C ! 0

with A 2 A , B 2 B and C 2 C and whose morphisms are commuting diagrams.

Theorem 4.3.2. With notation as in 4.3.1 we have an isomorphism

eKM

n

(E (A ,B,C )) ⇠= eKM

n

(A )⇥ eKM

n

(C )

Proof. We first define maps

� : eK
0

(Autn(E (A ,B,C )))! eK
0

(Autn(A ))⇥ eK
0

(Autn(C ))

 : eK
0

(Autn(A ))⇥ eK
0

(Autn(C ))! eK
0

(Autn(E (A ,B,C )))

and then show these maps satisfy the necessary relations.

Take an element [E, ✓
1

, . . . , ✓
n

] 2 eK
0

(Autn(E (A ,B,C ))) where

E = 0! A! B ! C ! 0 and ✓
i

is

0 ���! A ���! B ���! C ���! 0??y✓i,A

??y✓i,B

??y✓i,C

0 ���! A ���! B ���! C ���! 0

We define �([E, ✓
1

, . . . , ✓
n

]) = ([A, ✓
1,A

, . . . , ✓
n,A

], [C, ✓
1,C

, . . . , ✓
n,C

]). Given an ele-

ment ([A, ✓
1,A

, . . . , ✓
n,A

], [C, ✓
1,C

, . . . , ✓
n,C

]) we define the map  to be

 ([A, ✓
1,A

, . . . , ✓
n,A

], [C, ✓
1,C

, . . . , ✓
n,C

]) = [E, ✓
1,A�C

, . . . , ✓
n,A�C

] where

E = 0! A! A� C ! C ! 0 and ✓
i,A�C

E = 0! A! B ! C ! 0 and ✓
i

is

0 ���! A ���! A� C ���! C ���! 0??y✓i,A

??y✓i,A�✓i,C

??y✓i,C

0 ���! A ���! A� C ���! C ���! 0
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It is a simple calculation to show that the exact sequence relation is satisfied so

these maps are well-defined. To show that the composition is the identity is su�ces

to show that

[0! A! B ! C ! 0, ✓
1

, . . . , ✓
n

]

= [0! A! A� C ! C ! 0, ✓
1,A

� ✓
1,C

, . . . , ✓
n,A

✓
n,C

]

in K
0

(Autn(E (A ,B,C ))). This follows by using the exact sequence relation on the

following exact sequence in E (A ,B,C )

0 0 0??y ??y ??y
0 ���! A ���!

IdA

A ���! 0 ���! 0??yIdA

??yf

??y
0 ���! A ���!

f

B ���!
g

C ���! 0??y ??yg

??yIdC

0 ���! 0 ���! C ���!
IdC

C ���! 0??y ??y ??y
0 0 0

Each column is exact so this is an exact sequence of elements in E (A ,B,C ). We

have to show that this gives an exact sequence in Autn(E (A ,B,C )). We show that

the morphism between 0 ! A ! A ! 0 ! 0 and 0 ! A ! B ! C ! 0 gives an

morphism between

[0! A! B ! C ! 0, ✓
1

, . . . , ✓
n

] and [0! A! A! 0! 0, ✓
1,A

, . . . , ✓
n,A

]

To show this we observe that the diagram
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A A 0

A B C

A A 0

A B C

IdA

IdA

✓i,A

f

✓i,A

f

✓i,A

g

IdA

IdA

f

f

✓i,B

g

commutes. Hence the maps � and  are inverse to each other. It can also be shown

that the necessary relations are satisfied, this implies that � and  induce maps on

K̃M

n

which are mutually inverse.

4.4 The resolution theorem

The main result of this section is the following:

Theorem 4.4.1. Let R be a regular local ring. Then the natural map

eKM

i

(P)! eKM

i

(M )

[P,⇥
1

, . . . ,⇥
i

] 7! [P,⇥
1

, . . . ,⇥
i

]

is an isomorphism.

To prove this we will construct an inverse map

eKM

i

(M )! eKM

i

(P)

We will first show that there is an map

K
0

(Auti(P))! K
0

(Auti(M ))

and then that this map preserves the necessary relations.

The first thing to show is that every element in Auti(M ) has a resolution with

elements in Auti(P). This is clear for i = 0 because R is regular. For the general

case we need the following lemma.
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Lemma 4.4.2. Let R be any commutative ring and M a finitely generated R-module.

Let ⇥ : M ! M be an automorphism of M as an R-module. Then there exists a

polynomial r(t) 2 R[t] such that r is monic, r(0) = 1 and r(⇥) = 0.

Proof. M is finitely generated as an R-module so there exists a surjective R-module

homomorphism

f : Rn ⇣ M

(r
1

, . . . , r
n

) 7!
nX

i=1

r
i

m
i

because ⇥ is invertible we can lift the maps ⇥ and ⇥�1 to maps on Rn so that we

have commutative diagrams.

Rn

A���! Rn??yf

??yf

M
⇥���! M

Rn

B���! Rn??yf

??yf

M
⇥

�1���! M

So we must have monic polynomials p and q of degree n, such that p(⇥) = q(⇥�1) = 0

(take, for example, the characteristic polynomials of A and B). Then define r(t) to

be

r(t) := tn(p(t) + q(t�1)).

One easily checks that r(t) satisfies the required properties.

We use this to construct a resolution of [M,⇥
1

, . . . ,⇥
i

] with elements in Auti(P).

Proposition 4.4.3. Let [M,⇥
1

, . . . ,⇥
i

] 2 Auti(M ). Then there exists a long exact

sequence

0 ! [P
n

, A
(n,1)

, . . . , A
(n,i)

] ! · · · ! [P
0

, A
(0,1)

, . . . , A
(0,i)

] ! [M,⇥
1

, . . . ,⇥
i

] ! 0

such that P
i

2P for every i.
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Proof. We show that there is a surjective map

[P
0

, A
1

, . . . , A
i

]! [M,⇥
1

, . . . ,⇥
i

]

with P
0

projective. We then proceed by induction.

M is finitely generated so we have a homomorphism f : Rn ! M defined by

f(r
1

, . . . , r
n

) =
P

n

j=1

r
j

m
j

. By 2.2. there are monic polynomials r
j

(t) of degree 2n

with r
j

(0) = 1 and r
j

(⇥
j

) = 0. We define P
0

to be the R[T
1

, . . . , T
i

]-module

P
0

:= (R[T
1

, . . . , T
i

]/hr
1

(T
1

), . . . , r
i

(T
i

)i)n

The r
j

(T
j

) are monic so P
0

is a free R-module. We define an R[T
1

, . . . , T
n

]-module

homomorphism

f̃ : P
0

!M

f̃(q
1

(T
1

, . . . , T
i

), . . . , q
i

(T
1

, . . . , T
i

)) =
nX

j=1

q
j

(⇥
1

, . . . ,⇥
i

)m
j

This map is surjective because f is surjective and is well-defined because r
j

(⇥
j

) = 0.

We define the maps A
j

to be multiplication by T
j

. These maps clearly commute

and are invertible because r
j

(T
j

) has constant term 1 so we can find an inverse of T
j

in R[T
1

, . . . , T
i

]/hr
1

(T
1

), . . . r
i

(T
i

)i. To complete the proof of the claim we only need

to show that f̃ gives a homomorphism from [P
0

,⇥T
1

, . . . ,⇥T
n

] to [M,⇥
1

, . . . ,⇥
n

],

i.e. that the following square commutes

P
0

⇥T

i���! P
0??yf

??yf

M
⇥i���! M

which is simple to show. Hence we have an exact sequence

0! [ker(f̃), A
1

, . . . , A
i

]! [P
0

, A
1

, . . . , A
i

]! [M,⇥
1

, . . . ,⇥
i

]! 0
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Continuing this process with [ker(f̃), A
1

, . . . , A
i

] replacing [M,⇥
1

, . . . ,⇥
i

] gives a

projective resolution for [M,⇥
1

, . . . ,⇥
i

]. The process must terminate because R is

regular.

Note that the above proposition gives us that the map in Theorem 4.4.1 is surjec-

tive for any regular ring because the resolution allows us to write each element as an

alternating sum of the elements in its projective resolution. To show it is injective, we

shall define an inverse map to be the alternating sum of the elements in its resolution

and show that this is independent of the choice of resolution. We know that the map

is well defined because Autn(P) and Autn(M ) satisfy the conditions for the reso-

lution theorem for K
0

. Therefore, we have a map from KM

0

(Auti(M )) ! KM

i

(P)

which takes an element to the alternating sum of the elements in its projective

resolution. We need to show it satisfies linearity and the steinberg relation.

Proposition 4.4.4. The map KM

0

(Auti(M )) ! KM

i

(P) factors through a map

KM

i

(M )! KM

i

(P).

Proof. We show the steinberg relation first because this is easy. We do it for the

case i = 2 to simplify notation. Take [M,⇥, 1�⇥]. Take a projective resolution

0! [P
n

, A
n

, B
n

]
fn�! . . .

f1�! [P
0

, A
0

, B
0

]
f0�! [M,⇥, 1�⇥]! 0

However, because the diagram on the left commutes the diagram on the right com-

mutes

P
j

Aj���! P
j??yfj

??yfj

P
j�1

Aj�1���! P
j�1

P
j

1�Aj���! P
j??yfj

??yfj

P
j�1

1�Aj�1����! P
j�1

(4.10)

So we can choose another projective for [M,⇥, 1� ⇥] similar to the one above but

with B
i

= 1� A
i

.

0! [P
n

, A
n

, 1� A
n

]
fn�! . . .

f1�! [P
0

, A
0

, 1� A
0

]
f0�! [M,⇥, 1�⇥]! 0
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To prove the linear relation we make the following claim

Lemma 4.4.5. Let R be a regular local ring and M a finitely generated R-module.

Given two elements of [M,⇥
0

,⇥
2

, . . . ,⇥
i

] and [M,⇥
1

,⇥
2

, . . . ,⇥
i

] of KM

0

(Auti(M ))

there exists projective resolutions

0! [P
n

, A
(n,0)

, A
(n,2)

, . . . , A
(n,i)

]
fn�! . . .

. . .
f1�! [P

0

, A
(0,0)

, A
(0,2)

, . . . , A
(0,i)

]
f0�! [M,⇥

0

,⇥
2

, . . . ,⇥
i

]! 0

0! [P
n

, A
(n,1)

, A
(n,2)

, . . . , A
(n,i)

]
fn�! . . .

. . .
f1�! [P

0

, A
(0,1)

, A
(0,2)

, . . . , A
(0,i)

]
f0�! [M,⇥

1

,⇥
2

, . . . ,⇥
i

]! 0

Proof. We construct the first term and then we can continue similarly.

Define the polynomials r
j

(t) as in 2.2. M is finitely generated so we have a

homomorphism f : Rn !M where f(r
1

, . . . , r
n

) =
P

n

j=1

r
j

m
j

. We choose this map

f so that n is minimal. Using Nakayama’s Lemma we can show that there exist

automorphisms A
0

, A
1

: Rn ! Rn which make the following diagram commute.

Rn

A0���! Rn??yf

??yf

M
⇥0���! M

Rn

A1���! Rn??yf

??yf

M
⇥1���! M

(4.11)

We define

S := R[t±
2

, . . . , t±
i

]/hr
2

(t
2

), . . . , r
i

(t
i

)i.

We tensor S with the diagrams (4.11) and compose with the maps

g : M ⌦
R

S !M

m⌦ q(t
2

, . . . , t
n

) 7! q(⇥
2

, . . . ,⇥
n

) ⇤m
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to obtain the diagram

Rn ⌦
R

S
A0⌦RIdS�����! Rn ⌦

R

S??yf⌦RIdS

??yf⌦RIdS

M ⌦
R

S
⇥0⌦RIdS�����! M ⌦

R

S??yg

??yg

M
⇥0���! M

Rn ⌦
R

S
A1⌦RIdS�����! Rn ⌦

R

S??yf⌦RIdS

??yf⌦RIdS

M ⌦
R

S
⇥1⌦RIdS�����! M ⌦

R

S??yg

??yg

M
⇥1���! M

(4.12)

The diagrams (4.12) commute so we can define maps

[Rn ⌦
R

S,A
0

⌦
R

Id
S

, Id
R

n ⌦
R

t
2

, . . . , Id
R

n ⌦
R

t
n

]
g(f⌦IdS)�����! [M,⇥

0

,⇥
2

, . . . ,⇥
n

]

[Rn ⌦
R

S,A
1

⌦
R

Id
S

, Id
R

n ⌦
R

t
2

, . . . , Id
R

n ⌦
R

t
n

]
g(f⌦IdS)�����! [M,⇥

1

,⇥
2

, . . . ,⇥
n

]

S is a free R-module hence so is Rn ⌦
R

S. The map is surjective because f is, and

so we can take the kernel and cotinue inductively.

To finish the proof, we take resolutions for

[M,⇥
0

,⇥
2

, . . . ,⇥
i

] and [M,⇥
1

,⇥
2

, . . . ,⇥
i

]

of the form in Lemma 2.5. Then the following is a resolution for [M,⇥
0

⇥
1

,⇥
2

, . . . ,⇥
i

]

0! [P
n

, A
n,0

A
(n,1)

, A
(n,2)

, . . . , A
(n,i)

]
fn�! . . .

. . .
f1�! [P

0

, A
(0,0)

A
(0,1)

, A
(0,2)

, . . . , A
(0,i)

]
f0�! [M,⇥

0

⇥
1

,⇥
2

, . . . ,⇥
i

] �! 0

Using linearity in eKM

i

(P) gives the result.

4.5 Devissage

In this section, we prove a Devissage theorem for eKM

n

. To do this we mimic the

proof for K
0

. To finish the proof we only need to show that the necessary relations

are satisfied.
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4.5. DEVISSAGE

Theorem 4.5.1. Let I be an ideal of a noetherian ring R. Let Mod
I

(R) be the

abelian subcategory of Mod(R) whose objects are finitely generated modules M , such

that InM = 0 for some M . Then

eKM

n

(Mod
I

(R)) ⇠= eKM

n

(Mod(R/I))

Proof. Given an R/I-module M , we can, by restriction of scalars, obtain an R-

module M such that IM = 0. We therefore have an inclusion of abelian categories

Mod(R/I) ⇢ Mod
I

(R).

This gives us an inclusion of abelian categories

Autn(Mod(R/I)) ⇢ Autn(Mod
I

(R)).

This induces a homomorphisms on K
0

f : K
0

(Autn(Mod(R/I)))! K
0

(Autn(Mod
I

(R))).

To show this map is an isomorphism we only need to show that each object of

Autn(Mod
I

(R)) has a filtration with quotients in Autn(Mod(R/I)). Take any object

[M,⇥
1

, . . . ,⇥
n

] in Autn(Mod
I

(R)). Then [M,⇥
1

, . . . ,⇥
n

] has a filtration

[M,⇥
1

, . . . ,⇥
n

] � [IM,⇥
1

, . . . ,⇥
n

] � · · · � [Im�1M,⇥
1

, . . . ,⇥
n

] � 0.

Therefore, we can apply Devissage for K
0

to conclude that the map f is an isomor-

phism with inverse

f�1 : K
0

(Autn(Mod
I

(R)))! K
0

(Autn(Mod(R/I)))

[M,⇥
1

, . . . ,⇥
n

] 7!
m�1X
i=0

[I iM/I i+1M,⇥
1

, . . . ,⇥
n

].

To get two mutually inverse maps on K̃M

n

it remains to show that the multilinearity

and Steinberg relations are satisfied under the maps

K
0

(Autn(Mod(R/I)))! K̃M

n

(Mod
I

(R))

K
0

(Autn(Mod
I

(R)))! K̃M

n

(Mod(R/I)).
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Both relations hold trivially and so we are done.

We now give a few special cases of the above theorem.

Corollary 4.5.2. Let I be a nilpotent ideal of a noetherian ring R. Then the

inclusion Mod(R/I) ⇢ Mod(R) induces an isomorphism

eGM

n

(R/I) ⇠= eGM

n

(R)

Corollary 4.5.3. Let R be an artinian local ring. Then

eGM

⇤ (R) ⇠= eKM

⇤ (R/m).

Corollary 4.5.4. Let R be a local noetherian ring and Mod
fl

(R) be the category of

modules of finite length. Then

eKM

n

(Mod
fl

(R)) ⇠= eKM

n

(R/m)

Proof. This follows from the fact that a module M over a local noetherian ring has

finite length i↵ it is annihilated by a power of m.
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Chapter 5

The homomorphism to Quillen

K-theory

In this chapter we will construct a homomorphism to Grayson’s definiton of higher

K-theory. One consequence of this is that the kernel of the map KM

n

(R)! eKM

n

(R)

is annihilated by (n�1)!. In particular, this shows the map is injective when n = 2.

More precisely, we will show that the map which sends [P,⇥
1

, . . . ,⇥
n

] to the n-

dimensional cube whose top di↵erential d
i

:= A
i

and whose bottom is the identity,

is well-defined.

5.1 Multilinearity

In this section, we will give a sktech of a proof of the multilinear relation which we

take from [8]. The proof uses the identity in 5.1.2, which is an analogue of an identiy

of Nenashev.

Definition 5.1.1. A bounded binary double complex N
..

is a pair of bounded double

complexes which have the same objects in each position.
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5.1. MULTILINEARITY

Proposition 5.1.2. . Let N
..

be a bounded binary double complex of objects in

(B)q�1N that is supported on [0,m]⇥[0, n], and whose rows and columns are acyclic.

Let N
.,j

be the jth row and N
i,.

the ith row considered as objects in (Bq)nN . Then

the equation

nX
j=0

(�1)j[N
.,j

] =
mX
i=0

(�1)i[N
i,.

]

holds in KQ

n

(N ).

Proof. Let [P,⇥
1

, . . . ,⇥
n

] denote the n-dimensional cube whose top di↵erential d
i

is ⇥
i

and whose bottom is the identity. To prove the multilinearity we wish to prove

[P,⇥
0

⇥
1

, . . . ,⇥
n

] = [P,⇥
0

, . . . ,⇥
n

] + [P,⇥
1

, . . . ,⇥
n

]

Let Q = [P,⇥
2

, . . . ,⇥
n

]. Consider the binary double complex

0 0 0

0 Q Q

0 Q Q

⇥1

1

⇥0

⇥0⇥1

0 0 0

0 Q Q

0 Q Q

1

1 1

1

Using the relation 5.1.2 we get that

-[ Q Q
1

1

]+[ Q Q
⇥0

1

]=[ Q Q
⇥0⇥1

1

]-[ Q Q
⇥1

1

]

The first term in the sum is diagonal so is trivial. So

[P,⇥
0

⇥
1

,⇥
2

, . . . ,⇥
n

] = [P,⇥
0

,⇥
2

, . . . ,⇥
n

] + [P,⇥
1

,⇥
2

, . . . ,⇥
n

],

as required.
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5.2 The cofinality theorem

In section 5.1 we proved that the multilinearity relation holds in Grayson’s definition

of higher K-theory. In the next section we will show that the Steinberg relation

holds. The purpose of this section is to prove the following theorem, which will

reduce proving the Steinberg relation for projective modules to proving it just for

free modules.

Theorem 5.2.1. Let R be a ring and F be the category of finitely-generated, free

left R-modules. Then the map

eKM

n

(F )! eKM

n

(P)

is an isomorphism when n � 1

It is easy to see the map is surjective; take an element [P,⇥
1

, . . . ,⇥
n

] 2 eKM

n

(R).

Now P is projective so there exists Q such that P � Q is free. Because n � 1 we

have that

[Q, Id
Q

, . . . , Id
Q

]

is trivial, so

[P,⇥
1

, . . . ,⇥
n

] =
h
P �Q, ⇥

1

� Id
Q

, . . . , ⇥
n

� Id
Q

i
which is in the image.

To show the map is injective we construct an inverse map. We define the inverse

map s to be

s : eKM

n

(P)! eKM

n

(F )

[P,⇥
1

, . . . ,⇥
n

] 7!
h
P �Q, ⇥

1

� Id
Q

, . . . , ⇥
n

� Id
Q

i

91



5.2. THE COFINALITY THEOREM

We first show that the choice of Q is irrelevant. Let Q
1

and Q
2

be two left

R-modules such that P �Q
1

and P �Q
2

are free. Then

h
P �Q

1

, ⇥
1

� Id
Q1 , . . . , ⇥

n

� Id
Q1

i
=h

P �Q
1

� P �Q
2

, ⇥
1

� Id
Q1 � Id

P

� Id
Q2 , . . . , ⇥

n

� Id
Q1 � Id

P

� Id
Q2

i
h
P �Q

2

, ⇥
1

� Id
Q2 , . . . , ⇥

n

� Id
Q2

i
=h

P �Q
2

� P �Q
1

, ⇥
1

� Id
Q2 � Id

P

� Id
Q1 , . . . , ⇥

n

� Id
Q2 � Id

P

� Id
Q1

i
These two terms are obviously equal.

Next we show the exact sequence relation. Take any exact sequence

0 �! [P
1

,�
1

, . . . ,�
n

]
f�! [P

2

, 
1

, . . . , 
n

]
g�! [P

3

,⇥
1

, . . . ,⇥
n

] �! 0

Let Q
1

and Q
3

be finitely generated modules such that P
1

� Q
1

and P
3

� Q
3

are

free. Then there is an exact sequence of free modules

0 �! [P
1

�Q
1

,�
1

� Id
Q1 , . . . ,�n

� Id
Q1 ]

f�!
[P

2

�Q
1

�Q
3

, 
1

� Id
Q1 � Id

Q3 , . . . , n

� Id
Q1 � Id

Q3 ]
g�!

[P
3

�Q
3

,⇥
1

� Id
Q3 , . . . ,⇥n

� Id
Q3 ] �! 0.

Where P
2

�Q
1

�Q
3

is free because P
2

⇠= P
1

� P
3

.

The multilinearity is simple to show. Take an element

[P,⇥
0

⇥
1

,⇥
2

, . . . ,⇥
n

]

this elements maps to an element of the form

[P �Q,⇥
0

⇥
1

� Id
Q

,⇥
2

� Id
Q

, . . . ,⇥
n

� Id
Q

]
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in eKM

n

(F ). Using the multilinearity relation in eKM

n

(F ) this is equal to

[P �Q,⇥
0

� Id
Q

,⇥
2

� Id
Q

, . . . ,⇥
n

� Id
Q

]+

[P �Q,⇥
1

� Id
Q

,⇥
2

� Id
Q

, . . . ,⇥
n

� Id
Q

]

The Steinberg relation is more di�cult. We first show the image of a Steinberg

symbol is independent of the automorphisms of the module.

Lemma 5.2.2. Let P be a finitely-generated projective module for which there exists

an autmorphism  of P such that 1 �  is invertible. Then there exists a finitely

generated module Q such that there is an automorphism ⇥ of Q with 1�⇥ invertible

and P �Q is free.

Proof. Because P is projective there obviously exists a Q such that P �Q is free. If

Q satisfies the necessary properties then we are done. Otherwise we replace Q with

P �Q�Q and let

⇥ :=

0BBB@
 0 0

0 0 Id
Q

0 Id
Q

Id
Q

1CCCA

Lemma 5.2.3. Let P be a projective module and let ⇥
1

,⇥0
1

be automorphisms of P

such that 1�⇥0
1

and 1�⇥
1

are both invertible. Then

s[P,⇥
1

, 1�⇥
1

,⇥
3

, . . . ,⇥
n

] = s[P,⇥0
1

, 1�⇥0
1

,⇥0
3

, . . . ,⇥0
n

]

Proof. We take Q to be a projective as in lemma 5.2.2. Then

s[P,⇥
1

, 1�⇥
1

,⇥
3

, . . . ,⇥
n

] = s[P,⇥
1

, 1�⇥
1

,⇥
3

, . . . ,⇥
n

]

+[P �Q,⇥0
1

� , (1�⇥0
1

)� (1� ),⇥0
3

� Id, . . . ,⇥0
n

� Id]
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Combining these two terms using the exact sequence relation gives

[P �Q� P �Q,⇥
1

� Id�⇥0
1

� , (1�⇥
1

)� Id�(1�⇥0
1

)� (1� ),
⇥

2

� Id�⇥0
2

� Id, . . . ,⇥
n

� Id�⇥0
n

� Id] (5.1)

One can get the result from this by taking an exact sequence whose middle term is

5.1 and whose first term is just the inclusion of the first and last coordinate.

Lemma 5.2.3 actually completes the proof that the Steinberg relation holds when

n � 3 because we can just choose ⇥0
3

= Id. The only case left is the case n = 2. In

this case we have shown that

s[P,⇥, 1�⇥] = s[P,⇥0, 1�⇥0]

whenever this makes sense. We denote an element s[P,⇥, 1�⇥] by s(P )

Note that for projective modules M,N we have that s(M �N) = s(M)� s(N)

providing both s(M) and s(N) exist.

Our aim now is to show that s(P ) = 0 whenever it exists. We begin with the

following lemma.

Lemma 5.2.4. Let Q be a projective R-module. If there is an automorphism ✓ of

Q such that 1� ✓2 are invertible then

3s(Q) = 0 2 eKM

n

(F )

Proof. We have that

s(Q) = [Q, ✓2, 1� ✓2]
= [Q, ✓2, (1� ✓)(1 + ✓)]

= [Q, (�✓)2, 1 + ✓] + [Q, ✓2, 1� ✓]
= 2[Q,�✓2, 1 + ✓] + 2[Q, ✓, 1� ✓] = 2s(Q) + 2s(Q)

which gives the result.
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From this we can show that for any projective module P we have that 3s(P 2) = 0

and 3s(P 3) = 0. To prove the first of these identities take

✓ =

0@ 0 I
P

I
P

I
P

1A , 1� ✓2 =
0@ 0 �I

P

�I
P

�I
P

1A
and for the second identity take

✓ =

0BBB@
0 0 I

P

I
P

0 I
P

0 I
P

0

1CCCA , 1� ✓2 =

0BBB@
I
P

�I
P

0

0 0 �I
P

�I
P

0 0

1CCCA
Then the two identities above give us the following

Lemma 5.2.5. Let P be any projective R-module. We have that

3s(P ) = 0 2 eKM

n

(F )

To finish the proof we will show that 4s(P ) = 0. We do this by picking an

explicit representation of s(P 4). We take this to be

s(P 4) =

26666664

0BBBBBB@
0 0 0 �I

P

I
P

0 0 I
P

0 I
P

0 �I
P

0 0 I
P

I
P

1CCCCCCA ,

0BBBBBB@
I
P

0 0 I
P

�I
P

I
P

0 �I
P

0 �I
P

I
P

I
P

0 0 �I
P

0

1CCCCCCA

37777775
One can check that both these maps are invertible. Furthermore, it is true that0BBBBBB@

0 0 0 �I
P

I
P

0 0 I
P

0 I
P

0 �I
P

0 0 I
P

I
P

1CCCCCCA

10

=

0BBBBBB@
I
P

0 0 0

0 I
P

0 0

0 0 I
P

0

0 0 0 I
P

1CCCCCCA
So we have that 10s(P 4) = 0, but we also have that 3s(P 4) = 0 by the previous

lemma so s(P 4) = 0, hence 4s(P ) = 0.
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5.3 The Steinberg relation for Quillen K-theory

In this section we prove the Steinberg relation for Grayson’s definition of higher

K-theory of a ring.

Lemma 5.3.1. Let R be any ring. Denote elements of the form

R R

R R

x

1

y

1

y

1

x

1

in KQ

2

(R) by [x, y]. Then we have that

4[a3, 1� a3] = 0 2 KQ

2

(R)

for all a3, 1� a3 2 R⇤.

Proof. We show that this relation holds when R is the ring Z[t, t�1, (1� t)�1]. R is

a regular ring so we know that KQ

2

(R) is homotopy invariant. Using this we may

show that26664
0BBB@
0 0 t3

1 0 0

0 1 0

1CCCA ,

0BBB@
1 0 �t3

�1 1 0

0 �1 1

1CCCA
37775 =

26664
0BBB@
0 0 t3

1 0 �(t3 + 1)

0 1 t3 + 1

1CCCA ,

0BBB@
1 0 �t3

�1 1 t3 + 1

0 �1 1� (t3 + 1)

1CCCA
37775

Using the homotopy26664
0BBB@
0 0 t3

1 0 �x(t3 + 1)

0 1 x(t3 + 1)

1CCCA ,

0BBB@
1 0 �t3

�1 1 x(t3 + 1)

0 �1 1� x(t3 + 1)

1CCCA
37775
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We reduce these matrices to 1⇥ 1 matrices in the ring R[!]/(!2 + ! + 1). We first

use following change of bases matrices on the matrices above0BBB@
t2 0 1

t 1 0

1 0 0

1CCCA ,

0BBB@
1 0 0

�1 1 0

1 0 1

1CCCA
The first column of each is an eigenvector changing bases gives the following:26664

0BBB@
t 1 0

0 �t 1

0 �t2 0

1CCCA ,

0BBB@
1� t �1 0

0 1 + t �1
0 t2 1

1CCCA
37775 =

26664
0BBB@
t3 0 t3

0 0 �1
0 1 1

1CCCA ,

0BBB@
1� t3 0 �t3

0 1 1

0 �1 0

1CCCA
37775

Using the exact sequence relation we get that

[t, 1� t] +

240@�t 1

�t2 0

1A ,

0@1 + t �1
t2 1

1A35 =

[t3, 1� t3] +

240@0 �1
1 1

1A ,

0@ 1 1

�1 0

1A35
Using the change of bases matrices0@ 1 0

�!2t 1

1A 0@1 0

! 1

1A
we get that

[t, 1� t] +

240@!t 1

0 !2t

1A ,

0@1� !t �1
0 1� !2t

1A35 =

[t3, 1� t3] +

240@�! �1
0 �!2

1A ,

0@1 + ! 1

0 1 + !2

1A35
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Then using the exact sequence relation we get that

[t, 1� t] + [!t, 1� !t] + [!2t, 1� !2t] = [t3, 1� t3] + [�!, 1 + !] + [�!2, 1 + !2]

Using linearity we can get that

[t, 1� t3] + [!, (1� !t)(1� !2t)2] = [t3, 1� t3] + [�!, 1 + !] + [�!2, 1 + !2]

Multiplying both sides by 3 eliminates all terms involving ! because 3[!, b] = 0

and [�1, 1 + !] + [�1, 1 + !2] = 0 so we have shown that 2[t3, 1 � t3] = 0. We

use the transfer map to get that 4[t3, 1 � t3] = 0 2 KQ

2

(Z[t, t�1, (1 � t3)�1]). To

get the result for a general ring R we use the fact we can take a homomorphism

Z[t, t�1, (1� t3)�1]! R with t 7! a.

Corollary 5.3.2. Let R be any ring, and a, 1 � a 2 R⇤. Then 12[a, 1 � a] = 0 2
KQ

2

(R).

Proof. We prove this for the ring R = Z[t, t�1, (1 � t)�1] and the element [t, 1 � t].

Consider the ring S = Z[t, t�1, (1� t)�1][x]/(x3 � t). Then we know, by 5.3.1, that

4[x3, 1� x3] = 0 2 KQ

2

(S).

Hence taking the image under the transfer map we have that 12[t, 1 � t] = 0 2
KQ

2

(R).

We are finally able to prove the Steinberg relation

Proposition 5.3.3. Let R be any ring and a, 1� a 2 R⇤. Then

[R, a, 1� a] = 0 2 KQ

2

(R)

Proof. We show that [t, 1� t] = 0 2 KQ

2

(Z[t, t�1, (1� t)�1]). Let R = Z[t, t�1, (1�
t)�1][x]/(x12 � t). Then we know, by 5.3.2, that

[t, 1� x] = 12[x, 1� x] = 0 2 KQ

2

(R)
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Applying the transfer map to this element gives us the following 12⇥ 12 matrices26666664
0BBB@
t . . . 0
...

. . .
...

0 . . . t

1CCCA
0BBBBBB@

1 . . . 0 �t
�1 . . . 0 0
...

. . . . . .
...

0 . . . �1 1

1CCCCCCA

37777775 = 0 2 KQ

2

(Z[t, t�1, (1� t)�1])

We can now use elementary row and column operations to reduce the matrix on the

right to 26666664
0BBB@
t . . . 0
...

. . .
...

0 . . . t

1CCCA ,

0BBBBBB@
1 . . . 0 0
...

. . .
...

...

0 . . . 1 0

0 . . . 0 1� t

1CCCCCCA

37777775
The result follows.

To finish the proof that the map eKM

n

(R) ! KQ

n

(R) is well-defined we need to

show that the identity holds for free modules.

First note the Steinberg relation holds for free modules of rank 1 in KQ

n

(R)

because

[a
1

, 1� a
1

, . . . , a
n

] = [a
1

, 1� a
1

]⌦ [a
3

, . . . , a
n

]

We need to show thath
Rm, A

1

, 1� A
1

, A
3

, . . . , A
n

i
= 0 2 KQ

n

(R).

Let S be the commutative subring of M
n

(R) generated by A
1

, A
3

, . . . , A
n

. We know

that [S,A
1

, 1� A
1

, A
3

, . . . , A
n

] = 0 2 KQ

n

(S). We define a functor

F : Proj
S

! Proj
R

P 7! Rm

O
S

P
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and given a morphism f : P ! Q we define F (f) = Id
R

m ⌦f . This functor induces
a map on K-theory KQ

n

(S)! KQ

n

(R). One can show that the image of S under this

functor is Rm and the image of the homomorphism A
i

is the matrix A
i

.

We have shown the following:

Theorem 5.3.4. Let R be a ring. There exists a homomorphism

� : eKM

n

(R)! KQ

n

(R)

such that when R is a local ring with infinite residue field the comparison homomor-

phism from Milnor K-theory to Quillen K-theory is equal to the composition

KM

n

(R)! eKM

n

(R)! KQ

n

(R)

We know that for a local ring with infinite residue field KM

2

(R) ⇠= KQ

2

(R). We

conjecture the map defined above is an isomorphism more generally.

Conjecture 5.3.5. Let R be any ring. The map

eKM

2

(R)! KQ

2

(R)

is an isomorphism.

We know that this map is an isomorphism for R a field. We also know, because,

by [15], the composition

KM

2

(R)! eKM

2

(R)! KQ

2

(R)

is an isomorphism for R a local ring with infinite residue, that K̂M

2

(R)! KQ

2

(R) is

surjective.

Corollary 5.3.6. Let R be a regular, local ring with infinite residue field, then the

map

eKM

n

(R[t
1

, . . . , t
n

])! KQ

2

(R[t
1

, . . . , t
n

])

is surjective.
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Proof. We do this by induction on n. The case n = 0 is considered above. Assume

that this holds for n = k. Consider the commutative diagram

eKM

n

(R[t
1

, . . . , t
k+1

]) ���! KQ

n

(R[t
1

, . . . , t
k+1

])??y ??yeKM

n

(R[t
1

, . . . , t
k

, t
k+1

]) ���! KQ

n

(R[t
1

, . . . , t
k

, t
k+1

])

by induction the top map is surjective and by homotopy invariance the right map

is surjective. Hence, the bottom map is surjective.

We can also use the map to Quillen K-theory to prove the following:

Corollary 5.3.7. Let R be a local ring with infinite residue field. Then the kernel

of the map

KM

n

(R)! eKM

n

(R)

is annihilated by (n� 1)!. In particular, when n = 2 the map is injective.

Proof. There is a map

KQ

n

(R)! KM

n

(R)

such that the composition

KM

n

(R)! eKM

n

(R)! KQ

n

(R)! KM

n

(R)

is multiplication by (n� 1)!.
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Chapter 6

Further questions

6.1 Surjectivity for local rings

In section 4.1 we showed that the transfers for Milnor K-theory are compatiable

with the transfers for eKM

n

. In the case when R is a field we can use compatibility of

the transfer or the reciprocity laws to prove that the map is surjective. To do this

we need that every element in eKM

n

(F ) is the image of transfers of rank one elements.

In this section, we show that when R is a regular local ring eKM

n

(R) is images of rank

one elements under a transfer map. Unfortunetly, we do not have a reciprocity law

to manipulate these elements nor do we have the corresponding transfers we need

for Milnor K-theory.

Let R be a regular, local ring. We have shown, in section 4.4.1, that

eKM

n

(R)! eGM

n

(R)

is an isomorphism. Take an element

[M,⇥
1

, . . . ,⇥
n

] 2 eGM

n

(R).

Like in the field case, we can consider M as a R[t±
1

, . . . , t±
n

]-module. We can take a
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filtration of M where each qoteient is of the form

R[t±
1

, . . . , t±
n

]/p

where p is prime. Hence every element in eGM

n

(R) can be written as a sum of elements

of the form

eN
R[t

±
1 ,...,t

±
n ]/p|R[R[t±

1

, . . . , t±
n

]/p, t
1

, . . . , t
n

]

To complete the proof as in the field case we either need a more general version of

reciprocity or transfers for Milnor K-theory.

In the proof of surjectivity for fields we gave an alternative proof that eKM

n

(F ) is

generated by the image of rank one transfers. This also carries over, in some way,

to the realm of regular local rings.

Take an element

[Rm,⇥
1

, . . . ,⇥
n

]

Let c
⇥1(t) be the characteristic polynomial of ⇥

1

. Let

c
⇥1(t) = p

1

(t) . . . p
l

(t)

be the factorizations into irreducibles in the field of fractions. As in the field case

we can define M to be the subspace annihilated by some monic polynomial.

0! [M,⇥
1

, . . . ,⇥
n

]! [[Rm,⇥
1

, . . . ,⇥
n

]]! [Rm/M,⇥
1

, . . . ,⇥
n

]! 0

Now M is a R[t]/p(t)-module where t⇥M = ⇥
1

⇥M .

Hence, we have that KM

n

(R) is generated by transfers of the form

[R[t]/p(t), t]⌦
R[t]/p(t)

[M,⇥
2

, . . . ,⇥
n

] 2 eGM

n

(R[t]/p(t))

where p(t) is an irreducible, monic polynomial.
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6.2 The case for DVRs

In the previous section, we showed that eKM

n

(R) is generated by images of rank

1 elements under some transfer. In this section, we show that if R is a discrete

valuation ring we can define the necessary transfers for Milnor K-theory. However

we do not know whether these transfers commute.

Let R be a discrete valuation ring. We know that the group eGM

n

(R) is generated

by elements of the form

[R[t±
1

, . . . , t±
n

]/p, t±
1

, . . . , t±
n

]

where p is prime. Consider the map

R! R[t±
1

, . . . , t±
n

]/p.

First assume that the map is not injective. Then the kernel is a non-trivial prime

ideal, so must be ⇡. Hence the map factors as

R! R/⇡ ! R[t±
1

, . . . , t±
n

]/p.

Hence the element [R[t±
1

, . . . , t±
n

]/p, t
1

, . . . , t
n

] is in the image of the transfer

eNM

R/m|R : eGM

n

(R/⇡)! eGM

n

(R)

R/⇡ is a field so we know that eGM

n

(R/⇡) is a generated by elements of the form

[R/⇡, a
1

, . . . , a
n

].

We claim that these elements are equal to 0 in eGM

n

(R). Let ba
i

be any lifting of a
i

in R. We have an exact sequence

0 �! [R,ba
1

, . . . ,ba
n

]
⇥⇡�! [R,ba

1

, . . . ,ba
n

] �! [R/⇡, a
1

, . . . , a
n

] �! 0
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So using the exact sequence relation we have that

[R/⇡, a
1

, . . . , a
n

] = [R,ba
1

, . . . ,ba
n

]� [R,ba
1

, . . . ,ba
n

] = 0

So we are left with the case R! R[t±
1

, . . . , t±
n

]/p is injective.

R[t±
1

, . . . , t±
n

]/p is finite over R and so is 1-dimensional. Let S denote the integral

closure of R in the field of fractions of R[t±
1

, . . . , t±
n

]/p. We know that S is a finite R-

module which contains R[t±
1

, . . . , t±
n

]/p. We also know that S is a Dedekind domain.

Consider the exact sequence

0 �! [R[t±
1

, . . . , t±
n

]/p, t
1

, . . . , t
n

]
⇥⇡�! [S, t

1

, . . . , t
n

] �! [M, t
1

, . . . , t
n

] �! 0

where M is a finitely generated R/⇡-module. Using a similar argument to above we

can deduce that [M, t
1

, . . . , t
n

] = 0.

So we have shown that eGM

n

(R) is generated by elements of the form [S, a
1

, . . . , a
n

]

where S is a Dedekind domain. Consider the diagram

0 KM

n

(S) KM

n

(L) �
⇡iK

M

n

(S/⇡
i

) 0

0 KM

n

(R) KM

n

(F ) KM

n

(R/⇡) 0

N

M
L/F

�@⇡i

P
N

M
S/⇡i|R/⇡

@⇡

The diagram commutes and each of the rows are exact when R contains an infinite

field. So we have constructed transfers

KM

n

(S)! KM

n

(R)

If these transfers are compatible with those for eKM

n

then we are done.

6.3 The map to homology

In this section, we give a possible map from eKM

n

(R) to H
n

(GL(R))/H
n

(GL
n�1

(R))

which agrees with map from Milnor K-theory.
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We begin by defining a map

� : Z{[Rm, A
1

, . . . , A
n

]}! H
n

(GL
n

(R))

Given an element [Rm, A
1

, . . . , A
n

] we define

�([Rm, A
1

, . . . , A
n

]) =
X
�2Sn

sgn(�)[A
�(1)

, . . . , A
�(n)

]

We need to show this map is well-defined. We first show that

@
i

(
X
�2Sn

sgn(�)[A
�(1)

, . . . , A
�(n)

]) = 0

when 0 < i < n. Note that S
n

= S
n,+

S
(i, i+1)S

n,+

, where S
n,+

is the permutations

which positive sign.

@
i

(
X
�2Sn

sgn(�)[A
�(1)

, . . . , A
�(n)

]) =

X
�2Sn,+

[A
�(1)

, . . . , A
�(i)

A
�(i+1)

, . . . , A
�(n)

]� [A
�(1)

, . . . , A
�(i+1)

A
�(i)

, . . . , A
�(n)

]

this is 0 because all matrices commute. We claim that

@
0

+ (�1)n@
n

= 0.

To show this we need to show thatX
�2Sn|�(1)=i

sgn(�)[A
�(2)

, . . . , A
�(n)

] + (�1)n
X

�

02Sn|�0
(n)=i

sgn(�0)[A
�

0
(1)

, . . . , A
�

0
(n�1)

] = 0

right multiplication by (1, . . . , n) sends elements of S
n

which send 1 to i to elements

which send n to i.

X
�2Sn|�(1)=i

sgn(�)[A
�(2)

, . . . , A
�(n)

]+

(�1)n
X

�

02Sn|�0
(1,...,n)(n)=i

sgn(�0(1, . . . , n))[A
�

0
(1,...,n)(1)

, A
�

0
(1,...,n)(2)

. . . , A
�

0
(1,...,n)(n�1)

] = 0
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So we have constructed a symbol in H
n

(GL(R)). We denote this symbol by

µ(A
1

, . . . , A
n

). We show that this symbol satisfies the multlilinear relation. This

means we have to show that

µ([A
1

A
2

, A
3

, . . . , A
n

])� µ([A
1

, A
3

, . . . , A
n

])� µ([A
2

, A
3

, . . . , A
n

])

is the image of some boundary map. We claim this is

@(
X

�2Sn|��1
(1)<�

�1
(2)

sgn(�)[A
�(1)

, A
�(2)

, . . . , A
�(n)

])

First take 1  i  n� 1. Then

@
i

(
X

�2Sn|��1
(1)<�

�1
(2)

sgn(�)[A
�(1)

, A
�(2)

, . . . , A
�(n)

]) =

X
�2Sn|��1

(1)<�

�1
(2)

sgn(�)[A
�(1)

, . . . , A
�(i)

A
�(i+1)

, . . . , A
�(n)

]

Using a similar argument to above (apply (i, i + 1)) we can see that every element

in the sum cancels unless �(i) = 1 or �(i) = 2. Again using similar argument as

above we see that the only elements in the image of @
0

that do not cancel with some

element in @
n

are elements such that �(1) = 1. Conversely, the only elements of @
n

that do not cancel with some element of @
0

are elements of the form �(n) = 2.

So we have that µ is a multilinear symbol. However µ is likely not additive unless

n = 1. For µ to be additive when n = 2 we would need that

µ(

0@A 0

0 B

1A ,

0@C 0

0 D

1A) = µ([A,C]) + µ([B,D])

Using linearity we can see that this is equivalent to

µ(

0@A 0

0 1

1A ,

0@1 0

0 D

1A) = 0
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For any A,D. This is not true in general. However, given a multilinear symbol we

can define a additive symbol. We first do this for the case n = 2. We define

c(A,B) := µ(A,B)� µ(

0@A 0

0 1

1A ,

0@1 0

0 B

1A)

c(A,B) is also bilinear so we only need to see the identity holds above.

c(

0@A 0

0 1

1A0@1 0

0 D

1A) = µ(

0@A 0

0 1

1A0@1 0

0 D

1A)� µ(

0BBBBBB@
A 0 0 0)

0 1 0 0

0 0 1 0

0 0 0 1

1CCCCCCA

0BBBBBB@
1 0 0 0)

0 1 0 0

0 0 1 0

0 0 0 D

1CCCCCCA)

Changing basis and using the fact we are working in GL(R) gives the result.

We can rewrite this formula as

c(A,B) = µ(

0BBB@
A 0 0

0 A�1 0

0 0 1

1CCCA ,

0BBB@
B 0 0

0 1 0

0 0 B�1

1CCCA)

We outline how to construct an additive symbol generally and then present this

map in the case n = 3.

Let A
1

, . . . , A
n

be commuting automorphisms of Rm = P and let f : {1, . . . , n}!
{1, . . . , n} be a function. Define f [A

1

, . . . , A
n

] = [B
1

, . . . , B
n

] where B
i

is an auto-

morphism of P n of the form0BBBBBBBBBBBBBBB@

1
. . .

1

A
i

1
. . .

1

1CCCCCCCCCCCCCCCA
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where A
i

is in the (f(i), f(i)) position. Using the same argument as above we can

see that a symbol is additive providing that c(f [A
1

, . . . , A
n

]) = 0 whenever f with

exactly 2 elements in the image. We will construct a symbol such c(f [A
1

, . . . , A
n

]) =

0 whenever f is not constant.

Take any multilinear symbol µ. Define

c
n

(A
1

, . . . , A
n

) = µ([A
1

, . . . , A
n

])� µ(f [A
1

, . . . , A
n

])

where f is the identity on {1, . . . , n}. It is easy to see that c
n

(f [A
1

, . . . , A
n

]) = 0

for any bijective f . Inductively, we define

c
i�1

([A
1

, . . . , A
n

]) = c
i

([A
1

, . . . , A
n

])�
X

f : {1,...,n}!{1,...,n}s.t.|im(f)=i�1|

c
i

(f [A
1

, . . . , A
n

])

The sum is over functions f : {1, . . . , n}! {1, . . . , n} such that f(1) = 1, the image

has precisely i� 1 elements and f(j)  max{f(1), . . . , f(n)}+ 1 for all j

Example 6.3.1. We do the above computation when n = 3. First let

c
3

([A
1

, . . . , A
3

]) := µ([A
1

, A
2

, A
3

])� µ(

0BBB@
A

1

1

1CCCA ,

0BBB@
1

A
2

1

1CCCA ,

0BBB@
1

1

A
3

1CCCA)

Next we define c
2

to be

c
2

([A
1

, . . . , A
3

]) := c
3

([A
1

, A
2

, A
3

])� c
3

([

0@A
1

0

0 1

1A ,

0@A
2

0

0 1

1A ,

0@1 0

0 A
3

1A])

�c
3

([

0@A
1

0

0 1

1A ,

0@1 0

0 A
2

1A ,

0@1 0

0 A
3

1A])� c
3

([

0@A
1

0

0 1

1A ,

0@1 0

0 A
2

1A ,

0@A
3

0

0 1

1A])
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6.3. THE MAP TO HOMOLOGY

Writing this in terms of µ gives

c([A
1

, A
2

, A
3

]) := µ([A
1

, A
2

, A
3

])� µ([

0@A
1

0

0 1

1A ,

0@A
2

0

0 1

1A ,

0@1 0

0 A
3

1A])

�µ([
0@A

1

0

0 1

1A ,

0@1 0

0 A
2

1A ,

0@1 0

0 A
3

1A])� µ([

0@A
1

0

0 1

1A ,

0@1 0

0 A
2

1A ,

0@A
3

0

0 1

1A])

+2µ(

0BBB@
A

1

1

1

1CCCA ,

0BBB@
1

A
2

1

1CCCA ,

0BBB@
1

1

A
3

1CCCA)

This map gives an additive multilinear symbol. We conjecture that the steinberg

relation and the exact sequence relation hold under this map. One may be able to

prove that they do by using homotopy invariance as was done in Grayson’s definition

of higher K-theory. Therefore we conjecture that the map

eK
n

(R)! H
n

(GL(R))/H
n

(GL
n�1

(R))

[Rn, A
1

, . . . , A
n

] 7! c(A
1

, . . . , A
n

)

is well-defined.

Recall that the map KM

n

(R) ! H
n

(GL(R))/H
n

(GL
n�1

(R)) is an isomorphism.

One can see that the composition

KM

n

(R)! eKM

n

(R)! H
n

(GL(R))/H
n

(GL
n�1

(R))

is equal to a constant multiple of the above map.This constant should be (n � 1)!

but we have no proof of this. It should also be true that the map we have defined

above factors as

eKM

n

(R)! KQ

n

(R)! H
n

(GL
n

(R)).
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